passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1106 @@
|
|
|
1
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version noether.lib 4.1.2.0 Feb_2019 "; // $Id: f758646fa2770854b19e14f64fdc527f1f59b0bc $
|
|
3
|
+
category="Commutative Algebra";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: noether.lib Noether normalization of an ideal (not necessary
|
|
6
|
+
homogeneous)
|
|
7
|
+
AUTHORS: A. Hashemi, Amir.Hashemi@lip6.fr
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
OVERVIEW:
|
|
11
|
+
A library for computing the Noether normalization of an ideal that DOES NOT
|
|
12
|
+
require the computation of the dimension of the ideal.
|
|
13
|
+
It checks whether an ideal is in Noether position. A modular version of
|
|
14
|
+
these algorithms is also provided.
|
|
15
|
+
The procedures are based on a paper of Amir Hashemi 'Efficient Algorithms for
|
|
16
|
+
Computing Noether Normalization' (presented in ASCM 2007)
|
|
17
|
+
|
|
18
|
+
This library computes also Castelnuovo-Mumford regularity and satiety of an
|
|
19
|
+
ideal. A modular version of these algorithms is also provided.
|
|
20
|
+
The procedures are based on a paper of Amir Hashemi 'Computation of
|
|
21
|
+
Castelnuovo-Mumford regularity and satiety' (preprint 2008)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
PROCEDURES:
|
|
25
|
+
NPos_test(id); checks whether monomial ideal id is in Noether position
|
|
26
|
+
modNpos_test(id); the same as above using modular methods
|
|
27
|
+
NPos(id); Noether normalization of ideal id
|
|
28
|
+
modNPos(id); Noether normalization of ideal id by modular methods
|
|
29
|
+
nsatiety(id); Satiety of ideal id
|
|
30
|
+
modsatiety(id) Satiety of ideal id by modular methods
|
|
31
|
+
regCM(id); Castelnuovo-Mumford regularity of ideal id
|
|
32
|
+
modregCM(id); Castelnuovo-Mumford regularity of ideal id by modular methods
|
|
33
|
+
";
|
|
34
|
+
LIB "elim.lib";
|
|
35
|
+
LIB "algebra.lib";
|
|
36
|
+
LIB "polylib.lib";
|
|
37
|
+
LIB "ring.lib";
|
|
38
|
+
LIB "presolve.lib";
|
|
39
|
+
|
|
40
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
41
|
+
|
|
42
|
+
proc NPos_test (ideal I)
|
|
43
|
+
"
|
|
44
|
+
USAGE: NPos_test (I); I monomial ideal
|
|
45
|
+
RETURN: A list whose first element is 1, if i is in Noether position,
|
|
46
|
+
0 otherwise. The second element of this list is a list of variables ordered
|
|
47
|
+
such that those variables are listed first, of which a power belongs to the
|
|
48
|
+
initial ideal of i. If i is in Noether position, the method returns furthermore
|
|
49
|
+
the dimension of i.
|
|
50
|
+
ASSUME: i is a nonzero monomial ideal.
|
|
51
|
+
"
|
|
52
|
+
{
|
|
53
|
+
//--------------------------- initialisation ---------------------------------
|
|
54
|
+
int time,ii,j,k,l,d,t,jj;
|
|
55
|
+
intvec v;
|
|
56
|
+
def r0 = basering;
|
|
57
|
+
int n = nvars(r0)-1;
|
|
58
|
+
list L,Y,P1,P2,P3;
|
|
59
|
+
if (I[1]==1)
|
|
60
|
+
{
|
|
61
|
+
print("The ideal is 1");return(1);
|
|
62
|
+
}
|
|
63
|
+
for ( ii = 1; ii <= n+1; ii++ )
|
|
64
|
+
{
|
|
65
|
+
L[ii]=0;
|
|
66
|
+
}
|
|
67
|
+
for ( ii = 1; ii <= size(I); ii++ )
|
|
68
|
+
{
|
|
69
|
+
Y=variables(I[ii]);
|
|
70
|
+
l=rvar(Y[1][1]);
|
|
71
|
+
if (size(Y[1])==1)
|
|
72
|
+
{
|
|
73
|
+
L[l]=1;
|
|
74
|
+
P1=insert(P1,Y[1][1]);
|
|
75
|
+
}
|
|
76
|
+
if (L[l]==0)
|
|
77
|
+
{
|
|
78
|
+
L[l]=-1;
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
t=size(P1);
|
|
82
|
+
if (t==0)
|
|
83
|
+
{
|
|
84
|
+
for ( jj = 1; jj <= n+1; jj++ )
|
|
85
|
+
{
|
|
86
|
+
P3=insert(P3,varstr(jj));
|
|
87
|
+
}
|
|
88
|
+
}
|
|
89
|
+
else
|
|
90
|
+
{
|
|
91
|
+
P2=findvars(ideal(P1[1..t]))[3];
|
|
92
|
+
for ( jj = 1; jj <= size(P2[1]); jj++ )
|
|
93
|
+
{
|
|
94
|
+
P3=insert(P3,P2[1][jj]);
|
|
95
|
+
}
|
|
96
|
+
}
|
|
97
|
+
if (L[n+1]==-1)
|
|
98
|
+
{
|
|
99
|
+
return(list(0,P1+P3));
|
|
100
|
+
}
|
|
101
|
+
for ( ii = 1; ii <= n; ii++ )
|
|
102
|
+
{
|
|
103
|
+
if (L[ii]==-1)
|
|
104
|
+
{
|
|
105
|
+
return(list(0,P1+P3));
|
|
106
|
+
}
|
|
107
|
+
if (L[ii]==0 and L[ii+1]==1)
|
|
108
|
+
{
|
|
109
|
+
return(list(0,P1+P3));
|
|
110
|
+
}
|
|
111
|
+
}
|
|
112
|
+
d=n+1-sum(L);
|
|
113
|
+
print("The dimension of the ideal is:");print(d);
|
|
114
|
+
return(list(1,P1+P3));
|
|
115
|
+
}
|
|
116
|
+
example
|
|
117
|
+
{ "EXAMPLE:"; echo = 2;
|
|
118
|
+
ring r=0,(X,Y,a,b),dp;
|
|
119
|
+
poly f=X^8+a*Y^4-Y;
|
|
120
|
+
poly g=Y^8+b*X^4-X;
|
|
121
|
+
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
|
|
122
|
+
ideal i=f,g,h;
|
|
123
|
+
NPos_test(i);
|
|
124
|
+
}
|
|
125
|
+
//////////////////////////////////////////
|
|
126
|
+
proc modNpos_test (ideal i)
|
|
127
|
+
"USAGE: modNpos_test(i); i an ideal
|
|
128
|
+
RETURN: 1 if i is in Noether position 0 otherwise.
|
|
129
|
+
NOTE: This test is a probabilistic test, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
|
|
130
|
+
"
|
|
131
|
+
{
|
|
132
|
+
"// WARNING:
|
|
133
|
+
// The procedure is probabilistic and it computes the initial of the ideal modulo the prime number 2147483647";
|
|
134
|
+
int p;
|
|
135
|
+
def br=basering;
|
|
136
|
+
setring br;
|
|
137
|
+
ideal I;
|
|
138
|
+
list #;
|
|
139
|
+
option(redSB);
|
|
140
|
+
p=2147483647;
|
|
141
|
+
#=ringlist(br);
|
|
142
|
+
#[1]=p;
|
|
143
|
+
def oro=ring(#);
|
|
144
|
+
setring oro;
|
|
145
|
+
ideal sbi,lsbi;
|
|
146
|
+
sbi=fetch(br,i);
|
|
147
|
+
lsbi=lead(std(sbi));
|
|
148
|
+
setring br;
|
|
149
|
+
I=fetch(oro,lsbi);
|
|
150
|
+
I=simplify(I,1);
|
|
151
|
+
attrib(I,"isSB",1);
|
|
152
|
+
return(NPos_test(I));
|
|
153
|
+
}
|
|
154
|
+
example
|
|
155
|
+
{ "EXAMPLE:"; echo = 2;
|
|
156
|
+
ring r=0,(X,Y,a,b),dp;
|
|
157
|
+
poly f=X^8+a*Y^4-Y;
|
|
158
|
+
poly g=Y^8+b*X^4-X;
|
|
159
|
+
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
|
|
160
|
+
ideal i=f,g,h;
|
|
161
|
+
modNpos_test(i);
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
166
|
+
proc NPos (ideal i)
|
|
167
|
+
"USAGE: NPos(i); i ideal
|
|
168
|
+
RETURN: A linear map phi such that phi(i) is in Noether position
|
|
169
|
+
KEYWORDS: Noether position
|
|
170
|
+
"
|
|
171
|
+
{
|
|
172
|
+
//--------------------------- initialisation ---------------------------------
|
|
173
|
+
int ii,jj,d,time,n,nl,zz;
|
|
174
|
+
intmat ran;
|
|
175
|
+
def r0 = basering;
|
|
176
|
+
ideal K,chcoord;
|
|
177
|
+
n = nvars(r0)-1;
|
|
178
|
+
list l1;
|
|
179
|
+
for (zz = 0; zz<= n; zz++)
|
|
180
|
+
{
|
|
181
|
+
l1[zz+1] = "x("+string(zz)+")";
|
|
182
|
+
}
|
|
183
|
+
ring r1 = create_ring(ring_list(r0)[1], l1, "dp", "no_minpoly");
|
|
184
|
+
ideal i,sbi,I,K,chcoord,m,L;
|
|
185
|
+
list #;
|
|
186
|
+
poly P;
|
|
187
|
+
map phi;
|
|
188
|
+
i = fetch(r0,i);
|
|
189
|
+
time=rtimer;
|
|
190
|
+
system("--ticks-per-sec",10);
|
|
191
|
+
i=std(i);
|
|
192
|
+
sbi=sort(lead(i))[1];
|
|
193
|
+
#=NPos_test(sbi);
|
|
194
|
+
if ( #[1]== 1 )
|
|
195
|
+
{
|
|
196
|
+
return ("The ideal is in Noether position and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
197
|
+
}
|
|
198
|
+
else
|
|
199
|
+
{
|
|
200
|
+
L=maxideal(1);
|
|
201
|
+
chcoord=maxideal(1);
|
|
202
|
+
for ( ii = 1; ii<=n+1; ii++ )
|
|
203
|
+
{
|
|
204
|
+
chcoord[rvar(#[2][ii])]=L[ii];
|
|
205
|
+
}
|
|
206
|
+
phi=r1,chcoord;
|
|
207
|
+
sbi=phi(sbi);
|
|
208
|
+
if ( NPos_test(sbi)[1] == 1 )
|
|
209
|
+
{
|
|
210
|
+
setring r0;
|
|
211
|
+
chcoord=fetch(r1,chcoord);
|
|
212
|
+
return (chcoord,"and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
213
|
+
}
|
|
214
|
+
}
|
|
215
|
+
while ( nl < 30 )
|
|
216
|
+
{
|
|
217
|
+
nl=nl+1;
|
|
218
|
+
I=i;
|
|
219
|
+
L=maxideal(1);
|
|
220
|
+
for ( ii = n; ii>=0; ii-- )
|
|
221
|
+
{
|
|
222
|
+
chcoord=select1(maxideal(1),1..ii);
|
|
223
|
+
ran=random(100,1,ii);
|
|
224
|
+
ran=intmat(ran,1,ii+1);
|
|
225
|
+
ran[1,ii+1]=1;
|
|
226
|
+
m=select1(maxideal(1),1..(ii+1));
|
|
227
|
+
for ( jj = 1; jj<=ii+1; jj++ )
|
|
228
|
+
{
|
|
229
|
+
P=P+ran[1,jj]*m[jj];
|
|
230
|
+
}
|
|
231
|
+
chcoord[ii+1]=P;
|
|
232
|
+
L[ii+1]=P;
|
|
233
|
+
P=0;
|
|
234
|
+
phi=r1,chcoord;
|
|
235
|
+
I=phi(I);
|
|
236
|
+
if ( NPos_test(sort(lead(std(I)))[1])[1] == 1 )
|
|
237
|
+
{
|
|
238
|
+
K=x(ii..n);
|
|
239
|
+
setring r0;
|
|
240
|
+
K=fetch(r1,K);
|
|
241
|
+
ideal L=fetch(r1,L);
|
|
242
|
+
return (L,"and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
243
|
+
}
|
|
244
|
+
}
|
|
245
|
+
}
|
|
246
|
+
"// WARNING:
|
|
247
|
+
// The procedure has entered in more than 30 loops: in your example
|
|
248
|
+
// the method may enter an infinite loop over a finite field!";
|
|
249
|
+
return (-1);
|
|
250
|
+
}
|
|
251
|
+
example
|
|
252
|
+
{ "EXAMPLE:"; echo = 2;
|
|
253
|
+
ring r=0,(X,Y,a,b),dp;
|
|
254
|
+
poly f=X^8+a*Y^4-Y;
|
|
255
|
+
poly g=Y^8+b*X^4-X;
|
|
256
|
+
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
|
|
257
|
+
ideal i=f,g,h;
|
|
258
|
+
NPos(i);
|
|
259
|
+
}
|
|
260
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
261
|
+
proc modNPos (ideal i)
|
|
262
|
+
"USAGE: modNPos(i); i ideal
|
|
263
|
+
RETURN: A linear map phi such that phi(i) is in Noether position
|
|
264
|
+
NOTE: It uses the procedure modNpos_test to test Noether position.
|
|
265
|
+
"
|
|
266
|
+
{
|
|
267
|
+
//--------------------------- initialisation ---------------------------------
|
|
268
|
+
int ii,jj,d,time,n,nl,zz;
|
|
269
|
+
intmat ran;
|
|
270
|
+
def r0 = basering;
|
|
271
|
+
ideal K,chcoord;
|
|
272
|
+
n = nvars(r0)-1;
|
|
273
|
+
list l2;
|
|
274
|
+
for (zz = 0; zz<= n; zz++)
|
|
275
|
+
{
|
|
276
|
+
l2[zz+1] = "x("+string(zz)+")";
|
|
277
|
+
}
|
|
278
|
+
ring r1 = create_ring(ring_list(r0)[1], l2, "dp", "no_minpoly");
|
|
279
|
+
ideal i,sbi,I,K,chcoord,m,L;
|
|
280
|
+
poly P;
|
|
281
|
+
list #;
|
|
282
|
+
map phi;
|
|
283
|
+
i = fetch(r0,i);
|
|
284
|
+
time=rtimer;
|
|
285
|
+
system("--ticks-per-sec",10);
|
|
286
|
+
#=modNpos_test(i);
|
|
287
|
+
if ( #[1]== 1 )
|
|
288
|
+
{
|
|
289
|
+
return ("The ideal is in Noether position and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
290
|
+
}
|
|
291
|
+
else
|
|
292
|
+
{
|
|
293
|
+
L=maxideal(1);
|
|
294
|
+
chcoord=maxideal(1);
|
|
295
|
+
for ( ii = 1; ii<=n+1; ii++ )
|
|
296
|
+
{
|
|
297
|
+
chcoord[rvar(#[2][ii])]=L[ii];
|
|
298
|
+
}
|
|
299
|
+
phi=r1,chcoord;
|
|
300
|
+
I=phi(i);
|
|
301
|
+
if ( modNpos_test(I)[1] == 1 )
|
|
302
|
+
{
|
|
303
|
+
setring r0;
|
|
304
|
+
chcoord=fetch(r1,chcoord);
|
|
305
|
+
return (chcoord,"and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
306
|
+
}
|
|
307
|
+
}
|
|
308
|
+
while ( nl < 30 )
|
|
309
|
+
{
|
|
310
|
+
nl=nl+1;
|
|
311
|
+
I=i;
|
|
312
|
+
L=maxideal(1);
|
|
313
|
+
for ( ii = n; ii>=0; ii-- )
|
|
314
|
+
{
|
|
315
|
+
chcoord=select1(maxideal(1),1..ii);
|
|
316
|
+
ran=random(100,1,ii);
|
|
317
|
+
ran=intmat(ran,1,ii+1);
|
|
318
|
+
ran[1,ii+1]=1;
|
|
319
|
+
m=select1(maxideal(1),1..(ii+1));
|
|
320
|
+
for ( jj = 1; jj<=ii+1; jj++ )
|
|
321
|
+
{
|
|
322
|
+
P=P+ran[1,jj]*m[jj];
|
|
323
|
+
}
|
|
324
|
+
chcoord[ii+1]=P;
|
|
325
|
+
L[ii+1]=P;
|
|
326
|
+
P=0;
|
|
327
|
+
phi=r1,chcoord;
|
|
328
|
+
I=phi(I);
|
|
329
|
+
if ( modNpos_test(I)[1] == 1 )
|
|
330
|
+
{
|
|
331
|
+
K=x(ii..n);
|
|
332
|
+
setring r0;
|
|
333
|
+
K=fetch(r1,K);
|
|
334
|
+
ideal L=fetch(r1,L);
|
|
335
|
+
return (L,"and the time of this computation is:",rtimer-time,"/10 sec.");
|
|
336
|
+
}
|
|
337
|
+
}
|
|
338
|
+
}
|
|
339
|
+
"// WARNING:
|
|
340
|
+
// The procedure has entered in more than 30 loops: in your example
|
|
341
|
+
// the method may enter an infinite loop over a finite field!";
|
|
342
|
+
return (-1);
|
|
343
|
+
}
|
|
344
|
+
example
|
|
345
|
+
{ "EXAMPLE:"; echo = 2;
|
|
346
|
+
ring r=0,(X,Y,a,b),dp;
|
|
347
|
+
poly f=X^8+a*Y^4-Y;
|
|
348
|
+
poly g=Y^8+b*X^4-X;
|
|
349
|
+
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
|
|
350
|
+
ideal i=f,g,h;
|
|
351
|
+
modNPos(i);
|
|
352
|
+
}
|
|
353
|
+
|
|
354
|
+
////////////////////////////////////////////////////////////////////////////////////
|
|
355
|
+
static proc TestLastVarIsInGenericPos (ideal i)
|
|
356
|
+
"USAGE: TestLastVarIsInGenericPos (i); i a monomial ideal,
|
|
357
|
+
RETURN: 1 if the last variable is in generic position for i and 0 otherwise.
|
|
358
|
+
THEORY: The last variable is in generic position if the quotient of the ideal
|
|
359
|
+
with respect to this variable is equal to the quotient of the ideal with respect to the maximal ideal.
|
|
360
|
+
"
|
|
361
|
+
{
|
|
362
|
+
//--------------------------- initialisation ---------------------------------
|
|
363
|
+
int n,ret,zz;
|
|
364
|
+
def r0 = basering;
|
|
365
|
+
n = nvars(r0)-1;
|
|
366
|
+
list l3;
|
|
367
|
+
for (zz = 0; zz<= n; zz++)
|
|
368
|
+
{
|
|
369
|
+
l3[zz+1] = "x("+string(zz)+")";
|
|
370
|
+
}
|
|
371
|
+
ring r1 = create_ring(ring_list(r0)[1], l3, "dp", "no_minpoly");
|
|
372
|
+
ideal I,i;
|
|
373
|
+
i = fetch(r0,i);
|
|
374
|
+
attrib(i,"isSB",1);
|
|
375
|
+
I=quotient(select(i,n+1),x(n));
|
|
376
|
+
I=I*maxideal(1);
|
|
377
|
+
ret=1;
|
|
378
|
+
if (size(reduce(I,i,5)) <> 0)
|
|
379
|
+
{
|
|
380
|
+
ret=0;
|
|
381
|
+
}
|
|
382
|
+
return(ret);
|
|
383
|
+
}
|
|
384
|
+
|
|
385
|
+
////////////////////////////////////////////////////////////////////////////////////
|
|
386
|
+
proc nsatiety (ideal i)
|
|
387
|
+
"USAGE: nsatiety (i); i ideal,
|
|
388
|
+
RETURN: an integer, the satiety of i.
|
|
389
|
+
(returns -1 if i is not homogeneous)
|
|
390
|
+
ASSUME: i is a homogeneous ideal of the basering R=K[x(0)..x(n)].
|
|
391
|
+
THEORY: The satiety, or saturation index, of a homogeneous ideal i is the
|
|
392
|
+
least integer s such that, for all d>=s, the degree d part of the
|
|
393
|
+
ideals i and isat=sat(i,maxideal(1)) coincide.
|
|
394
|
+
KEYWORDS: saturation
|
|
395
|
+
"
|
|
396
|
+
{
|
|
397
|
+
//--------------------------- initialisation ---------------------------------
|
|
398
|
+
int e,ii,jj,h,d,time,lastv,nl,ret,zz;
|
|
399
|
+
intmat ran;
|
|
400
|
+
def r0 = basering;
|
|
401
|
+
int n = nvars(r0)-1;
|
|
402
|
+
list l4;
|
|
403
|
+
for (zz = 0; zz<= n; zz++)
|
|
404
|
+
{
|
|
405
|
+
l4[zz+1] = "x("+string(zz)+")";
|
|
406
|
+
}
|
|
407
|
+
ring r1 = create_ring(ring_list(r0)[1], l4, "dp", "no_minpoly");
|
|
408
|
+
ideal i,sbi,I,K,chcoord,m,L;
|
|
409
|
+
poly P;
|
|
410
|
+
map phi;
|
|
411
|
+
i = fetch(r0,i);
|
|
412
|
+
time=rtimer;
|
|
413
|
+
system("--ticks-per-sec",100);
|
|
414
|
+
sbi=std(i);
|
|
415
|
+
//----- Check ideal homogeneous
|
|
416
|
+
if ( homog(sbi) == 0 )
|
|
417
|
+
{
|
|
418
|
+
dbprint(2,"The ideal is not homogeneous, and time for this test is: " + string(rtimer-time) + "/100sec.");
|
|
419
|
+
return ();
|
|
420
|
+
}
|
|
421
|
+
I=simplify(lead(sbi),1);
|
|
422
|
+
attrib(I,"isSB",1);
|
|
423
|
+
K=select(I,n+1);
|
|
424
|
+
if (size(K) == 0)
|
|
425
|
+
{
|
|
426
|
+
dbprint(2,"sat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
427
|
+
return();
|
|
428
|
+
}
|
|
429
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
430
|
+
{
|
|
431
|
+
dbprint(2,"sat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
432
|
+
return();
|
|
433
|
+
}
|
|
434
|
+
while ( nl < 5 )
|
|
435
|
+
{
|
|
436
|
+
nl=nl+1;
|
|
437
|
+
chcoord=select1(maxideal(1),1..n);
|
|
438
|
+
ran=random(100,1,n);
|
|
439
|
+
ran=intmat(ran,1,n+1);
|
|
440
|
+
ran[1,n+1]=1;
|
|
441
|
+
m=select1(maxideal(1),1..(n+1));
|
|
442
|
+
for ( jj = 1; jj<=n+1; jj++ )
|
|
443
|
+
{
|
|
444
|
+
P=P+ran[1,jj]*m[jj];
|
|
445
|
+
}
|
|
446
|
+
chcoord[n+1]=P;
|
|
447
|
+
P=0;
|
|
448
|
+
phi=r1,chcoord;
|
|
449
|
+
L=std(phi(i));
|
|
450
|
+
I=simplify(lead(L),1);
|
|
451
|
+
attrib(I,"isSB",1);
|
|
452
|
+
K=select(I,n+1);
|
|
453
|
+
if (size(K) == 0)
|
|
454
|
+
{
|
|
455
|
+
dbprint(2,"sat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
456
|
+
return();
|
|
457
|
+
}
|
|
458
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
459
|
+
{
|
|
460
|
+
dbprint(2,"sat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
461
|
+
return();
|
|
462
|
+
}
|
|
463
|
+
}
|
|
464
|
+
}
|
|
465
|
+
example
|
|
466
|
+
{ "EXAMPLE:"; echo = 2;
|
|
467
|
+
ring r=0,(t,a,b,c,d),dp;
|
|
468
|
+
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
|
|
469
|
+
nsatiety(i);
|
|
470
|
+
}
|
|
471
|
+
|
|
472
|
+
|
|
473
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
474
|
+
proc modsatiety (ideal i)
|
|
475
|
+
"USAGE: modsatiety(i); i ideal,
|
|
476
|
+
RETURN: an integer, the satiety of i.
|
|
477
|
+
(returns -1 if i is not homogeneous)
|
|
478
|
+
ASSUME: i is a homogeneous ideal of the basering R=K[x(0)..x(n)].
|
|
479
|
+
THEORY: The satiety, or saturation index, of a homogeneous ideal i is the
|
|
480
|
+
least integer s such that, for all d>=s, the degree d part of the
|
|
481
|
+
ideals i and isat=sat(i,maxideal(1)) coincide.
|
|
482
|
+
NOTE: This is a probabilistic procedure, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
|
|
483
|
+
KEYWORDS: saturation
|
|
484
|
+
"
|
|
485
|
+
{
|
|
486
|
+
//--------------------------- initialisation ---------------------------------
|
|
487
|
+
"// WARNING: The characteristic of base field must be zero.
|
|
488
|
+
// The procedure is probabilistic and it computes the
|
|
489
|
+
//initial ideals modulo the prime number 2147483647.";
|
|
490
|
+
int e,ii,jj,h,d,time,lastv,nl,ret,s1,d1,siz,j,si,u,k,p,zz;
|
|
491
|
+
intvec v1;
|
|
492
|
+
intmat ran;
|
|
493
|
+
def r0 = basering;
|
|
494
|
+
int n = nvars(r0)-1;
|
|
495
|
+
list l5;
|
|
496
|
+
for (zz = 0; zz<= n; zz++)
|
|
497
|
+
{
|
|
498
|
+
l5[zz+1] = "x("+string(zz)+")";
|
|
499
|
+
}
|
|
500
|
+
ring r1 = create_ring(ring_list(r0)[1], l5, "dp", "no_minpoly");
|
|
501
|
+
ideal i,sbi,I,K,chcoord,m,L,sbi1,lsbi1,id1;
|
|
502
|
+
vector V1;
|
|
503
|
+
list #,LL,PL,Gb1,VGb1,Gb2,VGb2,Res1,Res2;
|
|
504
|
+
poly P;
|
|
505
|
+
map phi;
|
|
506
|
+
time=rtimer;
|
|
507
|
+
system("--ticks-per-sec",100);
|
|
508
|
+
i = fetch(r0,i);
|
|
509
|
+
//----- Check ideal homogeneous
|
|
510
|
+
if ( homog(i) == 0 )
|
|
511
|
+
{
|
|
512
|
+
"// WARNING: The ideal is not homogeneous.";
|
|
513
|
+
dbprint(2,"Time for this test is: " + string(rtimer-time) + "/100sec.");
|
|
514
|
+
return ();
|
|
515
|
+
}
|
|
516
|
+
option(redSB);
|
|
517
|
+
p=2147483647;
|
|
518
|
+
list r2=ringlist(r1);
|
|
519
|
+
r2[1]=p;
|
|
520
|
+
def oro=ring(r2);
|
|
521
|
+
setring oro;
|
|
522
|
+
ideal sbi=fetch(r1,i);
|
|
523
|
+
sbi=std(sbi);
|
|
524
|
+
setring r1;
|
|
525
|
+
sbi=fetch(oro,sbi);
|
|
526
|
+
kill oro;
|
|
527
|
+
I=simplify(lead(sbi),1);
|
|
528
|
+
attrib(I,"isSB",1);
|
|
529
|
+
K=select(I,n+1);
|
|
530
|
+
if (size(K) == 0)
|
|
531
|
+
{
|
|
532
|
+
dbprint(2,"msat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
533
|
+
return();
|
|
534
|
+
}
|
|
535
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
536
|
+
{
|
|
537
|
+
dbprint(2,"msat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
538
|
+
return();
|
|
539
|
+
}
|
|
540
|
+
while ( nl < 30 )
|
|
541
|
+
{
|
|
542
|
+
nl=nl+1;
|
|
543
|
+
chcoord=select1(maxideal(1),1..n);
|
|
544
|
+
ran=random(100,1,n);
|
|
545
|
+
ran=intmat(ran,1,n+1);
|
|
546
|
+
ran[1,n+1]=1;
|
|
547
|
+
m=select1(maxideal(1),1..(n+1));
|
|
548
|
+
for ( jj = 1; jj<=n+1; jj++ )
|
|
549
|
+
{
|
|
550
|
+
P=P+ran[1,jj]*m[jj];
|
|
551
|
+
}
|
|
552
|
+
chcoord[n+1]=P;
|
|
553
|
+
P=0;
|
|
554
|
+
phi=r1,chcoord;
|
|
555
|
+
sbi=phi(i);
|
|
556
|
+
list r2=ringlist(r1);
|
|
557
|
+
r2[1]=p;
|
|
558
|
+
def oro=ring(r2);
|
|
559
|
+
setring oro;
|
|
560
|
+
ideal sbi=fetch(r1,sbi);
|
|
561
|
+
sbi=std(sbi);
|
|
562
|
+
setring r1;
|
|
563
|
+
sbi=fetch(oro,sbi);
|
|
564
|
+
kill oro;
|
|
565
|
+
lsbi1=lead(sbi);
|
|
566
|
+
attrib(lsbi1,"isSB",1);
|
|
567
|
+
K=select(lsbi1,n+1);
|
|
568
|
+
if (size(K) == 0)
|
|
569
|
+
{
|
|
570
|
+
dbprint(2,"msat(i)=0 and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
571
|
+
return();
|
|
572
|
+
}
|
|
573
|
+
if (TestLastVarIsInGenericPos(lsbi1) == 1 )
|
|
574
|
+
{
|
|
575
|
+
dbprint(2,"msat(i)=" + string(maxdeg1(K)) + " and the time of this computation: " + string(rtimer-time) + "/100sec.");
|
|
576
|
+
return();
|
|
577
|
+
}
|
|
578
|
+
}
|
|
579
|
+
}
|
|
580
|
+
example
|
|
581
|
+
{ "EXAMPLE:"; echo = 2;
|
|
582
|
+
ring r=0,(t,a,b,c,d),dp;
|
|
583
|
+
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
|
|
584
|
+
modsatiety(i);
|
|
585
|
+
}
|
|
586
|
+
|
|
587
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
588
|
+
//
|
|
589
|
+
proc regCM (ideal i)
|
|
590
|
+
"USAGE: regCM (i); i ideal
|
|
591
|
+
RETURN: the Castelnuovo-Mumford regularity of i.
|
|
592
|
+
(returns -1 if i is not homogeneous)
|
|
593
|
+
ASSUME: i is a homogeneous ideal.
|
|
594
|
+
KEYWORDS: regularity
|
|
595
|
+
"
|
|
596
|
+
{
|
|
597
|
+
//--------------------------- initialisation ---------------------------------
|
|
598
|
+
int e,ii,jj,H,h,d,time,nl,zz;
|
|
599
|
+
def r0 = basering;
|
|
600
|
+
int n = nvars(r0)-1;
|
|
601
|
+
list l6;
|
|
602
|
+
for (zz = 0; zz<= n; zz++)
|
|
603
|
+
{
|
|
604
|
+
l6[zz+1] = "x("+string(zz)+")";
|
|
605
|
+
}
|
|
606
|
+
ring r1 = create_ring(ring_list(r0)[1], l6, "dp", "no_minpoly");
|
|
607
|
+
ideal i,sbi,I,J,K,L;
|
|
608
|
+
list #;
|
|
609
|
+
poly P;
|
|
610
|
+
map phi;
|
|
611
|
+
i = fetch(r0,i);
|
|
612
|
+
time=rtimer;
|
|
613
|
+
system("--ticks-per-sec",100);
|
|
614
|
+
sbi=std(i);
|
|
615
|
+
//----- Check ideal homogeneous
|
|
616
|
+
if ( homog(sbi) == 0 )
|
|
617
|
+
{
|
|
618
|
+
"// The ideal is not homogeneous!";
|
|
619
|
+
return (-1);
|
|
620
|
+
}
|
|
621
|
+
I=simplify(lead(sbi),1);
|
|
622
|
+
attrib(I,"isSB",1);
|
|
623
|
+
d=dim(I);
|
|
624
|
+
if (char(r1) > 0 and d == 0)
|
|
625
|
+
{
|
|
626
|
+
def r2=changechar(0,r1);
|
|
627
|
+
setring r2;
|
|
628
|
+
ideal sbi,I,i,K,T;
|
|
629
|
+
map phi;
|
|
630
|
+
I = fetch(r1,I);
|
|
631
|
+
i=I;
|
|
632
|
+
attrib(I,"isSB",1);
|
|
633
|
+
}
|
|
634
|
+
else
|
|
635
|
+
{
|
|
636
|
+
def r2=changechar(ring_list(r1)[1],r1);
|
|
637
|
+
setring r2;
|
|
638
|
+
ideal sbi,I,i,K,T,ic,Ic;
|
|
639
|
+
map phi;
|
|
640
|
+
I = imap(r1,I);
|
|
641
|
+
Ic=I;
|
|
642
|
+
attrib(I,"isSB",1);
|
|
643
|
+
i = imap(r1,i);
|
|
644
|
+
ic=i;
|
|
645
|
+
}
|
|
646
|
+
K=select(I,n+1);
|
|
647
|
+
if (size(K) == 0)
|
|
648
|
+
{
|
|
649
|
+
h=0;
|
|
650
|
+
}
|
|
651
|
+
else
|
|
652
|
+
{
|
|
653
|
+
if (TestLastVarIsInGenericPos(I) == 1)
|
|
654
|
+
{
|
|
655
|
+
h=maxdeg1(K);
|
|
656
|
+
}
|
|
657
|
+
else
|
|
658
|
+
{
|
|
659
|
+
while ( nl < 30 )
|
|
660
|
+
{
|
|
661
|
+
nl=nl+1;
|
|
662
|
+
phi=r2,randomLast(100);
|
|
663
|
+
T=phi(i);
|
|
664
|
+
I=simplify(lead(std(T)),1);
|
|
665
|
+
attrib(I,"isSB",1);
|
|
666
|
+
K=select(I,n+1);
|
|
667
|
+
if (size(K) == 0)
|
|
668
|
+
{
|
|
669
|
+
h=0;break;
|
|
670
|
+
}
|
|
671
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
672
|
+
{
|
|
673
|
+
h=maxdeg1(K);break;
|
|
674
|
+
}
|
|
675
|
+
}
|
|
676
|
+
i=T;
|
|
677
|
+
}
|
|
678
|
+
}
|
|
679
|
+
list l7;
|
|
680
|
+
for ( ii = n; ii>=n-d+1; ii-- )
|
|
681
|
+
{
|
|
682
|
+
l7=list();
|
|
683
|
+
i=subst(i,x(ii),0);
|
|
684
|
+
for (zz = 0; zz<= ii-1; zz++)
|
|
685
|
+
{
|
|
686
|
+
l7[zz+1] = "x("+string(zz)+")";
|
|
687
|
+
}
|
|
688
|
+
ring mr = create_ring(ring_list(r1)[1], l7, "dp", "no_minpoly");
|
|
689
|
+
ideal i,sbi,I,J,K,L,T;
|
|
690
|
+
poly P;
|
|
691
|
+
map phi;
|
|
692
|
+
i=imap(r2,i);
|
|
693
|
+
I=simplify(lead(std(i)),1);
|
|
694
|
+
attrib(I,"isSB",1);
|
|
695
|
+
K=select(I,ii);
|
|
696
|
+
if (size(K) == 0)
|
|
697
|
+
{
|
|
698
|
+
H=0;
|
|
699
|
+
}
|
|
700
|
+
else
|
|
701
|
+
{
|
|
702
|
+
if (TestLastVarIsInGenericPos(I) == 1)
|
|
703
|
+
{
|
|
704
|
+
H=maxdeg1(K);
|
|
705
|
+
}
|
|
706
|
+
else
|
|
707
|
+
{
|
|
708
|
+
while ( nl < 30 )
|
|
709
|
+
{
|
|
710
|
+
nl=nl+1;
|
|
711
|
+
phi=mr,randomLast(100);
|
|
712
|
+
T=phi(i);
|
|
713
|
+
I=simplify(lead(std(T)),1);
|
|
714
|
+
attrib(I,"isSB",1);
|
|
715
|
+
K=select(I,ii);
|
|
716
|
+
if (size(K) == 0)
|
|
717
|
+
{
|
|
718
|
+
H=0;break;
|
|
719
|
+
}
|
|
720
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
721
|
+
{
|
|
722
|
+
H=maxdeg1(K);break;
|
|
723
|
+
}
|
|
724
|
+
}
|
|
725
|
+
setring r2;
|
|
726
|
+
i=imap(mr,T);
|
|
727
|
+
kill mr;
|
|
728
|
+
}
|
|
729
|
+
}
|
|
730
|
+
if (H > h)
|
|
731
|
+
{
|
|
732
|
+
h=H;
|
|
733
|
+
}
|
|
734
|
+
}
|
|
735
|
+
if (nl < 30)
|
|
736
|
+
{
|
|
737
|
+
dbprint(2,"reg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + " sec./100");
|
|
738
|
+
return();
|
|
739
|
+
}
|
|
740
|
+
else
|
|
741
|
+
{
|
|
742
|
+
I=Ic;
|
|
743
|
+
attrib(I,"isSB",1);
|
|
744
|
+
i=ic;
|
|
745
|
+
K=subst(select(I,n+1),x(n),1);
|
|
746
|
+
K=K*maxideal(maxdeg1(I));
|
|
747
|
+
if (size(reduce(K,I,5)) <> 0)
|
|
748
|
+
{
|
|
749
|
+
nl=0;
|
|
750
|
+
while ( nl < 30 )
|
|
751
|
+
{
|
|
752
|
+
nl=nl+1;
|
|
753
|
+
phi=r1,randomLast(100);
|
|
754
|
+
sbi=phi(i);
|
|
755
|
+
I=simplify(lead(std(sbi)),1);
|
|
756
|
+
attrib(I,"isSB",1);
|
|
757
|
+
K=subst(select(I,n+1),x(n),1);
|
|
758
|
+
K=K*maxideal(maxdeg1(I));
|
|
759
|
+
if (size(reduce(K,I,5)) == 0)
|
|
760
|
+
{
|
|
761
|
+
break;
|
|
762
|
+
}
|
|
763
|
+
}
|
|
764
|
+
}
|
|
765
|
+
h=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
|
|
766
|
+
list l8;
|
|
767
|
+
for ( ii = n; ii> n-d+1; ii-- )
|
|
768
|
+
{
|
|
769
|
+
l8=list();
|
|
770
|
+
sbi=subst(sbi,x(ii),0);
|
|
771
|
+
for (zz = 0; zz<= ii-1; zz++)
|
|
772
|
+
{
|
|
773
|
+
l8[zz+1] = "x("+string(zz)+")";
|
|
774
|
+
}
|
|
775
|
+
ring mr = create_ring(ring_list(r0)[1], l8, "dp", "no_minpoly");
|
|
776
|
+
ideal sbi,I,L,K,T;
|
|
777
|
+
map phi;
|
|
778
|
+
sbi=imap(r1,sbi);
|
|
779
|
+
I=simplify(lead(std(sbi)),1);
|
|
780
|
+
attrib(I,"isSB",1);
|
|
781
|
+
K=subst(select(I,ii),x(ii-1),1);
|
|
782
|
+
K=K*maxideal(maxdeg1(I));
|
|
783
|
+
if (size(reduce(K,I,5)) <> 0)
|
|
784
|
+
{
|
|
785
|
+
nl=0;
|
|
786
|
+
while ( nl < 30 )
|
|
787
|
+
{
|
|
788
|
+
nl=nl+1;
|
|
789
|
+
L=randomLast(100);
|
|
790
|
+
phi=mr,L;
|
|
791
|
+
T=phi(sbi);
|
|
792
|
+
I=simplify(lead(std(T)),1);
|
|
793
|
+
attrib(I,"isSB",1);
|
|
794
|
+
K=subst(select(I,ii),x(ii-1),1);
|
|
795
|
+
K=K*maxideal(maxdeg1(I));
|
|
796
|
+
if (size(reduce(K,I,5)) == 0)
|
|
797
|
+
{
|
|
798
|
+
sbi=T;
|
|
799
|
+
break;
|
|
800
|
+
}
|
|
801
|
+
}
|
|
802
|
+
}
|
|
803
|
+
H=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
|
|
804
|
+
if (H > h)
|
|
805
|
+
{
|
|
806
|
+
h=H;
|
|
807
|
+
}
|
|
808
|
+
setring r1;
|
|
809
|
+
sbi=fetch(mr,sbi);
|
|
810
|
+
kill mr;
|
|
811
|
+
}
|
|
812
|
+
sbi=subst(sbi,x(n-d+1),0);
|
|
813
|
+
list l9;
|
|
814
|
+
for (zz = 0; zz<= n-d; zz++)
|
|
815
|
+
{
|
|
816
|
+
l9[zz+1] = "x("+string(zz)+")";
|
|
817
|
+
}
|
|
818
|
+
ring mr = create_ring(ring_list(r0)[1], l9, "dp", "no_minpoly");
|
|
819
|
+
ideal sbi,I,L,K,T;
|
|
820
|
+
map phi;
|
|
821
|
+
sbi=imap(r1,sbi);
|
|
822
|
+
I=simplify(lead(std(sbi)),1);
|
|
823
|
+
attrib(I,"isSB",1);
|
|
824
|
+
H=maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;
|
|
825
|
+
if (H > h)
|
|
826
|
+
{
|
|
827
|
+
h=H;
|
|
828
|
+
}
|
|
829
|
+
dbprint(2,"reg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + " sec./100");
|
|
830
|
+
return();
|
|
831
|
+
}
|
|
832
|
+
}
|
|
833
|
+
example
|
|
834
|
+
{ "EXAMPLE:"; echo = 2;
|
|
835
|
+
ring r=0,(t,a,b,c,d),dp;
|
|
836
|
+
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
|
|
837
|
+
regCM(i);
|
|
838
|
+
}
|
|
839
|
+
|
|
840
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
841
|
+
//
|
|
842
|
+
proc modregCM(ideal i)
|
|
843
|
+
"USAGE: modregCM(i); i ideal
|
|
844
|
+
RETURN: an integer, the Castelnuovo-Mumford regularity of i.
|
|
845
|
+
(returns -1 if i is not homogeneous)
|
|
846
|
+
ASSUME: i is a homogeneous ideal and the characteristic of base field is zero..
|
|
847
|
+
NOTE: This is a probabilistic procedure, and it computes the initial of the ideal modulo the prime number 2147483647 (the biggest prime less than 2^31).
|
|
848
|
+
KEYWORDS: regularity
|
|
849
|
+
"
|
|
850
|
+
{
|
|
851
|
+
//--------------------------- initialisation ---------------------------------
|
|
852
|
+
"// WARNING: The characteristic of base field must be zero.
|
|
853
|
+
// This procedure is probabilistic and it computes the initial
|
|
854
|
+
//ideals modulo the prime number 2147483647";
|
|
855
|
+
int e,ii,jj,H,h,d,time,p,nl;
|
|
856
|
+
def r0 = basering;
|
|
857
|
+
int n = nvars(r0)-1;
|
|
858
|
+
list l12;
|
|
859
|
+
for (int zz = 0; zz <= n; zz++)
|
|
860
|
+
{
|
|
861
|
+
l12[zz+1] = "x("+string(zz)+")";
|
|
862
|
+
}
|
|
863
|
+
ring r1 = create_ring(ring_list(r0)[1], l12, "dp", "no_minpoly");
|
|
864
|
+
ideal i,sbi,I,J,K,L,lsbi1,lsbi2;
|
|
865
|
+
list #;
|
|
866
|
+
poly P;
|
|
867
|
+
map phi;
|
|
868
|
+
i = fetch(r0,i);
|
|
869
|
+
time=rtimer;
|
|
870
|
+
system("--ticks-per-sec",100);
|
|
871
|
+
//----- Check ideal homogeneous
|
|
872
|
+
if ( homog(i) == 0 )
|
|
873
|
+
{
|
|
874
|
+
"// The ideal is not homogeneous!";
|
|
875
|
+
return (-1);
|
|
876
|
+
}
|
|
877
|
+
option(redSB);
|
|
878
|
+
p=2147483647;
|
|
879
|
+
#=ringlist(r1);
|
|
880
|
+
#[1]=p;
|
|
881
|
+
def oro=ring(#);
|
|
882
|
+
setring oro;
|
|
883
|
+
ideal sbi,lsbi;
|
|
884
|
+
sbi=fetch(r1,i);
|
|
885
|
+
lsbi=lead(std(sbi));
|
|
886
|
+
setring r1;
|
|
887
|
+
lsbi1=fetch(oro,lsbi);
|
|
888
|
+
lsbi1=simplify(lsbi1,1);
|
|
889
|
+
attrib(lsbi1,"isSB",1);
|
|
890
|
+
kill oro;
|
|
891
|
+
I=lsbi1;
|
|
892
|
+
d=dim(I);
|
|
893
|
+
K=select(I,n+1);
|
|
894
|
+
if (size(K) == 0)
|
|
895
|
+
{
|
|
896
|
+
h=0;
|
|
897
|
+
}
|
|
898
|
+
else
|
|
899
|
+
{
|
|
900
|
+
if (TestLastVarIsInGenericPos(I) == 1)
|
|
901
|
+
{
|
|
902
|
+
h=maxdeg1(K);
|
|
903
|
+
}
|
|
904
|
+
else
|
|
905
|
+
{
|
|
906
|
+
while ( nl < 30 )
|
|
907
|
+
{
|
|
908
|
+
nl=nl+1;
|
|
909
|
+
phi=r1,randomLast(100);
|
|
910
|
+
sbi=phi(i);
|
|
911
|
+
#=ringlist(r1);
|
|
912
|
+
#[1]=p;
|
|
913
|
+
def oro=ring(#);
|
|
914
|
+
setring oro;
|
|
915
|
+
ideal sbi,lsbi;
|
|
916
|
+
sbi=fetch(r1,sbi);
|
|
917
|
+
lsbi=lead(std(sbi));
|
|
918
|
+
setring r1;
|
|
919
|
+
lsbi1=fetch(oro,lsbi);
|
|
920
|
+
lsbi1=simplify(lsbi1,1);
|
|
921
|
+
attrib(lsbi1,"isSB",1);
|
|
922
|
+
kill oro;
|
|
923
|
+
I=lsbi1;
|
|
924
|
+
K=select(I,n+1);
|
|
925
|
+
if (size(K) == 0)
|
|
926
|
+
{
|
|
927
|
+
h=0;break;
|
|
928
|
+
}
|
|
929
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
930
|
+
{
|
|
931
|
+
h=maxdeg1(K);break;
|
|
932
|
+
}
|
|
933
|
+
}
|
|
934
|
+
i=sbi;
|
|
935
|
+
}
|
|
936
|
+
}
|
|
937
|
+
list l11;int zz;
|
|
938
|
+
for ( ii = n; ii>=n-d+1; ii-- )
|
|
939
|
+
{
|
|
940
|
+
l11=list();
|
|
941
|
+
i=subst(i,x(ii),0);
|
|
942
|
+
for (zz = 0; zz <= ii-1; zz++)
|
|
943
|
+
{
|
|
944
|
+
l11[zz+1] = "x("+string(zz)+")";
|
|
945
|
+
}
|
|
946
|
+
ring mr = create_ring(0, l11, "dp");
|
|
947
|
+
ideal i,sbi,I,J,K,L,lsbi1;
|
|
948
|
+
poly P;
|
|
949
|
+
list #;
|
|
950
|
+
map phi;
|
|
951
|
+
i=imap(r1,i);
|
|
952
|
+
#=ringlist(mr);
|
|
953
|
+
#[1]=p;
|
|
954
|
+
def oro=ring(#);
|
|
955
|
+
setring oro;
|
|
956
|
+
ideal sbi,lsbi;
|
|
957
|
+
sbi=fetch(mr,i);
|
|
958
|
+
lsbi=lead(std(sbi));
|
|
959
|
+
setring mr;
|
|
960
|
+
lsbi1=fetch(oro,lsbi);
|
|
961
|
+
lsbi1=simplify(lsbi1,1);
|
|
962
|
+
attrib(lsbi1,"isSB",1);
|
|
963
|
+
kill oro;
|
|
964
|
+
I=lsbi1;
|
|
965
|
+
K=select(I,ii);
|
|
966
|
+
if (size(K) == 0)
|
|
967
|
+
{
|
|
968
|
+
H=0;
|
|
969
|
+
}
|
|
970
|
+
else
|
|
971
|
+
{
|
|
972
|
+
if (TestLastVarIsInGenericPos(I) == 1)
|
|
973
|
+
{
|
|
974
|
+
H=maxdeg1(K);
|
|
975
|
+
}
|
|
976
|
+
else
|
|
977
|
+
{
|
|
978
|
+
nl=0;
|
|
979
|
+
while ( nl < 30 )
|
|
980
|
+
{
|
|
981
|
+
nl=nl+1;
|
|
982
|
+
phi=mr,randomLast(100);
|
|
983
|
+
sbi=phi(i);
|
|
984
|
+
#=ringlist(mr);
|
|
985
|
+
#[1]=p;
|
|
986
|
+
def oro=ring(#);
|
|
987
|
+
setring oro;
|
|
988
|
+
ideal sbi,lsbi;
|
|
989
|
+
sbi=fetch(mr,sbi);
|
|
990
|
+
lsbi=lead(std(sbi));
|
|
991
|
+
setring mr;
|
|
992
|
+
lsbi1=fetch(oro,lsbi);
|
|
993
|
+
lsbi1=simplify(lsbi1,1);
|
|
994
|
+
kill oro;
|
|
995
|
+
I=lsbi1;
|
|
996
|
+
attrib(I,"isSB",1);
|
|
997
|
+
K=select(I,ii);
|
|
998
|
+
if (size(K) == 0)
|
|
999
|
+
{
|
|
1000
|
+
H=0;break;
|
|
1001
|
+
}
|
|
1002
|
+
if (TestLastVarIsInGenericPos(I) == 1 )
|
|
1003
|
+
{
|
|
1004
|
+
H=maxdeg1(K);break;
|
|
1005
|
+
}
|
|
1006
|
+
}
|
|
1007
|
+
setring r1;
|
|
1008
|
+
i=imap(mr,sbi);
|
|
1009
|
+
kill mr;
|
|
1010
|
+
}
|
|
1011
|
+
}
|
|
1012
|
+
if (H > h)
|
|
1013
|
+
{
|
|
1014
|
+
h=H;
|
|
1015
|
+
}
|
|
1016
|
+
}
|
|
1017
|
+
dbprint(2,"mreg(i)=" + string(h) + " and the time of this computation: " + string(rtimer-time) + "sec./100");
|
|
1018
|
+
return();
|
|
1019
|
+
}
|
|
1020
|
+
example
|
|
1021
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1022
|
+
ring r=0,(t,a,b,c,d),dp;
|
|
1023
|
+
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
|
|
1024
|
+
modregCM(i);
|
|
1025
|
+
}
|
|
1026
|
+
/*
|
|
1027
|
+
//////////////////////////////////////////////////////////////
|
|
1028
|
+
example
|
|
1029
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1030
|
+
ring r=0,(X,Y,a,b),dp;
|
|
1031
|
+
poly f=X^8+a*Y^4-Y;
|
|
1032
|
+
poly g=Y^8+b*X^4-X;
|
|
1033
|
+
poly h=diff(f,X)*diff(g,Y)-diff(f,Y)*diff(g,X);
|
|
1034
|
+
ideal i=f,g,h;
|
|
1035
|
+
}
|
|
1036
|
+
example
|
|
1037
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1038
|
+
ring r=0,(x,y,z,a,b),dp;
|
|
1039
|
+
ideal i=2*y^2*(y^2+x^2)+(b^2-3*a^2)*y^2-2*b*y^2*(x+y)+2*a^2*b*(y+x)-a^2*x^2+a^2*(a^2-b^2),4*y^3+4*y*(y^2+x^2)-2*b*y^2-4*b*y*(y+x)+2*(b^2-3*a^2)*y+2*a^2*b,4*x*y^2-2*b*y^2-2*a^2*x+2*a^2*b;
|
|
1040
|
+
}
|
|
1041
|
+
example
|
|
1042
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1043
|
+
ring r=0,(t,a,b,c,d),dp;
|
|
1044
|
+
ideal i=b4-a3d, ab3-a3c, bc4-ac3d-bcd3+ad4, c6-bc3d2-c3d3+bd5, ac5-b2c3d-ac2d3+b2d4, a2c4-a3d3+b3d3-a2cd3, b3c3-a3d3, ab2c3-a3cd2+b3cd2-ab2d3, a2bc3-a3c2d+b3c2d-a2bd3, a3c3-a3bd2, a4c2-a3b2d;
|
|
1045
|
+
}
|
|
1046
|
+
example
|
|
1047
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1048
|
+
ring r=0,(a,b,c,d,e),dp;
|
|
1049
|
+
ideal i=6*b4*c3+21*b4*c2*d+15b4cd2+9b4d3-8b2c2e-28b2cde+36b2d2e-144b2c-648b2d-120, 9b4c4+30b4c3d+39b4c2d2+18b4cd3-24b2c3e-16b2c2de+16b2cd2e+24b2d3e-432b2c2-720b2cd-432b2d2+16c2e2-32cde2+16d2e2+576ce-576de-240c+5184,-15b2c3e+15b2c2de-81b2c2+216b2cd-162b2d2+40c2e2-80cde2+40d2e2+1008ce-1008de+5184, -4b2c2+4b2cd-3b2d2+22ce-22de+261;
|
|
1050
|
+
}
|
|
1051
|
+
example
|
|
1052
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1053
|
+
ring r=0,(c,b,d,p,q),dp;
|
|
1054
|
+
ideal i=2*(b-1)^2+2*(q-p*q+p^2)+c^2*(q-1)^2-2*b*q+2*c*d*(1-q)*(q-p)+2*b*p*q*d*(d-c)+b^2*d^2*(1-2*p)+2*b*d^2*(p-q)+2*b*d*c*(p-1)+2*b*p*q*(c+1)+(b^2-2*b)*p^2*d^2+2*b^2*p^2+4*b*(1-b)*p+d^2*(p-q)^2,d*(2*p+1)*(q-p)+c*(p+2)*(1-q)+b*(b-2)*d+b*(1-2*b)*p*d+b*c*(q+p-p*q-1)+b*(b+1)*p^2*d, -b^2*(p-1)^2+2*p*(p-q)-2*(q-1),b^2+4*(p-q*q)+3*c^2*(q-1)*(q-1)-3*d^2*(p-q)^2+3*b^2*d^2*(p-1)^2+b^2*p*(p-2)+6*b*d*c*(p+q+q*p-1);
|
|
1055
|
+
}
|
|
1056
|
+
example
|
|
1057
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1058
|
+
ring r=0,(a,b,c,d,e,f),dp;
|
|
1059
|
+
ideal i=2adef+3be2f-cef2,4ad2f+5bdef+cdf2,2abdf+3b2ef-bcf2,4a2df+5abef+acf2,4ad2e+3bde2+7cdef, 2acde+3bce2-c2ef, 4abde+3b2e2-4acdf+2bcef-c2f2, 4a2de+3abe2+7acef, 4acd2+5bcde+c2df, 4abd2+3b2de+7bcdf, 16a2d2-9b2e2+32acdf-18bcef+7c2f2, 2abcd+3b2ce-bc2f, 4a2cd+5abce+ac2f, 4a2bd+3ab2e+7abcf, abc2f-cdef2, ab2cf-bdef2, 2a2bcf+3be2f2-cef3, ab3f-3bdf3, 2a2b2f-4adf3+3bef3-cf4, a3bf+4aef3, 3ac3e-cde3, 3b2c2e-bc3f+2cd2ef, abc2e-cde2f, 6a2c2e-4ade3-3be4+ce3f, 3b3ce-b2c2f+2bd2ef, 2a2bce+3be3f-ce2f2, 3a3ce+4ae3f, 4bc3d+cd3e, 4ac3d-3bc3e-2cd2e2+c4f, 8b2c2d-4ad4-3bd3e-cd3f, 4b3cd+3bd3f, 4ab3d+3b4e-b3cf-6bd2f2, 4a4d+3a3be+a3cf-8ae2f2;
|
|
1060
|
+
}
|
|
1061
|
+
example
|
|
1062
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1063
|
+
ring r=0,(x,y,z,t,u,v,w),dp;
|
|
1064
|
+
ideal i=2tw+2wy-wz,2uw2-10vw2+20w3-7tu+35tv-70tw, 6tw2+2w2y-2w2z-21t2-7ty+7tz, 2v3-4uvw-5v2w+6uw2+7vw2-15w3-42vy, 6tw+9wy+2vz-3wz-21x, 9uw3-45vw3+135w4+14tv2-70tuw+196tvw-602tw2-14v2z+28uwz+14vwz-28w2z+147ux-735vx+2205wx-294ty+98tz+294yz-98z2, 36tw3+6w3y-9w3z-168t2w-14v2x+28uwx+14vwx-28w2x-28twy+42twz+588tx+392xy-245xz, 2uvw-6v2w-uw2+13vw2-5w3-28tw+14wy, u2w-3uvw+5uw2-28tw+14wy, tuw+tvw-11tw2-2vwy+8w2y+uwz-3vwz+5w2z-21wx, 5tuw-17tvw+33tw2-7uwy+22vwy-39w2y-2uwz+6vwz-10w2z+63wx, 20t2w-12uwx+30vwx-15w2x-10twy-8twz+4wyz, 4t2w-6uwx+12vwx-6w2x+2twy-2wy2-2twz+wyz, 8twx+8wxy-4wxz;
|
|
1065
|
+
}
|
|
1066
|
+
example
|
|
1067
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1068
|
+
ring r=0,(a,b,c,d,x,w,u,v),dp;
|
|
1069
|
+
ideal i=a+b+c+d,u+v+w+x, 3ab+3ac+3bc+3ad+3bd+3cd+2,bu+cu+du+av+cv+dv+aw+bw+dw+ax+bx+cx,bcu+bdu+cdu+acv+adv+cdv+abw+adw+bdw+abx+acx+bcx,abc+abd+acd+bcd,bcdu+acdv+abdw+abcx;
|
|
1070
|
+
}
|
|
1071
|
+
example
|
|
1072
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1073
|
+
ring r=0,(b,x,y,z,s,t,u,v,w),dp;
|
|
1074
|
+
ideal i=su+bv, tu+bw,tv+sw,sx+by,tx+bz,ty+sz,vx+uy,wx+uz,wy+vz;
|
|
1075
|
+
}
|
|
1076
|
+
example
|
|
1077
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1078
|
+
ring r=0,(t,a,b,c,d,e,f,g,h),dp;
|
|
1079
|
+
ideal i=a+c+d-e-h,2df+2cg+2eh-2h2-h-1,3df2+3cg2-3eh2+3h3+3h2-e+4h, 6bdg-6eh2+6h3-3eh+6h2-e+4h, 4df3+4cg3+4eh3-4h4-6h3+4eh-10h2-h-1, 8bdfg+8eh3-8h4+4eh2-12h3+4eh-14h2-3h-1, 12bdg2+12eh3-12h4+12eh2-18h3+8eh-14h2-h-1, -24eh3+24h4-24eh2+36h3-8eh+26h2+7h+1;
|
|
1080
|
+
}
|
|
1081
|
+
example
|
|
1082
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1083
|
+
ring r=0,(a,b,c,d,e,f,g,h,k,l),dp;
|
|
1084
|
+
ideal i=f2h-1,ek2-1,g2l-1, 2ef2g2hk2+f2g2h2k2+2ef2g2k2l+2f2g2hk2l+f2g2k2l2+ck2, 2e2fg2hk2+2efg2h2k2+2e2fg2k2l+4efg2hk2l+2fg2h2k2l+2efg2k2l2+2fg2hk2l2+2bfh, 2e2f2ghk2+2ef2gh2k2+2e2f2gk2l+4ef2ghk2l+2f2gh2k2l+2ef2gk2l2+2f2ghk2l2+2dgl, e2f2g2k2+2ef2g2hk2+2ef2g2k2l+2f2g2hk2l+f2g2k2l2+bf2, 2e2f2g2hk+2ef2g2h2k+2e2f2g2kl+4ef2g2hkl+2f2g2h2kl+2ef2g2kl2+2f2g2hkl2+2cek, e2f2g2k2+2ef2g2hk2+f2g2h2k2+2ef2g2k2l+2f2g2hk2l+dg2, -e2f2g2hk2-ef2g2h2k2-e2f2g2k2l-2ef2g2hk2l-f2g2h2k2l-ef2g2k2l2-f2g2hk2l2+a2;
|
|
1085
|
+
}
|
|
1086
|
+
example
|
|
1087
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1088
|
+
ring r=0,(b,c,d,e,f,g,h,j,k,l),dp;
|
|
1089
|
+
ideal i=-k9+9k8l-36k7l2+84k6l3-126k5l4+126k4l5-84k3l6+36k2l7-9kl8+l9, -bk8+8bk7l+k8l-28bk6l2-8k7l2+56bk5l3+28k6l3-70bk4l4-56k5l4+56bk3l5+70k4l5-28bk2l6-56k3l6+8bkl7+28k2l7-bl8-8kl8+l9, ck7-7ck6l-k7l+21ck5l2+7k6l2-35ck4l3-21k5l3+35ck3l4+35k4l4-21ck2l5-35k3l5+7ckl6+21k2l6-cl7-7kl7+l8, -dk6+6dk5l+k6l-15dk4l2-6k5l2+20dk3l3+15k4l3-15dk2l4-20k3l4+6dkl5+15k2l5-dl6-6kl6+l7, ek5-5ek4l-k5l+10ek3l2+5k4l2-10ek2l3-10k3l3+5ekl4+10k2l4-el5-5kl5+l6, -fk4+4fk3l+k4l-6fk2l2-4k3l2+4fkl3+6k2l3-fl4-4kl4+l5, gk3-3gk2l-k3l+3gkl2+3k2l2-gl3-3kl3+l4, -hk2+2hkl+k2l-hl2-2kl2+l3, jk-jl-kl+l2;
|
|
1090
|
+
}
|
|
1091
|
+
example
|
|
1092
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1093
|
+
ring r=0,x(0..10),dp;
|
|
1094
|
+
ideal i=x(1)*x(0),x(1)*x(2),x(2)*x(3),x(3)*x(4),x(4)*x(5),x(5)*x(6),x(6)*x(7),x(7)*x(8),x(8)*x(9),x(9)*x(10),x(10)*x(0);
|
|
1095
|
+
}
|
|
1096
|
+
example
|
|
1097
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1098
|
+
ring r=0,(a,b,c,d,e,f,g,h,j,k,l,m,n,o,p,q,s),dp;
|
|
1099
|
+
ideal i=ag,gj+am+np+q,bl,nq,bg+bk+al+lo+lp+b+c,ag+ak+jl+bm+bn+go+ko+gp+kp+lq+a+d+f+h+o+p,gj+jk+am+an+mo+no+mp+np+gq+kq+e+j+q+s-1,jm+jn+mq+nq,jn+mq+2nq,gj+am+2an+no+np+2gq+kq+q+s,2ag+ak+bn+go+gp+lq+a+d,bg+al, an+gq, 2jm+jn+mq, gj+jk+am+mo+2mp+np+e+2j+q, jl+bm+gp+kp+a+f+o+2p,lp+b,jn+mq,gp+a;
|
|
1100
|
+
}
|
|
1101
|
+
example
|
|
1102
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1103
|
+
ring r=0,(a,b,c,d,e,f,g,h,v,w,k,l,m,n,o,p,q,s,t,u),dp;
|
|
1104
|
+
ideal i=af+bg+ch+dv+ew-1/2, a2f+b2g+c2h+d2v+e2w-1/3,tdw+agk+ahl+bhm+avn+bvo+cvp+awq+bwu+cws-1/6, a3f+b3g+c3h+d3v+e3w-1/4, tdew+abgk+achl+bchm+advn+bdvo+cdvp+aewq+bewu+cews-1/8, td2w+a2gk+a2hl+b2hm+a2vn+b2vo+c2vp+a2wq+b2wu+c2ws-1/12, ahkm+tawn+tbwo+avko+tcwp+avlp+bvmp+awku+awls+bwms-1/24, a4f+b4g+c4h+d4v+e4w-1/5, tde2w+ab2gk+ac2hl+bc2hm+ad2vn+bd2vo+cd2vp+ae2wq+be2wu+ce2ws-1/10, td2ew+a2bgk+a2chl+b2chm+a2dvn+b2dvo+c2dvp+a2ewq+b2ewu+c2ews-1/15,achkm+taewn+tbewo+advko+tcewp+advlp+bdvmp+aewku+aewls+bewms-1/30,t2d2w+a2gk2+a2hl2+2abhlm+b2hm2+a2vn2+2abvno+b2vo2+2acvnp+2bcvop+c2vp2+2tadwq+a2wq2+2tbdwu+2abwqu+b2wu2+2tcdws+2acwqs+2bcwus+c2ws2-1/20,td3w+a3gk+a3hl+b3hm+a3vn+b3vo+c3vp+a3wq+b3wu+c3ws-1/20,abhkm+tadwn+tbdwo+abvko+tcdwp+acvlp+bcvmp+abwku+acwls+bcwms-1/40,a2hkm+ta2wn+tb2wo+a2vko+tc2wp+a2vlp+b2vmp+a2wku+a2wls+b2wms-1/60,tawko+tawlp+tbwmp+avkmp+awkms-1/20;
|
|
1105
|
+
}
|
|
1106
|
+
*/
|