scipy 1.16.2__cp313-cp313t-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp313t-win_arm64.lib +0 -0
- scipy/_cyutility.cp313t-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp313t-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp313t-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp313t-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp313t-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp313t-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313t-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp313t-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp313t-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp313t-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp313t-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp313t-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp313t-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp313t-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp313t-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp313t-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313t-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp313t-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp313t-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp313t-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp313t-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp313t-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp313t-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp313t-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp313t-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp313t-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp313t-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp313t-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp313t-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp313t-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp313t-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp313t-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp313t-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp313t-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp313t-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp313t-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp313t-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp313t-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp313t-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp313t-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp313t-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp313t-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp313t-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp313t-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp313t-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp313t-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp313t-win_arm64.lib +0 -0
- scipy/signal/_spline.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp313t-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp313t-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp313t-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp313t-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp313t-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313t-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp313t-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp313t-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp313t-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp313t-win_arm64.lib +0 -0
- scipy/special/_comb.cp313t-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp313t-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp313t-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp313t-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp313t-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp313t-win_arm64.lib +0 -0
- scipy/special/_specfun.cp313t-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp313t-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp313t-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp313t-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp313t-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp313t-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp313t-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp313t-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp313t-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp313t-win_arm64.lib +0 -0
- scipy/special/cython_special.cp313t-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp313t-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp313t-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp313t-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp313t-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp313t-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp313t-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp313t-win_arm64.lib +0 -0
- scipy/stats/_stats.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp313t-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313t-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,1521 @@
|
|
1
|
+
"""
|
2
|
+
Method agnostic utility functions for linear programming
|
3
|
+
"""
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
import scipy.sparse as sps
|
7
|
+
from warnings import warn
|
8
|
+
from ._optimize import OptimizeWarning
|
9
|
+
from scipy.optimize._remove_redundancy import (
|
10
|
+
_remove_redundancy_svd, _remove_redundancy_pivot_sparse,
|
11
|
+
_remove_redundancy_pivot_dense, _remove_redundancy_id
|
12
|
+
)
|
13
|
+
from collections import namedtuple
|
14
|
+
|
15
|
+
_LPProblem = namedtuple('_LPProblem',
|
16
|
+
'c A_ub b_ub A_eq b_eq bounds x0 integrality')
|
17
|
+
_LPProblem.__new__.__defaults__ = (None,) * 7 # make c the only required arg
|
18
|
+
_LPProblem.__doc__ = \
|
19
|
+
""" Represents a linear-programming problem.
|
20
|
+
|
21
|
+
Attributes
|
22
|
+
----------
|
23
|
+
c : 1D array
|
24
|
+
The coefficients of the linear objective function to be minimized.
|
25
|
+
A_ub : 2D array, optional
|
26
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
27
|
+
coefficients of a linear inequality constraint on ``x``.
|
28
|
+
b_ub : 1D array, optional
|
29
|
+
The inequality constraint vector. Each element represents an
|
30
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
31
|
+
A_eq : 2D array, optional
|
32
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
33
|
+
coefficients of a linear equality constraint on ``x``.
|
34
|
+
b_eq : 1D array, optional
|
35
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
36
|
+
the corresponding element of ``b_eq``.
|
37
|
+
bounds : various valid formats, optional
|
38
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs.
|
39
|
+
If bounds are specified for all N variables separately, valid formats
|
40
|
+
are:
|
41
|
+
* a 2D array (N x 2);
|
42
|
+
* a sequence of N sequences, each with 2 values.
|
43
|
+
If all variables have the same bounds, the bounds can be specified as
|
44
|
+
a 1-D or 2-D array or sequence with 2 scalar values.
|
45
|
+
If all variables have a lower bound of 0 and no upper bound, the bounds
|
46
|
+
parameter can be omitted (or given as None).
|
47
|
+
Absent lower and/or upper bounds can be specified as -numpy.inf (no
|
48
|
+
lower bound), numpy.inf (no upper bound) or None (both).
|
49
|
+
x0 : 1D array, optional
|
50
|
+
Guess values of the decision variables, which will be refined by
|
51
|
+
the optimization algorithm. This argument is currently used only by the
|
52
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
53
|
+
basic feasible solution.
|
54
|
+
integrality : 1-D array or int, optional
|
55
|
+
Indicates the type of integrality constraint on each decision variable.
|
56
|
+
|
57
|
+
``0`` : Continuous variable; no integrality constraint.
|
58
|
+
|
59
|
+
``1`` : Integer variable; decision variable must be an integer
|
60
|
+
within `bounds`.
|
61
|
+
|
62
|
+
``2`` : Semi-continuous variable; decision variable must be within
|
63
|
+
`bounds` or take value ``0``.
|
64
|
+
|
65
|
+
``3`` : Semi-integer variable; decision variable must be an integer
|
66
|
+
within `bounds` or take value ``0``.
|
67
|
+
|
68
|
+
By default, all variables are continuous.
|
69
|
+
|
70
|
+
For mixed integrality constraints, supply an array of shape `c.shape`.
|
71
|
+
To infer a constraint on each decision variable from shorter inputs,
|
72
|
+
the argument will be broadcast to `c.shape` using `np.broadcast_to`.
|
73
|
+
|
74
|
+
This argument is currently used only by the ``'highs'`` method and
|
75
|
+
ignored otherwise.
|
76
|
+
|
77
|
+
Notes
|
78
|
+
-----
|
79
|
+
This namedtuple supports 2 ways of initialization:
|
80
|
+
>>> lp1 = _LPProblem(c=[-1, 4], A_ub=[[-3, 1], [1, 2]], b_ub=[6, 4])
|
81
|
+
>>> lp2 = _LPProblem([-1, 4], [[-3, 1], [1, 2]], [6, 4])
|
82
|
+
|
83
|
+
Note that only ``c`` is a required argument here, whereas all other arguments
|
84
|
+
``A_ub``, ``b_ub``, ``A_eq``, ``b_eq``, ``bounds``, ``x0`` are optional with
|
85
|
+
default values of None.
|
86
|
+
For example, ``A_eq`` and ``b_eq`` can be set without ``A_ub`` or ``b_ub``:
|
87
|
+
>>> lp3 = _LPProblem(c=[-1, 4], A_eq=[[2, 1]], b_eq=[10])
|
88
|
+
"""
|
89
|
+
|
90
|
+
|
91
|
+
def _check_sparse_inputs(options, meth, A_ub, A_eq):
|
92
|
+
"""
|
93
|
+
Check the provided ``A_ub`` and ``A_eq`` matrices conform to the specified
|
94
|
+
optional sparsity variables.
|
95
|
+
|
96
|
+
Parameters
|
97
|
+
----------
|
98
|
+
A_ub : 2-D array, optional
|
99
|
+
2-D array such that ``A_ub @ x`` gives the values of the upper-bound
|
100
|
+
inequality constraints at ``x``.
|
101
|
+
A_eq : 2-D array, optional
|
102
|
+
2-D array such that ``A_eq @ x`` gives the values of the equality
|
103
|
+
constraints at ``x``.
|
104
|
+
options : dict
|
105
|
+
A dictionary of solver options. All methods accept the following
|
106
|
+
generic options:
|
107
|
+
|
108
|
+
maxiter : int
|
109
|
+
Maximum number of iterations to perform.
|
110
|
+
disp : bool
|
111
|
+
Set to True to print convergence messages.
|
112
|
+
|
113
|
+
For method-specific options, see :func:`show_options('linprog')`.
|
114
|
+
method : str, optional
|
115
|
+
The algorithm used to solve the standard form problem.
|
116
|
+
|
117
|
+
Returns
|
118
|
+
-------
|
119
|
+
A_ub : 2-D array, optional
|
120
|
+
2-D array such that ``A_ub @ x`` gives the values of the upper-bound
|
121
|
+
inequality constraints at ``x``.
|
122
|
+
A_eq : 2-D array, optional
|
123
|
+
2-D array such that ``A_eq @ x`` gives the values of the equality
|
124
|
+
constraints at ``x``.
|
125
|
+
options : dict
|
126
|
+
A dictionary of solver options. All methods accept the following
|
127
|
+
generic options:
|
128
|
+
|
129
|
+
maxiter : int
|
130
|
+
Maximum number of iterations to perform.
|
131
|
+
disp : bool
|
132
|
+
Set to True to print convergence messages.
|
133
|
+
|
134
|
+
For method-specific options, see :func:`show_options('linprog')`.
|
135
|
+
"""
|
136
|
+
# This is an undocumented option for unit testing sparse presolve
|
137
|
+
_sparse_presolve = options.pop('_sparse_presolve', False)
|
138
|
+
if _sparse_presolve and A_eq is not None:
|
139
|
+
A_eq = sps.coo_array(A_eq)
|
140
|
+
if _sparse_presolve and A_ub is not None:
|
141
|
+
A_ub = sps.coo_array(A_ub)
|
142
|
+
|
143
|
+
sparse_constraint = sps.issparse(A_eq) or sps.issparse(A_ub)
|
144
|
+
|
145
|
+
preferred_methods = {"highs", "highs-ds", "highs-ipm"}
|
146
|
+
dense_methods = {"simplex", "revised simplex"}
|
147
|
+
if meth in dense_methods and sparse_constraint:
|
148
|
+
raise ValueError(f"Method '{meth}' does not support sparse "
|
149
|
+
"constraint matrices. Please consider using one of "
|
150
|
+
f"{preferred_methods}.")
|
151
|
+
|
152
|
+
sparse = options.get('sparse', False)
|
153
|
+
if not sparse and sparse_constraint and meth == 'interior-point':
|
154
|
+
options['sparse'] = True
|
155
|
+
warn("Sparse constraint matrix detected; setting 'sparse':True.",
|
156
|
+
OptimizeWarning, stacklevel=4)
|
157
|
+
return options, A_ub, A_eq
|
158
|
+
|
159
|
+
|
160
|
+
def _format_A_constraints(A, n_x, sparse_lhs=False):
|
161
|
+
"""Format the left hand side of the constraints to a 2-D array
|
162
|
+
|
163
|
+
Parameters
|
164
|
+
----------
|
165
|
+
A : 2-D array
|
166
|
+
2-D array such that ``A @ x`` gives the values of the upper-bound
|
167
|
+
(in)equality constraints at ``x``.
|
168
|
+
n_x : int
|
169
|
+
The number of variables in the linear programming problem.
|
170
|
+
sparse_lhs : bool
|
171
|
+
Whether either of `A_ub` or `A_eq` are sparse. If true return a
|
172
|
+
coo_array instead of a numpy array.
|
173
|
+
|
174
|
+
Returns
|
175
|
+
-------
|
176
|
+
np.ndarray or sparse.coo_array
|
177
|
+
2-D array such that ``A @ x`` gives the values of the upper-bound
|
178
|
+
(in)equality constraints at ``x``.
|
179
|
+
|
180
|
+
"""
|
181
|
+
if sparse_lhs:
|
182
|
+
return sps.coo_array(
|
183
|
+
(0, n_x) if A is None else A, dtype=float, copy=True
|
184
|
+
)
|
185
|
+
elif A is None:
|
186
|
+
return np.zeros((0, n_x), dtype=float)
|
187
|
+
else:
|
188
|
+
return np.array(A, dtype=float, copy=True)
|
189
|
+
|
190
|
+
|
191
|
+
def _format_b_constraints(b):
|
192
|
+
"""Format the upper bounds of the constraints to a 1-D array
|
193
|
+
|
194
|
+
Parameters
|
195
|
+
----------
|
196
|
+
b : 1-D array
|
197
|
+
1-D array of values representing the upper-bound of each (in)equality
|
198
|
+
constraint (row) in ``A``.
|
199
|
+
|
200
|
+
Returns
|
201
|
+
-------
|
202
|
+
1-D np.array
|
203
|
+
1-D array of values representing the upper-bound of each (in)equality
|
204
|
+
constraint (row) in ``A``.
|
205
|
+
|
206
|
+
"""
|
207
|
+
if b is None:
|
208
|
+
return np.array([], dtype=float)
|
209
|
+
b = np.array(b, dtype=float, copy=True).squeeze()
|
210
|
+
return b if b.size != 1 else b.reshape(-1)
|
211
|
+
|
212
|
+
|
213
|
+
def _clean_inputs(lp):
|
214
|
+
"""
|
215
|
+
Given user inputs for a linear programming problem, return the
|
216
|
+
objective vector, upper bound constraints, equality constraints,
|
217
|
+
and simple bounds in a preferred format.
|
218
|
+
|
219
|
+
Parameters
|
220
|
+
----------
|
221
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
222
|
+
|
223
|
+
c : 1D array
|
224
|
+
The coefficients of the linear objective function to be minimized.
|
225
|
+
A_ub : 2D array, optional
|
226
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
227
|
+
coefficients of a linear inequality constraint on ``x``.
|
228
|
+
b_ub : 1D array, optional
|
229
|
+
The inequality constraint vector. Each element represents an
|
230
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
231
|
+
A_eq : 2D array, optional
|
232
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
233
|
+
coefficients of a linear equality constraint on ``x``.
|
234
|
+
b_eq : 1D array, optional
|
235
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
236
|
+
the corresponding element of ``b_eq``.
|
237
|
+
bounds : various valid formats, optional
|
238
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs.
|
239
|
+
If bounds are specified for all N variables separately, valid formats are:
|
240
|
+
* a 2D array (2 x N or N x 2);
|
241
|
+
* a sequence of N sequences, each with 2 values.
|
242
|
+
If all variables have the same bounds, a single pair of values can
|
243
|
+
be specified. Valid formats are:
|
244
|
+
* a sequence with 2 scalar values;
|
245
|
+
* a sequence with a single element containing 2 scalar values.
|
246
|
+
If all variables have a lower bound of 0 and no upper bound, the bounds
|
247
|
+
parameter can be omitted (or given as None).
|
248
|
+
x0 : 1D array, optional
|
249
|
+
Guess values of the decision variables, which will be refined by
|
250
|
+
the optimization algorithm. This argument is currently used only by the
|
251
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
252
|
+
basic feasible solution.
|
253
|
+
|
254
|
+
Returns
|
255
|
+
-------
|
256
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
257
|
+
|
258
|
+
c : 1D array
|
259
|
+
The coefficients of the linear objective function to be minimized.
|
260
|
+
A_ub : 2D array, optional
|
261
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
262
|
+
coefficients of a linear inequality constraint on ``x``.
|
263
|
+
b_ub : 1D array, optional
|
264
|
+
The inequality constraint vector. Each element represents an
|
265
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
266
|
+
A_eq : 2D array, optional
|
267
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
268
|
+
coefficients of a linear equality constraint on ``x``.
|
269
|
+
b_eq : 1D array, optional
|
270
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
271
|
+
the corresponding element of ``b_eq``.
|
272
|
+
bounds : 2D array
|
273
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
|
274
|
+
elements of ``x``. The N x 2 array contains lower bounds in the first
|
275
|
+
column and upper bounds in the 2nd. Unbounded variables have lower
|
276
|
+
bound -np.inf and/or upper bound np.inf.
|
277
|
+
x0 : 1D array, optional
|
278
|
+
Guess values of the decision variables, which will be refined by
|
279
|
+
the optimization algorithm. This argument is currently used only by the
|
280
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
281
|
+
basic feasible solution.
|
282
|
+
|
283
|
+
"""
|
284
|
+
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
|
285
|
+
|
286
|
+
if c is None:
|
287
|
+
raise TypeError
|
288
|
+
|
289
|
+
try:
|
290
|
+
c = np.array(c, dtype=np.float64, copy=True).squeeze()
|
291
|
+
except ValueError as e:
|
292
|
+
raise TypeError(
|
293
|
+
"Invalid input for linprog: c must be a 1-D array of numerical "
|
294
|
+
"coefficients") from e
|
295
|
+
else:
|
296
|
+
# If c is a single value, convert it to a 1-D array.
|
297
|
+
if c.size == 1:
|
298
|
+
c = c.reshape(-1)
|
299
|
+
|
300
|
+
n_x = len(c)
|
301
|
+
if n_x == 0 or len(c.shape) != 1:
|
302
|
+
raise ValueError(
|
303
|
+
"Invalid input for linprog: c must be a 1-D array and must "
|
304
|
+
"not have more than one non-singleton dimension")
|
305
|
+
if not np.isfinite(c).all():
|
306
|
+
raise ValueError(
|
307
|
+
"Invalid input for linprog: c must not contain values "
|
308
|
+
"inf, nan, or None")
|
309
|
+
|
310
|
+
sparse_lhs = sps.issparse(A_eq) or sps.issparse(A_ub)
|
311
|
+
try:
|
312
|
+
A_ub = _format_A_constraints(A_ub, n_x, sparse_lhs=sparse_lhs)
|
313
|
+
except ValueError as e:
|
314
|
+
raise TypeError(
|
315
|
+
"Invalid input for linprog: A_ub must be a 2-D array "
|
316
|
+
"of numerical values") from e
|
317
|
+
else:
|
318
|
+
n_ub = A_ub.shape[0]
|
319
|
+
if len(A_ub.shape) != 2 or A_ub.shape[1] != n_x:
|
320
|
+
raise ValueError(
|
321
|
+
"Invalid input for linprog: A_ub must have exactly two "
|
322
|
+
"dimensions, and the number of columns in A_ub must be "
|
323
|
+
"equal to the size of c")
|
324
|
+
if (sps.issparse(A_ub) and not np.isfinite(A_ub.data).all()
|
325
|
+
or not sps.issparse(A_ub) and not np.isfinite(A_ub).all()):
|
326
|
+
raise ValueError(
|
327
|
+
"Invalid input for linprog: A_ub must not contain values "
|
328
|
+
"inf, nan, or None")
|
329
|
+
|
330
|
+
try:
|
331
|
+
b_ub = _format_b_constraints(b_ub)
|
332
|
+
except ValueError as e:
|
333
|
+
raise TypeError(
|
334
|
+
"Invalid input for linprog: b_ub must be a 1-D array of "
|
335
|
+
"numerical values, each representing the upper bound of an "
|
336
|
+
"inequality constraint (row) in A_ub") from e
|
337
|
+
else:
|
338
|
+
if b_ub.shape != (n_ub,):
|
339
|
+
raise ValueError(
|
340
|
+
"Invalid input for linprog: b_ub must be a 1-D array; b_ub "
|
341
|
+
"must not have more than one non-singleton dimension and "
|
342
|
+
"the number of rows in A_ub must equal the number of values "
|
343
|
+
"in b_ub")
|
344
|
+
if not np.isfinite(b_ub).all():
|
345
|
+
raise ValueError(
|
346
|
+
"Invalid input for linprog: b_ub must not contain values "
|
347
|
+
"inf, nan, or None")
|
348
|
+
|
349
|
+
try:
|
350
|
+
A_eq = _format_A_constraints(A_eq, n_x, sparse_lhs=sparse_lhs)
|
351
|
+
except ValueError as e:
|
352
|
+
raise TypeError(
|
353
|
+
"Invalid input for linprog: A_eq must be a 2-D array "
|
354
|
+
"of numerical values") from e
|
355
|
+
else:
|
356
|
+
n_eq = A_eq.shape[0]
|
357
|
+
if len(A_eq.shape) != 2 or A_eq.shape[1] != n_x:
|
358
|
+
raise ValueError(
|
359
|
+
"Invalid input for linprog: A_eq must have exactly two "
|
360
|
+
"dimensions, and the number of columns in A_eq must be "
|
361
|
+
"equal to the size of c")
|
362
|
+
|
363
|
+
if (sps.issparse(A_eq) and not np.isfinite(A_eq.data).all()
|
364
|
+
or not sps.issparse(A_eq) and not np.isfinite(A_eq).all()):
|
365
|
+
raise ValueError(
|
366
|
+
"Invalid input for linprog: A_eq must not contain values "
|
367
|
+
"inf, nan, or None")
|
368
|
+
|
369
|
+
try:
|
370
|
+
b_eq = _format_b_constraints(b_eq)
|
371
|
+
except ValueError as e:
|
372
|
+
raise TypeError(
|
373
|
+
"Invalid input for linprog: b_eq must be a dense, 1-D array of "
|
374
|
+
"numerical values, each representing the right hand side of an "
|
375
|
+
"equality constraint (row) in A_eq") from e
|
376
|
+
else:
|
377
|
+
if b_eq.shape != (n_eq,):
|
378
|
+
raise ValueError(
|
379
|
+
"Invalid input for linprog: b_eq must be a 1-D array; b_eq "
|
380
|
+
"must not have more than one non-singleton dimension and "
|
381
|
+
"the number of rows in A_eq must equal the number of values "
|
382
|
+
"in b_eq")
|
383
|
+
if not np.isfinite(b_eq).all():
|
384
|
+
raise ValueError(
|
385
|
+
"Invalid input for linprog: b_eq must not contain values "
|
386
|
+
"inf, nan, or None")
|
387
|
+
|
388
|
+
# x0 gives a (optional) starting solution to the solver. If x0 is None,
|
389
|
+
# skip the checks. Initial solution will be generated automatically.
|
390
|
+
if x0 is not None:
|
391
|
+
try:
|
392
|
+
x0 = np.array(x0, dtype=float, copy=True).squeeze()
|
393
|
+
except ValueError as e:
|
394
|
+
raise TypeError(
|
395
|
+
"Invalid input for linprog: x0 must be a 1-D array of "
|
396
|
+
"numerical coefficients") from e
|
397
|
+
if x0.ndim == 0:
|
398
|
+
x0 = x0.reshape(-1)
|
399
|
+
if len(x0) == 0 or x0.ndim != 1:
|
400
|
+
raise ValueError(
|
401
|
+
"Invalid input for linprog: x0 should be a 1-D array; it "
|
402
|
+
"must not have more than one non-singleton dimension")
|
403
|
+
if not x0.size == c.size:
|
404
|
+
raise ValueError(
|
405
|
+
"Invalid input for linprog: x0 and c should contain the "
|
406
|
+
"same number of elements")
|
407
|
+
if not np.isfinite(x0).all():
|
408
|
+
raise ValueError(
|
409
|
+
"Invalid input for linprog: x0 must not contain values "
|
410
|
+
"inf, nan, or None")
|
411
|
+
|
412
|
+
# Bounds can be one of these formats:
|
413
|
+
# (1) a 2-D array or sequence, with shape N x 2
|
414
|
+
# (2) a 1-D or 2-D sequence or array with 2 scalars
|
415
|
+
# (3) None (or an empty sequence or array)
|
416
|
+
# Unspecified bounds can be represented by None or (-)np.inf.
|
417
|
+
# All formats are converted into a N x 2 np.array with (-)np.inf where
|
418
|
+
# bounds are unspecified.
|
419
|
+
|
420
|
+
# Prepare clean bounds array
|
421
|
+
bounds_clean = np.zeros((n_x, 2), dtype=float)
|
422
|
+
|
423
|
+
# Convert to a numpy array.
|
424
|
+
# np.array(..,dtype=float) raises an error if dimensions are inconsistent
|
425
|
+
# or if there are invalid data types in bounds. Just add a linprog prefix
|
426
|
+
# to the error and re-raise.
|
427
|
+
# Creating at least a 2-D array simplifies the cases to distinguish below.
|
428
|
+
if bounds is None or np.array_equal(bounds, []) or np.array_equal(bounds, [[]]):
|
429
|
+
bounds = (0, np.inf)
|
430
|
+
try:
|
431
|
+
bounds_conv = np.atleast_2d(np.array(bounds, dtype=float))
|
432
|
+
except ValueError as e:
|
433
|
+
raise ValueError(
|
434
|
+
"Invalid input for linprog: unable to interpret bounds, "
|
435
|
+
"check values and dimensions: " + e.args[0]) from e
|
436
|
+
except TypeError as e:
|
437
|
+
raise TypeError(
|
438
|
+
"Invalid input for linprog: unable to interpret bounds, "
|
439
|
+
"check values and dimensions: " + e.args[0]) from e
|
440
|
+
|
441
|
+
# Check bounds options
|
442
|
+
bsh = bounds_conv.shape
|
443
|
+
if len(bsh) > 2:
|
444
|
+
# Do not try to handle multidimensional bounds input
|
445
|
+
raise ValueError(
|
446
|
+
"Invalid input for linprog: provide a 2-D array for bounds, "
|
447
|
+
f"not a {len(bsh):d}-D array.")
|
448
|
+
elif np.all(bsh == (n_x, 2)):
|
449
|
+
# Regular N x 2 array
|
450
|
+
bounds_clean = bounds_conv
|
451
|
+
elif (np.all(bsh == (2, 1)) or np.all(bsh == (1, 2))):
|
452
|
+
# 2 values: interpret as overall lower and upper bound
|
453
|
+
bounds_flat = bounds_conv.flatten()
|
454
|
+
bounds_clean[:, 0] = bounds_flat[0]
|
455
|
+
bounds_clean[:, 1] = bounds_flat[1]
|
456
|
+
elif np.all(bsh == (2, n_x)):
|
457
|
+
# Reject a 2 x N array
|
458
|
+
raise ValueError(
|
459
|
+
f"Invalid input for linprog: provide a {n_x:d} x 2 array for bounds, "
|
460
|
+
f"not a 2 x {n_x:d} array.")
|
461
|
+
else:
|
462
|
+
raise ValueError(
|
463
|
+
"Invalid input for linprog: unable to interpret bounds with this "
|
464
|
+
f"dimension tuple: {bsh}.")
|
465
|
+
|
466
|
+
# The process above creates nan-s where the input specified None
|
467
|
+
# Convert the nan-s in the 1st column to -np.inf and in the 2nd column
|
468
|
+
# to np.inf
|
469
|
+
i_none = np.isnan(bounds_clean[:, 0])
|
470
|
+
bounds_clean[i_none, 0] = -np.inf
|
471
|
+
i_none = np.isnan(bounds_clean[:, 1])
|
472
|
+
bounds_clean[i_none, 1] = np.inf
|
473
|
+
|
474
|
+
return _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds_clean, x0, integrality)
|
475
|
+
|
476
|
+
|
477
|
+
def _presolve(lp, rr, rr_method, tol=1e-9):
|
478
|
+
"""
|
479
|
+
Given inputs for a linear programming problem in preferred format,
|
480
|
+
presolve the problem: identify trivial infeasibilities, redundancies,
|
481
|
+
and unboundedness, tighten bounds where possible, and eliminate fixed
|
482
|
+
variables.
|
483
|
+
|
484
|
+
Parameters
|
485
|
+
----------
|
486
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
487
|
+
|
488
|
+
c : 1D array
|
489
|
+
The coefficients of the linear objective function to be minimized.
|
490
|
+
A_ub : 2D array, optional
|
491
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
492
|
+
coefficients of a linear inequality constraint on ``x``.
|
493
|
+
b_ub : 1D array, optional
|
494
|
+
The inequality constraint vector. Each element represents an
|
495
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
496
|
+
A_eq : 2D array, optional
|
497
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
498
|
+
coefficients of a linear equality constraint on ``x``.
|
499
|
+
b_eq : 1D array, optional
|
500
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
501
|
+
the corresponding element of ``b_eq``.
|
502
|
+
bounds : 2D array
|
503
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
|
504
|
+
elements of ``x``. The N x 2 array contains lower bounds in the first
|
505
|
+
column and upper bounds in the 2nd. Unbounded variables have lower
|
506
|
+
bound -np.inf and/or upper bound np.inf.
|
507
|
+
x0 : 1D array, optional
|
508
|
+
Guess values of the decision variables, which will be refined by
|
509
|
+
the optimization algorithm. This argument is currently used only by the
|
510
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
511
|
+
basic feasible solution.
|
512
|
+
|
513
|
+
rr : bool
|
514
|
+
If ``True`` attempts to eliminate any redundant rows in ``A_eq``.
|
515
|
+
Set False if ``A_eq`` is known to be of full row rank, or if you are
|
516
|
+
looking for a potential speedup (at the expense of reliability).
|
517
|
+
rr_method : string
|
518
|
+
Method used to identify and remove redundant rows from the
|
519
|
+
equality constraint matrix after presolve.
|
520
|
+
tol : float
|
521
|
+
The tolerance which determines when a solution is "close enough" to
|
522
|
+
zero in Phase 1 to be considered a basic feasible solution or close
|
523
|
+
enough to positive to serve as an optimal solution.
|
524
|
+
|
525
|
+
Returns
|
526
|
+
-------
|
527
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
528
|
+
|
529
|
+
c : 1D array
|
530
|
+
The coefficients of the linear objective function to be minimized.
|
531
|
+
A_ub : 2D array, optional
|
532
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
533
|
+
coefficients of a linear inequality constraint on ``x``.
|
534
|
+
b_ub : 1D array, optional
|
535
|
+
The inequality constraint vector. Each element represents an
|
536
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
537
|
+
A_eq : 2D array, optional
|
538
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
539
|
+
coefficients of a linear equality constraint on ``x``.
|
540
|
+
b_eq : 1D array, optional
|
541
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
542
|
+
the corresponding element of ``b_eq``.
|
543
|
+
bounds : 2D array
|
544
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs, possibly tightened.
|
545
|
+
x0 : 1D array, optional
|
546
|
+
Guess values of the decision variables, which will be refined by
|
547
|
+
the optimization algorithm. This argument is currently used only by the
|
548
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
549
|
+
basic feasible solution.
|
550
|
+
|
551
|
+
c0 : 1D array
|
552
|
+
Constant term in objective function due to fixed (and eliminated)
|
553
|
+
variables.
|
554
|
+
x : 1D array
|
555
|
+
Solution vector (when the solution is trivial and can be determined
|
556
|
+
in presolve)
|
557
|
+
revstack: list of functions
|
558
|
+
the functions in the list reverse the operations of _presolve()
|
559
|
+
the function signature is x_org = f(x_mod), where x_mod is the result
|
560
|
+
of a presolve step and x_org the value at the start of the step
|
561
|
+
(currently, the revstack contains only one function)
|
562
|
+
complete: bool
|
563
|
+
Whether the solution is complete (solved or determined to be infeasible
|
564
|
+
or unbounded in presolve)
|
565
|
+
status : int
|
566
|
+
An integer representing the exit status of the optimization::
|
567
|
+
|
568
|
+
0 : Optimization terminated successfully
|
569
|
+
1 : Iteration limit reached
|
570
|
+
2 : Problem appears to be infeasible
|
571
|
+
3 : Problem appears to be unbounded
|
572
|
+
4 : Serious numerical difficulties encountered
|
573
|
+
|
574
|
+
message : str
|
575
|
+
A string descriptor of the exit status of the optimization.
|
576
|
+
|
577
|
+
References
|
578
|
+
----------
|
579
|
+
.. [5] Andersen, Erling D. "Finding all linearly dependent rows in
|
580
|
+
large-scale linear programming." Optimization Methods and Software
|
581
|
+
6.3 (1995): 219-227.
|
582
|
+
.. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
|
583
|
+
programming." Mathematical Programming 71.2 (1995): 221-245.
|
584
|
+
|
585
|
+
"""
|
586
|
+
# ideas from Reference [5] by Andersen and Andersen
|
587
|
+
# however, unlike the reference, this is performed before converting
|
588
|
+
# problem to standard form
|
589
|
+
# There are a few advantages:
|
590
|
+
# * artificial variables have not been added, so matrices are smaller
|
591
|
+
# * bounds have not been converted to constraints yet. (It is better to
|
592
|
+
# do that after presolve because presolve may adjust the simple bounds.)
|
593
|
+
# There are many improvements that can be made, namely:
|
594
|
+
# * implement remaining checks from [5]
|
595
|
+
# * loop presolve until no additional changes are made
|
596
|
+
# * implement additional efficiency improvements in redundancy removal [2]
|
597
|
+
|
598
|
+
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, _ = lp
|
599
|
+
|
600
|
+
revstack = [] # record of variables eliminated from problem
|
601
|
+
# constant term in cost function may be added if variables are eliminated
|
602
|
+
c0 = 0
|
603
|
+
complete = False # complete is True if detected infeasible/unbounded
|
604
|
+
x = np.zeros(c.shape) # this is solution vector if completed in presolve
|
605
|
+
|
606
|
+
status = 0 # all OK unless determined otherwise
|
607
|
+
message = ""
|
608
|
+
|
609
|
+
# Lower and upper bounds. Copy to prevent feedback.
|
610
|
+
lb = bounds[:, 0].copy()
|
611
|
+
ub = bounds[:, 1].copy()
|
612
|
+
|
613
|
+
m_eq, n = A_eq.shape
|
614
|
+
m_ub, n = A_ub.shape
|
615
|
+
|
616
|
+
if (rr_method is not None
|
617
|
+
and rr_method.lower() not in {"svd", "pivot", "id"}):
|
618
|
+
message = ("'" + str(rr_method) + "' is not a valid option "
|
619
|
+
"for redundancy removal. Valid options are 'SVD', "
|
620
|
+
"'pivot', and 'ID'.")
|
621
|
+
raise ValueError(message)
|
622
|
+
|
623
|
+
if sps.issparse(A_eq):
|
624
|
+
A_eq = A_eq.tocsr()
|
625
|
+
A_ub = A_ub.tocsr()
|
626
|
+
|
627
|
+
def where(A):
|
628
|
+
return A.nonzero()
|
629
|
+
|
630
|
+
vstack = sps.vstack
|
631
|
+
else:
|
632
|
+
where = np.where
|
633
|
+
vstack = np.vstack
|
634
|
+
|
635
|
+
# upper bounds > lower bounds
|
636
|
+
if np.any(ub < lb) or np.any(lb == np.inf) or np.any(ub == -np.inf):
|
637
|
+
status = 2
|
638
|
+
message = ("The problem is (trivially) infeasible since one "
|
639
|
+
"or more upper bounds are smaller than the corresponding "
|
640
|
+
"lower bounds, a lower bound is np.inf or an upper bound "
|
641
|
+
"is -np.inf.")
|
642
|
+
complete = True
|
643
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
644
|
+
c0, x, revstack, complete, status, message)
|
645
|
+
|
646
|
+
# zero row in equality constraints
|
647
|
+
zero_row = np.array(np.sum(A_eq != 0, axis=1) == 0).flatten()
|
648
|
+
if np.any(zero_row):
|
649
|
+
if np.any(
|
650
|
+
np.logical_and(
|
651
|
+
zero_row,
|
652
|
+
np.abs(b_eq) > tol)): # test_zero_row_1
|
653
|
+
# infeasible if RHS is not zero
|
654
|
+
status = 2
|
655
|
+
message = ("The problem is (trivially) infeasible due to a row "
|
656
|
+
"of zeros in the equality constraint matrix with a "
|
657
|
+
"nonzero corresponding constraint value.")
|
658
|
+
complete = True
|
659
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
660
|
+
c0, x, revstack, complete, status, message)
|
661
|
+
else: # test_zero_row_2
|
662
|
+
# if RHS is zero, we can eliminate this equation entirely
|
663
|
+
A_eq = A_eq[np.logical_not(zero_row), :]
|
664
|
+
b_eq = b_eq[np.logical_not(zero_row)]
|
665
|
+
|
666
|
+
# zero row in inequality constraints
|
667
|
+
zero_row = np.array(np.sum(A_ub != 0, axis=1) == 0).flatten()
|
668
|
+
if np.any(zero_row):
|
669
|
+
if np.any(np.logical_and(zero_row, b_ub < -tol)): # test_zero_row_1
|
670
|
+
# infeasible if RHS is less than zero (because LHS is zero)
|
671
|
+
status = 2
|
672
|
+
message = ("The problem is (trivially) infeasible due to a row "
|
673
|
+
"of zeros in the equality constraint matrix with a "
|
674
|
+
"nonzero corresponding constraint value.")
|
675
|
+
complete = True
|
676
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
677
|
+
c0, x, revstack, complete, status, message)
|
678
|
+
else: # test_zero_row_2
|
679
|
+
# if LHS is >= 0, we can eliminate this constraint entirely
|
680
|
+
A_ub = A_ub[np.logical_not(zero_row), :]
|
681
|
+
b_ub = b_ub[np.logical_not(zero_row)]
|
682
|
+
|
683
|
+
# zero column in (both) constraints
|
684
|
+
# this indicates that a variable isn't constrained and can be removed
|
685
|
+
A = vstack((A_eq, A_ub))
|
686
|
+
if A.shape[0] > 0:
|
687
|
+
zero_col = np.array(np.sum(A != 0, axis=0) == 0).flatten()
|
688
|
+
# variable will be at upper or lower bound, depending on objective
|
689
|
+
x[np.logical_and(zero_col, c < 0)] = ub[
|
690
|
+
np.logical_and(zero_col, c < 0)]
|
691
|
+
x[np.logical_and(zero_col, c > 0)] = lb[
|
692
|
+
np.logical_and(zero_col, c > 0)]
|
693
|
+
if np.any(np.isinf(x)): # if an unconstrained variable has no bound
|
694
|
+
status = 3
|
695
|
+
message = ("If feasible, the problem is (trivially) unbounded "
|
696
|
+
"due to a zero column in the constraint matrices. If "
|
697
|
+
"you wish to check whether the problem is infeasible, "
|
698
|
+
"turn presolve off.")
|
699
|
+
complete = True
|
700
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
701
|
+
c0, x, revstack, complete, status, message)
|
702
|
+
# variables will equal upper/lower bounds will be removed later
|
703
|
+
lb[np.logical_and(zero_col, c < 0)] = ub[
|
704
|
+
np.logical_and(zero_col, c < 0)]
|
705
|
+
ub[np.logical_and(zero_col, c > 0)] = lb[
|
706
|
+
np.logical_and(zero_col, c > 0)]
|
707
|
+
|
708
|
+
# row singleton in equality constraints
|
709
|
+
# this fixes a variable and removes the constraint
|
710
|
+
singleton_row = np.array(np.sum(A_eq != 0, axis=1) == 1).flatten()
|
711
|
+
rows = where(singleton_row)[0]
|
712
|
+
cols = where(A_eq[rows, :])[1]
|
713
|
+
if len(rows) > 0:
|
714
|
+
for row, col in zip(rows, cols):
|
715
|
+
val = b_eq[row] / A_eq[row, col]
|
716
|
+
if not lb[col] - tol <= val <= ub[col] + tol:
|
717
|
+
# infeasible if fixed value is not within bounds
|
718
|
+
status = 2
|
719
|
+
message = ("The problem is (trivially) infeasible because a "
|
720
|
+
"singleton row in the equality constraints is "
|
721
|
+
"inconsistent with the bounds.")
|
722
|
+
complete = True
|
723
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
724
|
+
c0, x, revstack, complete, status, message)
|
725
|
+
else:
|
726
|
+
# sets upper and lower bounds at that fixed value - variable
|
727
|
+
# will be removed later
|
728
|
+
lb[col] = val
|
729
|
+
ub[col] = val
|
730
|
+
A_eq = A_eq[np.logical_not(singleton_row), :]
|
731
|
+
b_eq = b_eq[np.logical_not(singleton_row)]
|
732
|
+
|
733
|
+
# row singleton in inequality constraints
|
734
|
+
# this indicates a simple bound and the constraint can be removed
|
735
|
+
# simple bounds may be adjusted here
|
736
|
+
# After all of the simple bound information is combined here, get_Abc will
|
737
|
+
# turn the simple bounds into constraints
|
738
|
+
singleton_row = np.array(np.sum(A_ub != 0, axis=1) == 1).flatten()
|
739
|
+
cols = where(A_ub[singleton_row, :])[1]
|
740
|
+
rows = where(singleton_row)[0]
|
741
|
+
if len(rows) > 0:
|
742
|
+
for row, col in zip(rows, cols):
|
743
|
+
val = b_ub[row] / A_ub[row, col]
|
744
|
+
if A_ub[row, col] > 0: # upper bound
|
745
|
+
if val < lb[col] - tol: # infeasible
|
746
|
+
complete = True
|
747
|
+
elif val < ub[col]: # new upper bound
|
748
|
+
ub[col] = val
|
749
|
+
else: # lower bound
|
750
|
+
if val > ub[col] + tol: # infeasible
|
751
|
+
complete = True
|
752
|
+
elif val > lb[col]: # new lower bound
|
753
|
+
lb[col] = val
|
754
|
+
if complete:
|
755
|
+
status = 2
|
756
|
+
message = ("The problem is (trivially) infeasible because a "
|
757
|
+
"singleton row in the upper bound constraints is "
|
758
|
+
"inconsistent with the bounds.")
|
759
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
760
|
+
c0, x, revstack, complete, status, message)
|
761
|
+
A_ub = A_ub[np.logical_not(singleton_row), :]
|
762
|
+
b_ub = b_ub[np.logical_not(singleton_row)]
|
763
|
+
|
764
|
+
# identical bounds indicate that variable can be removed
|
765
|
+
i_f = np.abs(lb - ub) < tol # indices of "fixed" variables
|
766
|
+
i_nf = np.logical_not(i_f) # indices of "not fixed" variables
|
767
|
+
|
768
|
+
# test_bounds_equal_but_infeasible
|
769
|
+
if np.all(i_f): # if bounds define solution, check for consistency
|
770
|
+
residual = b_eq - A_eq.dot(lb)
|
771
|
+
slack = b_ub - A_ub.dot(lb)
|
772
|
+
if ((A_ub.size > 0 and np.any(slack < 0)) or
|
773
|
+
(A_eq.size > 0 and not np.allclose(residual, 0))):
|
774
|
+
status = 2
|
775
|
+
message = ("The problem is (trivially) infeasible because the "
|
776
|
+
"bounds fix all variables to values inconsistent with "
|
777
|
+
"the constraints")
|
778
|
+
complete = True
|
779
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
780
|
+
c0, x, revstack, complete, status, message)
|
781
|
+
|
782
|
+
ub_mod = ub
|
783
|
+
lb_mod = lb
|
784
|
+
if np.any(i_f):
|
785
|
+
c0 += c[i_f].dot(lb[i_f])
|
786
|
+
b_eq = b_eq - A_eq[:, i_f].dot(lb[i_f])
|
787
|
+
b_ub = b_ub - A_ub[:, i_f].dot(lb[i_f])
|
788
|
+
c = c[i_nf]
|
789
|
+
x_undo = lb[i_f] # not x[i_f], x is just zeroes
|
790
|
+
x = x[i_nf]
|
791
|
+
# user guess x0 stays separate from presolve solution x
|
792
|
+
if x0 is not None:
|
793
|
+
x0 = x0[i_nf]
|
794
|
+
A_eq = A_eq[:, i_nf]
|
795
|
+
A_ub = A_ub[:, i_nf]
|
796
|
+
# modify bounds
|
797
|
+
lb_mod = lb[i_nf]
|
798
|
+
ub_mod = ub[i_nf]
|
799
|
+
|
800
|
+
def rev(x_mod):
|
801
|
+
# Function to restore x: insert x_undo into x_mod.
|
802
|
+
# When elements have been removed at positions k1, k2, k3, ...
|
803
|
+
# then these must be replaced at (after) positions k1-1, k2-2,
|
804
|
+
# k3-3, ... in the modified array to recreate the original
|
805
|
+
i = np.flatnonzero(i_f)
|
806
|
+
# Number of variables to restore
|
807
|
+
N = len(i)
|
808
|
+
index_offset = np.arange(N)
|
809
|
+
# Create insert indices
|
810
|
+
insert_indices = i - index_offset
|
811
|
+
x_rev = np.insert(x_mod.astype(float), insert_indices, x_undo)
|
812
|
+
return x_rev
|
813
|
+
|
814
|
+
# Use revstack as a list of functions, currently just this one.
|
815
|
+
revstack.append(rev)
|
816
|
+
|
817
|
+
# no constraints indicates that problem is trivial
|
818
|
+
if A_eq.size == 0 and A_ub.size == 0:
|
819
|
+
b_eq = np.array([])
|
820
|
+
b_ub = np.array([])
|
821
|
+
# test_empty_constraint_1
|
822
|
+
if c.size == 0:
|
823
|
+
status = 0
|
824
|
+
message = ("The solution was determined in presolve as there are "
|
825
|
+
"no non-trivial constraints.")
|
826
|
+
elif (np.any(np.logical_and(c < 0, ub_mod == np.inf)) or
|
827
|
+
np.any(np.logical_and(c > 0, lb_mod == -np.inf))):
|
828
|
+
# test_no_constraints()
|
829
|
+
# test_unbounded_no_nontrivial_constraints_1
|
830
|
+
# test_unbounded_no_nontrivial_constraints_2
|
831
|
+
status = 3
|
832
|
+
message = ("The problem is (trivially) unbounded "
|
833
|
+
"because there are no non-trivial constraints and "
|
834
|
+
"a) at least one decision variable is unbounded "
|
835
|
+
"above and its corresponding cost is negative, or "
|
836
|
+
"b) at least one decision variable is unbounded below "
|
837
|
+
"and its corresponding cost is positive. ")
|
838
|
+
else: # test_empty_constraint_2
|
839
|
+
status = 0
|
840
|
+
message = ("The solution was determined in presolve as there are "
|
841
|
+
"no non-trivial constraints.")
|
842
|
+
complete = True
|
843
|
+
x[c < 0] = ub_mod[c < 0]
|
844
|
+
x[c > 0] = lb_mod[c > 0]
|
845
|
+
# where c is zero, set x to a finite bound or zero
|
846
|
+
x_zero_c = ub_mod[c == 0]
|
847
|
+
x_zero_c[np.isinf(x_zero_c)] = ub_mod[c == 0][np.isinf(x_zero_c)]
|
848
|
+
x_zero_c[np.isinf(x_zero_c)] = 0
|
849
|
+
x[c == 0] = x_zero_c
|
850
|
+
# if this is not the last step of presolve, should convert bounds back
|
851
|
+
# to array and return here
|
852
|
+
|
853
|
+
# Convert modified lb and ub back into N x 2 bounds
|
854
|
+
bounds = np.hstack((lb_mod[:, np.newaxis], ub_mod[:, np.newaxis]))
|
855
|
+
|
856
|
+
# remove redundant (linearly dependent) rows from equality constraints
|
857
|
+
n_rows_A = A_eq.shape[0]
|
858
|
+
redundancy_warning = ("A_eq does not appear to be of full row rank. To "
|
859
|
+
"improve performance, check the problem formulation "
|
860
|
+
"for redundant equality constraints.")
|
861
|
+
if (sps.issparse(A_eq)):
|
862
|
+
if rr and A_eq.size > 0: # TODO: Fast sparse rank check?
|
863
|
+
rr_res = _remove_redundancy_pivot_sparse(A_eq, b_eq)
|
864
|
+
A_eq, b_eq, status, message = rr_res
|
865
|
+
if A_eq.shape[0] < n_rows_A:
|
866
|
+
warn(redundancy_warning, OptimizeWarning, stacklevel=1)
|
867
|
+
if status != 0:
|
868
|
+
complete = True
|
869
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
870
|
+
c0, x, revstack, complete, status, message)
|
871
|
+
|
872
|
+
# This is a wild guess for which redundancy removal algorithm will be
|
873
|
+
# faster. More testing would be good.
|
874
|
+
small_nullspace = 5
|
875
|
+
if rr and A_eq.size > 0:
|
876
|
+
try: # TODO: use results of first SVD in _remove_redundancy_svd
|
877
|
+
rank = np.linalg.matrix_rank(A_eq)
|
878
|
+
# oh well, we'll have to go with _remove_redundancy_pivot_dense
|
879
|
+
except Exception:
|
880
|
+
rank = 0
|
881
|
+
if rr and A_eq.size > 0 and rank < A_eq.shape[0]:
|
882
|
+
warn(redundancy_warning, OptimizeWarning, stacklevel=3)
|
883
|
+
dim_row_nullspace = A_eq.shape[0]-rank
|
884
|
+
if rr_method is None:
|
885
|
+
if dim_row_nullspace <= small_nullspace:
|
886
|
+
rr_res = _remove_redundancy_svd(A_eq, b_eq)
|
887
|
+
A_eq, b_eq, status, message = rr_res
|
888
|
+
if dim_row_nullspace > small_nullspace or status == 4:
|
889
|
+
rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq)
|
890
|
+
A_eq, b_eq, status, message = rr_res
|
891
|
+
|
892
|
+
else:
|
893
|
+
rr_method = rr_method.lower()
|
894
|
+
if rr_method == "svd":
|
895
|
+
rr_res = _remove_redundancy_svd(A_eq, b_eq)
|
896
|
+
A_eq, b_eq, status, message = rr_res
|
897
|
+
elif rr_method == "pivot":
|
898
|
+
rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq)
|
899
|
+
A_eq, b_eq, status, message = rr_res
|
900
|
+
elif rr_method == "id":
|
901
|
+
rr_res = _remove_redundancy_id(A_eq, b_eq, rank)
|
902
|
+
A_eq, b_eq, status, message = rr_res
|
903
|
+
else: # shouldn't get here; option validity checked above
|
904
|
+
pass
|
905
|
+
if A_eq.shape[0] < rank:
|
906
|
+
message = ("Due to numerical issues, redundant equality "
|
907
|
+
"constraints could not be removed automatically. "
|
908
|
+
"Try providing your constraint matrices as sparse "
|
909
|
+
"matrices to activate sparse presolve, try turning "
|
910
|
+
"off redundancy removal, or try turning off presolve "
|
911
|
+
"altogether.")
|
912
|
+
status = 4
|
913
|
+
if status != 0:
|
914
|
+
complete = True
|
915
|
+
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0),
|
916
|
+
c0, x, revstack, complete, status, message)
|
917
|
+
|
918
|
+
|
919
|
+
def _parse_linprog(lp, options, meth):
|
920
|
+
"""
|
921
|
+
Parse the provided linear programming problem
|
922
|
+
|
923
|
+
``_parse_linprog`` employs two main steps ``_check_sparse_inputs`` and
|
924
|
+
``_clean_inputs``. ``_check_sparse_inputs`` checks for sparsity in the
|
925
|
+
provided constraints (``A_ub`` and ``A_eq) and if these match the provided
|
926
|
+
sparsity optional values.
|
927
|
+
|
928
|
+
``_clean inputs`` checks of the provided inputs. If no violations are
|
929
|
+
identified the objective vector, upper bound constraints, equality
|
930
|
+
constraints, and simple bounds are returned in the expected format.
|
931
|
+
|
932
|
+
Parameters
|
933
|
+
----------
|
934
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
935
|
+
|
936
|
+
c : 1D array
|
937
|
+
The coefficients of the linear objective function to be minimized.
|
938
|
+
A_ub : 2D array, optional
|
939
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
940
|
+
coefficients of a linear inequality constraint on ``x``.
|
941
|
+
b_ub : 1D array, optional
|
942
|
+
The inequality constraint vector. Each element represents an
|
943
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
944
|
+
A_eq : 2D array, optional
|
945
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
946
|
+
coefficients of a linear equality constraint on ``x``.
|
947
|
+
b_eq : 1D array, optional
|
948
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
949
|
+
the corresponding element of ``b_eq``.
|
950
|
+
bounds : various valid formats, optional
|
951
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs.
|
952
|
+
If bounds are specified for all N variables separately, valid formats are:
|
953
|
+
* a 2D array (2 x N or N x 2);
|
954
|
+
* a sequence of N sequences, each with 2 values.
|
955
|
+
If all variables have the same bounds, a single pair of values can
|
956
|
+
be specified. Valid formats are:
|
957
|
+
* a sequence with 2 scalar values;
|
958
|
+
* a sequence with a single element containing 2 scalar values.
|
959
|
+
If all variables have a lower bound of 0 and no upper bound, the bounds
|
960
|
+
parameter can be omitted (or given as None).
|
961
|
+
x0 : 1D array, optional
|
962
|
+
Guess values of the decision variables, which will be refined by
|
963
|
+
the optimization algorithm. This argument is currently used only by the
|
964
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
965
|
+
basic feasible solution.
|
966
|
+
|
967
|
+
options : dict
|
968
|
+
A dictionary of solver options. All methods accept the following
|
969
|
+
generic options:
|
970
|
+
|
971
|
+
maxiter : int
|
972
|
+
Maximum number of iterations to perform.
|
973
|
+
disp : bool
|
974
|
+
Set to True to print convergence messages.
|
975
|
+
|
976
|
+
For method-specific options, see :func:`show_options('linprog')`.
|
977
|
+
|
978
|
+
Returns
|
979
|
+
-------
|
980
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
981
|
+
|
982
|
+
c : 1D array
|
983
|
+
The coefficients of the linear objective function to be minimized.
|
984
|
+
A_ub : 2D array, optional
|
985
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
986
|
+
coefficients of a linear inequality constraint on ``x``.
|
987
|
+
b_ub : 1D array, optional
|
988
|
+
The inequality constraint vector. Each element represents an
|
989
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
990
|
+
A_eq : 2D array, optional
|
991
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
992
|
+
coefficients of a linear equality constraint on ``x``.
|
993
|
+
b_eq : 1D array, optional
|
994
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
995
|
+
the corresponding element of ``b_eq``.
|
996
|
+
bounds : 2D array
|
997
|
+
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N
|
998
|
+
elements of ``x``. The N x 2 array contains lower bounds in the first
|
999
|
+
column and upper bounds in the 2nd. Unbounded variables have lower
|
1000
|
+
bound -np.inf and/or upper bound np.inf.
|
1001
|
+
x0 : 1D array, optional
|
1002
|
+
Guess values of the decision variables, which will be refined by
|
1003
|
+
the optimization algorithm. This argument is currently used only by the
|
1004
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
1005
|
+
basic feasible solution.
|
1006
|
+
|
1007
|
+
options : dict, optional
|
1008
|
+
A dictionary of solver options. All methods accept the following
|
1009
|
+
generic options:
|
1010
|
+
|
1011
|
+
maxiter : int
|
1012
|
+
Maximum number of iterations to perform.
|
1013
|
+
disp : bool
|
1014
|
+
Set to True to print convergence messages.
|
1015
|
+
|
1016
|
+
For method-specific options, see :func:`show_options('linprog')`.
|
1017
|
+
|
1018
|
+
"""
|
1019
|
+
if options is None:
|
1020
|
+
options = {}
|
1021
|
+
|
1022
|
+
solver_options = {k: v for k, v in options.items()}
|
1023
|
+
solver_options, A_ub, A_eq = _check_sparse_inputs(solver_options, meth,
|
1024
|
+
lp.A_ub, lp.A_eq)
|
1025
|
+
# Convert lists to numpy arrays, etc...
|
1026
|
+
lp = _clean_inputs(lp._replace(A_ub=A_ub, A_eq=A_eq))
|
1027
|
+
return lp, solver_options
|
1028
|
+
|
1029
|
+
|
1030
|
+
def _get_Abc(lp, c0):
|
1031
|
+
"""
|
1032
|
+
Given a linear programming problem of the form:
|
1033
|
+
|
1034
|
+
Minimize::
|
1035
|
+
|
1036
|
+
c @ x
|
1037
|
+
|
1038
|
+
Subject to::
|
1039
|
+
|
1040
|
+
A_ub @ x <= b_ub
|
1041
|
+
A_eq @ x == b_eq
|
1042
|
+
lb <= x <= ub
|
1043
|
+
|
1044
|
+
where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.
|
1045
|
+
|
1046
|
+
Return the problem in standard form:
|
1047
|
+
|
1048
|
+
Minimize::
|
1049
|
+
|
1050
|
+
c @ x
|
1051
|
+
|
1052
|
+
Subject to::
|
1053
|
+
|
1054
|
+
A @ x == b
|
1055
|
+
x >= 0
|
1056
|
+
|
1057
|
+
by adding slack variables and making variable substitutions as necessary.
|
1058
|
+
|
1059
|
+
Parameters
|
1060
|
+
----------
|
1061
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
1062
|
+
|
1063
|
+
c : 1D array
|
1064
|
+
The coefficients of the linear objective function to be minimized.
|
1065
|
+
A_ub : 2D array, optional
|
1066
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
1067
|
+
coefficients of a linear inequality constraint on ``x``.
|
1068
|
+
b_ub : 1D array, optional
|
1069
|
+
The inequality constraint vector. Each element represents an
|
1070
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
1071
|
+
A_eq : 2D array, optional
|
1072
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
1073
|
+
coefficients of a linear equality constraint on ``x``.
|
1074
|
+
b_eq : 1D array, optional
|
1075
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
1076
|
+
the corresponding element of ``b_eq``.
|
1077
|
+
bounds : 2D array
|
1078
|
+
The bounds of ``x``, lower bounds in the 1st column, upper
|
1079
|
+
bounds in the 2nd column. The bounds are possibly tightened
|
1080
|
+
by the presolve procedure.
|
1081
|
+
x0 : 1D array, optional
|
1082
|
+
Guess values of the decision variables, which will be refined by
|
1083
|
+
the optimization algorithm. This argument is currently used only by the
|
1084
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
1085
|
+
basic feasible solution.
|
1086
|
+
|
1087
|
+
c0 : float
|
1088
|
+
Constant term in objective function due to fixed (and eliminated)
|
1089
|
+
variables.
|
1090
|
+
|
1091
|
+
Returns
|
1092
|
+
-------
|
1093
|
+
A : 2-D array
|
1094
|
+
2-D array such that ``A`` @ ``x``, gives the values of the equality
|
1095
|
+
constraints at ``x``.
|
1096
|
+
b : 1-D array
|
1097
|
+
1-D array of values representing the RHS of each equality constraint
|
1098
|
+
(row) in A (for standard form problem).
|
1099
|
+
c : 1-D array
|
1100
|
+
Coefficients of the linear objective function to be minimized (for
|
1101
|
+
standard form problem).
|
1102
|
+
c0 : float
|
1103
|
+
Constant term in objective function due to fixed (and eliminated)
|
1104
|
+
variables.
|
1105
|
+
x0 : 1-D array
|
1106
|
+
Starting values of the independent variables, which will be refined by
|
1107
|
+
the optimization algorithm
|
1108
|
+
|
1109
|
+
References
|
1110
|
+
----------
|
1111
|
+
.. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
|
1112
|
+
programming." Athena Scientific 1 (1997): 997.
|
1113
|
+
|
1114
|
+
"""
|
1115
|
+
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp
|
1116
|
+
|
1117
|
+
if sps.issparse(A_eq):
|
1118
|
+
sparse = True
|
1119
|
+
A_eq = sps.csr_array(A_eq)
|
1120
|
+
A_ub = sps.csr_array(A_ub)
|
1121
|
+
|
1122
|
+
def hstack(blocks):
|
1123
|
+
return sps.hstack(blocks, format="csr")
|
1124
|
+
|
1125
|
+
def vstack(blocks):
|
1126
|
+
return sps.vstack(blocks, format="csr")
|
1127
|
+
|
1128
|
+
zeros = sps.csr_array
|
1129
|
+
eye = sps.eye_array
|
1130
|
+
else:
|
1131
|
+
sparse = False
|
1132
|
+
hstack = np.hstack
|
1133
|
+
vstack = np.vstack
|
1134
|
+
zeros = np.zeros
|
1135
|
+
eye = np.eye
|
1136
|
+
|
1137
|
+
# Variables lbs and ubs (see below) may be changed, which feeds back into
|
1138
|
+
# bounds, so copy.
|
1139
|
+
bounds = np.array(bounds, copy=True)
|
1140
|
+
|
1141
|
+
# modify problem such that all variables have only non-negativity bounds
|
1142
|
+
lbs = bounds[:, 0]
|
1143
|
+
ubs = bounds[:, 1]
|
1144
|
+
m_ub, n_ub = A_ub.shape
|
1145
|
+
|
1146
|
+
lb_none = np.equal(lbs, -np.inf)
|
1147
|
+
ub_none = np.equal(ubs, np.inf)
|
1148
|
+
lb_some = np.logical_not(lb_none)
|
1149
|
+
ub_some = np.logical_not(ub_none)
|
1150
|
+
|
1151
|
+
# unbounded below: substitute xi = -xi' (unbounded above)
|
1152
|
+
# if -inf <= xi <= ub, then -ub <= -xi <= inf, so swap and invert bounds
|
1153
|
+
l_nolb_someub = np.logical_and(lb_none, ub_some)
|
1154
|
+
i_nolb = np.nonzero(l_nolb_someub)[0]
|
1155
|
+
lbs[l_nolb_someub], ubs[l_nolb_someub] = (
|
1156
|
+
-ubs[l_nolb_someub], -lbs[l_nolb_someub])
|
1157
|
+
lb_none = np.equal(lbs, -np.inf)
|
1158
|
+
ub_none = np.equal(ubs, np.inf)
|
1159
|
+
lb_some = np.logical_not(lb_none)
|
1160
|
+
ub_some = np.logical_not(ub_none)
|
1161
|
+
c[i_nolb] *= -1
|
1162
|
+
if x0 is not None:
|
1163
|
+
x0[i_nolb] *= -1
|
1164
|
+
if len(i_nolb) > 0:
|
1165
|
+
if A_ub.shape[0] > 0: # sometimes needed for sparse arrays... weird
|
1166
|
+
A_ub[:, i_nolb] *= -1
|
1167
|
+
if A_eq.shape[0] > 0:
|
1168
|
+
A_eq[:, i_nolb] *= -1
|
1169
|
+
|
1170
|
+
# upper bound: add inequality constraint
|
1171
|
+
i_newub, = ub_some.nonzero()
|
1172
|
+
ub_newub = ubs[ub_some]
|
1173
|
+
n_bounds = len(i_newub)
|
1174
|
+
if n_bounds > 0:
|
1175
|
+
shape = (n_bounds, A_ub.shape[1])
|
1176
|
+
if sparse:
|
1177
|
+
idxs = (np.arange(n_bounds), i_newub)
|
1178
|
+
A_ub = vstack((A_ub, sps.csr_array((np.ones(n_bounds), idxs),
|
1179
|
+
shape=shape)))
|
1180
|
+
else:
|
1181
|
+
A_ub = vstack((A_ub, np.zeros(shape)))
|
1182
|
+
A_ub[np.arange(m_ub, A_ub.shape[0]), i_newub] = 1
|
1183
|
+
b_ub = np.concatenate((b_ub, np.zeros(n_bounds)))
|
1184
|
+
b_ub[m_ub:] = ub_newub
|
1185
|
+
|
1186
|
+
A1 = vstack((A_ub, A_eq))
|
1187
|
+
b = np.concatenate((b_ub, b_eq))
|
1188
|
+
c = np.concatenate((c, np.zeros((A_ub.shape[0],))))
|
1189
|
+
if x0 is not None:
|
1190
|
+
x0 = np.concatenate((x0, np.zeros((A_ub.shape[0],))))
|
1191
|
+
# unbounded: substitute xi = xi+ + xi-
|
1192
|
+
l_free = np.logical_and(lb_none, ub_none)
|
1193
|
+
i_free = np.nonzero(l_free)[0]
|
1194
|
+
n_free = len(i_free)
|
1195
|
+
c = np.concatenate((c, np.zeros(n_free)))
|
1196
|
+
if x0 is not None:
|
1197
|
+
x0 = np.concatenate((x0, np.zeros(n_free)))
|
1198
|
+
A1 = hstack((A1[:, :n_ub], -A1[:, i_free]))
|
1199
|
+
c[n_ub:n_ub+n_free] = -c[i_free]
|
1200
|
+
if x0 is not None:
|
1201
|
+
i_free_neg = x0[i_free] < 0
|
1202
|
+
x0[np.arange(n_ub, A1.shape[1])[i_free_neg]] = -x0[i_free[i_free_neg]]
|
1203
|
+
x0[i_free[i_free_neg]] = 0
|
1204
|
+
|
1205
|
+
# add slack variables
|
1206
|
+
A2 = vstack([eye(A_ub.shape[0]), zeros((A_eq.shape[0], A_ub.shape[0]))])
|
1207
|
+
|
1208
|
+
A = hstack([A1, A2])
|
1209
|
+
|
1210
|
+
# lower bound: substitute xi = xi' + lb
|
1211
|
+
# now there is a constant term in objective
|
1212
|
+
i_shift = np.nonzero(lb_some)[0]
|
1213
|
+
lb_shift = lbs[lb_some].astype(float)
|
1214
|
+
c0 += np.sum(lb_shift * c[i_shift])
|
1215
|
+
if sparse:
|
1216
|
+
A = A.tocsc()
|
1217
|
+
b -= (A[:, i_shift] @ sps.diags_array(lb_shift)).sum(axis=1)
|
1218
|
+
else:
|
1219
|
+
b -= (A[:, i_shift] * lb_shift).sum(axis=1)
|
1220
|
+
if x0 is not None:
|
1221
|
+
x0[i_shift] -= lb_shift
|
1222
|
+
|
1223
|
+
return A, b, c, c0, x0
|
1224
|
+
|
1225
|
+
|
1226
|
+
def _round_to_power_of_two(x):
|
1227
|
+
"""
|
1228
|
+
Round elements of the array to the nearest power of two.
|
1229
|
+
"""
|
1230
|
+
return 2**np.around(np.log2(x))
|
1231
|
+
|
1232
|
+
|
1233
|
+
def _autoscale(A, b, c, x0):
|
1234
|
+
"""
|
1235
|
+
Scales the problem according to equilibration from [12].
|
1236
|
+
Also normalizes the right hand side vector by its maximum element.
|
1237
|
+
"""
|
1238
|
+
m, n = A.shape
|
1239
|
+
|
1240
|
+
C = 1
|
1241
|
+
R = 1
|
1242
|
+
|
1243
|
+
if A.size > 0:
|
1244
|
+
|
1245
|
+
R = np.max(np.abs(A), axis=1)
|
1246
|
+
if sps.issparse(A):
|
1247
|
+
R = R.toarray().flatten()
|
1248
|
+
R[R == 0] = 1
|
1249
|
+
R = 1/_round_to_power_of_two(R)
|
1250
|
+
A = sps.diags_array(R)@A if sps.issparse(A) else A*R.reshape(m, 1)
|
1251
|
+
b = b*R
|
1252
|
+
|
1253
|
+
C = np.max(np.abs(A), axis=0)
|
1254
|
+
if sps.issparse(A):
|
1255
|
+
C = C.toarray().flatten()
|
1256
|
+
C[C == 0] = 1
|
1257
|
+
C = 1/_round_to_power_of_two(C)
|
1258
|
+
A = A@sps.diags_array(C) if sps.issparse(A) else A*C
|
1259
|
+
c = c*C
|
1260
|
+
|
1261
|
+
b_scale = np.max(np.abs(b)) if b.size > 0 else 1
|
1262
|
+
if b_scale == 0:
|
1263
|
+
b_scale = 1.
|
1264
|
+
b = b/b_scale
|
1265
|
+
|
1266
|
+
if x0 is not None:
|
1267
|
+
x0 = x0/b_scale*(1/C)
|
1268
|
+
return A, b, c, x0, C, b_scale
|
1269
|
+
|
1270
|
+
|
1271
|
+
def _unscale(x, C, b_scale):
|
1272
|
+
"""
|
1273
|
+
Converts solution to _autoscale problem -> solution to original problem.
|
1274
|
+
"""
|
1275
|
+
|
1276
|
+
try:
|
1277
|
+
n = len(C)
|
1278
|
+
# fails if sparse or scalar; that's OK.
|
1279
|
+
# this is only needed for original simplex (never sparse)
|
1280
|
+
except TypeError:
|
1281
|
+
n = len(x)
|
1282
|
+
|
1283
|
+
return x[:n]*b_scale*C
|
1284
|
+
|
1285
|
+
|
1286
|
+
def _display_summary(message, status, fun, iteration):
|
1287
|
+
"""
|
1288
|
+
Print the termination summary of the linear program
|
1289
|
+
|
1290
|
+
Parameters
|
1291
|
+
----------
|
1292
|
+
message : str
|
1293
|
+
A string descriptor of the exit status of the optimization.
|
1294
|
+
status : int
|
1295
|
+
An integer representing the exit status of the optimization::
|
1296
|
+
|
1297
|
+
0 : Optimization terminated successfully
|
1298
|
+
1 : Iteration limit reached
|
1299
|
+
2 : Problem appears to be infeasible
|
1300
|
+
3 : Problem appears to be unbounded
|
1301
|
+
4 : Serious numerical difficulties encountered
|
1302
|
+
|
1303
|
+
fun : float
|
1304
|
+
Value of the objective function.
|
1305
|
+
iteration : iteration
|
1306
|
+
The number of iterations performed.
|
1307
|
+
"""
|
1308
|
+
print(message)
|
1309
|
+
if status in (0, 1):
|
1310
|
+
print(f" Current function value: {fun: <12.6f}")
|
1311
|
+
print(f" Iterations: {iteration:d}")
|
1312
|
+
|
1313
|
+
|
1314
|
+
def _postsolve(x, postsolve_args, complete=False):
|
1315
|
+
"""
|
1316
|
+
Given solution x to presolved, standard form linear program x, add
|
1317
|
+
fixed variables back into the problem and undo the variable substitutions
|
1318
|
+
to get solution to original linear program. Also, calculate the objective
|
1319
|
+
function value, slack in original upper bound constraints, and residuals
|
1320
|
+
in original equality constraints.
|
1321
|
+
|
1322
|
+
Parameters
|
1323
|
+
----------
|
1324
|
+
x : 1-D array
|
1325
|
+
Solution vector to the standard-form problem.
|
1326
|
+
postsolve_args : tuple
|
1327
|
+
Data needed by _postsolve to convert the solution to the standard-form
|
1328
|
+
problem into the solution to the original problem, including:
|
1329
|
+
|
1330
|
+
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields:
|
1331
|
+
|
1332
|
+
c : 1D array
|
1333
|
+
The coefficients of the linear objective function to be minimized.
|
1334
|
+
A_ub : 2D array, optional
|
1335
|
+
The inequality constraint matrix. Each row of ``A_ub`` specifies the
|
1336
|
+
coefficients of a linear inequality constraint on ``x``.
|
1337
|
+
b_ub : 1D array, optional
|
1338
|
+
The inequality constraint vector. Each element represents an
|
1339
|
+
upper bound on the corresponding value of ``A_ub @ x``.
|
1340
|
+
A_eq : 2D array, optional
|
1341
|
+
The equality constraint matrix. Each row of ``A_eq`` specifies the
|
1342
|
+
coefficients of a linear equality constraint on ``x``.
|
1343
|
+
b_eq : 1D array, optional
|
1344
|
+
The equality constraint vector. Each element of ``A_eq @ x`` must equal
|
1345
|
+
the corresponding element of ``b_eq``.
|
1346
|
+
bounds : 2D array
|
1347
|
+
The bounds of ``x``, lower bounds in the 1st column, upper
|
1348
|
+
bounds in the 2nd column. The bounds are possibly tightened
|
1349
|
+
by the presolve procedure.
|
1350
|
+
x0 : 1D array, optional
|
1351
|
+
Guess values of the decision variables, which will be refined by
|
1352
|
+
the optimization algorithm. This argument is currently used only by the
|
1353
|
+
'revised simplex' method, and can only be used if `x0` represents a
|
1354
|
+
basic feasible solution.
|
1355
|
+
|
1356
|
+
revstack: list of functions
|
1357
|
+
the functions in the list reverse the operations of _presolve()
|
1358
|
+
the function signature is x_org = f(x_mod), where x_mod is the result
|
1359
|
+
of a presolve step and x_org the value at the start of the step
|
1360
|
+
complete : bool
|
1361
|
+
Whether the solution is was determined in presolve (``True`` if so)
|
1362
|
+
|
1363
|
+
Returns
|
1364
|
+
-------
|
1365
|
+
x : 1-D array
|
1366
|
+
Solution vector to original linear programming problem
|
1367
|
+
fun: float
|
1368
|
+
optimal objective value for original problem
|
1369
|
+
slack : 1-D array
|
1370
|
+
The (non-negative) slack in the upper bound constraints, that is,
|
1371
|
+
``b_ub - A_ub @ x``
|
1372
|
+
con : 1-D array
|
1373
|
+
The (nominally zero) residuals of the equality constraints, that is,
|
1374
|
+
``b - A_eq @ x``
|
1375
|
+
"""
|
1376
|
+
# note that all the inputs are the ORIGINAL, unmodified versions
|
1377
|
+
# no rows, columns have been removed
|
1378
|
+
|
1379
|
+
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = postsolve_args[0]
|
1380
|
+
revstack, C, b_scale = postsolve_args[1:]
|
1381
|
+
|
1382
|
+
x = _unscale(x, C, b_scale)
|
1383
|
+
|
1384
|
+
# Undo variable substitutions of _get_Abc()
|
1385
|
+
# if "complete", problem was solved in presolve; don't do anything here
|
1386
|
+
n_x = bounds.shape[0]
|
1387
|
+
if not complete and bounds is not None: # bounds are never none, probably
|
1388
|
+
n_unbounded = 0
|
1389
|
+
for i, bi in enumerate(bounds):
|
1390
|
+
lbi = bi[0]
|
1391
|
+
ubi = bi[1]
|
1392
|
+
if lbi == -np.inf and ubi == np.inf:
|
1393
|
+
n_unbounded += 1
|
1394
|
+
x[i] = x[i] - x[n_x + n_unbounded - 1]
|
1395
|
+
else:
|
1396
|
+
if lbi == -np.inf:
|
1397
|
+
x[i] = ubi - x[i]
|
1398
|
+
else:
|
1399
|
+
x[i] += lbi
|
1400
|
+
# all the rest of the variables were artificial
|
1401
|
+
x = x[:n_x]
|
1402
|
+
|
1403
|
+
# If there were variables removed from the problem, add them back into the
|
1404
|
+
# solution vector
|
1405
|
+
# Apply the functions in revstack (reverse direction)
|
1406
|
+
for rev in reversed(revstack):
|
1407
|
+
x = rev(x)
|
1408
|
+
|
1409
|
+
fun = x.dot(c)
|
1410
|
+
with np.errstate(invalid="ignore"):
|
1411
|
+
slack = b_ub - A_ub.dot(x) # report slack for ORIGINAL UB constraints
|
1412
|
+
# report residuals of ORIGINAL EQ constraints
|
1413
|
+
con = b_eq - A_eq.dot(x)
|
1414
|
+
|
1415
|
+
return x, fun, slack, con
|
1416
|
+
|
1417
|
+
|
1418
|
+
def _check_result(x, fun, status, slack, con, bounds, tol, message,
|
1419
|
+
integrality):
|
1420
|
+
"""
|
1421
|
+
Check the validity of the provided solution.
|
1422
|
+
|
1423
|
+
A valid (optimal) solution satisfies all bounds, all slack variables are
|
1424
|
+
negative and all equality constraint residuals are strictly non-zero.
|
1425
|
+
Further, the lower-bounds, upper-bounds, slack and residuals contain
|
1426
|
+
no nan values.
|
1427
|
+
|
1428
|
+
Parameters
|
1429
|
+
----------
|
1430
|
+
x : 1-D array
|
1431
|
+
Solution vector to original linear programming problem
|
1432
|
+
fun: float
|
1433
|
+
optimal objective value for original problem
|
1434
|
+
status : int
|
1435
|
+
An integer representing the exit status of the optimization::
|
1436
|
+
|
1437
|
+
0 : Optimization terminated successfully
|
1438
|
+
1 : Iteration limit reached
|
1439
|
+
2 : Problem appears to be infeasible
|
1440
|
+
3 : Problem appears to be unbounded
|
1441
|
+
4 : Serious numerical difficulties encountered
|
1442
|
+
|
1443
|
+
slack : 1-D array
|
1444
|
+
The (non-negative) slack in the upper bound constraints, that is,
|
1445
|
+
``b_ub - A_ub @ x``
|
1446
|
+
con : 1-D array
|
1447
|
+
The (nominally zero) residuals of the equality constraints, that is,
|
1448
|
+
``b - A_eq @ x``
|
1449
|
+
bounds : 2D array
|
1450
|
+
The bounds on the original variables ``x``
|
1451
|
+
message : str
|
1452
|
+
A string descriptor of the exit status of the optimization.
|
1453
|
+
tol : float
|
1454
|
+
Termination tolerance; see [1]_ Section 4.5.
|
1455
|
+
|
1456
|
+
Returns
|
1457
|
+
-------
|
1458
|
+
status : int
|
1459
|
+
An integer representing the exit status of the optimization::
|
1460
|
+
|
1461
|
+
0 : Optimization terminated successfully
|
1462
|
+
1 : Iteration limit reached
|
1463
|
+
2 : Problem appears to be infeasible
|
1464
|
+
3 : Problem appears to be unbounded
|
1465
|
+
4 : Serious numerical difficulties encountered
|
1466
|
+
|
1467
|
+
message : str
|
1468
|
+
A string descriptor of the exit status of the optimization.
|
1469
|
+
"""
|
1470
|
+
# Somewhat arbitrary
|
1471
|
+
tol = np.sqrt(tol) * 10
|
1472
|
+
|
1473
|
+
if x is None:
|
1474
|
+
# HiGHS does not provide x if infeasible/unbounded
|
1475
|
+
if status == 0: # Observed with HiGHS Simplex Primal
|
1476
|
+
status = 4
|
1477
|
+
message = ("The solver did not provide a solution nor did it "
|
1478
|
+
"report a failure. Please submit a bug report.")
|
1479
|
+
return status, message
|
1480
|
+
|
1481
|
+
contains_nans = (
|
1482
|
+
np.isnan(x).any()
|
1483
|
+
or np.isnan(fun)
|
1484
|
+
or np.isnan(slack).any()
|
1485
|
+
or np.isnan(con).any()
|
1486
|
+
)
|
1487
|
+
|
1488
|
+
if contains_nans:
|
1489
|
+
is_feasible = False
|
1490
|
+
else:
|
1491
|
+
if integrality is None:
|
1492
|
+
integrality = 0
|
1493
|
+
valid_bounds = (x >= bounds[:, 0] - tol) & (x <= bounds[:, 1] + tol)
|
1494
|
+
# When integrality is 2 or 3, x must be within bounds OR take value 0
|
1495
|
+
valid_bounds |= (integrality > 1) & np.isclose(x, 0, atol=tol)
|
1496
|
+
invalid_bounds = not np.all(valid_bounds)
|
1497
|
+
|
1498
|
+
invalid_slack = status != 3 and (slack < -tol).any()
|
1499
|
+
invalid_con = status != 3 and (np.abs(con) > tol).any()
|
1500
|
+
is_feasible = not (invalid_bounds or invalid_slack or invalid_con)
|
1501
|
+
|
1502
|
+
if status == 0 and not is_feasible:
|
1503
|
+
status = 4
|
1504
|
+
message = ("The solution does not satisfy the constraints within the "
|
1505
|
+
"required tolerance of " + f"{tol:.2E}" + ", yet "
|
1506
|
+
"no errors were raised and there is no certificate of "
|
1507
|
+
"infeasibility or unboundedness. Check whether "
|
1508
|
+
"the slack and constraint residuals are acceptable; "
|
1509
|
+
"if not, consider enabling presolve, adjusting the "
|
1510
|
+
"tolerance option(s), and/or using a different method. "
|
1511
|
+
"Please consider submitting a bug report.")
|
1512
|
+
elif status == 2 and is_feasible:
|
1513
|
+
# Occurs if the simplex method exits after phase one with a very
|
1514
|
+
# nearly basic feasible solution. Postsolving can make the solution
|
1515
|
+
# basic, however, this solution is NOT optimal
|
1516
|
+
status = 4
|
1517
|
+
message = ("The solution is feasible, but the solver did not report "
|
1518
|
+
"that the solution was optimal. Please try a different "
|
1519
|
+
"method.")
|
1520
|
+
|
1521
|
+
return status, message
|