passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1133 @@
|
|
|
1
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version=="version classifyci.lib 4.1.2.0 Feb_2019 "; // $Id: c4f1cbad60ad7c5d1a7ca7bf3d94f89efd855d06 $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
|
|
5
|
+
info="
|
|
6
|
+
LIBRARY: classifyci.lib Isolated complete intersection singularities in characteristic 0
|
|
7
|
+
AUTHORS: Gerhard Pfister pfister@mathematik.uni-kl.de
|
|
8
|
+
Deeba Afzal deebafzal@gmail.com
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
OVERVIEW:
|
|
12
|
+
A library for classifying isolated complete intersection singularities for the base field of characteristic 0
|
|
13
|
+
and for computing weierstrass semigroup of the space curve.Isolated complete intersection singularities were
|
|
14
|
+
classified by M.Giusti [1] for the base field of characteristic 0. Algorithm for the semigroup of a space
|
|
15
|
+
curve singularity is given in [2].
|
|
16
|
+
|
|
17
|
+
REFERENCES:
|
|
18
|
+
[1] Giusti,M:Classification des singularities isolees simples d'intersections completes,
|
|
19
|
+
C,R.Acad.Sci.Paris Ser.A-B 284(1977),167-169.
|
|
20
|
+
[2] Castellanos,A.,Castellanos,J.,2005:Algorithm for the semigroup of a space curve singularity.
|
|
21
|
+
Semigroup Forum 70,44-66.
|
|
22
|
+
PROCEDURES:
|
|
23
|
+
classifyicis(I); Isolated simple complete intersection singularities for the base field of characteristic 0
|
|
24
|
+
Semigroup(I); Weierstrass semigroup of the space curve given by equations
|
|
25
|
+
";
|
|
26
|
+
LIB "classify.lib";
|
|
27
|
+
LIB "classify_aeq.lib";
|
|
28
|
+
LIB "polylib.lib";
|
|
29
|
+
LIB "curvepar.lib";
|
|
30
|
+
LIB "algebra.lib";
|
|
31
|
+
|
|
32
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
33
|
+
proc classifyicis(ideal I)
|
|
34
|
+
"USAGE: classifyicis(I); I ideal
|
|
35
|
+
ASSUME: I is given by two generators
|
|
36
|
+
PURPOSE:Check whether the ideal defines a complete intersection singularity or not
|
|
37
|
+
RETURN: String type in the classification of Giusti,M
|
|
38
|
+
@* or The given singularity is not simple
|
|
39
|
+
EXAMPLE: example classifyicis; shows an example
|
|
40
|
+
"
|
|
41
|
+
{
|
|
42
|
+
def R=basering;
|
|
43
|
+
def SS=changeord(list(list("ds",nvars(R))),R);
|
|
44
|
+
setring SS;
|
|
45
|
+
ideal I=imap(R,I);
|
|
46
|
+
string re;
|
|
47
|
+
if(char(basering)==0)
|
|
48
|
+
{
|
|
49
|
+
re=ICIS12(I);
|
|
50
|
+
}
|
|
51
|
+
if(char(basering)!=0)
|
|
52
|
+
{
|
|
53
|
+
re="The characteristic of basering should be 0";
|
|
54
|
+
}
|
|
55
|
+
setring R;
|
|
56
|
+
return(re);
|
|
57
|
+
}
|
|
58
|
+
example
|
|
59
|
+
{
|
|
60
|
+
"EXAMPLE:"; echo=2;
|
|
61
|
+
ring R=0,(x,y,z),ds;
|
|
62
|
+
ideal I=x2+yz,xy+z4;
|
|
63
|
+
classifyicis(I);
|
|
64
|
+
}
|
|
65
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
66
|
+
static proc ICIS12(ideal I)
|
|
67
|
+
{
|
|
68
|
+
int n=nvars(basering);
|
|
69
|
+
if(n==2)
|
|
70
|
+
{
|
|
71
|
+
return(zerodim_ICIS(I));
|
|
72
|
+
}
|
|
73
|
+
if(n==3)
|
|
74
|
+
{
|
|
75
|
+
return(onedim_ICIS(I));
|
|
76
|
+
}
|
|
77
|
+
if(n>=4)
|
|
78
|
+
{
|
|
79
|
+
return("The given singularity is not simple");
|
|
80
|
+
}
|
|
81
|
+
}
|
|
82
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
83
|
+
static proc zerodim_ICIS(ideal I)
|
|
84
|
+
"USAGE: zerodim_ICIS(l); I is an ideal
|
|
85
|
+
ASSUME: I is given by two generators
|
|
86
|
+
PURPOSE: Check whether the ideal defines a complete intersection singularity of dimension zero or not
|
|
87
|
+
RETURN: String type in the classification of Giusti,M, of the 0-dimensional complete inetersection
|
|
88
|
+
@* or The given singularity is not simple
|
|
89
|
+
EXAMPLE: example zerodim_ICIS; shows an example
|
|
90
|
+
"
|
|
91
|
+
{
|
|
92
|
+
def R=basering;
|
|
93
|
+
poly g,h,r;
|
|
94
|
+
ideal J;
|
|
95
|
+
int a,b,c,d;
|
|
96
|
+
map phi;
|
|
97
|
+
list L;
|
|
98
|
+
string re;
|
|
99
|
+
// g=g[0]+g[1] where ord(g[1])>=3 ,g[0] can be zero
|
|
100
|
+
// h=h[0]+h[1] where ord(h[1])>=3 ,h[0] can be zero
|
|
101
|
+
d=vdim(std(I));
|
|
102
|
+
if(d==-1)
|
|
103
|
+
{
|
|
104
|
+
return("The given singularity is not simple");
|
|
105
|
+
}
|
|
106
|
+
a=ord(I[1]);
|
|
107
|
+
b=ord(I[2]);
|
|
108
|
+
if((a>=3)&&(b>=3))
|
|
109
|
+
{ //start case1
|
|
110
|
+
return("The given singularity is not simple");
|
|
111
|
+
} // end case 1
|
|
112
|
+
if((a==2&&b>=3)||(a>=3&&b==2)) // start case 2
|
|
113
|
+
{
|
|
114
|
+
if(a==2)
|
|
115
|
+
{
|
|
116
|
+
g=I[1];
|
|
117
|
+
h=I[2];
|
|
118
|
+
}
|
|
119
|
+
if(b==2)
|
|
120
|
+
{
|
|
121
|
+
g=I[2];
|
|
122
|
+
h=I[1];
|
|
123
|
+
}
|
|
124
|
+
L=factorize(jet(g,2));
|
|
125
|
+
if(size(L[1])==3)
|
|
126
|
+
{
|
|
127
|
+
re=findwhichF(g,h,L);
|
|
128
|
+
return(re);
|
|
129
|
+
} // end size(L[1]=3)
|
|
130
|
+
if((size(L[1])==2)&&(L[2][2]==2))
|
|
131
|
+
{ // start (size(L[1])==2)&&(L[2][2]==2)
|
|
132
|
+
// case (x2,h);
|
|
133
|
+
r=L[1][2];
|
|
134
|
+
if(size(r)==2) // ax+by goes to x
|
|
135
|
+
{
|
|
136
|
+
matrix M3=coef(r,var(1));
|
|
137
|
+
M3=subst(M3,var(2),1);
|
|
138
|
+
matrix A[2][2]=M3[2,1],M3[2,2],0,1;
|
|
139
|
+
matrix B=inverse(A);
|
|
140
|
+
phi=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
|
|
141
|
+
g=phi(g);
|
|
142
|
+
h=phi(h);
|
|
143
|
+
J=(g,h);
|
|
144
|
+
} // end size(r)=2
|
|
145
|
+
if(size(r)==1) // jet(g,2)=ax2 or by2 goes to x2
|
|
146
|
+
{
|
|
147
|
+
if(leadmonom(r)==var(1))
|
|
148
|
+
{
|
|
149
|
+
phi=R,var(1)/leadcoef(r),var(2);
|
|
150
|
+
g=phi(g);
|
|
151
|
+
h=phi(h);
|
|
152
|
+
}
|
|
153
|
+
if(leadmonom(r)==var(2))
|
|
154
|
+
{
|
|
155
|
+
phi=R,var(2)/leadcoef(r),var(1);
|
|
156
|
+
g=phi(g);
|
|
157
|
+
h=phi(h);
|
|
158
|
+
}
|
|
159
|
+
J=(g,h);
|
|
160
|
+
} // end size(r)=1
|
|
161
|
+
c=milnor(g);
|
|
162
|
+
if((d>=7)&&(c==2))
|
|
163
|
+
{
|
|
164
|
+
//"I-series";
|
|
165
|
+
if(d mod(2)==0)
|
|
166
|
+
{
|
|
167
|
+
return("I_"+string(d-1)+":(x2+y3,y"+string(d div 2)+")");
|
|
168
|
+
}
|
|
169
|
+
if(d mod(2)!=0)
|
|
170
|
+
{
|
|
171
|
+
return("I_"+string(d-1)+":(x2+y3,xy"+string((d-3) div 2)+")");
|
|
172
|
+
}
|
|
173
|
+
}
|
|
174
|
+
if(d==6)
|
|
175
|
+
{
|
|
176
|
+
return("G_5:(x2,y3)");
|
|
177
|
+
}
|
|
178
|
+
ring R1=0,(var(2),var(1)),ds;
|
|
179
|
+
setring R1;
|
|
180
|
+
ideal J=imap(R,J);
|
|
181
|
+
poly h1=reduce(J[2],std(J[1]),d);
|
|
182
|
+
poly h2=leadmonom(h1);
|
|
183
|
+
int ss=deg(h2)-1;
|
|
184
|
+
if((h2==var(1)^4)&&((c>=3)||(c==-1)))
|
|
185
|
+
{
|
|
186
|
+
setring R;
|
|
187
|
+
return("G_7:(x2,y4)");
|
|
188
|
+
}
|
|
189
|
+
if((h2==var(2)*var(1)^2)&&((c>=3)||(c==-1)))
|
|
190
|
+
{
|
|
191
|
+
setring R;
|
|
192
|
+
return("H_"+string(d-1)+":(x2+y"+string(d-4)+",xy2)");
|
|
193
|
+
}
|
|
194
|
+
setring R;
|
|
195
|
+
return("The given singularity is not simple");
|
|
196
|
+
} // end (size(L[1])==2)&&(L[2][2]==2)
|
|
197
|
+
if((size(L[1])==2)&&(L[2][2]==1))
|
|
198
|
+
{
|
|
199
|
+
def S=factorExt(g);
|
|
200
|
+
setring S;
|
|
201
|
+
poly h=imap(R,h); // poly g=imap(R,g); we need not S has already g
|
|
202
|
+
re= findwhichF(g,h,L);
|
|
203
|
+
setring R;
|
|
204
|
+
return(re);
|
|
205
|
+
}
|
|
206
|
+
} // end case 2
|
|
207
|
+
if((a==2)&&(b==2)) // start case 3
|
|
208
|
+
{
|
|
209
|
+
g=I[1];
|
|
210
|
+
h=I[2];
|
|
211
|
+
poly Q=testDiv(jet(h,2),jet(g,2));
|
|
212
|
+
if(Q!=0)
|
|
213
|
+
{
|
|
214
|
+
I=(g,h-Q*g);
|
|
215
|
+
return(zerodim_ICIS(I));
|
|
216
|
+
}
|
|
217
|
+
if(Q==0)
|
|
218
|
+
{
|
|
219
|
+
L=factorize(jet(g,2));
|
|
220
|
+
if(size(L[1])==3)
|
|
221
|
+
{
|
|
222
|
+
re=findwhichF(g,h,L);
|
|
223
|
+
return(re);
|
|
224
|
+
}
|
|
225
|
+
if((size(L[1])==2)&&(L[2][2]==1))
|
|
226
|
+
{
|
|
227
|
+
def S=factorExt(g);
|
|
228
|
+
setring S;
|
|
229
|
+
poly h=imap(R,h);
|
|
230
|
+
re=findwhichF(g,h,L);
|
|
231
|
+
setring R;
|
|
232
|
+
return(re);
|
|
233
|
+
}
|
|
234
|
+
L=factorize(jet(h,2));
|
|
235
|
+
if(size(L[1])==3)
|
|
236
|
+
{
|
|
237
|
+
re=findwhichF(h,g,L);
|
|
238
|
+
return(re);
|
|
239
|
+
}
|
|
240
|
+
if((size(L[1])==2)&&(L[2][2]==1))
|
|
241
|
+
{
|
|
242
|
+
def S=factorExt(h);
|
|
243
|
+
setring S;
|
|
244
|
+
poly g=imap(R,g);
|
|
245
|
+
re=findwhichF(h,g,L);
|
|
246
|
+
setring R;
|
|
247
|
+
return(re);
|
|
248
|
+
}
|
|
249
|
+
else
|
|
250
|
+
{ // there exist a s.t g[0]+ah[0] has two different factors.
|
|
251
|
+
int e=Finda(g,h);
|
|
252
|
+
I=(g+e*h,h);
|
|
253
|
+
re=zerodim_ICIS(I);
|
|
254
|
+
return(re);
|
|
255
|
+
}
|
|
256
|
+
}
|
|
257
|
+
} // end case 3
|
|
258
|
+
} // proc
|
|
259
|
+
example
|
|
260
|
+
{
|
|
261
|
+
"EXAMPLE:"; echo=2;
|
|
262
|
+
ring R=0,(x,y),ds;
|
|
263
|
+
ideal I=x2+8xy+16y2+y3,xy7+4y8;
|
|
264
|
+
zerodim_ICIS(I);
|
|
265
|
+
}
|
|
266
|
+
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
267
|
+
static proc Finda(poly g,poly h)
|
|
268
|
+
"USAGE: Finda(g,h); g,h are polynomials
|
|
269
|
+
PURPOSE: Find a such that jet(g,2)+a*jet(h,2) has two different factors
|
|
270
|
+
RETURN: integer a
|
|
271
|
+
{
|
|
272
|
+
// find a s.t jet(g,2)+a*jet(h,2) has two different factors.
|
|
273
|
+
int o;
|
|
274
|
+
list L=factorize(jet(h,2));
|
|
275
|
+
if(L[2][2]==1){return(0);}
|
|
276
|
+
poly r= jet(g,2);
|
|
277
|
+
list T=factorize(r);
|
|
278
|
+
while(T[2][2]!=1)
|
|
279
|
+
{
|
|
280
|
+
o++;
|
|
281
|
+
r= r+jet(h,2);
|
|
282
|
+
T=factorize(r);
|
|
283
|
+
}
|
|
284
|
+
return(o);
|
|
285
|
+
}
|
|
286
|
+
/*
|
|
287
|
+
ring R=0,(x,y),ds;
|
|
288
|
+
poly g=x2+xy3;
|
|
289
|
+
poly h=y2+x3+y7;
|
|
290
|
+
finda(g,h);
|
|
291
|
+
*/
|
|
292
|
+
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
293
|
+
static proc testDiv(poly f,poly g)
|
|
294
|
+
"USAGE: testDiv(f,g); f,g are polynomials
|
|
295
|
+
ASSUME: I is given by two generators
|
|
296
|
+
PURPOSE: Check whether f divides g or not.
|
|
297
|
+
RETURN: poly h(quotient) if f divides g
|
|
298
|
+
@* 0 if f does not divide g
|
|
299
|
+
{
|
|
300
|
+
poly h=f/g;
|
|
301
|
+
if(f-h*g==0)
|
|
302
|
+
{
|
|
303
|
+
return(h);
|
|
304
|
+
}
|
|
305
|
+
return(0);
|
|
306
|
+
}
|
|
307
|
+
/*
|
|
308
|
+
ring R=0,(x,y,ds;
|
|
309
|
+
poly f=x2+y2;
|
|
310
|
+
poly g=3x2+3y2
|
|
311
|
+
testDiv(f,g);
|
|
312
|
+
*/
|
|
313
|
+
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
314
|
+
static proc findwhichF(poly g,poly h,list L)
|
|
315
|
+
"USAGE: findwhichF(g,h,L); g,h are polynomials,L list of factors of jet(g,2)
|
|
316
|
+
RETURN: string type F^n,p_n+p-1 in the classification of Giusti,M
|
|
317
|
+
{
|
|
318
|
+
// return("F^n,p_n+p-1")
|
|
319
|
+
def R=basering;
|
|
320
|
+
matrix M,N;
|
|
321
|
+
ideal J;
|
|
322
|
+
map si;
|
|
323
|
+
list T;
|
|
324
|
+
string rem;
|
|
325
|
+
// in each case we want to transform jet(g,2) which has two factors to xy
|
|
326
|
+
// and then find std and know about the type of "F^n,p_n+p-1"
|
|
327
|
+
if((size(L[1][2])==2)&&(size(L[1][3])==2))
|
|
328
|
+
{
|
|
329
|
+
M=coef(L[1][2],var(1));
|
|
330
|
+
N=coef(L[1][3],var(1));
|
|
331
|
+
matrix A[2][2]=M[2,1],M[2,2],N[2,1],N[2,2];
|
|
332
|
+
A=subst(A,var(1),1,var(2),1);
|
|
333
|
+
matrix B=inverse(A);
|
|
334
|
+
si=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
|
|
335
|
+
g=si(g);
|
|
336
|
+
h=si(h);
|
|
337
|
+
J=(g,h);
|
|
338
|
+
J=std(J);
|
|
339
|
+
// if g and h both of order 2 no problem in that case because deg(J[2])=2 so lead(J[2])=x2,y2,xy does not matter
|
|
340
|
+
T[1]=deg(lead(J[2]));
|
|
341
|
+
T[2]=deg(lead(J[3]))-1;
|
|
342
|
+
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
|
|
343
|
+
return(rem);
|
|
344
|
+
}
|
|
345
|
+
if((size(L[1][2])==2)&&(size(L[1][3])==1))
|
|
346
|
+
{
|
|
347
|
+
// two cases 1- jet(g,2)=(ax+by)*cx, 2- jet(g,2)=(ax+by)*cy
|
|
348
|
+
if(leadmonom(L[1][3])==var(1))
|
|
349
|
+
{
|
|
350
|
+
M=coef(L[1][2],var(1));
|
|
351
|
+
M=subst(M,var(2),1);
|
|
352
|
+
si=R,var(1),-M[2,1]/M[2,2]*var(1)+var(2);
|
|
353
|
+
g=si(g);
|
|
354
|
+
h=si(h);
|
|
355
|
+
J=(g,h);
|
|
356
|
+
J=std(J);
|
|
357
|
+
T[1]=deg(lead(J[2]));
|
|
358
|
+
T[2]=deg(lead(J[3]))-1;
|
|
359
|
+
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
|
|
360
|
+
return(rem);
|
|
361
|
+
}
|
|
362
|
+
if(leadmonom(L[1][3])==var(2))
|
|
363
|
+
{
|
|
364
|
+
M=coef(L[1][2],var(1));
|
|
365
|
+
M=subst(M,var(2),1);
|
|
366
|
+
matrix A[2][2]=M[2,1],M[2,2],0,1;
|
|
367
|
+
matrix B=inverse(A);
|
|
368
|
+
si=R,B[1,1]*var(1)+B[1,2]*var(2),B[2,1]*var(1)+B[2,2]*var(2);
|
|
369
|
+
g=si(g);
|
|
370
|
+
h=si(h);
|
|
371
|
+
J=(g,h);
|
|
372
|
+
J=std(J);
|
|
373
|
+
T[1]=deg(lead(J[2]));
|
|
374
|
+
T[2]=deg(lead(J[3]))-1;
|
|
375
|
+
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
|
|
376
|
+
return(rem);
|
|
377
|
+
}
|
|
378
|
+
}
|
|
379
|
+
else
|
|
380
|
+
{
|
|
381
|
+
J=(g,h);
|
|
382
|
+
J=std(J);
|
|
383
|
+
T[1]=deg(lead(J[2]));
|
|
384
|
+
T[2]=deg(lead(J[3]))-1;
|
|
385
|
+
rem="F^"+string(T[1])+","+string(T[2])+"_"+string(T[1]+T[2]-1)+":(xy,x"+string(T[1])+"+y"+string(T[2])+")";
|
|
386
|
+
return(rem);
|
|
387
|
+
}
|
|
388
|
+
}
|
|
389
|
+
/*
|
|
390
|
+
ring R=0,(x,y),ds;
|
|
391
|
+
poly g=xy+y2+y4;
|
|
392
|
+
poly h=x4+4x3y+6x2y2+4xy3+y4+y7+xy7;
|
|
393
|
+
L=factorize(jet(g,2),2);
|
|
394
|
+
findwhichF(g,h,L);
|
|
395
|
+
*/
|
|
396
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
397
|
+
static proc factorExt(poly g)
|
|
398
|
+
"USAGE: procExt(g); jet(g,2) is an irreducible polynomial
|
|
399
|
+
PURPOSE: Find the field extension in which jet(g,2) has two different factors
|
|
400
|
+
RETURN: ring S in which jet(g,2) has factors
|
|
401
|
+
{
|
|
402
|
+
def R=basering;
|
|
403
|
+
g=simplify(g,1);
|
|
404
|
+
poly f=jet(g,2);
|
|
405
|
+
list L=factorize(f);
|
|
406
|
+
if(L[2][2]==1)
|
|
407
|
+
{
|
|
408
|
+
ring S=(0,t),(var(1),var(2)),ds;
|
|
409
|
+
poly f=fetch(R,f);
|
|
410
|
+
poly g=fetch(R,g);
|
|
411
|
+
minpoly=t2+leadcoef(f/(var(1)*var(2)))*t+leadcoef(f/var(2)^2);
|
|
412
|
+
list L=factorize(f);
|
|
413
|
+
export L;
|
|
414
|
+
export g;
|
|
415
|
+
}
|
|
416
|
+
else
|
|
417
|
+
{
|
|
418
|
+
def S=R;
|
|
419
|
+
export L;
|
|
420
|
+
}
|
|
421
|
+
setring R;
|
|
422
|
+
return(S);
|
|
423
|
+
}
|
|
424
|
+
/*
|
|
425
|
+
ring R=0,(x,y),ds;
|
|
426
|
+
poly g=x2=y2+x4+xy11;
|
|
427
|
+
factorExt(g);
|
|
428
|
+
*/
|
|
429
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
430
|
+
static proc onedim_ICIS(ideal I)
|
|
431
|
+
"USAGE: onedim_ICIS(l); I is an ideal
|
|
432
|
+
ASSUME: I is given by two generators
|
|
433
|
+
PURPOSE: Check whether the ideal defines a complete intersection singularity of dimension 1 or not
|
|
434
|
+
RETURN: String type in the classification of Giusti,M, of 1-dimesnional complete inetersection singualrity
|
|
435
|
+
@* or The given singularity is not simple
|
|
436
|
+
EXAMPLE: example onedim_ICIS; shows an example
|
|
437
|
+
"
|
|
438
|
+
{
|
|
439
|
+
int m,t,r;
|
|
440
|
+
poly g1,g2,f1,f2;
|
|
441
|
+
string rem;
|
|
442
|
+
list A,B;
|
|
443
|
+
f1=I[1];
|
|
444
|
+
f2=I[2];
|
|
445
|
+
// I=nf_icis(I);
|
|
446
|
+
m=genericmilnor(I);
|
|
447
|
+
t=tjurina(I);
|
|
448
|
+
if(m==-1)
|
|
449
|
+
{
|
|
450
|
+
return("The given singularity is not simple");
|
|
451
|
+
}
|
|
452
|
+
if(m!=t) // in ICIS milnor=tjurina
|
|
453
|
+
{
|
|
454
|
+
return("The given singularity is not simple");
|
|
455
|
+
}
|
|
456
|
+
g1=jet(f1,2);
|
|
457
|
+
g2=jet(f2,2);
|
|
458
|
+
if((ord(g1)==1)||(ord(g2)==1)){return(arnoldsimple(I,m));}
|
|
459
|
+
if(g1==0)
|
|
460
|
+
{
|
|
461
|
+
return("The given singularity is not simple");
|
|
462
|
+
}
|
|
463
|
+
if(g2==0)
|
|
464
|
+
{
|
|
465
|
+
return("The given singularity is not simple");
|
|
466
|
+
}
|
|
467
|
+
rem=typejet2(g1,g2);
|
|
468
|
+
if(rem=="type1")
|
|
469
|
+
{
|
|
470
|
+
return("S_5:(x2+y2+z2,yz)");
|
|
471
|
+
}
|
|
472
|
+
if(rem=="type2")
|
|
473
|
+
{
|
|
474
|
+
return("S_"+string(m)+":(x2+y2+z"+string(m-3)+",yz)");
|
|
475
|
+
}
|
|
476
|
+
if(rem=="type3")
|
|
477
|
+
{
|
|
478
|
+
if(m==7)
|
|
479
|
+
{
|
|
480
|
+
return("T_7:(x2+y3+z3,yz)");
|
|
481
|
+
}
|
|
482
|
+
if(m==8)
|
|
483
|
+
{
|
|
484
|
+
return("T_8:(x2+y3+z4,yz)");
|
|
485
|
+
}
|
|
486
|
+
if(m==9)
|
|
487
|
+
{
|
|
488
|
+
B=Semigroup(I);
|
|
489
|
+
B=changeType(B);
|
|
490
|
+
A=list(list(2,5),list(2,3));
|
|
491
|
+
if(compLL(A,B))
|
|
492
|
+
{
|
|
493
|
+
return("T_9:(x2+y3+z5,yz)");
|
|
494
|
+
}
|
|
495
|
+
}
|
|
496
|
+
return("The given singularity is not simple");
|
|
497
|
+
}
|
|
498
|
+
if(rem=="type4")
|
|
499
|
+
{
|
|
500
|
+
if(m==7)
|
|
501
|
+
{
|
|
502
|
+
return("U_7:(x2+yz,xy+z3)");
|
|
503
|
+
}
|
|
504
|
+
if(m==8)
|
|
505
|
+
{
|
|
506
|
+
return("U_8:(x2+yz+z3,xy)");
|
|
507
|
+
}
|
|
508
|
+
if(m==9)
|
|
509
|
+
{
|
|
510
|
+
return("U_9:(x2+yz,xy+z4)");
|
|
511
|
+
}
|
|
512
|
+
return("The given singularity is not simple");
|
|
513
|
+
}
|
|
514
|
+
if(rem=="type5")
|
|
515
|
+
{
|
|
516
|
+
if(m==8)
|
|
517
|
+
{
|
|
518
|
+
return("W_8:(x2+z3,y2+xz)");
|
|
519
|
+
}
|
|
520
|
+
if(m==9)
|
|
521
|
+
{
|
|
522
|
+
return("W_9:(x2+yz2,y2+xz)");
|
|
523
|
+
}
|
|
524
|
+
return("The given singularity is not simple");
|
|
525
|
+
}
|
|
526
|
+
if(rem=="type6")
|
|
527
|
+
{
|
|
528
|
+
if(m==9)
|
|
529
|
+
{
|
|
530
|
+
return("Z_9:(x2+z3,y2+z3)");
|
|
531
|
+
}
|
|
532
|
+
if(m==10)
|
|
533
|
+
{
|
|
534
|
+
return("Z_10:(x2+yz2,y2+z3)");
|
|
535
|
+
}
|
|
536
|
+
return("The given singularity is not simple");
|
|
537
|
+
}
|
|
538
|
+
if(rem=="not simple")
|
|
539
|
+
{
|
|
540
|
+
return("The given singularity is not simple");
|
|
541
|
+
}
|
|
542
|
+
}
|
|
543
|
+
example
|
|
544
|
+
{
|
|
545
|
+
"EXAMPLE:"; echo=2;
|
|
546
|
+
ring R=0,(x,y,z),ds;
|
|
547
|
+
ideal I=x2+8xy+16y2+2xz+8yz+z2+yz2+9z3,y2+xz+22yz+82z2;
|
|
548
|
+
onedim_ICIS(I);
|
|
549
|
+
}
|
|
550
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
551
|
+
static proc arnoldsimple(ideal I,int m)
|
|
552
|
+
"USAGE: arnoldsimple(I,m); I is an ideal, m is an integer greater or equal to milnor number of the ideal I
|
|
553
|
+
ASSUME: I is given by two generators and one of the generator of the ideal I is of order 1
|
|
554
|
+
PURPOSE: check whether the ideal defines a hypersurface simple complete intersection singularity or not
|
|
555
|
+
RETURN: string type in the classification of Arnold,
|
|
556
|
+
@* or The given singularity is not simple
|
|
557
|
+
EXAMPLE: example arnoldsimple; shows an example
|
|
558
|
+
"
|
|
559
|
+
{
|
|
560
|
+
//if one generator is of order 1 we reduce case to hypersurface case
|
|
561
|
+
def R=basering;
|
|
562
|
+
if(ord(I[1])==1)
|
|
563
|
+
{
|
|
564
|
+
poly g=specialNF(I[2],I[1],m);
|
|
565
|
+
ring S=0,(var(2),var(3)),ds;
|
|
566
|
+
setring S;
|
|
567
|
+
poly g=imap(R,g);
|
|
568
|
+
string dd=complexSingType(g);
|
|
569
|
+
int e=modality(g);
|
|
570
|
+
setring R;
|
|
571
|
+
if(e==0)
|
|
572
|
+
{
|
|
573
|
+
return(dd);
|
|
574
|
+
}
|
|
575
|
+
if(e!=0)
|
|
576
|
+
{
|
|
577
|
+
return( "The given singularity is not simple");
|
|
578
|
+
}
|
|
579
|
+
}
|
|
580
|
+
if(ord(I[2])==1)
|
|
581
|
+
{
|
|
582
|
+
I=I[2],I[1];
|
|
583
|
+
return(arnoldsimple(I,m));
|
|
584
|
+
}
|
|
585
|
+
}
|
|
586
|
+
example
|
|
587
|
+
{
|
|
588
|
+
"EXAMPLE:"; echo=2;
|
|
589
|
+
ring R=0,(x,y,z),ds;
|
|
590
|
+
ideal I=x+y2,y3+z4+xy11;
|
|
591
|
+
arnoldsimple(I,6);
|
|
592
|
+
}
|
|
593
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
594
|
+
static proc specialNF(poly g,poly f,int m)
|
|
595
|
+
"USAGE: specialNF(g,f); g,f are polynomials, m is an integer greater or equal to milnor number of the ideal I=(g,h)
|
|
596
|
+
ASSUME: f is of order 1 and f=x+higher
|
|
597
|
+
RETURN: poly g not involving x (Using implicit fn thm)
|
|
598
|
+
{
|
|
599
|
+
poly k;
|
|
600
|
+
list T=linearpart(g,f);
|
|
601
|
+
f=T[1];
|
|
602
|
+
g=T[2];
|
|
603
|
+
poly h=var(1)-f;
|
|
604
|
+
while(1)
|
|
605
|
+
{
|
|
606
|
+
g=subst(g,var(1),h);
|
|
607
|
+
k=jet(g,m);
|
|
608
|
+
if(diff(k,var(1))==0)
|
|
609
|
+
{
|
|
610
|
+
break;
|
|
611
|
+
}
|
|
612
|
+
}
|
|
613
|
+
return(k);
|
|
614
|
+
}
|
|
615
|
+
/*
|
|
616
|
+
ring R=0,(x,y,z),ds;
|
|
617
|
+
poly f=x+y2;
|
|
618
|
+
poly g=y3+z4+xy11;
|
|
619
|
+
speciaNF(g,f,6);
|
|
620
|
+
*/
|
|
621
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
622
|
+
static proc linearpart(poly g,poly f) // f=linear part+higher,g output list T,T[1]=x+higher term,T[2]=g
|
|
623
|
+
"USAGE: specialNF(g,f); g,f are polynomials
|
|
624
|
+
ASSUME: f=lineat part+higher that is f is of order 1
|
|
625
|
+
RETURN: list T, T[1]=x+higher and T[2]=g'
|
|
626
|
+
{
|
|
627
|
+
def R=basering;
|
|
628
|
+
poly i,j,k;
|
|
629
|
+
list T;
|
|
630
|
+
i=diff(jet(f,1),var(1));
|
|
631
|
+
j=diff(jet(f,1),var(2));
|
|
632
|
+
k=diff(jet(f,1),var(3));
|
|
633
|
+
if(i!=0)
|
|
634
|
+
{
|
|
635
|
+
ideal M=maxideal(1);
|
|
636
|
+
M[1]=(var(1)-((j*var(2)+k*var(3))/leadcoef(f)))/leadcoef(f);
|
|
637
|
+
map phi=R,M;
|
|
638
|
+
f=phi(f);
|
|
639
|
+
g=phi(g);
|
|
640
|
+
}
|
|
641
|
+
if(i==0)
|
|
642
|
+
{
|
|
643
|
+
if(j!=0)
|
|
644
|
+
{
|
|
645
|
+
map phi=R,var(2),var(1),var(3);
|
|
646
|
+
f=phi(f);
|
|
647
|
+
g=phi(g);
|
|
648
|
+
return(linearpart(g,f));
|
|
649
|
+
}
|
|
650
|
+
if(k!=0)
|
|
651
|
+
{
|
|
652
|
+
map phi=R,var(3),var(2),var(1);
|
|
653
|
+
f=phi(f);
|
|
654
|
+
g=phi(g);
|
|
655
|
+
return(linearpart(g,f));
|
|
656
|
+
}
|
|
657
|
+
}
|
|
658
|
+
T[1]=f;
|
|
659
|
+
T[2]=g;
|
|
660
|
+
return(T);
|
|
661
|
+
}
|
|
662
|
+
/*
|
|
663
|
+
ring R=0,(x,y,z),ds;
|
|
664
|
+
poly f=x+2y+y2;
|
|
665
|
+
poly g=y3+z4+zy11;
|
|
666
|
+
lineatpart(g,f);
|
|
667
|
+
*/
|
|
668
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
669
|
+
static proc typejet2(poly g1,poly g2)
|
|
670
|
+
"USAGE: typejet2(g1,g2); g1,g2 are polynomials
|
|
671
|
+
ASSUME: g1,g2 are homogeneous polynomials of degree 2
|
|
672
|
+
PURPOSE: Check whether (g1,g2) is a quadratic form in the list of Guisti or not
|
|
673
|
+
RETURN: string type for the quadratic forms appearing in Guist's list
|
|
674
|
+
@* or not simple
|
|
675
|
+
{
|
|
676
|
+
def R=basering;
|
|
677
|
+
ideal I=(g1,g2);
|
|
678
|
+
def S=absPrimdecGTZ(I);
|
|
679
|
+
setring S;
|
|
680
|
+
list L,T;
|
|
681
|
+
int e,i,j;
|
|
682
|
+
intvec a,a1;
|
|
683
|
+
L=primary_decomp;
|
|
684
|
+
for(j=1;j<=size(L);j++)
|
|
685
|
+
{
|
|
686
|
+
if(dim(std(L[j][1]))!=2)
|
|
687
|
+
{
|
|
688
|
+
return("not simple");
|
|
689
|
+
}
|
|
690
|
+
}
|
|
691
|
+
T=absolute_primes;
|
|
692
|
+
for(i=1;i<=size(T);i++)
|
|
693
|
+
{
|
|
694
|
+
e=e+T[i][2];
|
|
695
|
+
}
|
|
696
|
+
if(e==4)
|
|
697
|
+
{
|
|
698
|
+
setring R;
|
|
699
|
+
return("type1");
|
|
700
|
+
}
|
|
701
|
+
if(e==3)
|
|
702
|
+
{
|
|
703
|
+
setring R;
|
|
704
|
+
return("type2");
|
|
705
|
+
}
|
|
706
|
+
if(e==2)
|
|
707
|
+
{
|
|
708
|
+
ideal J=std(L[1][1]);
|
|
709
|
+
ideal J1=std(L[2][1]);
|
|
710
|
+
a=hilbPoly(J);
|
|
711
|
+
a1=hilbPoly(J1);
|
|
712
|
+
if((a[2]==2)&&(a1[2]==2))
|
|
713
|
+
{
|
|
714
|
+
setring R;
|
|
715
|
+
return("type3");
|
|
716
|
+
}
|
|
717
|
+
if(((a[2]==3)&&(a1[2]==1))||((a[2]==1)&&(a1[2]==3))) //||(a[2]==1)&&(a1[2]==3))
|
|
718
|
+
{
|
|
719
|
+
setring R;
|
|
720
|
+
return("type4");
|
|
721
|
+
}
|
|
722
|
+
}
|
|
723
|
+
if(e==1)
|
|
724
|
+
{
|
|
725
|
+
setring R; // I lies in R and zero in S1
|
|
726
|
+
ideal JJ=radical(I);
|
|
727
|
+
JJ=JJ^3;
|
|
728
|
+
ideal JJJ=reduce(JJ,std(I));
|
|
729
|
+
if(size(JJJ)==0)
|
|
730
|
+
{
|
|
731
|
+
return("type6");
|
|
732
|
+
}
|
|
733
|
+
if(size(JJJ)!=0)
|
|
734
|
+
{
|
|
735
|
+
return("type5");
|
|
736
|
+
}
|
|
737
|
+
}
|
|
738
|
+
setring R;
|
|
739
|
+
return("not simple");
|
|
740
|
+
}
|
|
741
|
+
/*
|
|
742
|
+
ring R=0,(x,y,z),ds;
|
|
743
|
+
poly g1=x2+yz;
|
|
744
|
+
poly g2=xy;
|
|
745
|
+
typejet2(g1,g2);
|
|
746
|
+
*/
|
|
747
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
748
|
+
static proc compL(list L,list M)
|
|
749
|
+
{
|
|
750
|
+
int l,m,i,j;
|
|
751
|
+
l=size(L);
|
|
752
|
+
m=size(M);
|
|
753
|
+
if(l!=m)
|
|
754
|
+
{return(0);}
|
|
755
|
+
for(i=1;i<=m;i++)
|
|
756
|
+
{
|
|
757
|
+
if(L[i]!=M[i])
|
|
758
|
+
{return(0);}
|
|
759
|
+
}
|
|
760
|
+
return(1);
|
|
761
|
+
}
|
|
762
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
763
|
+
static proc compLL(list L,list M)
|
|
764
|
+
"USAGE: compLL(L,M); L, M are lists
|
|
765
|
+
PURPOSE: Check whether the lists are equal or not
|
|
766
|
+
RETURN: 1 if both lists are equal upto a permutation
|
|
767
|
+
@* 0 if both are not equal
|
|
768
|
+
{
|
|
769
|
+
int l,m,i,j,s;
|
|
770
|
+
l=size(L);
|
|
771
|
+
m=size(M);
|
|
772
|
+
if(l!=m)
|
|
773
|
+
{return(0);}
|
|
774
|
+
for(i=1;i<=m;i++)
|
|
775
|
+
{
|
|
776
|
+
for(j=1;j<=m;j++)
|
|
777
|
+
{
|
|
778
|
+
if(compL(L[i],M[j]))
|
|
779
|
+
{
|
|
780
|
+
s++;
|
|
781
|
+
break;
|
|
782
|
+
}
|
|
783
|
+
}
|
|
784
|
+
}
|
|
785
|
+
if(s==m)
|
|
786
|
+
{return(1);}
|
|
787
|
+
if(s!=m)
|
|
788
|
+
{
|
|
789
|
+
return(0);
|
|
790
|
+
}
|
|
791
|
+
}
|
|
792
|
+
/*
|
|
793
|
+
ring R=0,(x,y,z),ds;
|
|
794
|
+
list L=(1),(2,3),(2,5);
|
|
795
|
+
list T=(2,3),(1),(2,5);
|
|
796
|
+
compLL(L,T);
|
|
797
|
+
*/
|
|
798
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
799
|
+
static proc changeType(list L)
|
|
800
|
+
"USAGE: changeType(L); L is a list of intvectors
|
|
801
|
+
PURPOSE: Change the list of intvectors to the list of lists
|
|
802
|
+
RETURN: List of lists
|
|
803
|
+
{
|
|
804
|
+
int i,j;
|
|
805
|
+
list T;
|
|
806
|
+
for(i=1;i<=size(L);i++)
|
|
807
|
+
{
|
|
808
|
+
list S;
|
|
809
|
+
for(j=1;j<=size(L[i]);j++)
|
|
810
|
+
{
|
|
811
|
+
S[j]=L[i][j];
|
|
812
|
+
}
|
|
813
|
+
T[size(T)+1]=S;
|
|
814
|
+
kill S;
|
|
815
|
+
}
|
|
816
|
+
return(T);
|
|
817
|
+
}
|
|
818
|
+
/*
|
|
819
|
+
ring R=0,(x,y,z),ds;
|
|
820
|
+
list B=(4,6,7);
|
|
821
|
+
changeType(B);
|
|
822
|
+
*/
|
|
823
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
824
|
+
static proc genericmilnor(ideal I)
|
|
825
|
+
"USAGE: genericmilnor(l); I is an ideal
|
|
826
|
+
PURPOSE: Computes the milnor number of generic linear combination of the ideal I
|
|
827
|
+
RETURN: Milnor number of I if it is finite
|
|
828
|
+
@* or -1 if it is not finite
|
|
829
|
+
{
|
|
830
|
+
int m=milnor(I);
|
|
831
|
+
int i,a,b;
|
|
832
|
+
if(m>=0)
|
|
833
|
+
{
|
|
834
|
+
return(m);
|
|
835
|
+
}
|
|
836
|
+
def R=basering;
|
|
837
|
+
def R1=changechar(32003,R);
|
|
838
|
+
setring R1;
|
|
839
|
+
ideal I;
|
|
840
|
+
while(i<10)
|
|
841
|
+
{
|
|
842
|
+
i++;
|
|
843
|
+
a=random(-100,100);
|
|
844
|
+
b=random(-100,100);
|
|
845
|
+
while(a==0)
|
|
846
|
+
{
|
|
847
|
+
a=random(-100,100);
|
|
848
|
+
}
|
|
849
|
+
while(b==0)
|
|
850
|
+
{
|
|
851
|
+
b=random(-100,100);
|
|
852
|
+
}
|
|
853
|
+
I=imap(R,I);
|
|
854
|
+
I[1]=a*I[1]+b*I[2];
|
|
855
|
+
m=milnor(I);
|
|
856
|
+
if(m>=0)
|
|
857
|
+
{
|
|
858
|
+
setring R;
|
|
859
|
+
return(m);
|
|
860
|
+
}
|
|
861
|
+
}
|
|
862
|
+
setring R;
|
|
863
|
+
return(-1);
|
|
864
|
+
}
|
|
865
|
+
/*
|
|
866
|
+
ring R=0,(x,y,z),ds;
|
|
867
|
+
ideal I=x2+z3,y2+z3;
|
|
868
|
+
genericmilnor(I);
|
|
869
|
+
*/
|
|
870
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
871
|
+
proc Semigroup(ideal I)
|
|
872
|
+
"USAGE: Semigroup(l); I is an ideal
|
|
873
|
+
PURPOSE: Computes the semigroup of the ideal I corresponding to each branch
|
|
874
|
+
RETURN: list of semigroup of ideal I corresponding to each branch
|
|
875
|
+
EXAMPLE: Semigroup; shows an example
|
|
876
|
+
"
|
|
877
|
+
{
|
|
878
|
+
list L=facstd(I);
|
|
879
|
+
list RE,JE,PE;
|
|
880
|
+
if(size(L)==1)
|
|
881
|
+
{
|
|
882
|
+
RE=CurveRes(L[1]);
|
|
883
|
+
RE=semi_group(RE);
|
|
884
|
+
return(RE);
|
|
885
|
+
}
|
|
886
|
+
ideal J,K;
|
|
887
|
+
list T,T1,T2,T3,T4,T5,H;
|
|
888
|
+
int i,j,l;
|
|
889
|
+
for(i=1;i<=size(L);i++)
|
|
890
|
+
{
|
|
891
|
+
RE=CurveRes(radical(L[i])) ;
|
|
892
|
+
T1[i]=semi_group(RE);
|
|
893
|
+
for(j=i+1;j<=size(L);j++)
|
|
894
|
+
{
|
|
895
|
+
JE=CurveRes(radical(L[j]));
|
|
896
|
+
T2[j]=semi_group(JE);
|
|
897
|
+
J=L[i]+L[j];
|
|
898
|
+
if(dim(std(J))!=1)
|
|
899
|
+
{
|
|
900
|
+
break;
|
|
901
|
+
}
|
|
902
|
+
K=slocus(J);
|
|
903
|
+
if(K[1]==1)
|
|
904
|
+
{ T3=1;}
|
|
905
|
+
else
|
|
906
|
+
{
|
|
907
|
+
PE=CurveRes(radical(J));
|
|
908
|
+
T3=semi_group(PE);
|
|
909
|
+
}
|
|
910
|
+
T4=commonpartlists(T1[i],T3);
|
|
911
|
+
T5=commonpartlists(T2[j],T3);
|
|
912
|
+
if(compLL(T4,T5))
|
|
913
|
+
{
|
|
914
|
+
T1[i]=del(T1[i],T4);
|
|
915
|
+
}
|
|
916
|
+
}
|
|
917
|
+
for(l=1;l<=size(T1[i]);l++)
|
|
918
|
+
{
|
|
919
|
+
H[size(H)+1]=T1[i][l];
|
|
920
|
+
}
|
|
921
|
+
}
|
|
922
|
+
return(H);
|
|
923
|
+
}
|
|
924
|
+
example
|
|
925
|
+
{
|
|
926
|
+
"EXAMPLE:"; echo=2;
|
|
927
|
+
ring R=0,(x,y,z),ds;
|
|
928
|
+
ideal I=x2+y3+z5,yz;
|
|
929
|
+
Semigroup(I);
|
|
930
|
+
}
|
|
931
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
932
|
+
static proc del(list L,list M)
|
|
933
|
+
"USAGE: del(L,M); L and M are two lists
|
|
934
|
+
PURPOSE: Delete common part of list M from List L
|
|
935
|
+
RETURN: list L
|
|
936
|
+
{
|
|
937
|
+
int i,j;
|
|
938
|
+
for(i=1;i<=size(M);i++)
|
|
939
|
+
{
|
|
940
|
+
for(j=1;j<=size(L);j++)
|
|
941
|
+
{
|
|
942
|
+
if(compL(L[j],M[i]))
|
|
943
|
+
{L=delete(L,j);}
|
|
944
|
+
}
|
|
945
|
+
}
|
|
946
|
+
return(L);
|
|
947
|
+
}
|
|
948
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
949
|
+
static proc commonpartlists(list L,list M)
|
|
950
|
+
"USAGE: commonpart(L,M); L and M are two lists
|
|
951
|
+
PURPOSE: Computes the intersetion of two list
|
|
952
|
+
RETURN: list T
|
|
953
|
+
{
|
|
954
|
+
list T;
|
|
955
|
+
int i,m,l,j,k;
|
|
956
|
+
m=size(M);
|
|
957
|
+
l=size(L);
|
|
958
|
+
if(l>=m)
|
|
959
|
+
{
|
|
960
|
+
for(i=1;i<=m;i++)
|
|
961
|
+
{
|
|
962
|
+
for(j=1;j<=l;j++)
|
|
963
|
+
{
|
|
964
|
+
if(compLL(M[i],L[j]))
|
|
965
|
+
{
|
|
966
|
+
T[k+1]=M[i];
|
|
967
|
+
k++;
|
|
968
|
+
}
|
|
969
|
+
}
|
|
970
|
+
}
|
|
971
|
+
}
|
|
972
|
+
return(T);
|
|
973
|
+
}
|
|
974
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
975
|
+
static proc semi_group(list H)
|
|
976
|
+
"USAGE: semi_group(H); H list
|
|
977
|
+
COMPUTE:Weierstrass semigroup of space curve C,which is given by an ideal
|
|
978
|
+
RETURN: list A , which gives generators set of the Weierstrass semigroup corresponding to each irreducible component of C
|
|
979
|
+
{
|
|
980
|
+
int i,d,u,v,w,k;
|
|
981
|
+
int j=1;
|
|
982
|
+
int e=1;
|
|
983
|
+
def R=basering;
|
|
984
|
+
|
|
985
|
+
list A;
|
|
986
|
+
list LL;
|
|
987
|
+
for(k=1;k<=size(H);k++)
|
|
988
|
+
{
|
|
989
|
+
LL=CurveParam(H[k]);
|
|
990
|
+
def S=LL[1];
|
|
991
|
+
setring S;
|
|
992
|
+
list TT;
|
|
993
|
+
poly mpo;
|
|
994
|
+
for(i=1;i<=size(Param);i++)
|
|
995
|
+
{
|
|
996
|
+
d=deg(Param[i][2]);
|
|
997
|
+
TT=Param[i];
|
|
998
|
+
mpo=Param[i][2];
|
|
999
|
+
ring S1=(0,a),(t),ds;
|
|
1000
|
+
setring S1;
|
|
1001
|
+
minpoly=leadcoef(imap(S,mpo));
|
|
1002
|
+
list TT=imap(S,TT);
|
|
1003
|
+
list T;
|
|
1004
|
+
ideal J1;
|
|
1005
|
+
for(u=1;u<=size(TT[1]);u++)
|
|
1006
|
+
{
|
|
1007
|
+
J1[u]=TT[1][u];
|
|
1008
|
+
}
|
|
1009
|
+
J1=simplify(J1,2);
|
|
1010
|
+
J1=sagbiAlg(J1);
|
|
1011
|
+
w=Classify_aeq::ConductorBound(J1);
|
|
1012
|
+
J1=lead(J1);
|
|
1013
|
+
list TTT;
|
|
1014
|
+
for(v=1;v<=size(J1);v++)
|
|
1015
|
+
{
|
|
1016
|
+
TTT[v]=J1[v];
|
|
1017
|
+
}
|
|
1018
|
+
for(j=1;j<=d;j++)
|
|
1019
|
+
{
|
|
1020
|
+
T=WSemigroup(TTT,w);
|
|
1021
|
+
A[e]=T[1]; // interested only in semigroup
|
|
1022
|
+
e++;
|
|
1023
|
+
}
|
|
1024
|
+
setring S;
|
|
1025
|
+
kill S1;
|
|
1026
|
+
kill T;
|
|
1027
|
+
}
|
|
1028
|
+
setring R;
|
|
1029
|
+
kill S;
|
|
1030
|
+
}
|
|
1031
|
+
return(A);
|
|
1032
|
+
}
|
|
1033
|
+
//==============================Examples======================================
|
|
1034
|
+
/*
|
|
1035
|
+
//=========Examples of Isolated simple complete intersection singularities======
|
|
1036
|
+
ring R=0,(x,y),ds;
|
|
1037
|
+
ideal M=maxideal(1);
|
|
1038
|
+
//======================
|
|
1039
|
+
ideal I=x2+y3,xy11;
|
|
1040
|
+
M[1]=x;
|
|
1041
|
+
M[2]=x+3y+xy;
|
|
1042
|
+
map phi=R,M;
|
|
1043
|
+
I=phi(I);
|
|
1044
|
+
classifyicis(I);
|
|
1045
|
+
//======================
|
|
1046
|
+
ideal I=xy,x5+y4;
|
|
1047
|
+
M[1]=x+4y;
|
|
1048
|
+
M[2]=y;
|
|
1049
|
+
map phi=R,M;
|
|
1050
|
+
I=phi(I);
|
|
1051
|
+
classifyicis(I);
|
|
1052
|
+
//======================
|
|
1053
|
+
ideal I=x2,y4;
|
|
1054
|
+
M[1]=x+xy2;
|
|
1055
|
+
M[2]=x+y+x2+y2;
|
|
1056
|
+
map phi=R,M;
|
|
1057
|
+
I=phi(I);
|
|
1058
|
+
classifyicis(I)
|
|
1059
|
+
//===========================================
|
|
1060
|
+
ideal I=x2+y11,x2y3+xy4;
|
|
1061
|
+
classifyicis(I);
|
|
1062
|
+
//======================
|
|
1063
|
+
ring S=0,(u,v),dp;
|
|
1064
|
+
ideal N=maxideal(1);
|
|
1065
|
+
//======================
|
|
1066
|
+
ideal J=u2+v7,uv2;
|
|
1067
|
+
N[1]=u+3v+uv+u3v;
|
|
1068
|
+
N[2]=v;
|
|
1069
|
+
map si=S,N;
|
|
1070
|
+
J=si(J);
|
|
1071
|
+
classifyicis(J);
|
|
1072
|
+
//======================
|
|
1073
|
+
ideal J=u2+v2+uv5+v11,uv4+v5;
|
|
1074
|
+
classifyicis(I);
|
|
1075
|
+
//===========================================
|
|
1076
|
+
ring R=0,(x,y,z),ds;
|
|
1077
|
+
ideal M=maxideal(1);
|
|
1078
|
+
//======================
|
|
1079
|
+
ideal I=x2+y3+z5,yz;
|
|
1080
|
+
classifyicis(I);
|
|
1081
|
+
//======================
|
|
1082
|
+
ideal I=x2+z3,y2+z3;
|
|
1083
|
+
classificis(I);
|
|
1084
|
+
//======================
|
|
1085
|
+
ideal I=x2+yz+z3,xy;
|
|
1086
|
+
M[3]=x+4y+3z+x2y;
|
|
1087
|
+
map phi=R,M;
|
|
1088
|
+
I=phi(I);
|
|
1089
|
+
classifyicis(I);
|
|
1090
|
+
//======================
|
|
1091
|
+
ideal I=x2+y3+z6,yz+xy3;
|
|
1092
|
+
classifyicis(I);
|
|
1093
|
+
//============================================
|
|
1094
|
+
ideal I=x2+z3,y2+xz;
|
|
1095
|
+
M[2]=x+3y;
|
|
1096
|
+
map phi=R,M;
|
|
1097
|
+
I=phi(I);
|
|
1098
|
+
classifyicis(I);
|
|
1099
|
+
//============================================
|
|
1100
|
+
ring S=0,(u,v,w),ds;
|
|
1101
|
+
ideal M=maxideal(1);
|
|
1102
|
+
ideal I=u2+vw+w3,uv;
|
|
1103
|
+
M[1]=u+3v+3vw+w2;
|
|
1104
|
+
map phi=S,M;
|
|
1105
|
+
I=phi(I);
|
|
1106
|
+
classifyicis(I);
|
|
1107
|
+
//==========Examples of Semigroup of the space curves====================
|
|
1108
|
+
ring R=0,(x,y,z),ds;
|
|
1109
|
+
ideal I=xy+z3,xz+z2y2+y6;
|
|
1110
|
+
Semigroup(I);
|
|
1111
|
+
//======================
|
|
1112
|
+
ideal I=xy,xz+z3+z2y3+y11;
|
|
1113
|
+
Semigroup(I);
|
|
1114
|
+
//======================
|
|
1115
|
+
ideal I=xy+z4,xz+y6+yz2;
|
|
1116
|
+
Semigroup(I);
|
|
1117
|
+
//======================
|
|
1118
|
+
ideal I=xy+z2,x2+z2y+5y4;
|
|
1119
|
+
Semigroup(I);
|
|
1120
|
+
//======================
|
|
1121
|
+
ideal I=x2+yz2,y2+z3;
|
|
1122
|
+
Semigroup(I);
|
|
1123
|
+
//======================
|
|
1124
|
+
ideal I=x2+yz,xy+z4;
|
|
1125
|
+
Semigroup(I);
|
|
1126
|
+
//======================
|
|
1127
|
+
ideal I=xy,xz+z3+z2y5+2y15;
|
|
1128
|
+
Semigroup(I);
|
|
1129
|
+
//======================
|
|
1130
|
+
ideal I=xy,xz+z3+zy9;
|
|
1131
|
+
Semigroup(I);
|
|
1132
|
+
//======================
|
|
1133
|
+
*/
|