passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-singular might be problematic. Click here for more details.

Files changed (491) hide show
  1. PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
  2. passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
  3. passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
  4. passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
  5. passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
  6. passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
  7. passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
  8. passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
  9. passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
  10. passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
  11. passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
  12. passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
  13. passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
  14. passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
  15. passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
  16. passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
  17. passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
  18. passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
  19. passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
  20. passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
  21. passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
  22. passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
  23. sage/algebras/all__sagemath_singular.py +3 -0
  24. sage/algebras/fusion_rings/all.py +19 -0
  25. sage/algebras/fusion_rings/f_matrix.py +2448 -0
  26. sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
  27. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
  28. sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
  29. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
  30. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
  31. sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
  32. sage/algebras/fusion_rings/fusion_double.py +899 -0
  33. sage/algebras/fusion_rings/fusion_ring.py +1580 -0
  34. sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
  35. sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
  36. sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
  37. sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
  38. sage/algebras/fusion_rings/shm_managers.pxd +24 -0
  39. sage/algebras/fusion_rings/shm_managers.pyx +780 -0
  40. sage/algebras/letterplace/all.py +1 -0
  41. sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
  42. sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
  43. sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
  44. sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
  45. sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
  46. sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
  47. sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
  48. sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
  49. sage/algebras/quatalg/all.py +2 -0
  50. sage/algebras/quatalg/quaternion_algebra.py +4778 -0
  51. sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
  52. sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
  53. sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
  54. sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
  55. sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
  56. sage/all__sagemath_singular.py +11 -0
  57. sage/ext_data/all__sagemath_singular.py +1 -0
  58. sage/ext_data/singular/function_field/core.lib +98 -0
  59. sage/interfaces/all__sagemath_singular.py +1 -0
  60. sage/interfaces/singular.py +2835 -0
  61. sage/libs/all__sagemath_singular.py +1 -0
  62. sage/libs/singular/__init__.py +1 -0
  63. sage/libs/singular/decl.pxd +1168 -0
  64. sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
  65. sage/libs/singular/function.pxd +87 -0
  66. sage/libs/singular/function.pyx +1901 -0
  67. sage/libs/singular/function_factory.py +61 -0
  68. sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
  69. sage/libs/singular/groebner_strategy.pxd +22 -0
  70. sage/libs/singular/groebner_strategy.pyx +582 -0
  71. sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
  72. sage/libs/singular/option.pyx +671 -0
  73. sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
  74. sage/libs/singular/polynomial.pxd +39 -0
  75. sage/libs/singular/polynomial.pyx +661 -0
  76. sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
  77. sage/libs/singular/ring.pxd +58 -0
  78. sage/libs/singular/ring.pyx +893 -0
  79. sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
  80. sage/libs/singular/singular.pxd +72 -0
  81. sage/libs/singular/singular.pyx +1944 -0
  82. sage/libs/singular/standard_options.py +145 -0
  83. sage/matrix/all__sagemath_singular.py +1 -0
  84. sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
  85. sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
  86. sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
  87. sage/rings/all__sagemath_singular.py +1 -0
  88. sage/rings/function_field/all__sagemath_singular.py +1 -0
  89. sage/rings/function_field/derivations_polymod.py +911 -0
  90. sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
  91. sage/rings/function_field/element_polymod.pyx +406 -0
  92. sage/rings/function_field/function_field_polymod.py +2611 -0
  93. sage/rings/function_field/ideal_polymod.py +1775 -0
  94. sage/rings/function_field/order_polymod.py +1475 -0
  95. sage/rings/function_field/place_polymod.py +681 -0
  96. sage/rings/polynomial/all__sagemath_singular.py +1 -0
  97. sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
  98. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
  99. sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
  100. sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
  101. sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
  102. sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
  103. sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
  104. sage/rings/polynomial/plural.pxd +48 -0
  105. sage/rings/polynomial/plural.pyx +3171 -0
  106. sage/symbolic/all__sagemath_singular.py +1 -0
  107. sage/symbolic/comparison_impl.pxi +428 -0
  108. sage/symbolic/constants_c_impl.pxi +178 -0
  109. sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
  110. sage/symbolic/expression.pxd +7 -0
  111. sage/symbolic/expression.pyx +14200 -0
  112. sage/symbolic/getitem_impl.pxi +202 -0
  113. sage/symbolic/pynac.pxi +572 -0
  114. sage/symbolic/pynac_constant_impl.pxi +133 -0
  115. sage/symbolic/pynac_function_impl.pxi +206 -0
  116. sage/symbolic/pynac_impl.pxi +2576 -0
  117. sage/symbolic/pynac_wrap.h +124 -0
  118. sage/symbolic/series_impl.pxi +272 -0
  119. sage/symbolic/substitution_map_impl.pxi +94 -0
  120. sage_wheels/bin/ESingular +0 -0
  121. sage_wheels/bin/Singular +0 -0
  122. sage_wheels/bin/TSingular +0 -0
  123. sage_wheels/lib/singular/MOD/cohomo.la +41 -0
  124. sage_wheels/lib/singular/MOD/cohomo.so +0 -0
  125. sage_wheels/lib/singular/MOD/customstd.la +41 -0
  126. sage_wheels/lib/singular/MOD/customstd.so +0 -0
  127. sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
  128. sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
  129. sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
  130. sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
  131. sage_wheels/lib/singular/MOD/gitfan.la +41 -0
  132. sage_wheels/lib/singular/MOD/gitfan.so +0 -0
  133. sage_wheels/lib/singular/MOD/interval.la +41 -0
  134. sage_wheels/lib/singular/MOD/interval.so +0 -0
  135. sage_wheels/lib/singular/MOD/loctriv.la +41 -0
  136. sage_wheels/lib/singular/MOD/loctriv.so +0 -0
  137. sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
  138. sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
  139. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
  140. sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
  141. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
  142. sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
  143. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
  144. sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
  145. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
  146. sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
  147. sage_wheels/lib/singular/MOD/partialgb.la +41 -0
  148. sage_wheels/lib/singular/MOD/partialgb.so +0 -0
  149. sage_wheels/lib/singular/MOD/pyobject.la +41 -0
  150. sage_wheels/lib/singular/MOD/pyobject.so +0 -0
  151. sage_wheels/lib/singular/MOD/singmathic.la +41 -0
  152. sage_wheels/lib/singular/MOD/singmathic.so +0 -0
  153. sage_wheels/lib/singular/MOD/sispasm.la +41 -0
  154. sage_wheels/lib/singular/MOD/sispasm.so +0 -0
  155. sage_wheels/lib/singular/MOD/subsets.la +41 -0
  156. sage_wheels/lib/singular/MOD/subsets.so +0 -0
  157. sage_wheels/lib/singular/MOD/systhreads.la +41 -0
  158. sage_wheels/lib/singular/MOD/systhreads.so +0 -0
  159. sage_wheels/lib/singular/MOD/syzextra.la +41 -0
  160. sage_wheels/lib/singular/MOD/syzextra.so +0 -0
  161. sage_wheels/libexec/singular/MOD/change_cost +0 -0
  162. sage_wheels/libexec/singular/MOD/singularsurf +11 -0
  163. sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
  164. sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
  165. sage_wheels/libexec/singular/MOD/solve_IP +0 -0
  166. sage_wheels/libexec/singular/MOD/surfex +16 -0
  167. sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
  168. sage_wheels/share/factory/gftables/10201 +342 -0
  169. sage_wheels/share/factory/gftables/1024 +37 -0
  170. sage_wheels/share/factory/gftables/10609 +356 -0
  171. sage_wheels/share/factory/gftables/11449 +384 -0
  172. sage_wheels/share/factory/gftables/11881 +398 -0
  173. sage_wheels/share/factory/gftables/121 +6 -0
  174. sage_wheels/share/factory/gftables/12167 +408 -0
  175. sage_wheels/share/factory/gftables/125 +7 -0
  176. sage_wheels/share/factory/gftables/12769 +428 -0
  177. sage_wheels/share/factory/gftables/128 +7 -0
  178. sage_wheels/share/factory/gftables/1331 +47 -0
  179. sage_wheels/share/factory/gftables/1369 +48 -0
  180. sage_wheels/share/factory/gftables/14641 +490 -0
  181. sage_wheels/share/factory/gftables/15625 +523 -0
  182. sage_wheels/share/factory/gftables/16 +3 -0
  183. sage_wheels/share/factory/gftables/16129 +540 -0
  184. sage_wheels/share/factory/gftables/16384 +549 -0
  185. sage_wheels/share/factory/gftables/16807 +563 -0
  186. sage_wheels/share/factory/gftables/1681 +58 -0
  187. sage_wheels/share/factory/gftables/169 +8 -0
  188. sage_wheels/share/factory/gftables/17161 +574 -0
  189. sage_wheels/share/factory/gftables/1849 +64 -0
  190. sage_wheels/share/factory/gftables/18769 +628 -0
  191. sage_wheels/share/factory/gftables/19321 +646 -0
  192. sage_wheels/share/factory/gftables/19683 +659 -0
  193. sage_wheels/share/factory/gftables/2048 +71 -0
  194. sage_wheels/share/factory/gftables/2187 +75 -0
  195. sage_wheels/share/factory/gftables/2197 +76 -0
  196. sage_wheels/share/factory/gftables/2209 +76 -0
  197. sage_wheels/share/factory/gftables/22201 +742 -0
  198. sage_wheels/share/factory/gftables/22801 +762 -0
  199. sage_wheels/share/factory/gftables/2401 +82 -0
  200. sage_wheels/share/factory/gftables/243 +11 -0
  201. sage_wheels/share/factory/gftables/24389 +815 -0
  202. sage_wheels/share/factory/gftables/24649 +824 -0
  203. sage_wheels/share/factory/gftables/25 +3 -0
  204. sage_wheels/share/factory/gftables/256 +11 -0
  205. sage_wheels/share/factory/gftables/26569 +888 -0
  206. sage_wheels/share/factory/gftables/27 +3 -0
  207. sage_wheels/share/factory/gftables/27889 +932 -0
  208. sage_wheels/share/factory/gftables/2809 +96 -0
  209. sage_wheels/share/factory/gftables/28561 +954 -0
  210. sage_wheels/share/factory/gftables/289 +12 -0
  211. sage_wheels/share/factory/gftables/29791 +995 -0
  212. sage_wheels/share/factory/gftables/29929 +1000 -0
  213. sage_wheels/share/factory/gftables/3125 +107 -0
  214. sage_wheels/share/factory/gftables/32 +4 -0
  215. sage_wheels/share/factory/gftables/32041 +1070 -0
  216. sage_wheels/share/factory/gftables/32761 +1094 -0
  217. sage_wheels/share/factory/gftables/32768 +1095 -0
  218. sage_wheels/share/factory/gftables/343 +14 -0
  219. sage_wheels/share/factory/gftables/3481 +118 -0
  220. sage_wheels/share/factory/gftables/361 +14 -0
  221. sage_wheels/share/factory/gftables/36481 +1218 -0
  222. sage_wheels/share/factory/gftables/3721 +126 -0
  223. sage_wheels/share/factory/gftables/37249 +1244 -0
  224. sage_wheels/share/factory/gftables/38809 +1296 -0
  225. sage_wheels/share/factory/gftables/39601 +1322 -0
  226. sage_wheels/share/factory/gftables/4 +3 -0
  227. sage_wheels/share/factory/gftables/4096 +139 -0
  228. sage_wheels/share/factory/gftables/44521 +1486 -0
  229. sage_wheels/share/factory/gftables/4489 +152 -0
  230. sage_wheels/share/factory/gftables/49 +4 -0
  231. sage_wheels/share/factory/gftables/4913 +166 -0
  232. sage_wheels/share/factory/gftables/49729 +1660 -0
  233. sage_wheels/share/factory/gftables/5041 +170 -0
  234. sage_wheels/share/factory/gftables/50653 +1691 -0
  235. sage_wheels/share/factory/gftables/512 +20 -0
  236. sage_wheels/share/factory/gftables/51529 +1720 -0
  237. sage_wheels/share/factory/gftables/52441 +1750 -0
  238. sage_wheels/share/factory/gftables/529 +20 -0
  239. sage_wheels/share/factory/gftables/5329 +180 -0
  240. sage_wheels/share/factory/gftables/54289 +1812 -0
  241. sage_wheels/share/factory/gftables/57121 +1906 -0
  242. sage_wheels/share/factory/gftables/58081 +1938 -0
  243. sage_wheels/share/factory/gftables/59049 +1971 -0
  244. sage_wheels/share/factory/gftables/6241 +210 -0
  245. sage_wheels/share/factory/gftables/625 +23 -0
  246. sage_wheels/share/factory/gftables/63001 +2102 -0
  247. sage_wheels/share/factory/gftables/64 +5 -0
  248. sage_wheels/share/factory/gftables/6561 +221 -0
  249. sage_wheels/share/factory/gftables/6859 +231 -0
  250. sage_wheels/share/factory/gftables/6889 +232 -0
  251. sage_wheels/share/factory/gftables/729 +27 -0
  252. sage_wheels/share/factory/gftables/7921 +266 -0
  253. sage_wheels/share/factory/gftables/8 +3 -0
  254. sage_wheels/share/factory/gftables/81 +5 -0
  255. sage_wheels/share/factory/gftables/8192 +276 -0
  256. sage_wheels/share/factory/gftables/841 +30 -0
  257. sage_wheels/share/factory/gftables/9 +3 -0
  258. sage_wheels/share/factory/gftables/9409 +316 -0
  259. sage_wheels/share/factory/gftables/961 +34 -0
  260. sage_wheels/share/info/singular.info +191898 -0
  261. sage_wheels/share/singular/LIB/GND.lib +1359 -0
  262. sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
  263. sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
  264. sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
  265. sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
  266. sage_wheels/share/singular/LIB/VecField.lib +1542 -0
  267. sage_wheels/share/singular/LIB/absfact.lib +959 -0
  268. sage_wheels/share/singular/LIB/ainvar.lib +730 -0
  269. sage_wheels/share/singular/LIB/aksaka.lib +419 -0
  270. sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
  271. sage_wheels/share/singular/LIB/algebra.lib +1193 -0
  272. sage_wheels/share/singular/LIB/all.lib +136 -0
  273. sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
  274. sage_wheels/share/singular/LIB/arnold.lib +4553 -0
  275. sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
  276. sage_wheels/share/singular/LIB/arr.lib +3486 -0
  277. sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
  278. sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
  279. sage_wheels/share/singular/LIB/bfun.lib +1964 -0
  280. sage_wheels/share/singular/LIB/bimodules.lib +774 -0
  281. sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
  282. sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
  283. sage_wheels/share/singular/LIB/central.lib +2169 -0
  284. sage_wheels/share/singular/LIB/chern.lib +4162 -0
  285. sage_wheels/share/singular/LIB/cimonom.lib +571 -0
  286. sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
  287. sage_wheels/share/singular/LIB/classify.lib +3239 -0
  288. sage_wheels/share/singular/LIB/classify2.lib +1462 -0
  289. sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
  290. sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
  291. sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
  292. sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
  293. sage_wheels/share/singular/LIB/combinat.lib +91 -0
  294. sage_wheels/share/singular/LIB/compregb.lib +276 -0
  295. sage_wheels/share/singular/LIB/control.lib +1636 -0
  296. sage_wheels/share/singular/LIB/crypto.lib +3795 -0
  297. sage_wheels/share/singular/LIB/curveInv.lib +667 -0
  298. sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
  299. sage_wheels/share/singular/LIB/customstd.lib +100 -0
  300. sage_wheels/share/singular/LIB/deRham.lib +5979 -0
  301. sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
  302. sage_wheels/share/singular/LIB/decomp.lib +1655 -0
  303. sage_wheels/share/singular/LIB/deflation.lib +872 -0
  304. sage_wheels/share/singular/LIB/deform.lib +925 -0
  305. sage_wheels/share/singular/LIB/difform.lib +3055 -0
  306. sage_wheels/share/singular/LIB/divisors.lib +750 -0
  307. sage_wheels/share/singular/LIB/dmod.lib +5817 -0
  308. sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
  309. sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
  310. sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
  311. sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
  312. sage_wheels/share/singular/LIB/dummy.lib +17 -0
  313. sage_wheels/share/singular/LIB/elim.lib +1009 -0
  314. sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
  315. sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
  316. sage_wheels/share/singular/LIB/equising.lib +2127 -0
  317. sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
  318. sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
  319. sage_wheels/share/singular/LIB/findifs.lib +778 -0
  320. sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
  321. sage_wheels/share/singular/LIB/finvar.lib +7989 -0
  322. sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
  323. sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
  324. sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
  325. sage_wheels/share/singular/LIB/freegb.lib +3853 -0
  326. sage_wheels/share/singular/LIB/general.lib +1350 -0
  327. sage_wheels/share/singular/LIB/gfan.lib +1768 -0
  328. sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
  329. sage_wheels/share/singular/LIB/gkdim.lib +99 -0
  330. sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
  331. sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
  332. sage_wheels/share/singular/LIB/goettsche.lib +909 -0
  333. sage_wheels/share/singular/LIB/graal.lib +1366 -0
  334. sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
  335. sage_wheels/share/singular/LIB/graphics.lib +360 -0
  336. sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
  337. sage_wheels/share/singular/LIB/groups.lib +1123 -0
  338. sage_wheels/share/singular/LIB/grwalk.lib +507 -0
  339. sage_wheels/share/singular/LIB/hdepth.lib +194 -0
  340. sage_wheels/share/singular/LIB/help.cnf +57 -0
  341. sage_wheels/share/singular/LIB/hess.lib +1946 -0
  342. sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
  343. sage_wheels/share/singular/LIB/hodge.lib +400 -0
  344. sage_wheels/share/singular/LIB/homolog.lib +1965 -0
  345. sage_wheels/share/singular/LIB/hyperel.lib +975 -0
  346. sage_wheels/share/singular/LIB/inout.lib +679 -0
  347. sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
  348. sage_wheels/share/singular/LIB/interval.lib +1418 -0
  349. sage_wheels/share/singular/LIB/intprog.lib +778 -0
  350. sage_wheels/share/singular/LIB/invar.lib +443 -0
  351. sage_wheels/share/singular/LIB/involut.lib +980 -0
  352. sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
  353. sage_wheels/share/singular/LIB/kskernel.lib +534 -0
  354. sage_wheels/share/singular/LIB/latex.lib +3146 -0
  355. sage_wheels/share/singular/LIB/lejeune.lib +651 -0
  356. sage_wheels/share/singular/LIB/linalg.lib +2040 -0
  357. sage_wheels/share/singular/LIB/locnormal.lib +212 -0
  358. sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
  359. sage_wheels/share/singular/LIB/makedbm.lib +294 -0
  360. sage_wheels/share/singular/LIB/mathml.lib +813 -0
  361. sage_wheels/share/singular/LIB/matrix.lib +1372 -0
  362. sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
  363. sage_wheels/share/singular/LIB/methods.lib +212 -0
  364. sage_wheels/share/singular/LIB/moddiq.lib +322 -0
  365. sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
  366. sage_wheels/share/singular/LIB/modnormal.lib +218 -0
  367. sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
  368. sage_wheels/share/singular/LIB/modquotient.lib +269 -0
  369. sage_wheels/share/singular/LIB/modstd.lib +1024 -0
  370. sage_wheels/share/singular/LIB/modular.lib +545 -0
  371. sage_wheels/share/singular/LIB/modules.lib +2561 -0
  372. sage_wheels/share/singular/LIB/modwalk.lib +609 -0
  373. sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
  374. sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
  375. sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
  376. sage_wheels/share/singular/LIB/mregular.lib +1863 -0
  377. sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
  378. sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
  379. sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
  380. sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
  381. sage_wheels/share/singular/LIB/ncall.lib +31 -0
  382. sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
  383. sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
  384. sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
  385. sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
  386. sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
  387. sage_wheels/share/singular/LIB/ncloc.lib +361 -0
  388. sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
  389. sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
  390. sage_wheels/share/singular/LIB/nctools.lib +1887 -0
  391. sage_wheels/share/singular/LIB/nets.lib +1456 -0
  392. sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
  393. sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
  394. sage_wheels/share/singular/LIB/noether.lib +1106 -0
  395. sage_wheels/share/singular/LIB/normal.lib +8700 -0
  396. sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
  397. sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
  398. sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
  399. sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
  400. sage_wheels/share/singular/LIB/olga.lib +1933 -0
  401. sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
  402. sage_wheels/share/singular/LIB/parallel.lib +319 -0
  403. sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
  404. sage_wheels/share/singular/LIB/perron.lib +202 -0
  405. sage_wheels/share/singular/LIB/pfd.lib +2223 -0
  406. sage_wheels/share/singular/LIB/phindex.lib +642 -0
  407. sage_wheels/share/singular/LIB/pointid.lib +673 -0
  408. sage_wheels/share/singular/LIB/polybori.lib +1430 -0
  409. sage_wheels/share/singular/LIB/polyclass.lib +525 -0
  410. sage_wheels/share/singular/LIB/polylib.lib +1174 -0
  411. sage_wheels/share/singular/LIB/polymake.lib +1902 -0
  412. sage_wheels/share/singular/LIB/presolve.lib +1533 -0
  413. sage_wheels/share/singular/LIB/primdec.lib +9576 -0
  414. sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
  415. sage_wheels/share/singular/LIB/primitiv.lib +401 -0
  416. sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
  417. sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
  418. sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
  419. sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
  420. sage_wheels/share/singular/LIB/random.lib +455 -0
  421. sage_wheels/share/singular/LIB/ratgb.lib +489 -0
  422. sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
  423. sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
  424. sage_wheels/share/singular/LIB/realrad.lib +1197 -0
  425. sage_wheels/share/singular/LIB/recover.lib +2628 -0
  426. sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
  427. sage_wheels/share/singular/LIB/reesclos.lib +465 -0
  428. sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
  429. sage_wheels/share/singular/LIB/resgraph.lib +789 -0
  430. sage_wheels/share/singular/LIB/resjung.lib +820 -0
  431. sage_wheels/share/singular/LIB/resolve.lib +5110 -0
  432. sage_wheels/share/singular/LIB/resources.lib +170 -0
  433. sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
  434. sage_wheels/share/singular/LIB/ring.lib +1328 -0
  435. sage_wheels/share/singular/LIB/ringgb.lib +343 -0
  436. sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
  437. sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
  438. sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
  439. sage_wheels/share/singular/LIB/rootsur.lib +886 -0
  440. sage_wheels/share/singular/LIB/rstandard.lib +607 -0
  441. sage_wheels/share/singular/LIB/rwalk.lib +336 -0
  442. sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
  443. sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
  444. sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
  445. sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
  446. sage_wheels/share/singular/LIB/schreyer.lib +321 -0
  447. sage_wheels/share/singular/LIB/schubert.lib +2551 -0
  448. sage_wheels/share/singular/LIB/sets.lib +524 -0
  449. sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
  450. sage_wheels/share/singular/LIB/signcond.lib +437 -0
  451. sage_wheels/share/singular/LIB/sing.lib +1094 -0
  452. sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
  453. sage_wheels/share/singular/LIB/solve.lib +2243 -0
  454. sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
  455. sage_wheels/share/singular/LIB/spectrum.lib +62 -0
  456. sage_wheels/share/singular/LIB/sresext.lib +757 -0
  457. sage_wheels/share/singular/LIB/ssi.lib +143 -0
  458. sage_wheels/share/singular/LIB/standard.lib +2769 -0
  459. sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
  460. sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
  461. sage_wheels/share/singular/LIB/stratify.lib +1070 -0
  462. sage_wheels/share/singular/LIB/surf.lib +506 -0
  463. sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
  464. sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
  465. sage_wheels/share/singular/LIB/surfex.lib +1462 -0
  466. sage_wheels/share/singular/LIB/swalk.lib +877 -0
  467. sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
  468. sage_wheels/share/singular/LIB/systhreads.lib +74 -0
  469. sage_wheels/share/singular/LIB/tasks.lib +1324 -0
  470. sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
  471. sage_wheels/share/singular/LIB/teachstd.lib +858 -0
  472. sage_wheels/share/singular/LIB/template.lib +116 -0
  473. sage_wheels/share/singular/LIB/toric.lib +1119 -0
  474. sage_wheels/share/singular/LIB/transformation.lib +116 -0
  475. sage_wheels/share/singular/LIB/triang.lib +1197 -0
  476. sage_wheels/share/singular/LIB/tropical.lib +8741 -0
  477. sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
  478. sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
  479. sage_wheels/share/singular/LIB/tst.lib +1108 -0
  480. sage_wheels/share/singular/LIB/weierstr.lib +241 -0
  481. sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
  482. sage_wheels/share/singular/emacs/.emacs-general +184 -0
  483. sage_wheels/share/singular/emacs/.emacs-singular +234 -0
  484. sage_wheels/share/singular/emacs/COPYING +44 -0
  485. sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
  486. sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
  487. sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
  488. sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
  489. sage_wheels/share/singular/emacs/singular.el +4273 -0
  490. sage_wheels/share/singular/emacs/singular.xpm +39 -0
  491. sage_wheels/share/singular/singular.idx +5002 -0
@@ -0,0 +1,960 @@
1
+ //////////////////////////////////////////////////////////////////////////
2
+ version="version purityfiltration.lib 4.1.2.0 Feb_2019 "; // $Id: b8b391a0e6cec7511a461c97eca28940fb9ffc55 $
3
+ category="Noncommutative";
4
+ info="
5
+ LIBRARY: purityfiltration.lib Algorithms for computing a purity filtration of a given module
6
+
7
+ AUTHORS: Christian Schilli, christian.schilli@rwth-aachen.de
8
+ @* Viktor Levandovskyy, levandov@math.rwth-aachen.de
9
+
10
+
11
+ OVERVIEW:
12
+ Purity is a notion with several meanings. In our context it is equidimensionality
13
+ @* of a module (that is all M is pure iff any nonzero submodule of N has the same dimension as N).
14
+ @* Notably, one should define purity with respect to a given dimension function. In the context
15
+ @* of this library the corresponding function is the homological grade number j_A(M) of a module M over
16
+ @* an K-algebra A. j_A(M) is the minimal integer k, such that Ext^k_A(M,A) != 0.
17
+
18
+ REFERENCES: [AQ] Alban Quadrat: Grade filtration of linear functional systems, INRIA Report 7769 (2010), to appear in Acta Applicanda Mathematica.
19
+ @* [B93] Jan-Erik Bjoerk: Analytic D-modules and applications, Kluwer Acad. Publ., 1993.
20
+ @* [MB10] Mohamed Barakat: Purity Filtration and the Fine Structure of Autonomy. Proc. MTNS, 2010.
21
+
22
+ PROCEDURES:
23
+ projectiveDimension(matrix T,int i); compute a shortest resolution of coker(T) and its projective dimension
24
+ purityFiltration(matrix R); compute the purity filtration of coker(R)
25
+ purityTriang(matrix R) compute a triangular blockmatrix T, such that coker(R) isomorphic to coker(T)
26
+ gradeNumber(matrix R); gives the grade number of the module coker(R)
27
+ showgrades(list T); gives all grade numbers of the modules represented by the elements of T
28
+ allExtOfLeft(matrix R); computes all right ext-modules ext^i(M,D) of a left module M=coker(R) over the ring D
29
+ allExtOfRight(matrix R); computes all left ext-modules ext^i(M,D) of a right module M=coker(R) over the ring D
30
+ doubleExt(matrix R, int i); computes the left module ext^i(ext^i(M,D),D) over the ring D, M=coker(R)
31
+ allDoubleExt(matrix R); computes all double ext modules ext^i(ext^j(M,D),D) of the left module coker(R) over the ring D
32
+ is_pure(matrix R); checks whether the module coker(R) is pure
33
+ purelist(list T); checks whether all the modules represented by the elements of T are pure
34
+
35
+ KEYWORDS: D-module; ext-module; filtration; projective dimension; resolution; purity
36
+ ";
37
+
38
+ LIB "nctools.lib";
39
+ LIB "matrix.lib";
40
+ LIB "polylib.lib";
41
+ LIB "general.lib";
42
+ LIB "control.lib";
43
+ LIB "nchomolog.lib";
44
+
45
+ //------------------- auxiliary procedures --------------------------
46
+
47
+ proc testPurityfiltrationLib()
48
+ {
49
+ example projectiveDimension;
50
+ example purityFiltration;
51
+ example purityTriang;
52
+ example gradeNumber;
53
+ example showgrades;
54
+ example allExtOfLeft;
55
+ example allExtOfRight;
56
+ example doubleExt;
57
+ example allDoubleExt;
58
+ example is_pure;
59
+ example purelist;
60
+ }
61
+
62
+ static proc iszero (matrix R)
63
+ "USAGE: iszero(R); R a matrix
64
+ RETURN: int, 1, if R is zero,
65
+ @* or 0, if it's not
66
+ PURPOSE: checks, if the matrix R is zero or not
67
+ "
68
+ {
69
+ ideal i=R;
70
+ i=std(i);
71
+ if (i==0)
72
+ {
73
+ return (1);
74
+ }
75
+ return (0);
76
+ }
77
+
78
+ proc lsyz (matrix R)
79
+ "USAGE: lsyz(R), R a matrix
80
+ RETURN: matrix, a left syzygy of R
81
+ PURPOSE: computes the left syzygy module of the module, generated by the rows of R, i.e.
82
+ @* a matrix X with X*R=0
83
+ "
84
+ {
85
+ matrix L=transpose(syz(transpose(R)));
86
+ return(L);
87
+ }
88
+
89
+ proc rsyz (matrix R)
90
+ "USAGE: rsyz(R), R a matrix
91
+ RETURN: matrix, a rightsyzygy of R
92
+ PURPOSE: computes the right syzygy module of the module, generated by the rows of R, i.e.
93
+ @* a matrix X with R*X=0
94
+ EXAMPLE: example rsyz; shows example
95
+ "
96
+ {
97
+ def save = basering; // with respect to non-commutative rings,
98
+ def saveop = opposite(save); // we have to switch to the oppose ring for a rightsyzygy
99
+ setring saveop;
100
+ matrix Rop = oppose(save,R);
101
+ matrix Bop = syz(Rop);
102
+ setring save;
103
+ matrix B =oppose(saveop,Bop);
104
+ kill saveop;
105
+ return(B);
106
+ }
107
+ example
108
+ {"EXAMPLE:";echo = 2;
109
+ ring D = 0,(x,y,z),dp;
110
+ matrix R[3][2]=x,0,0,x,y,-z;
111
+ matrix X=rsyz(R);
112
+ print(X);
113
+ // check
114
+ print(R*X);
115
+ }
116
+
117
+
118
+ static proc rinv (matrix R)
119
+ "USAGE: rinv(R), R a matrix
120
+ RETURN: matrix, a right inverse of R
121
+ PURPOSE: computes a right inverse matrix of R, if it exists
122
+ @* if not, it returns the zero matrix
123
+ "
124
+ {
125
+ return(rightInverse(R));
126
+ }
127
+
128
+ static proc linv (matrix R)
129
+ "USAGE: linv(R), R a matrix
130
+ RETURN: matrix, a left inverse of R
131
+ PURPOSE: computes a left inverse matrix of R, if it exists
132
+ @* if not, it returns the zero matrix
133
+ "
134
+ {
135
+ return (leftInverse(R));
136
+ }
137
+
138
+ proc rlift(matrix M, matrix N)
139
+ "USAGE: rlift(M,N), M and N matrices, so that the module, generated by the columns of N
140
+ @* is a submodule of the one, generated by the columns of M
141
+ RETURN: matrix, a right lift of N in M
142
+ PURPOSE: computes a right lift matrix X of N in M,
143
+ @* i.e. N=M*X
144
+ "
145
+ {
146
+ def save = basering; // with respect to non-commutative rings,
147
+ def saveop = opposite(save); // we have to change the ring for a rightlift
148
+ setring saveop;
149
+ matrix Mop = oppose(save,M);
150
+ matrix Nop = oppose(save,N);
151
+ matrix Bop = lift(Mop,Nop);
152
+ setring save;
153
+ matrix B =oppose(saveop,Bop);
154
+ kill saveop;
155
+ return(B);
156
+ }
157
+
158
+ proc llift(matrix M, matrix N)
159
+ "USAGE: llift(M,N), M and N matrices, so that the module, generated by the rows of N
160
+ @* is a submodule of the one, generated by the rows of M
161
+ RETURN: matrix, a left lift of N in M
162
+ PURPOSE: computes a left lift matrix X of N in M,
163
+ @* i.e. N=X*M
164
+ "
165
+ {
166
+ matrix X=transpose(lift(transpose(M),transpose(N)));
167
+ return(X);
168
+ }
169
+
170
+ static proc concatz(matrix M, matrix N)
171
+ "USAGE: concatz(M,N), M and N matrices
172
+ RETURN: matrix
173
+ PURPOSE: adds the rows of N under the rows of M, i.e. build the matrix (M^Tr,N^Tr)^Tr
174
+ "
175
+ {
176
+ matrix X=transpose(concat(transpose(M),transpose(N)));
177
+ return (X);
178
+ }
179
+
180
+ //------------------------- main procedures --------------------------
181
+
182
+ proc purityFiltration(matrix R)
183
+ "USAGE: purityFiltration(S), S matrix with entries of an Auslander regular ring D
184
+ RETURN: a list T of two lists, purity filtration of the module M=D^q/D^p(S^t)
185
+ PURPOSE: the first list T[1] gives a filtration {M_i} of M,
186
+ @* where the i-th entry of T[1] gives the representation matrix of M_(i-1).
187
+ @* the second list T[2] gives representations of the factor Modules,
188
+ @* i.e. T[2][i] gives the repr. matrix for M_(i-1)/M_i
189
+ EXAMPLE: example purityFiltration; shows example
190
+ "
191
+ {
192
+ int i,j;
193
+ list re=projectiveDimension(R,0);
194
+ list T=re[1];
195
+ int di=re[2];
196
+ list reres; // Rji=reres[i][j+1], i=1,..,n+1; j=0,..,i
197
+ for( i=1; i<=di+1; i++ )
198
+ {
199
+ list zw;
200
+ zw[i+1]=T[i];
201
+ for( j=i; j >= 1; j--)
202
+ {
203
+ zw[j]=rsyz(zw[j+1]);
204
+ }
205
+ reres[i]=zw;
206
+ kill zw;
207
+ }
208
+ list F; // Fij=F[j][i+1], j=2,..,n+1; i=0,..,j-1
209
+ for(i=2;i<=di;i++)
210
+ {
211
+ list ehm;
212
+ matrix I[nrows(T[i-1])][nrows(T[i-1])];
213
+ I=I+1;
214
+ ehm[i]=I;
215
+ kill I;
216
+ for (j=1; j<=i-1; j++)
217
+ {
218
+ ehm[i-j]=rlift(reres[i][i-j+1],ehm[i-j+1]*reres[i-1][i-j+1]);
219
+ }
220
+ F[i]=ehm;
221
+ kill ehm;
222
+ }
223
+ // list M; // Mi=M[i+1], i=0,...,n+1
224
+ // M[1]=R1;
225
+ // matrix Ti=lsyz(reres[1][1]);
226
+ // matrix P[ncols(Ti)][ncols(Ti)];
227
+ // P=P+1;
228
+ // for (i=1;i<=di; i++)
229
+ // {
230
+ // M[i+1]=transpose(modulo(transpose(Ti*P),transpose(reres[i][2])));
231
+ // P=F[i+1][1]*P;
232
+ // Ti=lsyz(reres[i+1][1]);
233
+ // }
234
+ // M[di+2]=transpose(modulo(transpose(Ti*P),transpose(reres[di+1][2])));
235
+ // list I;
236
+ // for (i=1;i<=di+1;i++)
237
+ // {
238
+ // I[i]=transpose(modulo(transpose(M[i]),transpose(M[i+1])));
239
+ // }
240
+ list Rs,Rss;
241
+ for(i=1; i<=di; i++)
242
+ {
243
+ list zw;
244
+ zw[1]=lsyz(reres[i][1]);
245
+ zw[2]=lsyz(zw[1]);
246
+ Rss[i]=llift(zw[1],reres[i][2]);
247
+ Rs[i]=zw;
248
+ kill zw;
249
+ }
250
+ list Fs;
251
+ for(i=2;i<=di;i++)
252
+ {
253
+ Fs[i]=llift(Rs[i-1][1],Rs[i][1]*F[i][1]);
254
+ }
255
+ list K,U;
256
+ K[1]=transpose(R);
257
+ U[1]=Rs[1][1];
258
+ for(i=2;i<=di;i++)
259
+ {
260
+ K[i]=transpose(std(transpose(concatz(Rss[i-1], Rs[i-1][2]))));
261
+ U[i]=transpose(std(transpose(concatz(concatz(Fs[i],Rss[i-1]),Rs[i-1][2]))));
262
+ }
263
+ K[di+1]=transpose(std(transpose(concatz(Rss[di], Rs[di][2]))));
264
+ U[di+1]=K[di+1];
265
+ list erg=(K,U);
266
+ return (erg);
267
+ }
268
+ example
269
+ {"EXAMPLE:";echo = 2;
270
+ ring D = 0,(x1,x2,d1,d2),dp;
271
+ def S=Weyl();
272
+ setring S;
273
+ int i;
274
+ matrix R[3][3]=0,d2-d1,d2-d1,d2,-d1,-d1-d2,d1,-d1,-2*d1;
275
+ print(R);
276
+ list T=purityFiltration(transpose(R));
277
+ // the purity filtration of coker(M)
278
+ print(T[1][1]);
279
+ print(T[1][2]);
280
+ print(T[1][3]);
281
+ // factor modules of the filtration
282
+ print(T[2][1]);
283
+ print(T[2][2]);
284
+ print(T[2][3]);
285
+ }
286
+
287
+
288
+ proc purityTriang(matrix R)
289
+ "USAGE: purityTriang(S), S matrix with entries of an Auslander regular ring D
290
+ RETURN: a matrix T
291
+ PURPOSE: compute a triangular block matrix T, such that M=D^p/D^q(S^t) is isomorphic to M'=D^p'/D^q(T^t)
292
+ EXAMPLE: example purityTriang; shows example
293
+ "
294
+ {
295
+ int i,j;
296
+ list re=projectiveDimension(R,0);
297
+ list T=re[1];
298
+ int di=re[2];
299
+ list reres; // Rji=reres[i][j+1], i=1,..,n+1; j=0,..,i
300
+ for( i=1; i<=di+1; i++ )
301
+ {
302
+ list zw;
303
+ zw[i+1]=T[i];
304
+ for( j=i; j >= 1; j--)
305
+ {
306
+ zw[j]=rsyz(zw[j+1]);
307
+ }
308
+ reres[i]=zw;
309
+ kill zw;
310
+ }
311
+ list F; // Fij=F[j][i+1], j=2,..,n+1; i=0,..,j-1
312
+ for(i=2;i<=di;i++)
313
+ {
314
+ list ehm;
315
+ matrix I[nrows(T[i-1])][nrows(T[i-1])];
316
+ I=I+1;
317
+ ehm[i]=I;
318
+ kill I;
319
+ for (j=1; j<=i-1; j++)
320
+ {
321
+ ehm[i-j]=rlift(reres[i][i-j+1],ehm[i-j+1]*reres[i-1][i-j+1]);
322
+ }
323
+ F[i]=ehm;
324
+ kill ehm;
325
+ }
326
+
327
+ list Rs,Rss;
328
+ for(i=1; i<=di; i++)
329
+ {
330
+ list zw;
331
+ zw[1]=lsyz(reres[i][1]);
332
+ zw[2]=lsyz(zw[1]);
333
+ Rss[i]=llift(zw[1],reres[i][2]);
334
+ Rs[i]=zw;
335
+ kill zw;
336
+ }
337
+ list Fs;
338
+ for(i=2;i<=di;i++)
339
+ {
340
+ Fs[i]=llift(Rs[i-1][1],Rs[i][1]*F[i][1]);
341
+ }
342
+
343
+
344
+ int sp; list spnr;
345
+ spnr[1]=ncols(Rs[1][1]);
346
+ for (i=2;i<=di;i++)
347
+ {
348
+ spnr[i]=ncols(Fs[i]);
349
+ }
350
+ spnr[di+1]=ncols(Rss[di]);
351
+ sp=sum(spnr);
352
+
353
+ matrix E[nrows(Rs[1][1])][nrows(Rs[1][1])]; E=E-1;
354
+ list Z; int sumh;
355
+ Z[1]=concat(Rs[1][1],E);
356
+ sumh=ncols(Rs[1][1]);
357
+ kill E;
358
+
359
+ for(i=2;i<=di;i++)
360
+ {
361
+ matrix A;
362
+ matrix B[1][sumh];
363
+ matrix E[nrows(Fs[i])][nrows(Fs[i])]; E=E-1;
364
+
365
+ A=Fs[i];
366
+ if (i>2)
367
+ {
368
+ if (iszero(Rss[i-1])==0)
369
+ {
370
+ A=concatz(A,Rss[i-1]);
371
+ }
372
+ }
373
+ if (iszero(Rs[i-1][2])==0)
374
+ {
375
+ A=concatz(A,Rs[i-1][2]);
376
+ }
377
+ A=concat(B,A,E);
378
+ Z[i]=A;
379
+ sumh=sumh+spnr[i];
380
+ kill A,B,E;
381
+ }
382
+
383
+
384
+ matrix hi,his;
385
+ matrix N[1][sumh];
386
+
387
+ if (iszero(Rss[di])==0)
388
+ {
389
+ hi=concat(N,Rss[di]);
390
+ }
391
+
392
+ if (iszero(Rs[di][2])==0)
393
+ {
394
+ his=concat(N,Rs[di][2]);
395
+ if (iszero(hi)==1)
396
+ {
397
+ hi=his;
398
+ }
399
+ if (iszero(hi)==0)
400
+ {
401
+ hi=concatz(hi,his);
402
+ }
403
+ }
404
+
405
+ kill his;
406
+
407
+ matrix ges=Z[1];
408
+ for (i=2;i<=di;i++)
409
+ {
410
+ ges = concatz(ges,Z[i]);
411
+ }
412
+
413
+ if (iszero(hi)==0)
414
+ {
415
+ ges=concatz(ges,hi);
416
+ }
417
+ return (ges);
418
+ }
419
+ example
420
+ {"EXAMPLE:";echo = 2;
421
+ ring D = 0,(x1,x2,d1,d2),dp;
422
+ def S=Weyl();
423
+ setring S;
424
+ int i;
425
+ matrix R[3][3]=0,d2-d1,d2-d1,d2,-d1,-d1-d2,d1,-d1,-2*d1;
426
+ print(R);
427
+ matrix T=purityTriang(transpose(R));
428
+ // a triangular blockmatrix representing the module coker(R)
429
+ print(T);
430
+ }
431
+
432
+
433
+ proc gradeNumber(matrix R)
434
+ "USAGE: gradeNumber(R), R matrix, representing M=D^p/D^q(R^t) over a ring D
435
+ RETURN: int, grade number of M
436
+ PURPOSE: computes the grade number of M, i.e. the first i, with ext^i(M,D) !=0
437
+ @* returns -1 if M=0
438
+ EXAMPLE: example gradeNumber; shows examples
439
+ "
440
+ {
441
+ matrix M=transpose(R);
442
+ if (is_zero(transpose(M))==1)
443
+ {
444
+ return (-1);
445
+ }
446
+ list ext = allExtOfLeft(transpose(M));
447
+ int i=1;
448
+ matrix L=ext[i];
449
+ while (is_zero(transpose(L))==1)
450
+ {
451
+ i=i+1;
452
+ L=ext[i];
453
+ }
454
+ return (i-1);
455
+ }
456
+ example
457
+ {"EXAMPLE:";echo = 2;
458
+ // trivial example
459
+ ring D=0,(x,y,z),dp;
460
+ matrix R[2][1]=1,x;
461
+ gradeNumber(R);
462
+ // R has left inverse, so M=D/D^2R=0
463
+ gradeNumber(transpose(R));
464
+ print(ncExt_R(0,R));
465
+ // so, ext^0(coker(R),D) =! 0)
466
+ //
467
+ // a little bit more complex
468
+ matrix R1[3][1]=x,-y,z;
469
+ gradeNumber(transpose(R1));
470
+ print(ncExt_R(0,transpose(R1)));
471
+ print(ncExt_R(1,transpose(R1)));
472
+ print(ncExt_R(2,transpose(R1)));
473
+ // ext^i are zero for i=0,1,2
474
+ matrix ext3=ncExt_R(3,transpose(R1));
475
+ print(ext3);
476
+ // not zero
477
+ is_zero(ext3);
478
+ }
479
+
480
+ proc allExtOfLeft(matrix Ps)
481
+ "USAGE: allExtOfLeft(M),
482
+ RETURN: list, entries are ext-modules
483
+ ASSUME: M presents a left module of finite left projective dimension n
484
+ PURPOSE: For a left module presented by M over the basering D,
485
+ @* compute a list T, whose entry T[i+1] is a matrix, presenting the right module Ext^i_D(M,D) for i=0..n
486
+ EXAMPLE: example allExtOfLeft; shows example
487
+ "
488
+ {
489
+ // old doc: ... T[i] gives the repr. matrix of ext^(i-1)(M,D), i=1,.., n+1
490
+ list ext, Phi;
491
+ ext[1]=ncHom_R(Ps);
492
+ Phi = mres(Ps,0);
493
+ int di = size(Phi);
494
+ Phi[di+1]= transpose(lsyz(transpose(Phi[di])));
495
+ int i;
496
+ def Rbase = basering;
497
+ for(i=1;i<=di;i++)
498
+ {
499
+ module f = transpose(matrix(Phi[i+1]));
500
+ module Im2 = transpose(matrix(Phi[i]));
501
+ def Rop = opposite(Rbase);
502
+ setring Rop;
503
+ module fop = oppose(Rbase,f);
504
+ module Im2op = oppose(Rbase,Im2);
505
+ module ker_op = modulo(fop,std(0));
506
+ module ext_op = modulo(ker_op,Im2op);
507
+ setring Rbase;
508
+ ext[i+1] = oppose(Rop,ext_op); // a right module!
509
+ kill f, Im2, Rop;
510
+ }
511
+ return(ext);
512
+ }
513
+ example
514
+ {"EXAMPLE:";echo = 2;
515
+ ring D = 0,(x,y,z),dp;
516
+ matrix R[6][4]=
517
+ 0,-2*x,z-2*y-x,-1,
518
+ 0,z-2*x,2*y-3*x,1,
519
+ z,-6*x,-2*y-5*x,-1,
520
+ 0,y-x,y-x,0,
521
+ y,-x,-y-x,0,
522
+ x,-x,-2*x,0;
523
+ // coker(R) consider the left module M=D^6/D^4R
524
+ list T=allExtOfLeft(transpose(R));
525
+ print(T[1]);
526
+ print(T[2]);
527
+ print(T[3]);
528
+ print(T[4]);
529
+ // right modules coker(T[i].)!!
530
+ }
531
+
532
+ proc allExtOfRight(matrix Ps)
533
+ "USAGE: allExtOfRight(R), R matrix representing the right Module M=D^q/RD^p over a ring D
534
+ @* M module with finite right projective dimension n
535
+ RETURN: list, entries are ext-modules
536
+ PURPOSE: computes a list T, which entries are representations of the left modules ext^i(M,D)
537
+ @* T[i] gives the repr. matrix of ext^(i-1)(M,D), i=1,..,n+1
538
+ EXAMPLE: example allExtOfRight; shows example
539
+ "
540
+ {
541
+ // matrix Ps=transpose(Y);
542
+ list ext, Phi;
543
+ def Rbase = basering;
544
+ def Rop = opposite(Rbase);
545
+ setring Rop;
546
+ matrix Psop=oppose(Rbase,Ps);
547
+ matrix ext1_op = ncHom_R(Psop);
548
+ setring Rbase;
549
+ ext[1]=oppose(Rop,ext1_op);
550
+ kill Rop;
551
+ list zw = rightreso(transpose(Ps)); // right resolution
552
+ int di = size(zw);
553
+ zw[di+1]=lsyz(zw[di]);
554
+ Phi = zw;
555
+ kill zw;
556
+ int i;
557
+ for(i=1;i<=di;i++)
558
+ {
559
+ module f = Phi[i+1];
560
+ module Im2 = Phi[i];
561
+ module ker = modulo(f,std(0));
562
+ ext[i+1] = modulo(ker,Im2); // a left module!
563
+ kill f, Im2, ker;
564
+ }
565
+ return(ext);
566
+ }
567
+ example
568
+ {"EXAMPLE:";echo = 2;
569
+ ring D = 0,(x,y,z),dp;
570
+ matrix R[6][4]=
571
+ 0,-2*x,z-2*y-x,-1,
572
+ 0,z-2*x,2*y-3*x,1,
573
+ z,-6*x,-2*y-5*x,-1,
574
+ 0,y-x,y-x,0,
575
+ y,-x,-y-x,0,
576
+ x,-x,-2*x,0;
577
+ // coker(R) considered as right module
578
+ projectiveDimension(R,1)[2];
579
+ list T=allExtOfRight(R);
580
+ print(T[1]);
581
+ print(T[2]);
582
+ // left modules coker(.T[i])!!
583
+ }
584
+
585
+ static proc rightreso(matrix T)
586
+ "USAGE: rightreso(T), T matrix representing the right module M=D*/TD*
587
+ RETURN: list L, a right resolution of M
588
+ PURPOSE: computes a right resolution of M, using mres
589
+ @* the i-th entry of L gives the (i-1)th right syzygy module of M
590
+ "
591
+ {
592
+ int j;
593
+ matrix M=transpose(T);
594
+ list res;
595
+ def save = basering; // with respect to non-commutative rings,
596
+ def saveop = opposite(save); // we have to change the ring for a rightresolution
597
+ setring saveop;
598
+ matrix Mop=oppose(save,M);
599
+ list aufl=mres(Mop,0);
600
+ list resop=aufl;
601
+ kill aufl;
602
+ for (j=1; j<=size(resop); j++)
603
+ {
604
+ matrix zw=resop[j];
605
+ setring save;
606
+ res[j]=transpose(oppose(saveop,zw));
607
+ setring saveop;
608
+ kill zw;
609
+ }
610
+ setring save;
611
+ kill saveop;
612
+ return(res);
613
+ }
614
+
615
+ proc showgrades(list T)
616
+ "USAGE: showgrades(T), T list, which includes representation matrices of modules
617
+ RETURN: list, gradenumbers of the entries in T
618
+ PURPOSE: computes a list L with L[i]=gradenumber(M), M=D^p/D^qT[i]
619
+ EXAMPLE: example showgrades; shows example
620
+ "
621
+ {
622
+ list grades;
623
+ int gr=size(T);
624
+ int i;
625
+ for (i=1;i<=gr;i++)
626
+ {
627
+ grades[i]=gradeNumber(transpose(T[i]));
628
+ }
629
+ return (grades);
630
+ }
631
+ example
632
+ {"EXAMPLE:";echo = 2;
633
+ ring D = 0,(x,y,z),dp;
634
+ matrix R[6][4]=
635
+ 0,-2*x,z-2*y-x,-1,
636
+ 0,z-2*x,2*y-3*x,1,
637
+ z,-6*x,-2*y-5*x,-1,
638
+ 0,y-x,y-x,0,
639
+ y,-x,-y-x,0,
640
+ x,-x,-2*x,0;
641
+ list T=purityFiltration(transpose(R))[2];
642
+ showgrades(T);
643
+ // T[i] are i-1 pure (i=1,3,4) or zero (i=2)
644
+ }
645
+
646
+ proc doubleExt(matrix R, int i)
647
+ "USAGE: doubleExt(R,i), R matrix representing the left Module M=D^p/D^q(R^t) over a ring D
648
+ @* int i, less or equal the left projective dimension of M
649
+ RETURN: matrix P, representing the double ext module
650
+ PURPOSE: computes a matrix P, which represents the left module ext^i(ext^i(M,D))
651
+ EXAMPLE: example doubleExt; shows example
652
+ "
653
+ {
654
+ return (allExtOfRight( allExtOfLeft(R)[i+1] )[i+1]);
655
+ }
656
+ example
657
+ {"EXAMPLE:";echo = 2;
658
+ ring D = 0,(x,y,z),dp;
659
+ matrix R[7][3]=
660
+ 0 ,0,1,
661
+ 1 ,-4*x+z,-z,
662
+ -1,8*x-2*z,z,
663
+ 1 ,0 ,0,
664
+ 0 ,x-y,0,
665
+ 0 ,x-y,y,
666
+ 0 ,0 ,x;
667
+ // coker(R) is 2-pure, so all doubleExt are zero
668
+ print(doubleExt(transpose(R),0));
669
+ print(doubleExt(transpose(R),1));
670
+ print(doubleExt(transpose(R),3));
671
+ // except of the second
672
+ print(doubleExt(transpose(R),2));
673
+ }
674
+
675
+ proc allDoubleExt(matrix R)
676
+ "USAGE: allDoubleExt(R), R matrix representing the left Module M=D^p/D^q(R^t) over a ring D
677
+ RETURN: list T, double indexed, which include all double-ext modules
678
+ PURPOSE: computes all double ext-modules
679
+ @* T[i][j] gives a representation matrix of ext^(j-1)(ext(i-1)(M,D))
680
+ EXAMPLE: example allDoubleExt; shows example
681
+ "
682
+ {
683
+ list ext=allExtOfLeft(transpose(R));
684
+ list extext;
685
+ int i;
686
+ for(i=1;i<=size(ext);i++)
687
+ {
688
+ extext[i]=allExtOfRight(ext[i]);
689
+ }
690
+ kill ext;
691
+ return (extext);
692
+ }
693
+ example
694
+ {"EXAMPLE:";echo = 2;
695
+ ring D = 0,(x1,x2,x3,d1,d2,d3),dp;
696
+ def S=Weyl();
697
+ setring S;
698
+ matrix R[6][4]=
699
+ 0,-2*d1,d3-2*d2-d1,-1,
700
+ 0,d3-2*d1,2*d2-3*d1,1,
701
+ d3,-6*d1,-2*d2-5*d1,-1,
702
+ 0,d2-d1,d2-d1,0,
703
+ d2,-d1,-d2-d1,0,
704
+ d1,-d1,-2*d1,0;
705
+ list T=allDoubleExt(transpose(R));
706
+ // left projective dimension of M=coker(R) is 3
707
+ // ext^i(ext^0(M,D)), i=0,1,2,3
708
+ print(T[1][1]);
709
+ print(T[1][2]);
710
+ print(T[1][3]);
711
+ print(T[1][4]);
712
+ // ext^i(ext^1(M,D)), i=0,1,2,3
713
+ print(T[2][1]);
714
+ print(T[2][2]);
715
+ print(T[2][3]);
716
+ print(T[2][4]);
717
+ // ext^i(ext^2(M,D)), i=0,1,2,3 (all zero)
718
+ print(T[3][1]);
719
+ print(T[3][2]);
720
+ print(T[3][3]);
721
+ print(T[3][4]);
722
+ // ext^i(ext^3(M,D)), i=0,1,2,3 (all zero)
723
+ print(T[4][1]);
724
+ print(T[4][2]);
725
+ print(T[4][3]);
726
+ print(T[4][4]);
727
+ }
728
+
729
+ proc is_pure(matrix R)
730
+ "USAGE: is_pure(R), R representing the module M=D^p/D^q(R^t)
731
+ RETURN: int, 0 or 1
732
+ PURPOSE: checks pureness of M.
733
+ @* returns 1, if M is pure, or 0, if it's not
734
+ @* remark: if M is zero, is_pure returns 1
735
+ EXAMPLE: example is_pure; shows example
736
+ "
737
+ {
738
+ matrix M=transpose(R);
739
+ int gr=gradeNumber(transpose(M));
740
+ int di=projectiveDimension(transpose(M),0)[2];
741
+ int i=0;
742
+ while(i<=di)
743
+ {
744
+ if (i!=gr)
745
+ {
746
+ if ( is_zero( doubleExt(transpose(M),i) ) == 0 )
747
+ {
748
+ return (0);
749
+ }
750
+ }
751
+ i=i+1;
752
+ }
753
+ return (1);
754
+ }
755
+ example
756
+ {"EXAMPLE:";echo = 2;
757
+ ring D = 0,(x,y,z),dp;
758
+ matrix R[3][2]=y,-z,x,0,0,x;
759
+ list T=purityFiltration(transpose(R));
760
+ print(transpose(std(transpose(T[2][2]))));
761
+ // so the purity filtration of coker(R) is trivial,
762
+ // i.e. coker(R) is already pure
763
+ is_pure(transpose(R));
764
+ // we can also have non-pure modules:
765
+ matrix R2[6][4]=
766
+ 0,-2*x,z-2*y-x,-1,
767
+ 0,z-2*x,2*y-3*x,1,
768
+ z,-6*x,-2*y-5*x,-1,
769
+ 0,y-x,y-x,0,
770
+ y,-x,-y-x,0,
771
+ x,-x,-2*x,0;
772
+ is_pure(transpose(R2));
773
+ }
774
+
775
+ proc purelist(list T)
776
+ "USAGE: purelist(T), T list, in which the i-th entry R=T[i] represents M=D^p/D^q(R^t)
777
+ RETURN: list M, entries of M are 0 or 1
778
+ PURPOSE: if T[i] is pure, M[i] is 1, else M[i] is 0
779
+ EXAMPLE: example purelist; shows example
780
+ "
781
+ {
782
+ int i;
783
+ list erg;
784
+ for(i=1;i<=size(T);i++)
785
+ {
786
+ erg[i]=is_pure(transpose(T[i]));
787
+ }
788
+ return (erg);
789
+ }
790
+ example
791
+ {"EXAMPLE:";echo = 2;
792
+ ring D = 0,(x,y,z),dp;
793
+ matrix R[6][4]=
794
+ 0,-2*x,z-2*y-x,-1,
795
+ 0,z-2*x,2*y-3*x,1,
796
+ z,-6*x,-2*y-5*x,-1,
797
+ 0,y-x,y-x,0,
798
+ y,-x,-y-x,0,
799
+ x,-x,-2*x,0;
800
+ is_pure(transpose(R));
801
+ // R is not pure, so we do the purity filtration
802
+ list T=purityFiltration(transpose(R));
803
+ // all Elements of T[2] are either zero or pure
804
+ purelist(T[2]);
805
+ }
806
+
807
+
808
+ proc projectiveDimension(matrix T, list #)
809
+ "USAGE: projectiveDimension(R,i,j), R matrix representing the Modul M=coker(R)
810
+ @* int i, with i=0 or i=1, j a natural number
811
+ RETURN: list T, a projective resolution of M and its projective dimension
812
+ PURPOSE: if i=0 (and by default), T[1] gives a shortest left resolution of M=D^p/D^q(R^t) and T[2] the left projective dimension of M
813
+ @* if i=1, T[1] gives a shortest right resolution of M=D^p/RD^q and T[2] the right projective dimension of M
814
+ @* in both cases T[1][j] is the (j-1)-th syzygy module of M
815
+ NOTE: The algorithm is due to A. Quadrat, D. Robertz, Computation of bases of free modules over the Weyl algebras, J.Symb.Comp. 42, 2007.
816
+ EXAMPLE: example projectiveDimension; shows examples
817
+ "
818
+ {
819
+ int i = 0; // default
820
+ if (size(#) >0)
821
+ {
822
+ i = int(#[1]);
823
+ if ( (i!=0) and (i!=1) )
824
+ {
825
+ printf("Unaccepted second argument. Use 0 to get a left resolution, 1 for a right one.");
826
+ }
827
+ }
828
+ if (i==0)
829
+ {
830
+ return(prodim(T));
831
+ }
832
+ int j;
833
+ matrix M=T;
834
+ list res;
835
+ def save = basering; // with respect to non-commutative rings,
836
+ def saveop = opposite(save); // we have to change the ring for a rightresolution
837
+ setring saveop;
838
+ matrix Mop=oppose(save,M);
839
+ list aufl=prodim(Mop);
840
+ int k=aufl[2];
841
+ list resop=aufl[1];
842
+ kill aufl;
843
+ for (j=1; j<=size(resop); j++)
844
+ {
845
+ matrix zw=resop[j];
846
+ setring save;
847
+ res[j]=transpose(oppose(saveop,zw));
848
+ setring saveop;
849
+ kill zw;
850
+ }
851
+ setring save;
852
+ list Y;
853
+ Y[1]=res;
854
+ Y[2]=k;
855
+ kill saveop;
856
+ kill res;
857
+ return(Y);
858
+
859
+ }
860
+ example
861
+ {"EXAMPLE:";echo = 2;
862
+ // commutative example
863
+ ring D = 0,(x,y,z),dp;
864
+ matrix R[6][4]=
865
+ 0,-2*x,z-2*y-x,-1,
866
+ 0,z-2*x,2*y-3*x,1,
867
+ z,-6*x,-2*y-5*x,-1,
868
+ 0,y-x,y-x,0,
869
+ y,-x,-y-x,0,
870
+ x,-x,-2*x,0;
871
+ // compute a left resolution of M=D^4/D^6*R
872
+ list T=projectiveDimension(transpose(R),0);
873
+ // so we have the left projective dimension
874
+ T[2];
875
+ //we could also compute a right resolution of M=D^6/RD^4
876
+ list T1=projectiveDimension(R,1);
877
+ // and we have right projective dimension
878
+ T1[2];
879
+ // check, that a syzygy matrix of R has left inverse:
880
+ print(leftInverse(syz(R)));
881
+ // so lpd(M) must be 1.
882
+ // Non-commutative example
883
+ ring D1 = 0,(x1,x2,x3,d1,d2,d3),dp;
884
+ def S=Weyl(); setring S;
885
+ matrix R[3][3]=
886
+ 1/2*x2*d1, x2*d2+1, x2*d3+1/2*d1,
887
+ -1/2*x2*d2-3/2,0,1/2*d2,
888
+ -d1-1/2*x2*d3,-d2,-1/2*d3;
889
+ list T=projectiveDimension(R,0);
890
+ // left projective dimension of coker(R) is
891
+ T[2];
892
+ list T1=projectiveDimension(R,1);
893
+ // both modules have the same projective dimension, but different resolutions, because D is non-commutative
894
+ print(T[1][1]);
895
+ // not the same as
896
+ print(transpose(T1[1][1]));
897
+ }
898
+
899
+ static proc prodim(matrix M)
900
+ "USAGE: prodim(R), R matrix representing the Modul M=coker(R)
901
+ RETURN: list T, a left projective resolution of M and its left projective dimension
902
+ PURPOSE: T[1] gives a shortest left resolution of M and T[2] the left projective dimension of M
903
+ @* it is T[1][j] the (j-1)-th syzygy module of M
904
+ "
905
+ {
906
+ matrix T=transpose(M);
907
+ list R,zw;
908
+ R[1]=T;
909
+ if (rinv(R[1])==0)
910
+ {
911
+ R[2]=transpose(std(transpose(lsyz(R[1]))));
912
+ }
913
+ else
914
+ {
915
+ matrix S[1][ncols(T)];
916
+ R[1]=S;
917
+ zw[1]=R;
918
+ zw[2]=0;
919
+ return (zw);
920
+ }
921
+ if (iszero(R[2])==1)
922
+ {
923
+ zw[1]=R;
924
+ zw[2]=1;
925
+ return (zw);
926
+ }
927
+ int i=1;
928
+ matrix N;
929
+ while (iszero(R[i+1])==0)
930
+ {
931
+ i=i+1;
932
+ N=rinv(R[i]);
933
+ if (iszero(N)==0)
934
+ {
935
+ if (i==2)
936
+ {
937
+ R[i-1]=concat(R[i-1],N);
938
+ matrix K[1][nrows(R[1])];
939
+ R[2]=K;
940
+ zw[1]=R;
941
+ zw[2]=i-1;
942
+ return (zw);
943
+ }
944
+ if (i>2)
945
+ {
946
+ R[i-1]=concat(R[i-1],N);
947
+ matrix K[ncols(N)][1];
948
+ R[i-2]=concatz(R[i-2],K);
949
+ R[i]=0;
950
+ zw[1]=R;
951
+ zw[2]=i-1;
952
+ return(zw);
953
+ }
954
+ }
955
+ R[i+1]=transpose(std(transpose(lsyz(R[i]))));
956
+ }
957
+ zw[1]=R;
958
+ zw[2]=i;
959
+ return (zw);
960
+ }