passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1363 @@
|
|
|
1
|
+
//////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version JMSConst.lib 4.2.0.0 Jan_2021 "; // $Id: 4531c6461d1a0d2c3372aa4f75c5ea2ab496b0ec $
|
|
3
|
+
category="Algebraic Geometry";
|
|
4
|
+
// summary description of the library
|
|
5
|
+
info="
|
|
6
|
+
LIBRARY: JMSConst.lib A library for Singular which constructs J-Marked Schemes.
|
|
7
|
+
AUTHOR: Michela Ceria, email: michela.ceria@unito.it
|
|
8
|
+
|
|
9
|
+
SEE ALSO: JMBTest_lib
|
|
10
|
+
|
|
11
|
+
KEYWORDS: J-marked schemes, Borel ideals
|
|
12
|
+
|
|
13
|
+
OVERVIEW:
|
|
14
|
+
The library performs the J-marked computation, as described in [BCLR].
|
|
15
|
+
As in JMBTest.lib we construct the V polynomials and we reduce the EK
|
|
16
|
+
polynomials w.r.t. them, putting the coefficients as results.
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
The algorithm terminates only if the ordering is ip.
|
|
20
|
+
Anyway, the number of reduction steps is bounded.
|
|
21
|
+
|
|
22
|
+
REFERENCES:
|
|
23
|
+
[CR] Francesca Cioffi, Margherita Roggero,Flat Families by Strongly
|
|
24
|
+
Stable Ideals and a Generalization of Groebner Bases,
|
|
25
|
+
J. Symbolic Comput. 46, 1070-1084, (2011).@*
|
|
26
|
+
[BCLR] Cristina Bertone, Francesca Cioffi, Paolo Lella,
|
|
27
|
+
Margherita Roggero, Upgraded methods for the effective
|
|
28
|
+
computation of marked schemes on a strongly stable ideal,
|
|
29
|
+
Journal of Symbolic Computation
|
|
30
|
+
(2012), http://dx.doi.org/10.1016/j.jsc.2012.07.006 @*
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
SEE ALSO: JMSConst_lib
|
|
35
|
+
PROCEDURES:
|
|
36
|
+
BorelCheck(ideal,r) checks whether the given ideal is Borel
|
|
37
|
+
JMarkedScheme(list, list, list, int) computes authomatically all the J-marked scheme
|
|
38
|
+
";
|
|
39
|
+
LIB "presolve.lib";
|
|
40
|
+
LIB "qhmoduli.lib";
|
|
41
|
+
LIB "monomialideal.lib";
|
|
42
|
+
////////////////////////////////////////////////////////////////////
|
|
43
|
+
proc BorelCheck(ideal Borid,def r)
|
|
44
|
+
"USAGE: BorelCheck(Borid,r); Borid ideal, r ring
|
|
45
|
+
RETURN: int: d
|
|
46
|
+
NOTE: Input must be a monomial ideal.
|
|
47
|
+
The procedure checks whether the Borel moves produce elements belonging to Borid.
|
|
48
|
+
EXAMPLE: example QuanteC; shows an example"
|
|
49
|
+
{
|
|
50
|
+
int n= nvars(r);
|
|
51
|
+
int b=1;
|
|
52
|
+
int i=1;
|
|
53
|
+
int k;
|
|
54
|
+
intvec v;
|
|
55
|
+
int j;
|
|
56
|
+
int u;
|
|
57
|
+
//b =bool. b=1 true; b=0 false
|
|
58
|
+
//we suppose true!
|
|
59
|
+
//i=counter on the elements of Borid
|
|
60
|
+
int s= size(Borid);
|
|
61
|
+
while(b && i<=s)
|
|
62
|
+
{
|
|
63
|
+
v=leadexp(Borid[i]);
|
|
64
|
+
j=1;
|
|
65
|
+
u=size(v);
|
|
66
|
+
while(b && j<=u)
|
|
67
|
+
{
|
|
68
|
+
if(v[j]!=0)
|
|
69
|
+
{
|
|
70
|
+
k=j+1;
|
|
71
|
+
while(b && k<=n)
|
|
72
|
+
{
|
|
73
|
+
b=(reduce(Borid[i]*var(k)/var(j),std(Borid))==0);
|
|
74
|
+
k++;
|
|
75
|
+
}
|
|
76
|
+
}
|
|
77
|
+
j++;
|
|
78
|
+
}
|
|
79
|
+
i++;
|
|
80
|
+
}
|
|
81
|
+
return(b);
|
|
82
|
+
}
|
|
83
|
+
example
|
|
84
|
+
{ "EXAMPLE:"; echo = 2;
|
|
85
|
+
ring r=0, (x,y,z),ip;
|
|
86
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
87
|
+
BorelCheck(Borid,r);
|
|
88
|
+
}
|
|
89
|
+
////////////////////////////////////////////////////////////////////
|
|
90
|
+
proc ArrangeBorel(ideal Borid)
|
|
91
|
+
"USAGE: ArrangeBorel(Borid); Borid ideal
|
|
92
|
+
RETURN: list: Input
|
|
93
|
+
NOTE: Input must be a monomial ideal, increasingly ordered by degree.
|
|
94
|
+
The procedure groups the monomials in a list of lists as needed to compute J-marked scheme.
|
|
95
|
+
// It also returns a list containing the size of every sublist generated.
|
|
96
|
+
EXAMPLE: example ArrangeBorel; shows an example"
|
|
97
|
+
{
|
|
98
|
+
list Input;
|
|
99
|
+
int j=1;
|
|
100
|
+
//list numero=1;
|
|
101
|
+
Input[1]=list(Borid[1]);
|
|
102
|
+
for(int i=2; i<=size(Borid); i++)
|
|
103
|
+
{
|
|
104
|
+
if(deg(Borid[i])!=deg(Borid[i-1]))
|
|
105
|
+
{
|
|
106
|
+
j++;
|
|
107
|
+
Input[j]=list();
|
|
108
|
+
// numero[j]=0;
|
|
109
|
+
}
|
|
110
|
+
Input[j]=insert(Input[j],Borid[i],size(Input[j]));
|
|
111
|
+
//numero[j]=numero[j]+1;
|
|
112
|
+
}
|
|
113
|
+
return(Input);
|
|
114
|
+
}
|
|
115
|
+
example
|
|
116
|
+
{ "EXAMPLE:"; echo = 2;
|
|
117
|
+
ring r=0, (x,y,z),ip;
|
|
118
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
119
|
+
ArrangeBorel(Borid);
|
|
120
|
+
}
|
|
121
|
+
////////////////////////////////////////////////////////////////////
|
|
122
|
+
proc NumNewVar(list B, list NumN)
|
|
123
|
+
"USAGE: NumNewVar(B,NumN); B list, NumN list
|
|
124
|
+
RETURN: int: d
|
|
125
|
+
NOTE: B is the grouped Borel, while NumN is a list containing the cardinalities of the obtained groups.
|
|
126
|
+
EXAMPLE: example NumNewVar; shows an example"
|
|
127
|
+
{
|
|
128
|
+
int d;
|
|
129
|
+
int j;
|
|
130
|
+
int i;
|
|
131
|
+
for(i=1; i<=size(B); i++)
|
|
132
|
+
{
|
|
133
|
+
d=d+size(B[i])*NumN[i];
|
|
134
|
+
}
|
|
135
|
+
return(d);
|
|
136
|
+
}
|
|
137
|
+
example
|
|
138
|
+
{ "EXAMPLE:"; echo = 2;
|
|
139
|
+
ring r=0, (x,y,z),ip;
|
|
140
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
141
|
+
list B= ArrangeBorel(Borid);
|
|
142
|
+
list NumN=7,8;
|
|
143
|
+
NumNewVar(B,NumN);
|
|
144
|
+
}
|
|
145
|
+
////////////////////////////////////////////////////////////////////
|
|
146
|
+
proc NewTails(ideal NI, int s)
|
|
147
|
+
"USAGE: NewTails(NI,s); NI ideal, s int
|
|
148
|
+
RETURN: list: M
|
|
149
|
+
NOTE: The procedure construct the tails of the required unknown J-marked polynomials.
|
|
150
|
+
EXAMPLE: example NewTails; shows an example"
|
|
151
|
+
{
|
|
152
|
+
poly p=0;
|
|
153
|
+
for(int i=1; i<=size(NI); i++)//Loop on the Groebner escalier
|
|
154
|
+
{
|
|
155
|
+
p=p+NI[i]*c(i+s); //multiply by c's
|
|
156
|
+
}
|
|
157
|
+
int u=size(NI);
|
|
158
|
+
list M=p,u;
|
|
159
|
+
return(M);
|
|
160
|
+
}
|
|
161
|
+
example
|
|
162
|
+
{ "EXAMPLE:"; echo = 2;
|
|
163
|
+
ring r=(0,c(1..7)), (x,y,z),ip;
|
|
164
|
+
ideal NI=x^2,x*y,y^2,z^2;
|
|
165
|
+
NewTails(NI,3);
|
|
166
|
+
}
|
|
167
|
+
////////////////////////////////////////////////////////////////////
|
|
168
|
+
proc ArrangeTails(list Q)
|
|
169
|
+
"USAGE: ArrangeTails(Q); Q list
|
|
170
|
+
RETURN: list: Q
|
|
171
|
+
NOTE: Constructs the final list of J-marked polynomials.
|
|
172
|
+
EXAMPLE: example FormaInput; shows an example"
|
|
173
|
+
{
|
|
174
|
+
jmp m=Q[1][1];
|
|
175
|
+
jmp M=Q[size(Q)][1];
|
|
176
|
+
int minimo=deg(m.h);
|
|
177
|
+
int massimo=deg(M.h);
|
|
178
|
+
int i=2;
|
|
179
|
+
jmp qi;
|
|
180
|
+
while(i<=size(Q))
|
|
181
|
+
{
|
|
182
|
+
qi=Q[i][1];
|
|
183
|
+
if(deg(qi.h)!=minimo+1)
|
|
184
|
+
{
|
|
185
|
+
Q=insert(Q,list(),i-1);//Insert empty list for all intermediate degree between the minimum and the maximum, not having polynomials.
|
|
186
|
+
}
|
|
187
|
+
minimo=minimo+1;
|
|
188
|
+
i=i+1;
|
|
189
|
+
}
|
|
190
|
+
return(Q);
|
|
191
|
+
}
|
|
192
|
+
example
|
|
193
|
+
{ "EXAMPLE:"; echo = 2;
|
|
194
|
+
ring r=0, (x,y,z),ip;
|
|
195
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
196
|
+
attrib(Borid,"isSB",1);
|
|
197
|
+
list B=ArrangeBorel(Borid);
|
|
198
|
+
list NumN;
|
|
199
|
+
list N;
|
|
200
|
+
int i;
|
|
201
|
+
int d;
|
|
202
|
+
for(i=1;i<=size(B);i++)
|
|
203
|
+
{
|
|
204
|
+
d=deg(B[i][1]);
|
|
205
|
+
N[i]=kbase(Borid,d);
|
|
206
|
+
NumN[i]=size(N[i]);
|
|
207
|
+
}
|
|
208
|
+
int qc=NumNewVar(B, NumN);
|
|
209
|
+
//Now I must define the NEW RING, putting the c parameters inside.
|
|
210
|
+
list L=ring_list(r);
|
|
211
|
+
list L2;
|
|
212
|
+
L2[1]=L[1];
|
|
213
|
+
L2[2]=list();
|
|
214
|
+
for(i=qc;i>=1;i--)
|
|
215
|
+
{
|
|
216
|
+
L2[2][i]="c("+string(i)+")";
|
|
217
|
+
}
|
|
218
|
+
L2[3]=list(list("ip",qc));
|
|
219
|
+
L2[4]=L[4];
|
|
220
|
+
L[1]=L2;
|
|
221
|
+
def K=ring(L);
|
|
222
|
+
setring(K);
|
|
223
|
+
ideal Borid=imap(r,Borid);
|
|
224
|
+
list N=imap(r,N);
|
|
225
|
+
list B=imap(r,B);
|
|
226
|
+
//NumN contains only scalars so I do not imap it
|
|
227
|
+
int j;
|
|
228
|
+
list Q;
|
|
229
|
+
int s;
|
|
230
|
+
list M;
|
|
231
|
+
jmp pp;
|
|
232
|
+
for(i=1;i<=size(B);i++)
|
|
233
|
+
{
|
|
234
|
+
Q[i]=list();
|
|
235
|
+
for(j=1;j<=size(B[i]);j++)
|
|
236
|
+
{
|
|
237
|
+
M=NewTails(N[i],s);
|
|
238
|
+
pp.h=B[i][j];
|
|
239
|
+
pp.t=M[1];
|
|
240
|
+
Q[i][j]=pp;
|
|
241
|
+
s=s+M[2];
|
|
242
|
+
}
|
|
243
|
+
}
|
|
244
|
+
list P=ArrangeTails(Q);
|
|
245
|
+
int ll;
|
|
246
|
+
int uu;
|
|
247
|
+
jmp Pp;
|
|
248
|
+
for(ll=1; ll<=size(P);ll++)
|
|
249
|
+
{
|
|
250
|
+
for(uu=1;uu<=size(P[ll]);uu++)
|
|
251
|
+
{Pp=P[ll][uu]; Pp.h; Pp.t;}
|
|
252
|
+
}
|
|
253
|
+
}
|
|
254
|
+
////////////////////////////////////////////////////////////////////
|
|
255
|
+
static proc mod_init()
|
|
256
|
+
{
|
|
257
|
+
newstruct("jmp", "poly h, poly t");
|
|
258
|
+
}
|
|
259
|
+
////////////////////////////////////////////////////////////////////
|
|
260
|
+
proc Terns(list G, int c)
|
|
261
|
+
"USAGE: Terns(G,c); G list, c int
|
|
262
|
+
RETURN: list: T
|
|
263
|
+
NOTE: Input is a list of J-marked polynomials
|
|
264
|
+
(arranged by degree) and an integer.
|
|
265
|
+
EXAMPLE: example Terns; shows an example"
|
|
266
|
+
{
|
|
267
|
+
list T=list();
|
|
268
|
+
int z;
|
|
269
|
+
for(int k=1; k<=size(G[c]);k=k+1)
|
|
270
|
+
{
|
|
271
|
+
//Loop on G[c] making positions of polynomials in G[c]
|
|
272
|
+
z=size(T);
|
|
273
|
+
T=insert(T,list(1,c,k) ,size(T));
|
|
274
|
+
}
|
|
275
|
+
return(T);
|
|
276
|
+
}
|
|
277
|
+
example
|
|
278
|
+
{ "EXAMPLE:"; echo = 2;
|
|
279
|
+
ring r=0, (x,y,z), ip;
|
|
280
|
+
jmp r1;
|
|
281
|
+
r1.h=z^3;
|
|
282
|
+
r1.t=poly(0);
|
|
283
|
+
jmp r2;
|
|
284
|
+
r2.h=z^2*y;
|
|
285
|
+
r2.t=poly(0);
|
|
286
|
+
jmp r3;
|
|
287
|
+
r3.h=z*y^2 ;
|
|
288
|
+
r3.t=-x^2*y;
|
|
289
|
+
jmp r4;
|
|
290
|
+
r4.h=y^5;
|
|
291
|
+
r4.t=poly(0);
|
|
292
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
293
|
+
Terns(G2F, 1);
|
|
294
|
+
Terns(G2F, 2);
|
|
295
|
+
}
|
|
296
|
+
////////////////////////////////////////////////////////////////////
|
|
297
|
+
proc VConst(list G, int c)
|
|
298
|
+
"USAGE: VConst(G, c); G list, c int
|
|
299
|
+
RETURN: list: V
|
|
300
|
+
NOTES: this procedure computes the Vm polynomials following the
|
|
301
|
+
algorithm in [CR],but it only keeps in memory the monomials by
|
|
302
|
+
which the G's must be multiplied and their positions.
|
|
303
|
+
EXAMPLE: example VConst; shows an example"
|
|
304
|
+
{
|
|
305
|
+
jmp f=G[1][1];
|
|
306
|
+
int aJ=deg(f.h);
|
|
307
|
+
// minimal degree of polynomials in G
|
|
308
|
+
list V=list();
|
|
309
|
+
V[1]=Terns(G,1);
|
|
310
|
+
// V[1]=G[1] (keeping in memory only [head, position])
|
|
311
|
+
//print(c-aJ+1);
|
|
312
|
+
int i;
|
|
313
|
+
int j;
|
|
314
|
+
int m;
|
|
315
|
+
list OO;
|
|
316
|
+
jmp p;
|
|
317
|
+
for(m=2; m<=c-aJ+1; m=m+1)
|
|
318
|
+
{
|
|
319
|
+
//print("entro nel form");
|
|
320
|
+
if(m>size(G))
|
|
321
|
+
{V[m]=list();
|
|
322
|
+
//If we have not G[m] we insert a list()
|
|
323
|
+
//print("vuota prima");
|
|
324
|
+
}
|
|
325
|
+
else
|
|
326
|
+
{V[m]=Terns(G,m);
|
|
327
|
+
//print("piena prima");
|
|
328
|
+
}
|
|
329
|
+
for(i=1; i<nvars(basering)+1; i=i+1)
|
|
330
|
+
{
|
|
331
|
+
//print("entrata fori");
|
|
332
|
+
//print(i);
|
|
333
|
+
for(j=1; j<=size(V[m-1]); j=j+1)
|
|
334
|
+
{
|
|
335
|
+
p=G[V[m-1][j][2]][V[m-1][j][3]];
|
|
336
|
+
if(var(i)<=Minimus(variables(V[m-1][j][1]*p.h)))
|
|
337
|
+
{
|
|
338
|
+
//Can I multiply by the current variable?
|
|
339
|
+
OO=list(var(i)*V[m-1][j][1],V[m-1][j][2],V[m-1][j][3]);
|
|
340
|
+
V[m]=insert(V[m], OO ,size(V[m]));
|
|
341
|
+
}
|
|
342
|
+
}
|
|
343
|
+
}
|
|
344
|
+
}
|
|
345
|
+
return (V);}
|
|
346
|
+
example
|
|
347
|
+
{ "EXAMPLE:"; echo = 2;
|
|
348
|
+
ring r=0, (x,y,z), ip;
|
|
349
|
+
jmp r1;
|
|
350
|
+
r1.h=z^3;
|
|
351
|
+
r1.t=poly(0);
|
|
352
|
+
jmp r2;
|
|
353
|
+
r2.h=z^2*y;
|
|
354
|
+
r2.t=poly(0);
|
|
355
|
+
jmp r3;
|
|
356
|
+
r3.h=z*y^2 ;
|
|
357
|
+
r3.t=-x^2*y;
|
|
358
|
+
jmp r4;
|
|
359
|
+
r4.h=y^5;
|
|
360
|
+
r4.t=poly(0);
|
|
361
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
362
|
+
VConst(G2F,4,basering);}
|
|
363
|
+
////////////////////////////////////////////////////////////////////
|
|
364
|
+
proc Minimus(ideal L)
|
|
365
|
+
"USAGE: Minimus(L); G list, c int
|
|
366
|
+
RETURN: list: V
|
|
367
|
+
NOTES: it returns the minimal variable generating the ideal L;
|
|
368
|
+
input must be an ideal generated by variables.
|
|
369
|
+
EXAMPLE: example Minimus; shows an example"
|
|
370
|
+
{
|
|
371
|
+
poly min=L[1];
|
|
372
|
+
int i;
|
|
373
|
+
for(i=2;i<=size(L); i++)
|
|
374
|
+
{
|
|
375
|
+
if(L[i]<min){min=L[i];}
|
|
376
|
+
}
|
|
377
|
+
return(min);
|
|
378
|
+
}
|
|
379
|
+
example
|
|
380
|
+
{ "EXAMPLE:"; echo = 2;
|
|
381
|
+
ring r=0, (x,y,z), ip;
|
|
382
|
+
ideal I=y,x,z;
|
|
383
|
+
Minimus(I);
|
|
384
|
+
}
|
|
385
|
+
////////////////////////////////////////////////////////////////////
|
|
386
|
+
proc Maximus(ideal L)
|
|
387
|
+
"USAGE: Maximus(L); G list, c int
|
|
388
|
+
RETURN: list: V
|
|
389
|
+
NOTES: it returns the maximal variable generating the ideal L
|
|
390
|
+
input must be an ideal generated by variables.
|
|
391
|
+
EXAMPLE: example Maximus; shows an example"
|
|
392
|
+
{
|
|
393
|
+
poly max=L[1];
|
|
394
|
+
int i;
|
|
395
|
+
for(i=2;i<=size(L); i++)
|
|
396
|
+
{
|
|
397
|
+
if(L[i]>max){max=L[i];}
|
|
398
|
+
}
|
|
399
|
+
return(max);
|
|
400
|
+
}
|
|
401
|
+
example
|
|
402
|
+
{ "EXAMPLE:"; echo = 2;
|
|
403
|
+
ring r=0, (x,y,z), ip;
|
|
404
|
+
ideal I=y,x,z;
|
|
405
|
+
Maximus(I);
|
|
406
|
+
}
|
|
407
|
+
////////////////////////////////////////////////////////////////////
|
|
408
|
+
proc GPolyMin(jmp P, jmp Q)
|
|
409
|
+
"USAGE: GPolyMin(P,Q); P jmp, Q jmp
|
|
410
|
+
RETURN: int: d
|
|
411
|
+
EXAMPLE: example GPolyMin; shows an example"
|
|
412
|
+
{
|
|
413
|
+
int d=1;
|
|
414
|
+
//-1=lower, 0=equal, 1=higher
|
|
415
|
+
//At the beginning suppose Q is higher
|
|
416
|
+
if(deg(P.h)<deg(Q.h))
|
|
417
|
+
{
|
|
418
|
+
//Compare degrees;
|
|
419
|
+
d=-1;
|
|
420
|
+
//print("Per Grado");
|
|
421
|
+
}
|
|
422
|
+
if(deg(P.h)==deg(Q.h))
|
|
423
|
+
{
|
|
424
|
+
if(P.h==Q.h)
|
|
425
|
+
{
|
|
426
|
+
if(P.t==Q.t)
|
|
427
|
+
{
|
|
428
|
+
//head=tail
|
|
429
|
+
d=0;
|
|
430
|
+
//print("Uguali");
|
|
431
|
+
}
|
|
432
|
+
}
|
|
433
|
+
else
|
|
434
|
+
{
|
|
435
|
+
//print(Minimus(variables(P.h/gcdMon(P.h,Q.h))));
|
|
436
|
+
//print(Minimus(variables(Q.h/gcdMon(P.h,Q.h))));
|
|
437
|
+
if(Minimus(variables(P.h/gcdMon(P.h,Q.h)))<Minimus(variables(Q.h/gcdMon(P.h,Q.h))))
|
|
438
|
+
{
|
|
439
|
+
d=-1;
|
|
440
|
+
//print("Per Indice");
|
|
441
|
+
}
|
|
442
|
+
}
|
|
443
|
+
}
|
|
444
|
+
return(d);
|
|
445
|
+
}
|
|
446
|
+
example
|
|
447
|
+
{ "EXAMPLE:"; echo = 2;
|
|
448
|
+
ring r=0, (x,y,z), ip;
|
|
449
|
+
jmp p1;
|
|
450
|
+
p1.h=poly(1);
|
|
451
|
+
p1.t=poly(1);
|
|
452
|
+
jmp p2;
|
|
453
|
+
p2.h=x^2;
|
|
454
|
+
p2.t=poly(0);
|
|
455
|
+
jmp p3;
|
|
456
|
+
p3.h=x;
|
|
457
|
+
p3.t=poly(0);
|
|
458
|
+
GPolyMin(p1,p2);
|
|
459
|
+
GPolyMin(p2, p3);
|
|
460
|
+
GPolyMin(p2,p2);
|
|
461
|
+
}
|
|
462
|
+
////////////////////////////////////////////////////////////////////
|
|
463
|
+
proc TernComparer(list A, list B, list G)
|
|
464
|
+
"USAGE: TernComparer(A,B,C); A list, B list, G list
|
|
465
|
+
RETURN: int: d
|
|
466
|
+
NOTE: A and B are terns, while G is the given list of
|
|
467
|
+
J-marked polynomials.
|
|
468
|
+
EXAMPLE: example TernComparer; shows an example"
|
|
469
|
+
{
|
|
470
|
+
int d=-1;
|
|
471
|
+
//Start: A<B
|
|
472
|
+
if(A[1]==B[1])
|
|
473
|
+
{
|
|
474
|
+
if(A[2]==B[2]&& A[3]==B[3])
|
|
475
|
+
{
|
|
476
|
+
//print("Uguali");
|
|
477
|
+
d=0;
|
|
478
|
+
}
|
|
479
|
+
else
|
|
480
|
+
{
|
|
481
|
+
jmp g1=G[A[2]][A[3]];
|
|
482
|
+
jmp g2=G[B[2]][B[3]];
|
|
483
|
+
if(GPolyMin(g1, g2)==1)
|
|
484
|
+
{
|
|
485
|
+
//print("Maggiore per il G");
|
|
486
|
+
d=1;
|
|
487
|
+
}
|
|
488
|
+
}
|
|
489
|
+
}
|
|
490
|
+
else
|
|
491
|
+
{
|
|
492
|
+
if(A[1]>B[1])
|
|
493
|
+
{
|
|
494
|
+
//the ordering MUST be ip
|
|
495
|
+
//print("Maggiore per Lex");
|
|
496
|
+
d=1;
|
|
497
|
+
}
|
|
498
|
+
}
|
|
499
|
+
return(d);
|
|
500
|
+
}
|
|
501
|
+
example
|
|
502
|
+
{ "EXAMPLE:"; echo = 2;
|
|
503
|
+
ring r=0, (x,y,z), ip;
|
|
504
|
+
jmp r1;
|
|
505
|
+
r1.h=z^3;
|
|
506
|
+
r1.t=poly(0);
|
|
507
|
+
jmp r2;
|
|
508
|
+
r2.h=z^2*y;
|
|
509
|
+
r2.t=poly(0);
|
|
510
|
+
jmp r3;
|
|
511
|
+
r3.h=z*y^2 ;
|
|
512
|
+
r3.t=-x^2*y;
|
|
513
|
+
jmp r4;
|
|
514
|
+
r4.h=y^5;
|
|
515
|
+
r4.t=poly(0);
|
|
516
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
517
|
+
TernComparer([1,1,1],[x,1,1],G2F);
|
|
518
|
+
}
|
|
519
|
+
////////////////////////////////////////////////////////////////////
|
|
520
|
+
proc MinimalV(list V, list G)
|
|
521
|
+
"USAGE: Minimal(V,G); V list, G list
|
|
522
|
+
RETURN: int: R
|
|
523
|
+
NOTE: Input=list(terns), G.
|
|
524
|
+
EXAMPLE: example MinimalV; shows an example"
|
|
525
|
+
{
|
|
526
|
+
//Minimal element for a given degree
|
|
527
|
+
list R=list();
|
|
528
|
+
list MIN=V[1];
|
|
529
|
+
int h=1;
|
|
530
|
+
int i;
|
|
531
|
+
for(i=2; i<=size(V); i++)
|
|
532
|
+
{
|
|
533
|
+
//I consider the first as minimum
|
|
534
|
+
//If I find something smaller I change minimum
|
|
535
|
+
if(TernComparer(V[i],MIN,G)<=0)
|
|
536
|
+
{
|
|
537
|
+
MIN=V[i];
|
|
538
|
+
h=i;
|
|
539
|
+
}
|
|
540
|
+
}
|
|
541
|
+
//Return: [minimum,position of the minimum]
|
|
542
|
+
R=MIN,h;
|
|
543
|
+
return(R);
|
|
544
|
+
}
|
|
545
|
+
example
|
|
546
|
+
{ "EXAMPLE:"; echo = 2;
|
|
547
|
+
ring r=0, (x,y,z), ip;
|
|
548
|
+
jmp r1;
|
|
549
|
+
r1.h=z^3;
|
|
550
|
+
r1.t=poly(0);
|
|
551
|
+
jmp r2;
|
|
552
|
+
r2.h=z^2*y;
|
|
553
|
+
r2.t=poly(0);
|
|
554
|
+
jmp r3;
|
|
555
|
+
r3.h=z*y^2 ;
|
|
556
|
+
r3.t=-x^2*y;
|
|
557
|
+
jmp r4;
|
|
558
|
+
r4.h=y^5;
|
|
559
|
+
r4.t=poly(0);
|
|
560
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
561
|
+
MinimalV(VConst(G2F,4,basering)[1],G2F);
|
|
562
|
+
}
|
|
563
|
+
////////////////////////////////////////////////////////////////////
|
|
564
|
+
proc OrderV(list V,list G,list R)
|
|
565
|
+
"USAGE: Ordinare(V,G,R); V list, G list, R list
|
|
566
|
+
RETURN: list: R
|
|
567
|
+
NOTE: Input: Vm,G,emptylist
|
|
568
|
+
EXAMPLE: example Ordinare; shows an example"
|
|
569
|
+
{
|
|
570
|
+
//Order V[m]
|
|
571
|
+
//R will contain results but at the beginning it is empty
|
|
572
|
+
list M=list();
|
|
573
|
+
if(size(V)==1)
|
|
574
|
+
{
|
|
575
|
+
R=insert(R,V[1],size(R));
|
|
576
|
+
}
|
|
577
|
+
else
|
|
578
|
+
{
|
|
579
|
+
M=MinimalV(V,G);
|
|
580
|
+
R=insert(R,M[1],size(R));
|
|
581
|
+
V=delete(V,M[2]);
|
|
582
|
+
//recursive call
|
|
583
|
+
R=OrderV(V,G,R);
|
|
584
|
+
}
|
|
585
|
+
return(R);
|
|
586
|
+
}
|
|
587
|
+
example
|
|
588
|
+
{ "EXAMPLE:"; echo = 2;
|
|
589
|
+
ring r=0, (x,y,z), ip;
|
|
590
|
+
jmp r1;
|
|
591
|
+
r1.h=z^3;
|
|
592
|
+
r1.t=poly(0);
|
|
593
|
+
jmp r2;
|
|
594
|
+
r2.h=z^2*y;
|
|
595
|
+
r2.t=poly(0);
|
|
596
|
+
jmp r3;
|
|
597
|
+
r3.h=z*y^2;
|
|
598
|
+
r3.t=-x^2*y;
|
|
599
|
+
jmp r4;
|
|
600
|
+
r4.h=y^5;
|
|
601
|
+
r4.t=poly(0);
|
|
602
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
603
|
+
OrderV(VConst(G2F,4,r)[1],G2F,list());
|
|
604
|
+
}
|
|
605
|
+
////////////////////////////////////////////////////////////////////
|
|
606
|
+
proc StartOrderingV(list V,list G)
|
|
607
|
+
"USAGE: StartOrderingV(V,G); V list, G list
|
|
608
|
+
RETURN: list: R
|
|
609
|
+
NOTE: Input Vm,G. This procedure uses OrderV to get
|
|
610
|
+
the ordered polynomials as in [BCLR].
|
|
611
|
+
EXAMPLE: example StartOrderingV; shows an example"
|
|
612
|
+
{
|
|
613
|
+
return(OrderV(V,G, list()));
|
|
614
|
+
}
|
|
615
|
+
example
|
|
616
|
+
{ "EXAMPLE:"; echo = 2;
|
|
617
|
+
ring r=0, (x,y,z), ip;
|
|
618
|
+
jmp r1;
|
|
619
|
+
r1.h=z^3;
|
|
620
|
+
r1.t=poly(0);
|
|
621
|
+
jmp r2;
|
|
622
|
+
r2.h=z^2*y;
|
|
623
|
+
r2.t=poly(0);
|
|
624
|
+
jmp r3;
|
|
625
|
+
r3.h=z*y^2;
|
|
626
|
+
r3.t=-x^2*y;
|
|
627
|
+
jmp r4;
|
|
628
|
+
r4.h=y^5;
|
|
629
|
+
r4.t=poly(0);
|
|
630
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
631
|
+
StartOrderingV(VConst(G2F,4,basering)[1],G2F);
|
|
632
|
+
}
|
|
633
|
+
////////////////////////////////////////////////////////////////////
|
|
634
|
+
proc MultiplyJmP(list L, list G)
|
|
635
|
+
"USAGE: MultiplyJmP(L,G); L list, G list
|
|
636
|
+
RETURN: jmp: K
|
|
637
|
+
NOTE: Input: a 3-ple,G. It performs the product associated
|
|
638
|
+
to the 3-uple.
|
|
639
|
+
EXAMPLE: example MultiplyJmP; shows an example"
|
|
640
|
+
{
|
|
641
|
+
jmp g=G[L[2]][L[3]];
|
|
642
|
+
jmp K;
|
|
643
|
+
K.h=L[1]*g.h;
|
|
644
|
+
K.t=L[1]*g.t;
|
|
645
|
+
return(K);
|
|
646
|
+
}
|
|
647
|
+
example
|
|
648
|
+
{ "EXAMPLE:"; echo = 2;
|
|
649
|
+
ring r=0, (x,y,z), ip;
|
|
650
|
+
list P=x^2,1,1;
|
|
651
|
+
jmp r1;
|
|
652
|
+
r1.h=z^3;
|
|
653
|
+
r1.t=poly(0);
|
|
654
|
+
jmp r2;
|
|
655
|
+
r2.h=z^2*y;
|
|
656
|
+
r2.t=poly(0);
|
|
657
|
+
jmp r3;
|
|
658
|
+
r3.h=z*y^2 ;
|
|
659
|
+
r3.t=-x^2*y;
|
|
660
|
+
jmp r4;
|
|
661
|
+
r4.h=y^5;
|
|
662
|
+
r4.t=poly(0);
|
|
663
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
664
|
+
MultiplyJmP(P,G2F);
|
|
665
|
+
}
|
|
666
|
+
////////////////////////////////////////////////////////////////////
|
|
667
|
+
//proc JmpIdeal(list V,r)
|
|
668
|
+
//"USAGE: JmpIdeal(V); V list
|
|
669
|
+
//RETURN: ideal: I
|
|
670
|
+
//NOTES: this procedure takes a list of Vm's of a certain degree
|
|
671
|
+
//and construct their ideal, multiplying the head by the weighted
|
|
672
|
+
//variable t.
|
|
673
|
+
//EXAMPLE: example JmpIdeal; shows an example"
|
|
674
|
+
//{
|
|
675
|
+
//ideal I=0;
|
|
676
|
+
//int i;
|
|
677
|
+
//if (size(V)!=0)
|
|
678
|
+
// {
|
|
679
|
+
// list M=list();
|
|
680
|
+
//jmp g;
|
|
681
|
+
// for(i=1; i<= size(V); i++)
|
|
682
|
+
// {
|
|
683
|
+
// g=V[i];
|
|
684
|
+
// g.h=(g.h)*t;
|
|
685
|
+
// M[i]=g.h+g.t;
|
|
686
|
+
// }
|
|
687
|
+
// I=M[1..size(M)];
|
|
688
|
+
//attrib(I,"isSB",1);
|
|
689
|
+
// }
|
|
690
|
+
//return(I);
|
|
691
|
+
//}
|
|
692
|
+
//example
|
|
693
|
+
//{ "EXAMPLE:"; echo = 2;
|
|
694
|
+
// ring r=0, (x,y,z,t), ip;
|
|
695
|
+
//jmp r1;
|
|
696
|
+
//r1.h=z^3;
|
|
697
|
+
//r1.t=poly(0);
|
|
698
|
+
//jmp r2;
|
|
699
|
+
//r2.h=z^2*y;
|
|
700
|
+
//r2.t=poly(0);
|
|
701
|
+
//jmp r3;
|
|
702
|
+
//r3.h=z*y^2 ;
|
|
703
|
+
//r3.t=-x^2*y;
|
|
704
|
+
//jmp r4;
|
|
705
|
+
//r4.h=y^5;
|
|
706
|
+
//r4.t=poly(0);
|
|
707
|
+
//list G2F=list(list(r1,r2,r3),list(r4));
|
|
708
|
+
//JmpIdeal(VConst(G2F,6,r)[1],r);
|
|
709
|
+
//}
|
|
710
|
+
////////////////////////////////////////////////////////////////////
|
|
711
|
+
proc NewWeight(int n)
|
|
712
|
+
"USAGE: NewWeight(n); n int
|
|
713
|
+
RETURN: intvec: u
|
|
714
|
+
EXAMPLE: example NewWeight; shows an example"
|
|
715
|
+
{
|
|
716
|
+
intvec u=0;
|
|
717
|
+
u[n]=1;
|
|
718
|
+
return(u);
|
|
719
|
+
}
|
|
720
|
+
example
|
|
721
|
+
{ "EXAMPLE:"; echo = 2;
|
|
722
|
+
NewWeight(3);
|
|
723
|
+
}
|
|
724
|
+
////////////////////////////////////////////////////////////////////
|
|
725
|
+
proc FinalVm(list V1 , list G1 , def r)
|
|
726
|
+
"USAGE: FinalVm(V1, G1, r); V1 list, G1 list , r
|
|
727
|
+
RETURN: intvec: u
|
|
728
|
+
EXAMPLE: example FinalVm; shows an example"
|
|
729
|
+
{
|
|
730
|
+
//multiply and reduce, degree by degree
|
|
731
|
+
intvec u=NewWeight(nvars(r)+1);
|
|
732
|
+
list L=ring_list(r);
|
|
733
|
+
L[2]=insert(L[2],"t",size(L[2]));
|
|
734
|
+
list ordlist="a",u;
|
|
735
|
+
L[3]=insert(L[3],ordlist,0);
|
|
736
|
+
def H=ring(L);
|
|
737
|
+
list M=list();
|
|
738
|
+
jmp p;
|
|
739
|
+
list N;
|
|
740
|
+
poly q;
|
|
741
|
+
poly s;
|
|
742
|
+
int i;
|
|
743
|
+
int j;
|
|
744
|
+
for(i=1; i<=size(G1); i++)
|
|
745
|
+
{
|
|
746
|
+
N=list();
|
|
747
|
+
for(j=1; j<=size(G1[i]); j++)
|
|
748
|
+
{
|
|
749
|
+
p=G1[i][j];
|
|
750
|
+
q=p.h;
|
|
751
|
+
s=p.t;
|
|
752
|
+
N[j]=list(q,s);
|
|
753
|
+
}
|
|
754
|
+
M[i]=N;
|
|
755
|
+
}
|
|
756
|
+
p.h=poly(0);
|
|
757
|
+
p.t=poly(0);
|
|
758
|
+
setring H;
|
|
759
|
+
list R=list();
|
|
760
|
+
list S=list();
|
|
761
|
+
//print("anello definito");
|
|
762
|
+
list V=imap(r,V1);
|
|
763
|
+
list MM=imap(r,M);
|
|
764
|
+
list G=list();
|
|
765
|
+
list N=list();
|
|
766
|
+
for(i=1; i<=size(MM); i++)
|
|
767
|
+
{
|
|
768
|
+
for(j=1; j<=size(MM[i]); j++)
|
|
769
|
+
{
|
|
770
|
+
p.h=MM[i][j][1];
|
|
771
|
+
p.t=MM[i][j][2];
|
|
772
|
+
N[j]=p;
|
|
773
|
+
}
|
|
774
|
+
G[i]=N;
|
|
775
|
+
}
|
|
776
|
+
ideal I=0;
|
|
777
|
+
jmp LL;
|
|
778
|
+
jmp UU;
|
|
779
|
+
//print("pronta x ridurre");
|
|
780
|
+
for(i=1; i<=size(V);i++)
|
|
781
|
+
{
|
|
782
|
+
//print("sono a V di");
|
|
783
|
+
//print(i);
|
|
784
|
+
R[i]=list();
|
|
785
|
+
S[i]=list();
|
|
786
|
+
I=0;
|
|
787
|
+
attrib(I,"isSB",1);
|
|
788
|
+
for(j=1;j<=size(V[i]); j++)
|
|
789
|
+
{
|
|
790
|
+
//print(j);
|
|
791
|
+
//print("esimo elem");
|
|
792
|
+
LL=MultiplyJmP(V[i][j],G);
|
|
793
|
+
LL.t=reduce(t*LL.t,I);
|
|
794
|
+
//I only reduce the tail
|
|
795
|
+
//print(LL.t);
|
|
796
|
+
LL.t=subst(LL.t,t,1);
|
|
797
|
+
S[i]=insert(S[i],LL,size(S[i]));
|
|
798
|
+
LL.h=t*LL.h;
|
|
799
|
+
R[i]=insert(R[i],LL,size(R[i]));
|
|
800
|
+
UU=R[i][j];
|
|
801
|
+
I=I+ideal(UU.h+UU.t);
|
|
802
|
+
attrib(I,"isSB",1);
|
|
803
|
+
}
|
|
804
|
+
}
|
|
805
|
+
//print("ho ridotto");
|
|
806
|
+
list M=list();
|
|
807
|
+
poly q;
|
|
808
|
+
poly s;
|
|
809
|
+
for(i=1; i<=size(S); i++)
|
|
810
|
+
{
|
|
811
|
+
N=list();
|
|
812
|
+
for(j=1; j<=size(S[i]); j++)
|
|
813
|
+
{
|
|
814
|
+
p=S[i][j];
|
|
815
|
+
q=p.h;
|
|
816
|
+
s=p.t;
|
|
817
|
+
N[j]=list(q,s);
|
|
818
|
+
}
|
|
819
|
+
M[i]=N;
|
|
820
|
+
}
|
|
821
|
+
p.h=poly(0);
|
|
822
|
+
p.t=poly(0);
|
|
823
|
+
setring r;
|
|
824
|
+
def MM=imap(H,M);
|
|
825
|
+
list MMM=list();
|
|
826
|
+
for(i=1; i<=size(MM); i++)
|
|
827
|
+
{
|
|
828
|
+
N=list();
|
|
829
|
+
for(j=1; j<=size(MM[i]); j++)
|
|
830
|
+
{
|
|
831
|
+
p.h=MM[i][j][1];
|
|
832
|
+
p.t=MM[i][j][2];
|
|
833
|
+
N[j]=p;
|
|
834
|
+
}
|
|
835
|
+
MMM[i]=N;
|
|
836
|
+
}
|
|
837
|
+
return(MMM);
|
|
838
|
+
}
|
|
839
|
+
example
|
|
840
|
+
{ "EXAMPLE:"; echo = 2;
|
|
841
|
+
ring r=0, (x,y,z), ip;
|
|
842
|
+
jmp r1;
|
|
843
|
+
r1.h=z^3;
|
|
844
|
+
r1.t=poly(0);
|
|
845
|
+
jmp r2;
|
|
846
|
+
r2.h=z^2*y;
|
|
847
|
+
r2.t=poly(0);
|
|
848
|
+
jmp r3;
|
|
849
|
+
r3.h=z*y^2 ;
|
|
850
|
+
r3.t=-x^2*y;
|
|
851
|
+
jmp r4;
|
|
852
|
+
r4.h=y^5;
|
|
853
|
+
r4.t=poly(0);
|
|
854
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
855
|
+
FinalVm(VConst(G2F,6,r) , G2F, r);
|
|
856
|
+
}
|
|
857
|
+
////////////////////////////////////////////////////////////////////
|
|
858
|
+
proc VmConstructor(list G, int c,def r)
|
|
859
|
+
"USAGE: VmConstructor(G,c); G list, c int
|
|
860
|
+
RETURN: list: R
|
|
861
|
+
NOTE: At the end separated by degree.
|
|
862
|
+
EXAMPLE: example VmConstructor; shows an example"
|
|
863
|
+
{
|
|
864
|
+
list V=list();
|
|
865
|
+
V= VConst(G,c);
|
|
866
|
+
//print("VConst");
|
|
867
|
+
//V non ordered
|
|
868
|
+
list L=list();
|
|
869
|
+
list R=list();
|
|
870
|
+
int i;
|
|
871
|
+
// head, position
|
|
872
|
+
//order the different degrees
|
|
873
|
+
for(i=1; i<=size(V); i++)
|
|
874
|
+
{
|
|
875
|
+
L[i]=StartOrderingV(V[i], G);
|
|
876
|
+
}
|
|
877
|
+
//print("finito ordine");
|
|
878
|
+
//multiply and reduce
|
|
879
|
+
//print("Ordinare");
|
|
880
|
+
//R=FinalVm(L, G, r);
|
|
881
|
+
//print("FinalVm");
|
|
882
|
+
return(L);
|
|
883
|
+
}
|
|
884
|
+
example
|
|
885
|
+
{ "EXAMPLE:"; echo = 2;
|
|
886
|
+
ring r=0, (x,y,z), ip;
|
|
887
|
+
jmp r1;
|
|
888
|
+
r1.h=z^3;
|
|
889
|
+
r1.t=poly(0);
|
|
890
|
+
jmp r2;
|
|
891
|
+
r2.h=z^2*y;
|
|
892
|
+
r2.t=poly(0);
|
|
893
|
+
jmp r3;
|
|
894
|
+
r3.h=z*y^2 ;
|
|
895
|
+
r3.t=-x^2*y;
|
|
896
|
+
jmp r4;
|
|
897
|
+
r4.h=y^5;
|
|
898
|
+
r4.t=poly(0);
|
|
899
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
900
|
+
VmConstructor(G2F,6,r);
|
|
901
|
+
}
|
|
902
|
+
////////////////////////////////////////////////////////////////////
|
|
903
|
+
proc EKCouples(jmp A, jmp B)
|
|
904
|
+
"USAGE: CoppiaEK(A,B); A list, B list
|
|
905
|
+
RETURN: list: L
|
|
906
|
+
NOTE: At the end the monomials involved by EK.
|
|
907
|
+
EXAMPLE: example EKCouples; shows an example"
|
|
908
|
+
{
|
|
909
|
+
poly E;
|
|
910
|
+
list L=0,0;
|
|
911
|
+
string s=varstr(basering);
|
|
912
|
+
list VVV=varstr(basering);
|
|
913
|
+
//L will contain results
|
|
914
|
+
poly h=Minimus(variables(A.h));
|
|
915
|
+
//print(h);
|
|
916
|
+
int l=findvars(h)[2][1];
|
|
917
|
+
if(l!=nvars(basering))
|
|
918
|
+
{
|
|
919
|
+
//print("vero");
|
|
920
|
+
//print(l);
|
|
921
|
+
for(int j=l+1;j<=nvars(basering); j++)
|
|
922
|
+
{
|
|
923
|
+
//print("entrata");
|
|
924
|
+
//print(var(j));
|
|
925
|
+
E=var(j)*A.h/B.h;
|
|
926
|
+
//Candidate for * product
|
|
927
|
+
//print(E);
|
|
928
|
+
if(E!=0)
|
|
929
|
+
{
|
|
930
|
+
//print("primo if passato");
|
|
931
|
+
if(Minimus(variables(B.h))>=Maximus(variables(E)))
|
|
932
|
+
{
|
|
933
|
+
//Does it work with * ?
|
|
934
|
+
//print("secondo if passato");
|
|
935
|
+
L[1]=j;
|
|
936
|
+
L[2]=E;
|
|
937
|
+
break;
|
|
938
|
+
}
|
|
939
|
+
}
|
|
940
|
+
}
|
|
941
|
+
}
|
|
942
|
+
return (L);
|
|
943
|
+
}
|
|
944
|
+
example
|
|
945
|
+
{ "EXAMPLE:"; echo = 2;
|
|
946
|
+
ring r=0, (x,y,z), ip;
|
|
947
|
+
jmp A;
|
|
948
|
+
A.h=y*z^2;
|
|
949
|
+
A.t=poly(0);
|
|
950
|
+
jmp B;
|
|
951
|
+
B.h=y^2*z;
|
|
952
|
+
B.t=poly(0);
|
|
953
|
+
EKCouples(A,B);
|
|
954
|
+
EKCouples(B,A);
|
|
955
|
+
}
|
|
956
|
+
////////////////////////////////////////////////////////////////////
|
|
957
|
+
proc EKPolynomials(list G)
|
|
958
|
+
"USAGE: EKPolynomials(G); G list
|
|
959
|
+
RETURN: list: EK, list: D
|
|
960
|
+
NOTE: At the end EK polynomials and their degrees
|
|
961
|
+
|
|
962
|
+
EXAMPLE: example EKPolynomials; shows an example"
|
|
963
|
+
{
|
|
964
|
+
list D=list();
|
|
965
|
+
list C=list();
|
|
966
|
+
list N=0,0;
|
|
967
|
+
list EK=list();
|
|
968
|
+
int i;
|
|
969
|
+
int j;
|
|
970
|
+
int k;
|
|
971
|
+
int l;
|
|
972
|
+
jmp p;
|
|
973
|
+
for(i=1; i<=size(G); i++)
|
|
974
|
+
{
|
|
975
|
+
for(j=1; j<=size(G[i]); j++)
|
|
976
|
+
{
|
|
977
|
+
for(k=1; k<=size(G); k++)
|
|
978
|
+
{
|
|
979
|
+
for(l=1; l<=size(G[k]); l++)
|
|
980
|
+
{
|
|
981
|
+
if(i!=k||j!=l)
|
|
982
|
+
{
|
|
983
|
+
//Loop on polynomials
|
|
984
|
+
C=EKCouples(G[i][j], G[k][l]);
|
|
985
|
+
//print("coppia");
|
|
986
|
+
if(C[2]!=0)
|
|
987
|
+
{
|
|
988
|
+
C=insert(C,list(i,j,k,l),size(C));
|
|
989
|
+
EK=insert(EK,C,size(EK));
|
|
990
|
+
p=G[k][l];
|
|
991
|
+
D=insert(D,deg(C[2]*p.h),size(D));
|
|
992
|
+
}
|
|
993
|
+
}
|
|
994
|
+
}
|
|
995
|
+
}
|
|
996
|
+
}
|
|
997
|
+
}
|
|
998
|
+
//Double Return
|
|
999
|
+
return(EK, D);
|
|
1000
|
+
}
|
|
1001
|
+
example
|
|
1002
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1003
|
+
ring r=0, (x,y,z), ip;
|
|
1004
|
+
jmp r1;
|
|
1005
|
+
r1.h=z^3;
|
|
1006
|
+
r1.t=poly(0);
|
|
1007
|
+
jmp r2;
|
|
1008
|
+
r2.h=z^2*y;
|
|
1009
|
+
r2.t=poly(0);
|
|
1010
|
+
jmp r3;
|
|
1011
|
+
r3.h=z*y^2;
|
|
1012
|
+
r3.t=-x^2*y;
|
|
1013
|
+
jmp r4;
|
|
1014
|
+
r4.h=y^5;
|
|
1015
|
+
r4.t=poly(0);
|
|
1016
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
1017
|
+
EKPolynomials(G2F);
|
|
1018
|
+
}
|
|
1019
|
+
////////////////////////////////////////////////////////////////////
|
|
1020
|
+
proc MultEKPolys(list EK, list G)
|
|
1021
|
+
"USAGE: MultEKPolys(G); G list
|
|
1022
|
+
RETURN: list: p
|
|
1023
|
+
NOTE: At the end I obtain the EK polynomials and
|
|
1024
|
+
their degrees.
|
|
1025
|
+
EXAMPLE: example MultEKPolys; shows an example"
|
|
1026
|
+
{
|
|
1027
|
+
jmp u;
|
|
1028
|
+
u=G[EK[3][1]][EK[3][2]];
|
|
1029
|
+
//print("u");
|
|
1030
|
+
jmp q;
|
|
1031
|
+
q=G[EK[3][3]][EK[3][4]];
|
|
1032
|
+
return(var(EK[1])*(u.h+u.t)-EK[2]*(q.h+q.t));
|
|
1033
|
+
}
|
|
1034
|
+
example
|
|
1035
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1036
|
+
ring r=0, (x,y,z), ip;
|
|
1037
|
+
jmp r1;
|
|
1038
|
+
r1.h=z^3;
|
|
1039
|
+
r1.t=poly(0);
|
|
1040
|
+
jmp r2;
|
|
1041
|
+
r2.h=z^2*y;
|
|
1042
|
+
r2.t=poly(0);
|
|
1043
|
+
jmp r3;
|
|
1044
|
+
r3.h=z*y^2;
|
|
1045
|
+
r3.t=-x^2*y;
|
|
1046
|
+
jmp r4;
|
|
1047
|
+
r4.h=y^5;
|
|
1048
|
+
r4.t=poly(0);
|
|
1049
|
+
list G2F=list(list(r1,r2,r3),list(r4));
|
|
1050
|
+
list EK,D=EKPolynomials(G2F);
|
|
1051
|
+
MultEKPolys(EK[2],G2F);
|
|
1052
|
+
}
|
|
1053
|
+
////////////////////////////////////////////////////////////////////
|
|
1054
|
+
proc SchemeEq(list W, list EK,list D,list Q,def r)
|
|
1055
|
+
"USAGE: SchemeEq(W,EK,D,Q,r); W list, EK list, D list, Q list, r ring
|
|
1056
|
+
RETURN: int: i
|
|
1057
|
+
NOTE:
|
|
1058
|
+
This procedure performs the reduction of EK-polynomials, obtaining
|
|
1059
|
+
the J-marked scheme.
|
|
1060
|
+
EXAMPLE: example SchemeEq; shows an example"
|
|
1061
|
+
{
|
|
1062
|
+
list Jms=list();
|
|
1063
|
+
//ideal I;
|
|
1064
|
+
list M=list();
|
|
1065
|
+
jmp mini;
|
|
1066
|
+
mini=W[1][1];
|
|
1067
|
+
int minimo=deg(mini.h);
|
|
1068
|
+
//multiply variables
|
|
1069
|
+
poly pd=poly(1);
|
|
1070
|
+
for(int i=1;i<=nvars(r);i++)
|
|
1071
|
+
{ pd=pd*var(i);}
|
|
1072
|
+
//CHANGE RING
|
|
1073
|
+
intvec u=NewWeight(nvars(r)+1);
|
|
1074
|
+
list L=ring_list(r);
|
|
1075
|
+
L[2]=insert(L[2],"t",size(L[2]));
|
|
1076
|
+
//print(L[2]);
|
|
1077
|
+
list ordlist="a",u;
|
|
1078
|
+
L[3]=insert(L[3],ordlist,0);
|
|
1079
|
+
def H=ring(L);
|
|
1080
|
+
//list
|
|
1081
|
+
M=list();
|
|
1082
|
+
jmp pu;
|
|
1083
|
+
list N;
|
|
1084
|
+
poly q;
|
|
1085
|
+
poly s;
|
|
1086
|
+
i=0;
|
|
1087
|
+
int j;
|
|
1088
|
+
for(i=1; i<=size(Q); i++)
|
|
1089
|
+
{
|
|
1090
|
+
N=list();
|
|
1091
|
+
for(j=1; j<=size(Q[i]); j++)
|
|
1092
|
+
{
|
|
1093
|
+
pu=Q[i][j];
|
|
1094
|
+
q=pu.h;
|
|
1095
|
+
s=pu.t;
|
|
1096
|
+
N[j]=list(q,s);
|
|
1097
|
+
}
|
|
1098
|
+
M[i]=N;
|
|
1099
|
+
}
|
|
1100
|
+
list O;
|
|
1101
|
+
pu.h=poly(0);
|
|
1102
|
+
pu.t=poly(0);
|
|
1103
|
+
for(i=1; i<=size(W); i++)
|
|
1104
|
+
{
|
|
1105
|
+
N=list();
|
|
1106
|
+
for(j=1; j<=size(W[i]); j++)
|
|
1107
|
+
{
|
|
1108
|
+
pu=W[i][j];
|
|
1109
|
+
q=pu.h;
|
|
1110
|
+
s=pu.t;
|
|
1111
|
+
N[j]=list(q,s);
|
|
1112
|
+
}
|
|
1113
|
+
O[i]=N;
|
|
1114
|
+
}
|
|
1115
|
+
pu.h=poly(0);
|
|
1116
|
+
pu.t=poly(0);
|
|
1117
|
+
setring H;
|
|
1118
|
+
list R=list();
|
|
1119
|
+
list S=list();
|
|
1120
|
+
//print("anello definito");
|
|
1121
|
+
def EK=imap(r,EK);
|
|
1122
|
+
def MM=imap(r,M);
|
|
1123
|
+
def OO=imap(r,O);
|
|
1124
|
+
def pd=imap(r,pd);
|
|
1125
|
+
list G=list();
|
|
1126
|
+
list N=list();
|
|
1127
|
+
for(i=1; i<=size(MM); i++)
|
|
1128
|
+
{
|
|
1129
|
+
for(j=1; j<=size(MM[i]); j++)
|
|
1130
|
+
{
|
|
1131
|
+
pu.h=MM[i][j][1];
|
|
1132
|
+
pu.t=MM[i][j][2];
|
|
1133
|
+
N[j]=pu;
|
|
1134
|
+
}
|
|
1135
|
+
G[i]=N;
|
|
1136
|
+
}
|
|
1137
|
+
list V;
|
|
1138
|
+
for(i=1; i<=size(OO); i++)
|
|
1139
|
+
{
|
|
1140
|
+
for(j=1; j<=size(OO[i]); j++)
|
|
1141
|
+
{
|
|
1142
|
+
pu.h=OO[i][j][1];
|
|
1143
|
+
pu.t=OO[i][j][2];
|
|
1144
|
+
N[j]=pu;
|
|
1145
|
+
}
|
|
1146
|
+
V[i]=N;
|
|
1147
|
+
}
|
|
1148
|
+
//print(V);
|
|
1149
|
+
//print(G);
|
|
1150
|
+
matrix C;
|
|
1151
|
+
list COEFF;
|
|
1152
|
+
poly p=0;
|
|
1153
|
+
poly q=0;
|
|
1154
|
+
ideal I;
|
|
1155
|
+
list M;
|
|
1156
|
+
i=0;
|
|
1157
|
+
jmp g;
|
|
1158
|
+
int k;
|
|
1159
|
+
for(j=1; j<=size(EK);j++)
|
|
1160
|
+
{
|
|
1161
|
+
//print("arrivo");
|
|
1162
|
+
//print(j);
|
|
1163
|
+
p=MultEKPolys(EK[j],G);
|
|
1164
|
+
//ideal
|
|
1165
|
+
I=0;
|
|
1166
|
+
if (size(V[D[j]-minimo+1])!=0)
|
|
1167
|
+
{
|
|
1168
|
+
M=list();
|
|
1169
|
+
// jmp g;
|
|
1170
|
+
for(i=1; i<= size(V[D[j]-minimo+1]); i++)
|
|
1171
|
+
{
|
|
1172
|
+
g=V[D[j]-minimo+1][i];
|
|
1173
|
+
g.h=(g.h)*t;
|
|
1174
|
+
M[i]=g.h+g.t;
|
|
1175
|
+
}
|
|
1176
|
+
I=M[1..size(M)];
|
|
1177
|
+
attrib(I,"isSB",1);
|
|
1178
|
+
//print(I);
|
|
1179
|
+
}
|
|
1180
|
+
//print(I);
|
|
1181
|
+
q=reduce(t*p,I);
|
|
1182
|
+
q=subst(q,t,1);
|
|
1183
|
+
C=coef(q,pd);
|
|
1184
|
+
COEFF=C[2,1..ncols(C)];
|
|
1185
|
+
for(k=1;k<=size(COEFF);k++)
|
|
1186
|
+
{
|
|
1187
|
+
if(COEFF[k]!=0)
|
|
1188
|
+
{ Jms=insert(Jms,COEFF[k],size(Jms));}
|
|
1189
|
+
}
|
|
1190
|
+
}
|
|
1191
|
+
setring r;
|
|
1192
|
+
def Jms=imap(H,Jms);
|
|
1193
|
+
return(Jms);
|
|
1194
|
+
}
|
|
1195
|
+
example
|
|
1196
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1197
|
+
ring r=0, (x,y,z),ip;
|
|
1198
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
1199
|
+
attrib(Borid,"isSB",1);
|
|
1200
|
+
list B=ArrangeBorel(Borid);
|
|
1201
|
+
list NumN;
|
|
1202
|
+
list N;
|
|
1203
|
+
int i;
|
|
1204
|
+
int d;
|
|
1205
|
+
for(i=1;i<=size(B);i++)
|
|
1206
|
+
{
|
|
1207
|
+
d=deg(B[i][1]);
|
|
1208
|
+
N[i]=kbase(Borid,d);
|
|
1209
|
+
NumN[i]=size(N[i]);
|
|
1210
|
+
}
|
|
1211
|
+
int qc=NumNewVar(B, NumN);
|
|
1212
|
+
//Now I must define the NEW RING,
|
|
1213
|
+
//putting the c parameters inside.
|
|
1214
|
+
list L=ring_list(r);
|
|
1215
|
+
list L2;
|
|
1216
|
+
L2[1]=L[1];
|
|
1217
|
+
L2[2]=list();
|
|
1218
|
+
for(i=qc;i>=1;i--)
|
|
1219
|
+
{
|
|
1220
|
+
L2[2][i]="c("+string(i)+")";
|
|
1221
|
+
}
|
|
1222
|
+
L2[3]=list(list("ip",qc));
|
|
1223
|
+
L2[4]=L[4];
|
|
1224
|
+
L[1]=L2;
|
|
1225
|
+
if(defined(K)){kill K;}
|
|
1226
|
+
def K=ring(L);
|
|
1227
|
+
export K;
|
|
1228
|
+
setring(K);
|
|
1229
|
+
def Borid=imap(r,Borid);
|
|
1230
|
+
def N=imap(r,N);
|
|
1231
|
+
def B=imap(r,B);
|
|
1232
|
+
//NumN contains only scalars so I do not imap it
|
|
1233
|
+
int j;
|
|
1234
|
+
list Q;
|
|
1235
|
+
int s;
|
|
1236
|
+
list M;
|
|
1237
|
+
jmp pp;
|
|
1238
|
+
for(i=1;i<=size(B);i++)
|
|
1239
|
+
{
|
|
1240
|
+
Q[i]=list();
|
|
1241
|
+
for(j=1;j<=size(B[i]);j++)
|
|
1242
|
+
{
|
|
1243
|
+
M=NewTails(N[i],s);
|
|
1244
|
+
pp.h=B[i][j];
|
|
1245
|
+
pp.t=M[1];
|
|
1246
|
+
Q[i][j]=pp;
|
|
1247
|
+
s=s+M[2];
|
|
1248
|
+
//print(s);
|
|
1249
|
+
}
|
|
1250
|
+
}
|
|
1251
|
+
list P=ArrangeTails(Q);
|
|
1252
|
+
list EK,D= EKPolynomials(P);
|
|
1253
|
+
int massimo=Max(D);
|
|
1254
|
+
//list V=VConst(P, massimo);
|
|
1255
|
+
//pause();
|
|
1256
|
+
list V=VmConstructor(P,massimo,r);
|
|
1257
|
+
list W=FinalVm(V,P,K);
|
|
1258
|
+
//print("I V ridotti in ordine sono");
|
|
1259
|
+
//print(W);
|
|
1260
|
+
list Jms=SchemeEq(W,EK,D,P,K);
|
|
1261
|
+
Jms;
|
|
1262
|
+
}
|
|
1263
|
+
|
|
1264
|
+
//////////////////////////////////////////////////////////////////////
|
|
1265
|
+
proc JMarkedScheme(ideal Borid,def r)
|
|
1266
|
+
"USAGE: JMarkedScheme(Borid, r); Borid ideal, r ring
|
|
1267
|
+
RETURN: list: Jms
|
|
1268
|
+
NOTE:
|
|
1269
|
+
This procedure performs automatically the whole construction
|
|
1270
|
+
of the J-marked scheme.
|
|
1271
|
+
EXAMPLE: example JMarkedScheme; shows an example"
|
|
1272
|
+
{
|
|
1273
|
+
list Jms;
|
|
1274
|
+
if(BorelCheck(Borid,r))
|
|
1275
|
+
{
|
|
1276
|
+
if(size(Borid)==1) { Jms=list();}
|
|
1277
|
+
else
|
|
1278
|
+
{
|
|
1279
|
+
//print("Input is OK");
|
|
1280
|
+
attrib(Borid,"isSB",1);
|
|
1281
|
+
list B=ArrangeBorel(Borid);
|
|
1282
|
+
list NumN;
|
|
1283
|
+
list N;
|
|
1284
|
+
int i;
|
|
1285
|
+
int d;
|
|
1286
|
+
for(i=1;i<=size(B);i++)
|
|
1287
|
+
{
|
|
1288
|
+
d=deg(B[i][1]);
|
|
1289
|
+
N[i]=kbase(Borid,d);
|
|
1290
|
+
NumN[i]=size(N[i]);
|
|
1291
|
+
}
|
|
1292
|
+
int qc=NumNewVar(B, NumN);
|
|
1293
|
+
if(qc==0) {Jms=list(0);}
|
|
1294
|
+
else
|
|
1295
|
+
{
|
|
1296
|
+
//Now I must define the NEW RING,
|
|
1297
|
+
//putting the c parameters inside.
|
|
1298
|
+
list L=ring_list(r);
|
|
1299
|
+
list L2;
|
|
1300
|
+
L2[1]=L[1];
|
|
1301
|
+
L2[2]=list();
|
|
1302
|
+
for(i=qc;i>=1;i--)
|
|
1303
|
+
{
|
|
1304
|
+
L2[2][i]="c("+string(i)+")";
|
|
1305
|
+
}
|
|
1306
|
+
L2[3]=list(list("ip",qc));
|
|
1307
|
+
L2[4]=L[4];
|
|
1308
|
+
L[1]=L2;
|
|
1309
|
+
if(defined(K)){kill K;}
|
|
1310
|
+
def K=ring(L);
|
|
1311
|
+
export K;
|
|
1312
|
+
setring(K);
|
|
1313
|
+
def Borid=imap(r,Borid);
|
|
1314
|
+
def N=imap(r,N);
|
|
1315
|
+
def B=imap(r,B);
|
|
1316
|
+
//NumN contains only scalars so I do not imap it
|
|
1317
|
+
int j;
|
|
1318
|
+
list Q;
|
|
1319
|
+
int s;
|
|
1320
|
+
list M;
|
|
1321
|
+
jmp pp;
|
|
1322
|
+
for(i=1;i<=size(B);i++)
|
|
1323
|
+
{
|
|
1324
|
+
Q[i]=list();
|
|
1325
|
+
for(j=1;j<=size(B[i]);j++)
|
|
1326
|
+
{
|
|
1327
|
+
M=NewTails(N[i],s);
|
|
1328
|
+
pp.h=B[i][j];
|
|
1329
|
+
pp.t=M[1];
|
|
1330
|
+
Q[i][j]=pp;
|
|
1331
|
+
s=s+M[2];
|
|
1332
|
+
//print(s);
|
|
1333
|
+
}
|
|
1334
|
+
}
|
|
1335
|
+
list P=ArrangeTails(Q);
|
|
1336
|
+
list EK,D= EKPolynomials(P);
|
|
1337
|
+
int massimo=Max(D);
|
|
1338
|
+
//list V=VConst(P, massimo);
|
|
1339
|
+
//pause();
|
|
1340
|
+
list V=VmConstructor(P,massimo,r);
|
|
1341
|
+
list W=FinalVm(V,P,K);
|
|
1342
|
+
//print("I V ridotti in ordine sono");
|
|
1343
|
+
//print(W);
|
|
1344
|
+
//list
|
|
1345
|
+
Jms=SchemeEq(W,EK,D,P,K);
|
|
1346
|
+
keepring K;
|
|
1347
|
+
}
|
|
1348
|
+
}
|
|
1349
|
+
}
|
|
1350
|
+
else
|
|
1351
|
+
{
|
|
1352
|
+
print("WRONG IDEAL IN INPUT");
|
|
1353
|
+
print("It is NOT BOREL");
|
|
1354
|
+
}
|
|
1355
|
+
return(Jms);
|
|
1356
|
+
}
|
|
1357
|
+
example
|
|
1358
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1359
|
+
ring r=0, (x,y,z),ip;
|
|
1360
|
+
ideal Borid=y^2*z,y*z^2,z^3,y^5;
|
|
1361
|
+
JMarkedScheme(Borid,r);
|
|
1362
|
+
}
|
|
1363
|
+
////////////////////////////////////////////////////////////////////
|