passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,3253 @@
|
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version classify_aeq.lib 4.2.0.0 Dec_2020 "; // $Id: 6828f92522398155358ce9d17b3ca3002798baa3 $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: classifyAeq.lib Simple Space Curve singularities in characteristic 0
|
|
6
|
+
|
|
7
|
+
AUTHORS: Faira Kanwal Janjua fairakanwaljanjua@gmail.com
|
|
8
|
+
Gerhard Pfister pfister@mathematik.uni-kl.de
|
|
9
|
+
Khawar Mehmood khawar1073@gmail.com
|
|
10
|
+
|
|
11
|
+
OVERVIEW: A library for classifying the simple singularities
|
|
12
|
+
with respect to A equivalence in characteristic 0.
|
|
13
|
+
Simple Surface singularities in characteristic O have been classified by Bruce and Gaffney [4] resp.
|
|
14
|
+
Gibson and Hobbs [1] with respect to A equivalence. If the input is one of the simple singularities in
|
|
15
|
+
[1] it returns a normal form otherwise a zero ideal(i.e not simple).
|
|
16
|
+
|
|
17
|
+
REFERENCES:
|
|
18
|
+
[1] Gibson,C.G; Hobbs,C.A.:Simple SIngularities of Space Curves.
|
|
19
|
+
Math.Proc. Comb.Phil.Soc.(1993),113,297.
|
|
20
|
+
[2] Hefez,A;Hernandes,M.E.:Standard bases for local rings of branches and their modules of differentials.
|
|
21
|
+
Journal of Symbolic Computation 42(2007) 178-191.
|
|
22
|
+
[3] Hefez,A;Hernandes,M.E.:The Analytic Classification Of Plane Branches. Bull.Lond Math Soc.43.(2011) 2,289-298.
|
|
23
|
+
[4] Bruce, J.W.,Gaffney, T.J.: Simple singularities of mappings (C, 0) ->(C2,0).
|
|
24
|
+
J. London Math. Soc. (2) 26 (1982), 465-474.
|
|
25
|
+
[5] Ishikawa,G; Janeczko,S.: The Complex Symplectic Moduli Spaces of Unimodal Parametric Plane Curve Singularities. Institute of Mathematics of the Polish Academy of Sciences,Preprint 664(2006)
|
|
26
|
+
|
|
27
|
+
PROCEDURES:
|
|
28
|
+
sagbiAlg(G); Compute the Sagbi-basis of the Algebra.
|
|
29
|
+
sagbiMod(I,A); Compute the Sagbi- basis of the Module.
|
|
30
|
+
semiGroup(G); Compute the Semi-Group of the Algebra provided the input is Sagbi Bases of the Algebra.
|
|
31
|
+
semiMod(I,A); Compute the Semi-Module provided that the input are the Sagbi Bases of the Algebra resp.Module.
|
|
32
|
+
planeCur(I); Compute the type of the Simple Plane Curve singularity.
|
|
33
|
+
spaceCur(I); Compute the type of the simple Space Curve singularity.
|
|
34
|
+
HHnormalForm(I); computes for the parametrization defined by I
|
|
35
|
+
normal form, semi group, semi module of differentials,
|
|
36
|
+
Zariski number and moduli
|
|
37
|
+
modSagbiAlg(G); modular variant of sagbiAlg
|
|
38
|
+
classSpaceCurve(I); normal form of I if I is simple
|
|
39
|
+
";
|
|
40
|
+
LIB "algebra.lib";
|
|
41
|
+
LIB "curvepar.lib";
|
|
42
|
+
LIB "modstd.lib";
|
|
43
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
44
|
+
proc planeCur(ideal I)
|
|
45
|
+
"USAGE": planeCur(I); I ideal
|
|
46
|
+
RETURN: An ideal.Ideal is one of the singularity in the list of Bruce and Gaffney [4]
|
|
47
|
+
EXAMPLE: example planeCur; shows an example
|
|
48
|
+
"
|
|
49
|
+
{
|
|
50
|
+
def R=basering;
|
|
51
|
+
I=sortMOD(I);
|
|
52
|
+
list M;
|
|
53
|
+
list K;
|
|
54
|
+
if(I==0)
|
|
55
|
+
{return(I);}
|
|
56
|
+
ideal G=sagbiAlg(I);
|
|
57
|
+
list L=semiGroup(G);
|
|
58
|
+
ideal J=diff(G,var(1));
|
|
59
|
+
J=sagbiMod(J,G);
|
|
60
|
+
M=semiMod(J,G);
|
|
61
|
+
int C=L[2];
|
|
62
|
+
ideal Z=0,0;
|
|
63
|
+
if(L[1][1]>4)
|
|
64
|
+
{
|
|
65
|
+
return(Z);
|
|
66
|
+
}
|
|
67
|
+
if(L[1][1]==1)
|
|
68
|
+
{
|
|
69
|
+
ideal A=var(1);
|
|
70
|
+
K=Guess(A);
|
|
71
|
+
if(CompareList(M,K,6)!=0)
|
|
72
|
+
{
|
|
73
|
+
return(A);
|
|
74
|
+
}
|
|
75
|
+
else
|
|
76
|
+
{
|
|
77
|
+
return(Z);
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
if(L[1][1]==2)
|
|
81
|
+
{
|
|
82
|
+
ideal A=var(1)^2,var(1)^(L[2]+1);
|
|
83
|
+
K=Guess(A);
|
|
84
|
+
if(CompareList(M,K,6)!=0)
|
|
85
|
+
{
|
|
86
|
+
return(A);
|
|
87
|
+
}
|
|
88
|
+
else
|
|
89
|
+
{
|
|
90
|
+
return(Z);
|
|
91
|
+
}
|
|
92
|
+
}
|
|
93
|
+
if(L[1][1]==4)
|
|
94
|
+
{
|
|
95
|
+
if(L[1][2]==5)
|
|
96
|
+
{
|
|
97
|
+
intvec q=4,5;
|
|
98
|
+
if((L[1]==q)&&(L[2]==12)&&(size(L[3])==7))
|
|
99
|
+
{
|
|
100
|
+
intvec q1=3,4; intvec q2=3,4,10;
|
|
101
|
+
if((M[4]==q1)&&(M[5]==11)&&(size(M[6])==6))
|
|
102
|
+
{
|
|
103
|
+
ideal A=var(1)^4,var(1)^5;
|
|
104
|
+
K=Guess(A);
|
|
105
|
+
if(CompareList(M,K,6)!=0)
|
|
106
|
+
{
|
|
107
|
+
return(A);
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
if((M[4]==q2)&&(M[5]==7)&&(size(M[6])==3))
|
|
111
|
+
{
|
|
112
|
+
ideal A=var(1)^4,var(1)^5+var(1)^7;
|
|
113
|
+
K=Guess(A);
|
|
114
|
+
if(CompareList(M,K,6)!=0)
|
|
115
|
+
{
|
|
116
|
+
return(A);
|
|
117
|
+
}
|
|
118
|
+
}
|
|
119
|
+
else
|
|
120
|
+
{
|
|
121
|
+
return(Z);
|
|
122
|
+
}
|
|
123
|
+
}
|
|
124
|
+
else
|
|
125
|
+
{
|
|
126
|
+
return(Z);
|
|
127
|
+
}
|
|
128
|
+
}
|
|
129
|
+
if(L[1][2]==6)
|
|
130
|
+
{
|
|
131
|
+
ideal A=var(1)^4,var(1)^6+var(1)^(L[1][3]-6);
|
|
132
|
+
K=Guess(A);
|
|
133
|
+
if(L[1][3] mod 2 !=0)
|
|
134
|
+
{
|
|
135
|
+
ideal S=t4,t6+t^(M[2]-9);
|
|
136
|
+
if(CompareList(M,K,6)!=0)
|
|
137
|
+
{
|
|
138
|
+
return(S);
|
|
139
|
+
}
|
|
140
|
+
if(CompareList(M,K,6)==0)
|
|
141
|
+
{
|
|
142
|
+
int m=size(K[4])+1;
|
|
143
|
+
if(size(M[4])==m)
|
|
144
|
+
{
|
|
145
|
+
return(S);
|
|
146
|
+
}
|
|
147
|
+
else{return(Z);}
|
|
148
|
+
}
|
|
149
|
+
}
|
|
150
|
+
else
|
|
151
|
+
{
|
|
152
|
+
return(Z);
|
|
153
|
+
}
|
|
154
|
+
}
|
|
155
|
+
if(L[1][2]==7)
|
|
156
|
+
{
|
|
157
|
+
intvec q=4,7;list K;
|
|
158
|
+
ideal A=var(1)^4,var(1)^7;
|
|
159
|
+
ideal B=var(1)^4,var(1)^7+var(1)^9;
|
|
160
|
+
ideal T=var(1)^4,var(1)^7+var(1)^10;
|
|
161
|
+
list Q=A,B,T;
|
|
162
|
+
for(int i=1;i<=3;i++)
|
|
163
|
+
{ K=Guess(Q[i]);
|
|
164
|
+
if(CompareList(M,K,6)!=0)
|
|
165
|
+
{
|
|
166
|
+
if(i==1)
|
|
167
|
+
{
|
|
168
|
+
return(A);
|
|
169
|
+
break;
|
|
170
|
+
}
|
|
171
|
+
if(i==2)
|
|
172
|
+
{
|
|
173
|
+
return(B);
|
|
174
|
+
break;
|
|
175
|
+
}
|
|
176
|
+
if(i==3)
|
|
177
|
+
{
|
|
178
|
+
return(T);
|
|
179
|
+
break;
|
|
180
|
+
}
|
|
181
|
+
}
|
|
182
|
+
}
|
|
183
|
+
else
|
|
184
|
+
{
|
|
185
|
+
return(Z);
|
|
186
|
+
}
|
|
187
|
+
}
|
|
188
|
+
else
|
|
189
|
+
{
|
|
190
|
+
return(Z);
|
|
191
|
+
}
|
|
192
|
+
}
|
|
193
|
+
if(L[1][1]==3)
|
|
194
|
+
{
|
|
195
|
+
int k=L[1][2]-1;
|
|
196
|
+
int p=L[1][2]-2;
|
|
197
|
+
if(k mod 3 ==0)
|
|
198
|
+
{
|
|
199
|
+
if(size(M[4])==2)
|
|
200
|
+
{
|
|
201
|
+
ideal A=var(1)^3,var(1)^L[1][2];
|
|
202
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5];
|
|
203
|
+
list Q=A,B;
|
|
204
|
+
for(int i=1;i<=2;i++)
|
|
205
|
+
{ K=Guess(Q[i]);
|
|
206
|
+
if(CompareList(M,K,6)!=0)
|
|
207
|
+
{
|
|
208
|
+
return(Q[i]);
|
|
209
|
+
}
|
|
210
|
+
}
|
|
211
|
+
}
|
|
212
|
+
if(size(M[4])==3)
|
|
213
|
+
{
|
|
214
|
+
ideal A=var(1)^3,var(1)^L[1][2];
|
|
215
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5];
|
|
216
|
+
list Q=A,B;
|
|
217
|
+
for(int i=1;i<=2;i++)
|
|
218
|
+
{ K=Guess(Q[i]);
|
|
219
|
+
if(CompareList(M,K,6)!=0)
|
|
220
|
+
{
|
|
221
|
+
return(Q[i]);
|
|
222
|
+
}
|
|
223
|
+
}
|
|
224
|
+
}
|
|
225
|
+
else
|
|
226
|
+
{
|
|
227
|
+
return(Z);
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
if(p mod 3 ==0)
|
|
231
|
+
{
|
|
232
|
+
if(size(M[4])==2)
|
|
233
|
+
{
|
|
234
|
+
ideal A=var(1)^3,var(1)^L[1][2];
|
|
235
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5];
|
|
236
|
+
list Q=A,B;
|
|
237
|
+
for(int i=1;i<=2;i++)
|
|
238
|
+
{ K=Guess(Q[i]);
|
|
239
|
+
if(CompareList(M,K,6)!=0)
|
|
240
|
+
{
|
|
241
|
+
return(Q[i]);
|
|
242
|
+
}
|
|
243
|
+
}
|
|
244
|
+
}
|
|
245
|
+
if(size(M[4])==3)
|
|
246
|
+
{
|
|
247
|
+
ideal A=var(1)^3,var(1)^L[1][2];
|
|
248
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5];
|
|
249
|
+
list Q=A,B;
|
|
250
|
+
for(int i=1;i<=2;i++)
|
|
251
|
+
{ K=Guess(Q[i]);
|
|
252
|
+
if(CompareList(M,K,6)!=0)
|
|
253
|
+
{
|
|
254
|
+
return(Q[i]);
|
|
255
|
+
}
|
|
256
|
+
}
|
|
257
|
+
}
|
|
258
|
+
else
|
|
259
|
+
{
|
|
260
|
+
return(Z);
|
|
261
|
+
}
|
|
262
|
+
}
|
|
263
|
+
else
|
|
264
|
+
{
|
|
265
|
+
return(Z)
|
|
266
|
+
}
|
|
267
|
+
}
|
|
268
|
+
}
|
|
269
|
+
example
|
|
270
|
+
{
|
|
271
|
+
"EXAMPLE:"; echo=2;
|
|
272
|
+
ring R=0,t,Ds;
|
|
273
|
+
ideal I=t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16,t7+7t8+22t9+51t10+113t11+219t12+366t13+589t14+876t15+1170t16+1514t17
|
|
274
|
+
+1828t18+2011t19+2165t20+2163t21+1982t22+1806t23+1491t24+1141t25+889t26+588t27+379t28+252t29+120t30+72t31+36t32+9t33+9t34+t36;
|
|
275
|
+
planeCur(I);
|
|
276
|
+
}
|
|
277
|
+
|
|
278
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
279
|
+
proc spaceCur(ideal I)
|
|
280
|
+
"USAGE": spaceCur(I); I ideal
|
|
281
|
+
RETURN: an ideal. Ideal is one of the singularity in the list of C.G.Gibson and C.A.Hobbs.
|
|
282
|
+
EXAMPLE: example spaceCur; shows an example
|
|
283
|
+
"
|
|
284
|
+
{
|
|
285
|
+
def R=basering;
|
|
286
|
+
I=sortMOD(I);
|
|
287
|
+
list M;
|
|
288
|
+
list K;
|
|
289
|
+
if(I==0)
|
|
290
|
+
{return(I);}
|
|
291
|
+
ideal G=sagbiAlg(I);
|
|
292
|
+
if(size(G)<=2){return(planeCur(G));}
|
|
293
|
+
list L=semiGroup(G);
|
|
294
|
+
ideal J=diff(G,var(1));
|
|
295
|
+
J=sagbiMod(J,G);
|
|
296
|
+
M=semiMod(J,G);
|
|
297
|
+
int C=L[2];
|
|
298
|
+
ideal Z=0,0,0;
|
|
299
|
+
if(L[1][1]>5)
|
|
300
|
+
{
|
|
301
|
+
return(Z);
|
|
302
|
+
}
|
|
303
|
+
if(L[1][1]==3)
|
|
304
|
+
{
|
|
305
|
+
int k=L[1][2]-1;
|
|
306
|
+
int p=L[1][2]-2;
|
|
307
|
+
if(k mod 3 ==0)
|
|
308
|
+
{
|
|
309
|
+
poly q=var(1)*(J[2])-G[2];
|
|
310
|
+
if(leadexp(q)!=leadexp(J[3]))
|
|
311
|
+
{
|
|
312
|
+
if(size(M[4])!=3)
|
|
313
|
+
{
|
|
314
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
315
|
+
return(B);
|
|
316
|
+
}
|
|
317
|
+
if(size(M[4])==3)
|
|
318
|
+
{
|
|
319
|
+
ideal I1=G[1],G[2];
|
|
320
|
+
I1=sortMOD(I1);
|
|
321
|
+
ideal T=sagbiAlg(I1);
|
|
322
|
+
ideal J1=diff(T,var(1));
|
|
323
|
+
J1=sagbiMod(J1,T);
|
|
324
|
+
K=semiMod(J1,T);
|
|
325
|
+
if(size(K[4])!=2)
|
|
326
|
+
{
|
|
327
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
328
|
+
return(B);
|
|
329
|
+
}
|
|
330
|
+
if(size(K[4])==2)
|
|
331
|
+
{
|
|
332
|
+
ideal A=var(1)^3,var(1)^L[1][2],var(1)^L[1][3];
|
|
333
|
+
return(A);
|
|
334
|
+
}
|
|
335
|
+
}
|
|
336
|
+
}
|
|
337
|
+
if(leadexp(q)==leadexp(J[3]))
|
|
338
|
+
{
|
|
339
|
+
if(size(M[4])!=3)
|
|
340
|
+
{
|
|
341
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
342
|
+
return(B);
|
|
343
|
+
}
|
|
344
|
+
if(size(M[4])==3)
|
|
345
|
+
{
|
|
346
|
+
ideal I1=G[1],G[2];
|
|
347
|
+
I1=sortMOD(I1);
|
|
348
|
+
ideal T=sagbiAlg(I1);
|
|
349
|
+
ideal J1=diff(T,var(1));
|
|
350
|
+
J1=sagbiMod(J1,T);
|
|
351
|
+
K=semiMod(J1,T);
|
|
352
|
+
if(size(K[4])!=2)
|
|
353
|
+
{
|
|
354
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
355
|
+
return(B);
|
|
356
|
+
}
|
|
357
|
+
if(size(K[4])==2)
|
|
358
|
+
{
|
|
359
|
+
ideal A=var(1)^3,var(1)^L[1][2],var(1)^L[1][3];
|
|
360
|
+
return(A);
|
|
361
|
+
}
|
|
362
|
+
}
|
|
363
|
+
}
|
|
364
|
+
}
|
|
365
|
+
if(p mod 3 ==0)
|
|
366
|
+
{
|
|
367
|
+
poly q=var(1)^3*(J[2])-var(1)^2*(G[2]);
|
|
368
|
+
if(leadexp(q)!=leadexp(J[3]))
|
|
369
|
+
{
|
|
370
|
+
if(size(M[4])!=3)
|
|
371
|
+
{
|
|
372
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
373
|
+
return(B);
|
|
374
|
+
}
|
|
375
|
+
if(size(M[4])==3)
|
|
376
|
+
{
|
|
377
|
+
ideal I1=G[1],G[2];
|
|
378
|
+
I1=sortMOD(I1);
|
|
379
|
+
ideal T=sagbiAlg(I1);
|
|
380
|
+
ideal J1=diff(T,var(1));
|
|
381
|
+
J1=sagbiMod(J1,T);
|
|
382
|
+
K=semiMod(J1,T);
|
|
383
|
+
if(size(K[4])!=2)
|
|
384
|
+
{
|
|
385
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
386
|
+
return(B);
|
|
387
|
+
}
|
|
388
|
+
if(size(K[4])==2)
|
|
389
|
+
{
|
|
390
|
+
ideal A=var(1)^3,var(1)^L[1][2],var(1)^L[1][3];
|
|
391
|
+
return(A);
|
|
392
|
+
}
|
|
393
|
+
}
|
|
394
|
+
}
|
|
395
|
+
if(leadexp(q)==leadexp(J[3]))
|
|
396
|
+
{
|
|
397
|
+
if(size(M[4])!=3)
|
|
398
|
+
{
|
|
399
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
400
|
+
return(B);
|
|
401
|
+
}
|
|
402
|
+
if(size(M[4])==3)
|
|
403
|
+
{
|
|
404
|
+
ideal I1=G[1],G[2];
|
|
405
|
+
ideal T=sagbiAlg(I1);
|
|
406
|
+
ideal J1=diff(T,var(1));
|
|
407
|
+
J1=sagbiMod(J1,T);
|
|
408
|
+
K=semiMod(J1,T);
|
|
409
|
+
if(size(K[4])!=2)
|
|
410
|
+
{
|
|
411
|
+
ideal B=var(1)^3,var(1)^L[1][2]+var(1)^M[5],var(1)^L[1][3];
|
|
412
|
+
return(B);
|
|
413
|
+
}
|
|
414
|
+
if(size(K[4])==2)
|
|
415
|
+
{
|
|
416
|
+
ideal A=var(1)^3,var(1)^L[1][2],var(1)^L[1][3];
|
|
417
|
+
return(A);
|
|
418
|
+
}
|
|
419
|
+
}
|
|
420
|
+
}
|
|
421
|
+
}
|
|
422
|
+
else
|
|
423
|
+
{
|
|
424
|
+
return(Z);
|
|
425
|
+
}
|
|
426
|
+
}
|
|
427
|
+
if(L[1][1]==4)
|
|
428
|
+
{
|
|
429
|
+
if(L[1][2]==5)
|
|
430
|
+
{
|
|
431
|
+
if(L[1][3]==11)
|
|
432
|
+
{
|
|
433
|
+
ideal A=var(1)^4,var(1)^5,var(1)^11;
|
|
434
|
+
ideal B=var(1)^4,var(1)^5+var(1)^7,var(1)^11;
|
|
435
|
+
list Q=A,B;
|
|
436
|
+
ideal Ij=jet(I,10);
|
|
437
|
+
Ij=simplify(Ij,2);
|
|
438
|
+
ideal Gj=sagbiAlg(Ij);
|
|
439
|
+
list Lj=semiGroup(Gj);
|
|
440
|
+
ideal Jj=diff(Gj,var(1));
|
|
441
|
+
Jj=sagbiMod(Jj,Gj);
|
|
442
|
+
list Mj=semiMod(Jj,Gj);
|
|
443
|
+
if(size(Mj[4])==2)
|
|
444
|
+
{
|
|
445
|
+
K=Guess(Q[1]);
|
|
446
|
+
if(CompareList(M,K,6)!=0)
|
|
447
|
+
{
|
|
448
|
+
return(Q[1]);
|
|
449
|
+
}
|
|
450
|
+
}
|
|
451
|
+
if(size(Mj[4])==3)
|
|
452
|
+
{
|
|
453
|
+
K=Guess(Q[2]);
|
|
454
|
+
if(CompareList(M,K,6)!=0)
|
|
455
|
+
{
|
|
456
|
+
return(Q[2]);
|
|
457
|
+
}
|
|
458
|
+
}
|
|
459
|
+
}
|
|
460
|
+
if(L[1][3]!=11)
|
|
461
|
+
{
|
|
462
|
+
ideal A=var(1)^4,var(1)^5,var(1)^6;
|
|
463
|
+
ideal B=var(1)^4,var(1)^5,var(1)^7;
|
|
464
|
+
list Q=A,B;
|
|
465
|
+
for(int i=1;i<=2;i++)
|
|
466
|
+
{
|
|
467
|
+
K=Guess(Q[i]);
|
|
468
|
+
if(CompareList(M,K,6)!=0)
|
|
469
|
+
{
|
|
470
|
+
return(Q[i]);
|
|
471
|
+
break;
|
|
472
|
+
}
|
|
473
|
+
}
|
|
474
|
+
}
|
|
475
|
+
else
|
|
476
|
+
{return(Z);
|
|
477
|
+
}
|
|
478
|
+
}
|
|
479
|
+
if(L[1][2]==6)
|
|
480
|
+
{
|
|
481
|
+
if(size(L[1])==3)
|
|
482
|
+
{
|
|
483
|
+
if(size(M[4])==3)
|
|
484
|
+
{
|
|
485
|
+
ideal A=var(1)^4,var(1)^6,var(1)^L[1][3];
|
|
486
|
+
K=Guess(A);
|
|
487
|
+
if(CompareList(M,K,6)!=0)
|
|
488
|
+
{
|
|
489
|
+
return(A);
|
|
490
|
+
}
|
|
491
|
+
else
|
|
492
|
+
{
|
|
493
|
+
return(Z);
|
|
494
|
+
}
|
|
495
|
+
}
|
|
496
|
+
if(size(M[4])==4)
|
|
497
|
+
{
|
|
498
|
+
ideal A=var(1)^4,var(1)^6+var(1)^(L[1][3]-2),var(1)^L[1][3];
|
|
499
|
+
K=Guess(A);
|
|
500
|
+
if(CompareList(M,K,6)!=0)
|
|
501
|
+
{
|
|
502
|
+
return(A);
|
|
503
|
+
}
|
|
504
|
+
else
|
|
505
|
+
{
|
|
506
|
+
return(Z);
|
|
507
|
+
}
|
|
508
|
+
}
|
|
509
|
+
}
|
|
510
|
+
if(size(L[1])==4)
|
|
511
|
+
{
|
|
512
|
+
if(size(M[4])==4)
|
|
513
|
+
{
|
|
514
|
+
ideal A=var(1)^4,var(1)^6+var(1)^(L[1][3]-4),var(1)^L[1][3];
|
|
515
|
+
K=Guess(A);
|
|
516
|
+
if(CompareList(M,K,6)!=0)
|
|
517
|
+
{
|
|
518
|
+
return(A);
|
|
519
|
+
}
|
|
520
|
+
else
|
|
521
|
+
{
|
|
522
|
+
return(Z);
|
|
523
|
+
}
|
|
524
|
+
}
|
|
525
|
+
if(size(M[4])==5)
|
|
526
|
+
{
|
|
527
|
+
ideal A=var(1)^4,var(1)^6+var(1)^(L[1][4]-8),var(1)^L[1][4];
|
|
528
|
+
K=Guess(A);
|
|
529
|
+
if(CompareList(M,K,6)!=0)
|
|
530
|
+
{
|
|
531
|
+
return(A);
|
|
532
|
+
}
|
|
533
|
+
else
|
|
534
|
+
{
|
|
535
|
+
return(Z);
|
|
536
|
+
}
|
|
537
|
+
}
|
|
538
|
+
}
|
|
539
|
+
else
|
|
540
|
+
{
|
|
541
|
+
return(Z);
|
|
542
|
+
}
|
|
543
|
+
}
|
|
544
|
+
if(L[1][2]==7)
|
|
545
|
+
{
|
|
546
|
+
if(L[1][3]==9)
|
|
547
|
+
{
|
|
548
|
+
ideal A=var(1)^4,var(1)^7,var(1)^9+var(1)^10;
|
|
549
|
+
ideal B=var(1)^4,var(1)^7,var(1)^9;
|
|
550
|
+
list Q=A,B;
|
|
551
|
+
for(int i=1;i<=2;i++)
|
|
552
|
+
{
|
|
553
|
+
K=Guess(Q[i]);
|
|
554
|
+
if(CompareList(M,K,6)!=0)
|
|
555
|
+
{
|
|
556
|
+
return(Q[i]);
|
|
557
|
+
break;
|
|
558
|
+
}
|
|
559
|
+
}
|
|
560
|
+
}
|
|
561
|
+
if(L[1][3]==10)
|
|
562
|
+
{
|
|
563
|
+
ideal A=var(1)^4,var(1)^7,var(1)^10;
|
|
564
|
+
ideal B=var(1)^4,var(1)^7+var(1)^9,var(1)^10;
|
|
565
|
+
list Q=A,B;
|
|
566
|
+
for(int i=1;i<=2;i++)
|
|
567
|
+
{
|
|
568
|
+
K=Guess(Q[i]);
|
|
569
|
+
if(CompareList(M,K,6)!=0)
|
|
570
|
+
{
|
|
571
|
+
return(Q[i]);
|
|
572
|
+
break;
|
|
573
|
+
}
|
|
574
|
+
}
|
|
575
|
+
}
|
|
576
|
+
if(L[1][3]==13)
|
|
577
|
+
{
|
|
578
|
+
ideal A=var(1)^4,var(1)^7,var(1)^13;
|
|
579
|
+
ideal B=var(1)^4,var(1)^7+var(1)^9,var(1)^13;
|
|
580
|
+
list Q=A,B;
|
|
581
|
+
ideal Ij=jet(I,12);
|
|
582
|
+
Ij=simplify(Ij,2);
|
|
583
|
+
ideal Gj=sagbiAlg(Ij);
|
|
584
|
+
list Lj=semiGroup(Gj);
|
|
585
|
+
ideal Jj=diff(Gj,var(1));
|
|
586
|
+
Jj=sagbiMod(Jj,Gj);
|
|
587
|
+
Jj=jet(Jj,12);
|
|
588
|
+
Jj=simplify(Jj,2);
|
|
589
|
+
list Mj=semiMod(Jj,Gj);
|
|
590
|
+
if(size(Jj)==2)
|
|
591
|
+
{
|
|
592
|
+
K=Guess(Q[1]);
|
|
593
|
+
if(CompareList(M,K,6)!=0)
|
|
594
|
+
{
|
|
595
|
+
return(A);
|
|
596
|
+
break;
|
|
597
|
+
}
|
|
598
|
+
}
|
|
599
|
+
if(size(Jj)==3)
|
|
600
|
+
{
|
|
601
|
+
K=Guess(Q[2]);
|
|
602
|
+
if(CompareList(M,K,6)!=0)
|
|
603
|
+
{
|
|
604
|
+
return(B);
|
|
605
|
+
break;
|
|
606
|
+
}
|
|
607
|
+
}
|
|
608
|
+
}
|
|
609
|
+
if(L[1][3]==17)
|
|
610
|
+
{
|
|
611
|
+
ideal A=var(1)^4,var(1)^7,var(1)^17;
|
|
612
|
+
ideal B=var(1)^4,var(1)^7+var(1)^9,var(1)^17;
|
|
613
|
+
ideal T=var(1)^4,var(1)^7+var(1)^10,var(1)^17;
|
|
614
|
+
list Q=A,B,T;
|
|
615
|
+
for(int i=1;i<=3;i++)
|
|
616
|
+
{
|
|
617
|
+
K=Guess(Q[i]);
|
|
618
|
+
if(CompareList(M,K,6)!=0)
|
|
619
|
+
{
|
|
620
|
+
if(i==2)
|
|
621
|
+
{
|
|
622
|
+
return(Q[i]);
|
|
623
|
+
break;
|
|
624
|
+
}
|
|
625
|
+
else
|
|
626
|
+
{
|
|
627
|
+
ideal Ij=jet(I,16);
|
|
628
|
+
Ij=simplify(Ij,2);
|
|
629
|
+
ideal Gj=sagbiAlg(Ij);
|
|
630
|
+
list Lj=semiGroup(Gj);
|
|
631
|
+
ideal Jj=diff(Gj,var(1));
|
|
632
|
+
Jj=sagbiMod(Jj,Gj);
|
|
633
|
+
Jj=jet(Jj,16);
|
|
634
|
+
Jj=simplify(Jj,2);
|
|
635
|
+
list Mj=semiMod(Jj,Gj);
|
|
636
|
+
if(size(Jj)==2)
|
|
637
|
+
{
|
|
638
|
+
if(CompareList(M,K,6)!=0)
|
|
639
|
+
{
|
|
640
|
+
return(A);
|
|
641
|
+
break;
|
|
642
|
+
}
|
|
643
|
+
}
|
|
644
|
+
if(size(Jj)==3)
|
|
645
|
+
{
|
|
646
|
+
if(CompareList(M,K,6)!=0)
|
|
647
|
+
{
|
|
648
|
+
return(T);
|
|
649
|
+
break;
|
|
650
|
+
}
|
|
651
|
+
}
|
|
652
|
+
}
|
|
653
|
+
}
|
|
654
|
+
}
|
|
655
|
+
}
|
|
656
|
+
else
|
|
657
|
+
{
|
|
658
|
+
return(Z);
|
|
659
|
+
}
|
|
660
|
+
}
|
|
661
|
+
}
|
|
662
|
+
}
|
|
663
|
+
example
|
|
664
|
+
{
|
|
665
|
+
"EXAMPLE:"; echo=2;
|
|
666
|
+
ring R=0,t,Ds;
|
|
667
|
+
ideal I=t3+3t4+3t5+t6,t13+14t14+92t15+377t16+1079t17+2288t18+3718t19+4719t20+4719t21+3718t22+2288t23+1079t24+377t25+92t26+14t27+t28,t17+17t18+136t19+680t20+2380t21+6188t22+12376t23+19448t24+24310t25+24310t26+19448t27+12376t28+6188t29+2380t30+680t31+136t32+17t33+t34;
|
|
668
|
+
spaceCur(I);
|
|
669
|
+
}
|
|
670
|
+
|
|
671
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
672
|
+
proc sagbiAlg(ideal I,list #) //AENDERUNG
|
|
673
|
+
"USAGE": sagbiAlg(I); I ideal
|
|
674
|
+
RETURN: An ideal.The sagbi bases of I.
|
|
675
|
+
EXAMPLE: example sagbiAlg; shows an example
|
|
676
|
+
{
|
|
677
|
+
def R=basering;
|
|
678
|
+
def O=changeord(list(list("Ds",nvars(R))));
|
|
679
|
+
setring O;
|
|
680
|
+
ideal I=imap(R,I);
|
|
681
|
+
ideal L;
|
|
682
|
+
poly h;
|
|
683
|
+
int z,n;
|
|
684
|
+
|
|
685
|
+
if(size(I)==0){return(I);}
|
|
686
|
+
if(size(#)==0)
|
|
687
|
+
{
|
|
688
|
+
int b=ConductorBound(I);
|
|
689
|
+
// int b=200;
|
|
690
|
+
// b=correctBound(I,b);
|
|
691
|
+
}
|
|
692
|
+
else
|
|
693
|
+
{
|
|
694
|
+
int b=#[1];
|
|
695
|
+
}
|
|
696
|
+
ideal S=interReduceSagbi(I,b) ;
|
|
697
|
+
// b=correctBound(S,b);
|
|
698
|
+
while(size(S)!=n)
|
|
699
|
+
{
|
|
700
|
+
n=size(S);
|
|
701
|
+
L=sagbiSP(S);
|
|
702
|
+
for (z=1;z<=size(L);z++)
|
|
703
|
+
{
|
|
704
|
+
h=sagbiNF(L[z],S,b);
|
|
705
|
+
if(h!=0)
|
|
706
|
+
{
|
|
707
|
+
S=insertOne(h,S,b);
|
|
708
|
+
}
|
|
709
|
+
}
|
|
710
|
+
}
|
|
711
|
+
b=semiGroup(S)[2]+1;
|
|
712
|
+
// S=jet(S,b);
|
|
713
|
+
setring R;
|
|
714
|
+
ideal S=imap(O,S);
|
|
715
|
+
return(S);
|
|
716
|
+
}
|
|
717
|
+
example
|
|
718
|
+
{
|
|
719
|
+
"EXAMPLE:"; echo=2;
|
|
720
|
+
ring R=0,t,ds;
|
|
721
|
+
ideal I=t8,t10+t13,t12+t15;
|
|
722
|
+
sagbiAlg(I);
|
|
723
|
+
I=t8,t10+t13,t12+2t15;
|
|
724
|
+
sagbiAlg(I);
|
|
725
|
+
}
|
|
726
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
727
|
+
static proc reducedSagbiAlg(ideal I,list #)
|
|
728
|
+
{
|
|
729
|
+
I=sagbiAlg(I,#);
|
|
730
|
+
intvec L=semiGroup(I)[3];
|
|
731
|
+
if(size(#)==0)
|
|
732
|
+
{
|
|
733
|
+
int b=findConductor(L);
|
|
734
|
+
}
|
|
735
|
+
else
|
|
736
|
+
{
|
|
737
|
+
int b=#[1];
|
|
738
|
+
}
|
|
739
|
+
int i;
|
|
740
|
+
poly q;
|
|
741
|
+
for(i=1;i<=size(I);i++)
|
|
742
|
+
{
|
|
743
|
+
q=I[i]-lead(I[i]);
|
|
744
|
+
q=sagbiNF(q,I,b);
|
|
745
|
+
I[i]=lead(I[i])+q;
|
|
746
|
+
}
|
|
747
|
+
return(I);
|
|
748
|
+
}
|
|
749
|
+
example
|
|
750
|
+
{
|
|
751
|
+
"EXAMPLE:"; echo=2;
|
|
752
|
+
ring R=0,t,ds;
|
|
753
|
+
ideal I=t4+2t9,t9+t10+19/18t11-3t12+t13-t14;
|
|
754
|
+
reducedSagbiAlg(I);
|
|
755
|
+
}
|
|
756
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
757
|
+
static proc classifyAEQunimodal(ideal I)
|
|
758
|
+
"USAGE": classifyAEQunimodal(I); I ideal generated by 2 polynomials
|
|
759
|
+
RETURN: An ideal.Ideal is one of the singularity in the list of Ishikawa and Jenczko [5]
|
|
760
|
+
EXAMPLE: example classifyAEQunimodal; shows an example
|
|
761
|
+
"
|
|
762
|
+
{
|
|
763
|
+
def R=basering;
|
|
764
|
+
ring @S=0,t,ds;
|
|
765
|
+
ideal I=fetch(R,I);
|
|
766
|
+
ideal J;
|
|
767
|
+
poly g;
|
|
768
|
+
if(size(I)>=3){ERROR("not a plane curve");}
|
|
769
|
+
I=simplify(I,2); //deletes zero's i I
|
|
770
|
+
I=simplify(I,1); //creates monic generators in I
|
|
771
|
+
if(ord(I[1])>ord(I[2])){poly q=I[2];I[2]=I[1];I[1]=q;}
|
|
772
|
+
if((ord(I[1])>=6)||(ord(I[1])<=3)){return("not in the unimodal list");}
|
|
773
|
+
//compute estimate of the term with the modulus
|
|
774
|
+
int c=ord(sagbiNF(I[2],ideal(I[1]),10));
|
|
775
|
+
if(c==10)
|
|
776
|
+
{
|
|
777
|
+
if(ord(I[1])!=4){return("not in the unimodal list");}
|
|
778
|
+
c=ord(I[2][2])+2;
|
|
779
|
+
}
|
|
780
|
+
else
|
|
781
|
+
{
|
|
782
|
+
c=0;
|
|
783
|
+
intvec v=ord(I[1]),ord(I[2]);
|
|
784
|
+
if(v==intvec(5,6)){c=14;}
|
|
785
|
+
if(v==intvec(5,7)){c=18;}
|
|
786
|
+
if(v==intvec(5,8)){c=22;}
|
|
787
|
+
if(v==intvec(4,9)){c=19;}
|
|
788
|
+
if(v==intvec(4,11)){c=25;}
|
|
789
|
+
if(c==0){return("not in the unimodal list");}
|
|
790
|
+
}
|
|
791
|
+
while(size(I[1])>1)
|
|
792
|
+
{
|
|
793
|
+
I=jet(subst(I,t,t-number(1)/number(ord(I[1]))*leadcoef(I[1][2])*t^(ord(I[1][2])-ord(I[1])+1)),c);
|
|
794
|
+
}
|
|
795
|
+
ideal G=I;
|
|
796
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),c);
|
|
797
|
+
ideal M=sagbiMod(diff(G,t),G);
|
|
798
|
+
list K=semiMod(M,G);
|
|
799
|
+
|
|
800
|
+
if(K[1]==intvec(4,9))
|
|
801
|
+
{
|
|
802
|
+
if(K[4]==intvec(3,8)){J=t4,t9;}
|
|
803
|
+
if(K[4]==intvec(3,8,22)){J=t4,t9+t19;}
|
|
804
|
+
if(K[4]==intvec(3,8,18)){J=t4,t9+t15;}
|
|
805
|
+
if(K[4]==intvec(3,8,14)){J=t4,t9+t11;}
|
|
806
|
+
if(K[4]==intvec(3,8,13))
|
|
807
|
+
{
|
|
808
|
+
G=reducedSagbiAlg(G,15);
|
|
809
|
+
if(ord(G[2][4])==14)
|
|
810
|
+
{
|
|
811
|
+
//kill the term t14 by some transformation
|
|
812
|
+
G=subst(G,t,t-leadcoef(G[2][4])/9*t^6);
|
|
813
|
+
G=jet(G,15);
|
|
814
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),15);
|
|
815
|
+
//arrange the first element to be t4
|
|
816
|
+
while(size(G[1])>1)
|
|
817
|
+
{
|
|
818
|
+
G=subst(G,t,t-1/4*(G[1]-lead(G[1]))/t^3);
|
|
819
|
+
G=jet(G,15);
|
|
820
|
+
}
|
|
821
|
+
}
|
|
822
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),15);
|
|
823
|
+
//arrange the coefficient of t10 to become 1
|
|
824
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
825
|
+
G[2]=m^9*subst(G[2],t,1/m*t);
|
|
826
|
+
J=G;
|
|
827
|
+
}
|
|
828
|
+
if(K[4]==intvec(3,8,13,18))
|
|
829
|
+
{
|
|
830
|
+
G=reducedSagbiAlg(G,11);
|
|
831
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
832
|
+
G[2]=m^9*subst(G[2],t,1/m*t);
|
|
833
|
+
J=G;
|
|
834
|
+
}
|
|
835
|
+
}
|
|
836
|
+
if(K[1]==intvec(4,11))
|
|
837
|
+
{
|
|
838
|
+
if(K[4]==intvec(3,10)){J=t4,t11;}
|
|
839
|
+
if(K[4]==intvec(3,10,28)){J=t4,t11+t25;}
|
|
840
|
+
if(K[4]==intvec(3,10,24)){J=t4,t11+t21;}
|
|
841
|
+
if(K[4]==intvec(3,10,20)){J=t4,t11+t17;}
|
|
842
|
+
if(K[4]==intvec(3,10,16))
|
|
843
|
+
{
|
|
844
|
+
G=reducedSagbiAlg(G,14);
|
|
845
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
846
|
+
number l=leadcoef(G[2][3]);
|
|
847
|
+
//lambda^2=l^2/m^3
|
|
848
|
+
J=G;
|
|
849
|
+
}
|
|
850
|
+
if(K[4]==intvec(3,10,17))
|
|
851
|
+
{
|
|
852
|
+
G=reducedSagbiAlg(G,21);
|
|
853
|
+
if(ord(G[2][4])==18)
|
|
854
|
+
{
|
|
855
|
+
//kill the term t18 by some transformation
|
|
856
|
+
G=subst(G,t,t-leadcoef(G[2][4])/11*t^8);
|
|
857
|
+
G=jet(G,21);
|
|
858
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),21);
|
|
859
|
+
//arrange the first element to be t4
|
|
860
|
+
while(size(G[1])>1)
|
|
861
|
+
{
|
|
862
|
+
G=subst(G,t,t-1/4*(G[1]-lead(G[1]))/t^3);
|
|
863
|
+
G=jet(G,21);
|
|
864
|
+
}
|
|
865
|
+
}
|
|
866
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),21);
|
|
867
|
+
//arrange the coefficient of t14 to become 1
|
|
868
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
869
|
+
number l=leadcoef(G[2][4]);
|
|
870
|
+
//lambda^2=l^3/m^10
|
|
871
|
+
J=G;
|
|
872
|
+
}
|
|
873
|
+
if(K[4]==intvec(3,10,17,24))
|
|
874
|
+
{
|
|
875
|
+
G=reducedSagbiAlg(G,18);
|
|
876
|
+
//arrange the coefficient of t14 to become 1
|
|
877
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
878
|
+
G[2]=t11+t14+leadcoef(G[2][3])/m^2*t17;
|
|
879
|
+
J=G;
|
|
880
|
+
}
|
|
881
|
+
}
|
|
882
|
+
if((size(K[1])==3)&&(K[1][1]==4)&&(K[1][2]==10))
|
|
883
|
+
{
|
|
884
|
+
int l=(K[1][3]-19) div 2;
|
|
885
|
+
G=reducedSagbiAlg(G,2*l+12);
|
|
886
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
887
|
+
number s=leadcoef(G[2][3]);
|
|
888
|
+
//lambda^(2l-1)=s^(2l-1)/m^(2l+1)
|
|
889
|
+
J=G;
|
|
890
|
+
}
|
|
891
|
+
if(K[1]==intvec(5,6))
|
|
892
|
+
{
|
|
893
|
+
if(K[4]==intvec(4,5)){J=t5,t6;}
|
|
894
|
+
if(K[4]==intvec(4,5,18)){J=t5,t6+t14;}
|
|
895
|
+
if(K[4]==intvec(4,5,13)){J=t5,t6+t9;}
|
|
896
|
+
if(K[4]==intvec(4,5,12))
|
|
897
|
+
{
|
|
898
|
+
G=reducedSagbiAlg(G,9);
|
|
899
|
+
if(ord(G[2][2])==7)
|
|
900
|
+
{
|
|
901
|
+
//kill the term t7 by some transformation
|
|
902
|
+
G=subst(G,t,t-leadcoef(G[2][2])/6*t^2);
|
|
903
|
+
G=jet(G,10);
|
|
904
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),9);
|
|
905
|
+
//arrange the first element to be t4
|
|
906
|
+
while(size(G[1])>1)
|
|
907
|
+
{
|
|
908
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
909
|
+
G=jet(G,9);
|
|
910
|
+
}
|
|
911
|
+
}
|
|
912
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),9);
|
|
913
|
+
//arrange the coefficient of t8 to become 1
|
|
914
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
915
|
+
number l=leadcoef(G[2][3]);
|
|
916
|
+
//lambda^2=l^2/m^3
|
|
917
|
+
J=G;
|
|
918
|
+
|
|
919
|
+
}
|
|
920
|
+
}
|
|
921
|
+
if(K[1]==intvec(5,7))
|
|
922
|
+
{
|
|
923
|
+
if(K[4]==intvec(4,6)){J=t5,t7;}
|
|
924
|
+
if(K[4]==intvec(4,6,22)){J=t5,t7+t18;}
|
|
925
|
+
if(K[4]==intvec(4,6,17)){J=t5,t7+t13;}
|
|
926
|
+
if(K[4]==intvec(4,6,12))
|
|
927
|
+
{
|
|
928
|
+
G=reducedSagbiAlg(G,11);
|
|
929
|
+
if(ord(G[2][3])==9)
|
|
930
|
+
{
|
|
931
|
+
//kill the term t9 by some transformation
|
|
932
|
+
G=subst(G,t,t-leadcoef(G[2][3])/7*t^3);
|
|
933
|
+
G=jet(G,11);
|
|
934
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),11);
|
|
935
|
+
//arrange the first element to be t4
|
|
936
|
+
while(size(G[1])>1)
|
|
937
|
+
{
|
|
938
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
939
|
+
G=jet(G,11);
|
|
940
|
+
}
|
|
941
|
+
}
|
|
942
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),11);
|
|
943
|
+
//arrange the coefficient of t8 to become 1
|
|
944
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
945
|
+
G[2]=m^7*subst(G[2],t,1/m*t);
|
|
946
|
+
J=G;
|
|
947
|
+
}
|
|
948
|
+
if(K[4]==intvec(4,6,15))
|
|
949
|
+
{
|
|
950
|
+
G=reducedSagbiAlg(G,14);
|
|
951
|
+
if(ord(G[2][2])==9)
|
|
952
|
+
{
|
|
953
|
+
//kill the term t9 by some transformation
|
|
954
|
+
G=subst(G,t,t-leadcoef(G[2][2])/7*t^3);
|
|
955
|
+
G=jet(G,14);
|
|
956
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),14);
|
|
957
|
+
//arrange the first element to be t4
|
|
958
|
+
while(size(G[1])>1)
|
|
959
|
+
{
|
|
960
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
961
|
+
G=jet(G,14);
|
|
962
|
+
}
|
|
963
|
+
}
|
|
964
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),14);
|
|
965
|
+
//arrange the coefficient of t11 to become 1
|
|
966
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
967
|
+
number l=leadcoef(G[2][3]);
|
|
968
|
+
//lambda^2=l^2/m^3
|
|
969
|
+
J=G;
|
|
970
|
+
}
|
|
971
|
+
|
|
972
|
+
}
|
|
973
|
+
if(K[1]==intvec(5,8))
|
|
974
|
+
{
|
|
975
|
+
if(K[4]==intvec(4,7)){J=t5,t8;}
|
|
976
|
+
if(K[4]==intvec(4,7,26)){J=t5,t8+t22;}
|
|
977
|
+
if(K[4]==intvec(4,7,21)){J=t5,t8+t17;}
|
|
978
|
+
if(K[4]==intvec(4,7,13))
|
|
979
|
+
{
|
|
980
|
+
G=reducedSagbiAlg(G,12);
|
|
981
|
+
if(ord(G[2][3])==11)
|
|
982
|
+
{
|
|
983
|
+
//kill the term t11 by some transformation
|
|
984
|
+
G=subst(G,t,t-leadcoef(G[2][3])/8*t^4);
|
|
985
|
+
G=jet(G,12);
|
|
986
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),12);
|
|
987
|
+
//arrange the first element to be t4
|
|
988
|
+
while(size(G[1])>1)
|
|
989
|
+
{
|
|
990
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
991
|
+
G=jet(G,12);
|
|
992
|
+
}
|
|
993
|
+
}
|
|
994
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),12);
|
|
995
|
+
//arrange the coefficient of t9 to become 1
|
|
996
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
997
|
+
G[2]=m^8*subst(G[2],t,1/m*t);
|
|
998
|
+
J=G;
|
|
999
|
+
}
|
|
1000
|
+
|
|
1001
|
+
if(K[4]==intvec(4,7,16))
|
|
1002
|
+
{
|
|
1003
|
+
G=reducedSagbiAlg(G,14);
|
|
1004
|
+
if(ord(G[2][2])==11)
|
|
1005
|
+
{
|
|
1006
|
+
//kill the term t11 by some transformation
|
|
1007
|
+
G=subst(G,t,t-leadcoef(G[2][2])/8*t^4);
|
|
1008
|
+
G=jet(G,14);
|
|
1009
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),14);
|
|
1010
|
+
//arrange the first element to be t4
|
|
1011
|
+
while(size(G[1])>1)
|
|
1012
|
+
{
|
|
1013
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
1014
|
+
G=jet(G,14);
|
|
1015
|
+
}
|
|
1016
|
+
}
|
|
1017
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),14);
|
|
1018
|
+
//arrange the coefficient of t12 to become 1
|
|
1019
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
1020
|
+
number l=leadcoef(G[2][3]);
|
|
1021
|
+
//lambda^2=l^2/m^3
|
|
1022
|
+
J=G;
|
|
1023
|
+
|
|
1024
|
+
}
|
|
1025
|
+
if(K[4]==intvec(4,7,18))
|
|
1026
|
+
{
|
|
1027
|
+
G=reducedSagbiAlg(G,17);
|
|
1028
|
+
if(ord(G[2][2])==11)
|
|
1029
|
+
{
|
|
1030
|
+
//kill the term t11 by some transformation
|
|
1031
|
+
G=subst(G,t,t-leadcoef(G[2][2])/8*t^4);
|
|
1032
|
+
G=jet(G,17);
|
|
1033
|
+
G[1]=sagbiNF(G[1],ideal(G[2]),17);
|
|
1034
|
+
//arrange the first element to be t4
|
|
1035
|
+
while(size(G[1])>1)
|
|
1036
|
+
{
|
|
1037
|
+
G=subst(G,t,t-1/5*(G[1]-lead(G[1]))/t^4);
|
|
1038
|
+
G=jet(G,17);
|
|
1039
|
+
}
|
|
1040
|
+
}
|
|
1041
|
+
G[2]=sagbiNF(G[2],ideal(G[1]),17);
|
|
1042
|
+
//arrange the coefficient of t12 to become 1
|
|
1043
|
+
number m=leadcoef(G[2]-lead(G[2]));
|
|
1044
|
+
number l=leadcoef(G[2][3]);
|
|
1045
|
+
//lambda^2=l^2/m^3
|
|
1046
|
+
J=G;
|
|
1047
|
+
}
|
|
1048
|
+
}
|
|
1049
|
+
setring R;
|
|
1050
|
+
ideal J=fetch(@S,J);
|
|
1051
|
+
if(size(J)==0)
|
|
1052
|
+
{
|
|
1053
|
+
return("not in the unimodal list");
|
|
1054
|
+
}
|
|
1055
|
+
return(J);
|
|
1056
|
+
}
|
|
1057
|
+
example
|
|
1058
|
+
{
|
|
1059
|
+
"EXAMPLE:"; echo=2;
|
|
1060
|
+
ring R=0,t,ds;
|
|
1061
|
+
ideal I=t4,9t9+18t10+38t11-216t12+144t13-288t14;
|
|
1062
|
+
classifyAEQunimodal(I);
|
|
1063
|
+
I=t4,9t9+18t10+40t11-216t12+144t13-288t14;
|
|
1064
|
+
classifyAEQunimodal(I);
|
|
1065
|
+
I=t4,t11+t12+3t14+2t15+7t16+7t17;
|
|
1066
|
+
classifyAEQunimodal(I);
|
|
1067
|
+
I=t4,t11+t14+25/22t17+3t18+4t21;
|
|
1068
|
+
classifyAEQunimodal(I);
|
|
1069
|
+
I=t5,t6+2t7+t8+3t9;
|
|
1070
|
+
classifyAEQunimodal(I);
|
|
1071
|
+
I=t5,t7+3t8+3t9+5t10;
|
|
1072
|
+
classifyAEQunimodal(I);
|
|
1073
|
+
I=t5,t7+3t11+3t12+5t13;
|
|
1074
|
+
classifyAEQunimodal(I);
|
|
1075
|
+
I=t5,t8+3t9+5t10+2t11+3t12+5t13;
|
|
1076
|
+
classifyAEQunimodal(I);
|
|
1077
|
+
I=t5,t8+5t11+3t12+7t13+5t14;
|
|
1078
|
+
classifyAEQunimodal(I);
|
|
1079
|
+
I=t5,t8+5t11+7t13+5t14+7t15+2t16+8t17;
|
|
1080
|
+
classifyAEQunimodal(I);
|
|
1081
|
+
I=subst(I,t,t+t2);
|
|
1082
|
+
classifyAEQunimodal(I);
|
|
1083
|
+
I=t4+2t5+3t6+5t7+t8,9t9+18t10+40t11-216t12+144t13-288t14;
|
|
1084
|
+
classifyAEQunimodal(I);
|
|
1085
|
+
}
|
|
1086
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1087
|
+
static proc computeModulus(poly p)
|
|
1088
|
+
"USAGE": computeModulus(p); p monic poly with 3 or 4 monomials
|
|
1089
|
+
RETURN: A polynomial with first and second coefficient 1
|
|
1090
|
+
EXAMPLE: computeModulus; shows an example
|
|
1091
|
+
ASSUME: the basering has one vearable and one parameter
|
|
1092
|
+
"
|
|
1093
|
+
{
|
|
1094
|
+
def R=basering;
|
|
1095
|
+
int a1=ord(p);
|
|
1096
|
+
int a2=ord(p-lead(p));
|
|
1097
|
+
number m=leadcoef(p-lead(p));
|
|
1098
|
+
|
|
1099
|
+
poly q=par(1)^(a2-a1)-1/m;
|
|
1100
|
+
ring S=(0,a),t,ds;
|
|
1101
|
+
number m=fetch(R,m);
|
|
1102
|
+
minpoly=par(1)^(a2-a1)-1/m;
|
|
1103
|
+
poly p=fetch(R,p);
|
|
1104
|
+
p=1/par(1)^a1*subst(p,var(1),par(1)*var(1));
|
|
1105
|
+
setring R;
|
|
1106
|
+
p=imap(S,p);
|
|
1107
|
+
return(list(p,q));
|
|
1108
|
+
}
|
|
1109
|
+
example
|
|
1110
|
+
{
|
|
1111
|
+
"EXAMPLE:"; echo=2;
|
|
1112
|
+
ring R=(0,a),t,ds;
|
|
1113
|
+
poly p=t8-395/16t14+4931/32t17;
|
|
1114
|
+
computeModulus(p);
|
|
1115
|
+
p=t8+3t12-395/16t14;
|
|
1116
|
+
computeModulus(p);
|
|
1117
|
+
p=t8-395/16t14+4931/32t17;
|
|
1118
|
+
computeModulus(p);
|
|
1119
|
+
|
|
1120
|
+
}
|
|
1121
|
+
|
|
1122
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1123
|
+
static proc n_thRoot(poly p,int n, int b)
|
|
1124
|
+
{
|
|
1125
|
+
//computes the n-th root of 1+p up to order b
|
|
1126
|
+
//assumes that p(0)=0
|
|
1127
|
+
poly s=1;
|
|
1128
|
+
poly q=jet(p,b);
|
|
1129
|
+
if(q==0){return(s);}
|
|
1130
|
+
int i;
|
|
1131
|
+
for(i=1;i<=b;i++)
|
|
1132
|
+
{
|
|
1133
|
+
s=s+bino(n,i)*q;
|
|
1134
|
+
q=jet(q*p,b);
|
|
1135
|
+
}
|
|
1136
|
+
return(jet(s,b));
|
|
1137
|
+
}
|
|
1138
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1139
|
+
static proc bino(number n, int i)
|
|
1140
|
+
{
|
|
1141
|
+
//computes the i-th binomial coefficient of 1/n
|
|
1142
|
+
if(i==0){return(1);}
|
|
1143
|
+
return(bino(n,i-1)*(1/n-i+1)/i);
|
|
1144
|
+
}
|
|
1145
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1146
|
+
proc sagbiMod(ideal I,ideal G)
|
|
1147
|
+
"USAGE": sagbiMod(I,G); I an ideal module and ideal G being the sagbi bases of the Algebra
|
|
1148
|
+
RETURN: An ideal. the sagbi bases for the differential module.
|
|
1149
|
+
EXAMPLE: example sagbiMod; shows an example
|
|
1150
|
+
{
|
|
1151
|
+
def R=basering;//up till now the ordering of the base ring is ds
|
|
1152
|
+
def O=changeord(list(list("Ds",nvars(R))));
|
|
1153
|
+
setring O;
|
|
1154
|
+
ideal I=imap(R,I);
|
|
1155
|
+
ideal G=imap(R,G);
|
|
1156
|
+
int n=ncols(G);poly h;
|
|
1157
|
+
if(I==0)
|
|
1158
|
+
{ return(I);}
|
|
1159
|
+
ideal S,J,M;
|
|
1160
|
+
I=sortMOD(I);
|
|
1161
|
+
if(deg(lead(I[1]))<=1)
|
|
1162
|
+
{ setring R;
|
|
1163
|
+
return(imap(O,I));}
|
|
1164
|
+
int b=semiGroup(lead(G))[2]+deg(lead(I[1])); //AENDERUNG11.16
|
|
1165
|
+
list P;int i;
|
|
1166
|
+
P=createP(I);
|
|
1167
|
+
while(size(P)!=0)
|
|
1168
|
+
{
|
|
1169
|
+
//size(P);
|
|
1170
|
+
J=P[1][1],P[1][2];
|
|
1171
|
+
P=delete(P,1);
|
|
1172
|
+
S=SpolyMOD(J,G);
|
|
1173
|
+
for(i=1;i<=size(S);i++)
|
|
1174
|
+
{
|
|
1175
|
+
h=sagbiNFMOD(S[i],G,I,b);
|
|
1176
|
+
if(h!=0)
|
|
1177
|
+
{
|
|
1178
|
+
h=simplify(h,1);
|
|
1179
|
+
P=enlargeP(h,P,I);
|
|
1180
|
+
I[size(I)+1]=h;
|
|
1181
|
+
}
|
|
1182
|
+
}
|
|
1183
|
+
//I=sortMOD(I);
|
|
1184
|
+
//b=semiMod(I,G)[5]+1;
|
|
1185
|
+
//"clean";
|
|
1186
|
+
// I=cleanI(I,G,b);
|
|
1187
|
+
//lead(I);
|
|
1188
|
+
}
|
|
1189
|
+
I=sortMOD(I);
|
|
1190
|
+
setring R;
|
|
1191
|
+
ideal K=imap(O,I);
|
|
1192
|
+
return(K);
|
|
1193
|
+
}
|
|
1194
|
+
example
|
|
1195
|
+
{
|
|
1196
|
+
"EXAMPLE:"; echo=2;
|
|
1197
|
+
ring r=0,t,Ds;
|
|
1198
|
+
ideal G=t8,t10+t13,t12+t15,t23-t29,t27;
|
|
1199
|
+
ideal I=diff(G,t);
|
|
1200
|
+
sagbiMod(I,G);
|
|
1201
|
+
}
|
|
1202
|
+
|
|
1203
|
+
static proc cleanI(ideal I, ideal G, int b)
|
|
1204
|
+
{
|
|
1205
|
+
int i;
|
|
1206
|
+
ideal J;
|
|
1207
|
+
I=jet(I,b);
|
|
1208
|
+
I=simplify(I,2);
|
|
1209
|
+
int n=size(I);
|
|
1210
|
+
for(i=n;i>1;i--)
|
|
1211
|
+
{
|
|
1212
|
+
J=I[1..i-1];
|
|
1213
|
+
I[i]=sagbiNFMOD(I[i],G,J,b);
|
|
1214
|
+
}
|
|
1215
|
+
I=simplify(I,2);
|
|
1216
|
+
return(I);
|
|
1217
|
+
}
|
|
1218
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1219
|
+
proc semiGroup(ideal I)
|
|
1220
|
+
"USAGE": semiGroup(I); I ideal the sagbi bases of Algebra.
|
|
1221
|
+
RETURN: list L; list with three entries associated to the algebra generated by
|
|
1222
|
+
the sagbi basis:
|
|
1223
|
+
generators of the semigroup
|
|
1224
|
+
the conductor
|
|
1225
|
+
the semigroup
|
|
1226
|
+
EXAMPLE: example planeCur; shows an example
|
|
1227
|
+
{
|
|
1228
|
+
list M;
|
|
1229
|
+
if(deg(I[1])<=1)
|
|
1230
|
+
{
|
|
1231
|
+
M[1]=intvec(1);
|
|
1232
|
+
M[2]=1;
|
|
1233
|
+
M[3]=intvec(0,1);
|
|
1234
|
+
}
|
|
1235
|
+
else
|
|
1236
|
+
{
|
|
1237
|
+
ideal J=lead(I);
|
|
1238
|
+
int b=ConductorBound(J);
|
|
1239
|
+
int i;
|
|
1240
|
+
list L=J[1];
|
|
1241
|
+
for(i=2;i<=size(J);i++)
|
|
1242
|
+
{
|
|
1243
|
+
L[i]=J[i];
|
|
1244
|
+
}
|
|
1245
|
+
M=WSemigroup(L,b);
|
|
1246
|
+
intvec v=0,M[3];
|
|
1247
|
+
M[3]=cutAfterConductor(v);
|
|
1248
|
+
M[2]=findConductor(M[3]);
|
|
1249
|
+
}
|
|
1250
|
+
return(M);
|
|
1251
|
+
}
|
|
1252
|
+
|
|
1253
|
+
example
|
|
1254
|
+
{
|
|
1255
|
+
"EXAMPLE:"; echo=2;
|
|
1256
|
+
ring R=0,t,ds;
|
|
1257
|
+
ideal I=t8,t10+t13,t12+t15,t23-t29,t27;
|
|
1258
|
+
semiGroup(I);
|
|
1259
|
+
I=t8,t10+t13,t12+2t15,t27-3t33,t29;
|
|
1260
|
+
semiGroup(I);
|
|
1261
|
+
}
|
|
1262
|
+
|
|
1263
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1264
|
+
proc semiMod(ideal I,ideal G)
|
|
1265
|
+
"USAGE": semiMod(I,G); I ideal,G ideal;I and G are the sagbi bases of the differential module resp.Algebra.
|
|
1266
|
+
RETURN: list K;
|
|
1267
|
+
K[1]min generators of the semialgebra.
|
|
1268
|
+
K[2]conductor of the algebra.
|
|
1269
|
+
K[3]genrators for the semialgebra.
|
|
1270
|
+
K[4]min generators of the module.
|
|
1271
|
+
K[5]conductor of the module.
|
|
1272
|
+
K[6]semigroup of the module.
|
|
1273
|
+
EXAMPLE: example semiMod; shows an example
|
|
1274
|
+
{
|
|
1275
|
+
list L=semiGroup(G);
|
|
1276
|
+
intvec M;
|
|
1277
|
+
list C;intvec S;
|
|
1278
|
+
int j; int k; int b;
|
|
1279
|
+
for(int i=1;i<=size(I);i++)
|
|
1280
|
+
{
|
|
1281
|
+
M[size(M)+1]=ord(I[i]);
|
|
1282
|
+
}
|
|
1283
|
+
M=M[2..size(M)];
|
|
1284
|
+
for(i=1;i<=size(M);i++)
|
|
1285
|
+
{
|
|
1286
|
+
C[size(C)+1]=M[i]+L[3];
|
|
1287
|
+
}
|
|
1288
|
+
int a=M[1]+L[2];
|
|
1289
|
+
for(j=1;j<=size(M);j++)
|
|
1290
|
+
{
|
|
1291
|
+
for(i=0;i<=a;i++)
|
|
1292
|
+
{
|
|
1293
|
+
for(k=1;k<=size(L[3]);k++)
|
|
1294
|
+
{
|
|
1295
|
+
if(i==C[j][k])
|
|
1296
|
+
{
|
|
1297
|
+
S[size(S)+1]=i;
|
|
1298
|
+
}
|
|
1299
|
+
}
|
|
1300
|
+
}
|
|
1301
|
+
}
|
|
1302
|
+
S=S[2..size(S)];
|
|
1303
|
+
list K;
|
|
1304
|
+
K[1]=L[1];//generators of the semialgebra.
|
|
1305
|
+
K[2]=L[2];//conductor of the algebra.
|
|
1306
|
+
K[3]=L[3];//semi group of the algebra.
|
|
1307
|
+
K[4]=M;// generators of the semimodule.
|
|
1308
|
+
K[5]=findConductor(sortIntvec(S)); //conductor of the module.
|
|
1309
|
+
K[6]=cutAfterConductor(sortIntvec(S));//semigroup of the module.
|
|
1310
|
+
return(K);
|
|
1311
|
+
}
|
|
1312
|
+
example
|
|
1313
|
+
{
|
|
1314
|
+
"EXAMPLE:"; echo=2;
|
|
1315
|
+
ring r=0,t,Ds;
|
|
1316
|
+
ideal G=t4,t7+t10;
|
|
1317
|
+
ideal I=diff(G,t);
|
|
1318
|
+
ideal k=sagbiMod(I,G);
|
|
1319
|
+
semiMod(k,G);
|
|
1320
|
+
}
|
|
1321
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1322
|
+
static proc sagbiNF(poly f,ideal I,int b)
|
|
1323
|
+
{
|
|
1324
|
+
//computes the Sagbi normal form
|
|
1325
|
+
list L=1;
|
|
1326
|
+
poly re;
|
|
1327
|
+
map psi;
|
|
1328
|
+
f=jet(f,b);
|
|
1329
|
+
if(f==0){return(f);}
|
|
1330
|
+
while(f!=0)
|
|
1331
|
+
{
|
|
1332
|
+
L= algebra_containment(lead(f),lead(I),1);
|
|
1333
|
+
if (L[1]==1)
|
|
1334
|
+
{
|
|
1335
|
+
def S= L[2];
|
|
1336
|
+
psi= S,maxideal(1),I;
|
|
1337
|
+
f=jet(f-psi(check),b);
|
|
1338
|
+
kill S;
|
|
1339
|
+
}
|
|
1340
|
+
else
|
|
1341
|
+
{
|
|
1342
|
+
re=re+lead(f);
|
|
1343
|
+
f=f-lead(f);
|
|
1344
|
+
}
|
|
1345
|
+
}
|
|
1346
|
+
return (re);
|
|
1347
|
+
}
|
|
1348
|
+
|
|
1349
|
+
/*
|
|
1350
|
+
ring R=0,t,ds;
|
|
1351
|
+
|
|
1352
|
+
ideal I=t5+t7,t4;
|
|
1353
|
+
|
|
1354
|
+
sagbiNF(t7+2t9+3t11+t14+t13+6t15+t17,I,20);
|
|
1355
|
+
|
|
1356
|
+
*/
|
|
1357
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1358
|
+
static proc sagbiSP(ideal I)
|
|
1359
|
+
{
|
|
1360
|
+
//computes the set of Sagbi-s-polys
|
|
1361
|
+
if(I==0){ return(I); }
|
|
1362
|
+
list L=algDependent(lead(I));
|
|
1363
|
+
|
|
1364
|
+
def S= L[2];
|
|
1365
|
+
map phi= S,maxideal(1),I;
|
|
1366
|
+
return(simplify(phi(ker),2));
|
|
1367
|
+
}
|
|
1368
|
+
|
|
1369
|
+
/*
|
|
1370
|
+
|
|
1371
|
+
ring R=0,t,ds;
|
|
1372
|
+
|
|
1373
|
+
ideal I=t4+t5,t7+t11,t9+t20;
|
|
1374
|
+
|
|
1375
|
+
sagbiSP(I);
|
|
1376
|
+
|
|
1377
|
+
*/
|
|
1378
|
+
|
|
1379
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1380
|
+
static proc sortSagbi(ideal I)
|
|
1381
|
+
{
|
|
1382
|
+
//sorts, makes input monic and removes zeros
|
|
1383
|
+
I=simplify(I,2+1);
|
|
1384
|
+
int i;
|
|
1385
|
+
int n=1;
|
|
1386
|
+
poly p;
|
|
1387
|
+
while(n)
|
|
1388
|
+
{
|
|
1389
|
+
n=0;
|
|
1390
|
+
for(i=1;i<size(I);i++)
|
|
1391
|
+
{
|
|
1392
|
+
if(deg(lead(I[i]))>deg(lead(I[i+1])))
|
|
1393
|
+
{
|
|
1394
|
+
n=1;
|
|
1395
|
+
p=I[i];
|
|
1396
|
+
I[i]=I[i+1];
|
|
1397
|
+
I[i+1]=p;
|
|
1398
|
+
break;
|
|
1399
|
+
}
|
|
1400
|
+
}
|
|
1401
|
+
}
|
|
1402
|
+
return(I);
|
|
1403
|
+
}
|
|
1404
|
+
|
|
1405
|
+
/*
|
|
1406
|
+
|
|
1407
|
+
ring R=0,t,ds;
|
|
1408
|
+
|
|
1409
|
+
ideal I=3t5,7t2+t7,6t3+t8,3t+t7;
|
|
1410
|
+
|
|
1411
|
+
sortSagbi(I);
|
|
1412
|
+
|
|
1413
|
+
*/
|
|
1414
|
+
|
|
1415
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1416
|
+
static proc insertOne(poly p, ideal I, int b)
|
|
1417
|
+
{
|
|
1418
|
+
//assume I is sorted, inserts p at the correct place
|
|
1419
|
+
int i,j;
|
|
1420
|
+
poly q;
|
|
1421
|
+
for(i=1;i<=size(I);i++)
|
|
1422
|
+
{
|
|
1423
|
+
if(deg(lead(p))<deg(lead(I[i])))
|
|
1424
|
+
{
|
|
1425
|
+
break;
|
|
1426
|
+
}
|
|
1427
|
+
}
|
|
1428
|
+
if(i==size(I)+1)
|
|
1429
|
+
{
|
|
1430
|
+
I=I,simplify(p,1);
|
|
1431
|
+
}
|
|
1432
|
+
else
|
|
1433
|
+
{
|
|
1434
|
+
for(j=size(I)+1;j>i;j--)
|
|
1435
|
+
{
|
|
1436
|
+
I[j]=I[j-1];
|
|
1437
|
+
}
|
|
1438
|
+
I[i]=simplify(p,1);
|
|
1439
|
+
}
|
|
1440
|
+
if(i<size(I))
|
|
1441
|
+
{
|
|
1442
|
+
I=interReduceSagbi(I,b);
|
|
1443
|
+
}
|
|
1444
|
+
return(I);
|
|
1445
|
+
}
|
|
1446
|
+
|
|
1447
|
+
/*
|
|
1448
|
+
|
|
1449
|
+
ring R=0,t,ds;
|
|
1450
|
+
|
|
1451
|
+
ideal I=t8,t10+t13,t12+t15;
|
|
1452
|
+
|
|
1453
|
+
insertOne(t17,I,20);
|
|
1454
|
+
|
|
1455
|
+
I=t8,t10+t13,t12+t15,t23-t29;
|
|
1456
|
+
|
|
1457
|
+
insertOne(-2t27,I,40);
|
|
1458
|
+
|
|
1459
|
+
*/
|
|
1460
|
+
|
|
1461
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1462
|
+
static proc interReduceSagbi(ideal I, int b)
|
|
1463
|
+
{
|
|
1464
|
+
// reduces the elements of the dial against each other
|
|
1465
|
+
I=sortSagbi(I);
|
|
1466
|
+
ideal J;
|
|
1467
|
+
int n=1;
|
|
1468
|
+
int i;
|
|
1469
|
+
poly h;
|
|
1470
|
+
while(n)
|
|
1471
|
+
{
|
|
1472
|
+
n=0;
|
|
1473
|
+
i=1;
|
|
1474
|
+
while(i<size(I))
|
|
1475
|
+
{
|
|
1476
|
+
i++;
|
|
1477
|
+
J=I[1..i-1];
|
|
1478
|
+
h=sagbiNF(I[i],J,b);
|
|
1479
|
+
h=simplify(h,1);
|
|
1480
|
+
if(h!=I[i])
|
|
1481
|
+
{
|
|
1482
|
+
n=1;
|
|
1483
|
+
I[i]=h;
|
|
1484
|
+
I=sortSagbi(I);
|
|
1485
|
+
break;
|
|
1486
|
+
}
|
|
1487
|
+
}
|
|
1488
|
+
}
|
|
1489
|
+
return(I);
|
|
1490
|
+
}
|
|
1491
|
+
|
|
1492
|
+
/*
|
|
1493
|
+
|
|
1494
|
+
ring R=0,t,ds;
|
|
1495
|
+
|
|
1496
|
+
ideal I=t8,t8+t10+t13,t8+t12+t15;
|
|
1497
|
+
|
|
1498
|
+
interReduceSagbi(I,20);
|
|
1499
|
+
|
|
1500
|
+
*/
|
|
1501
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1502
|
+
|
|
1503
|
+
static proc correctBound(ideal I, int b)
|
|
1504
|
+
{
|
|
1505
|
+
//computes the conductor c of the semigroup associated to K[I]
|
|
1506
|
+
//if b>=c
|
|
1507
|
+
list L;
|
|
1508
|
+
int i;
|
|
1509
|
+
for(i=1;i<=size(I);i++)
|
|
1510
|
+
{
|
|
1511
|
+
L[i]=I[i];
|
|
1512
|
+
}
|
|
1513
|
+
list M=WSemigroup(L,b);
|
|
1514
|
+
if(b>M[2])
|
|
1515
|
+
{b=M[2]+1;}
|
|
1516
|
+
return(b);
|
|
1517
|
+
}
|
|
1518
|
+
|
|
1519
|
+
/*
|
|
1520
|
+
|
|
1521
|
+
ring R=0,t,ds;
|
|
1522
|
+
|
|
1523
|
+
ideal I=t8,t10+t13,t12+t15;
|
|
1524
|
+
|
|
1525
|
+
correctBound(I,40);
|
|
1526
|
+
|
|
1527
|
+
I=t8,t10+t13,t12+2t15;
|
|
1528
|
+
|
|
1529
|
+
correctBound(I,40);
|
|
1530
|
+
|
|
1531
|
+
*/
|
|
1532
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1533
|
+
static proc sortMinord(ideal I)
|
|
1534
|
+
{
|
|
1535
|
+
//input an ideal
|
|
1536
|
+
//output a list L[1]=minimal order,
|
|
1537
|
+
// L[2]=poly having the minimal order,
|
|
1538
|
+
// L[3]=the k suchthat I[k] has the minimal order,
|
|
1539
|
+
// L[4]=ideal I sorted in a way that minimal degree polynomial
|
|
1540
|
+
|
|
1541
|
+
//appears as the last polynomial of the ideal.ie I[size(I)]=I[k].
|
|
1542
|
+
int i;
|
|
1543
|
+
int n=1;
|
|
1544
|
+
list L;
|
|
1545
|
+
poly p;
|
|
1546
|
+
while(n)
|
|
1547
|
+
{
|
|
1548
|
+
n=0;
|
|
1549
|
+
for(i=1;i<size(I);i++)
|
|
1550
|
+
{
|
|
1551
|
+
if(ord(I[i])<ord(I[i+1]))
|
|
1552
|
+
{
|
|
1553
|
+
n=1;
|
|
1554
|
+
p=I[i];
|
|
1555
|
+
I[i]=I[i+1];
|
|
1556
|
+
I[i+1]=p;
|
|
1557
|
+
break;
|
|
1558
|
+
}
|
|
1559
|
+
}
|
|
1560
|
+
}
|
|
1561
|
+
L[1]=ord(I[size(I)]);
|
|
1562
|
+
L[2]=I[size(I)];
|
|
1563
|
+
L[3]=size(I);
|
|
1564
|
+
L[4]=I;
|
|
1565
|
+
return(L);
|
|
1566
|
+
}
|
|
1567
|
+
/*
|
|
1568
|
+
ring r=0,t,Ds;
|
|
1569
|
+
ideal I=t3,t6,t8,t4,t5,t9,t11,t3;
|
|
1570
|
+
sortMinord(I);
|
|
1571
|
+
*/
|
|
1572
|
+
|
|
1573
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1574
|
+
static proc inversP(poly p,int b)
|
|
1575
|
+
{
|
|
1576
|
+
//computes the inverse of p upto the bound b
|
|
1577
|
+
if(size(p)==1)
|
|
1578
|
+
{
|
|
1579
|
+
return(p);
|
|
1580
|
+
}
|
|
1581
|
+
number c=leadcoef(p);
|
|
1582
|
+
p=p/c;
|
|
1583
|
+
poly q=1;
|
|
1584
|
+
poly s=1;
|
|
1585
|
+
while(deg(lead(q))<b)
|
|
1586
|
+
{
|
|
1587
|
+
q=q*(1-p);
|
|
1588
|
+
s=s+q;
|
|
1589
|
+
}
|
|
1590
|
+
s=1/c*jet(s,b);
|
|
1591
|
+
return(s);
|
|
1592
|
+
}
|
|
1593
|
+
|
|
1594
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1595
|
+
static proc ConductorBound(ideal I)
|
|
1596
|
+
{
|
|
1597
|
+
//input an ideal
|
|
1598
|
+
// output an integer which gives the bound of the semigroup conductor
|
|
1599
|
+
list M,L;
|
|
1600
|
+
int c,i,b;
|
|
1601
|
+
ideal J;
|
|
1602
|
+
poly p;
|
|
1603
|
+
if(size(I)<=1)
|
|
1604
|
+
{return(2);}
|
|
1605
|
+
while(1)
|
|
1606
|
+
{
|
|
1607
|
+
b=b+5;
|
|
1608
|
+
J=I;
|
|
1609
|
+
L=sortMinord(J);
|
|
1610
|
+
M[size(M)+1]=L[1];
|
|
1611
|
+
while((M[size(M)]!=1)&&(size(L[4])>1))
|
|
1612
|
+
{
|
|
1613
|
+
p=L[2]/var(1)^L[1];
|
|
1614
|
+
J=L[4];
|
|
1615
|
+
for(i=1;i<=L[3]-1;i++)
|
|
1616
|
+
{
|
|
1617
|
+
J[i]=J[i]/var(1)^L[1]*inversP(p,b);
|
|
1618
|
+
if(deg(lead(J[i]))==0){J[i]=J[i]-lead(J[i]);}
|
|
1619
|
+
}
|
|
1620
|
+
J=simplify(J,2);
|
|
1621
|
+
L=sortMinord(J);
|
|
1622
|
+
M[size(M)+1]=L[1];
|
|
1623
|
+
}
|
|
1624
|
+
if(M[size(M)]==1){break;}
|
|
1625
|
+
}
|
|
1626
|
+
for(i=1;i<=size(M)-1;i++)
|
|
1627
|
+
{
|
|
1628
|
+
c=c+M[i]*(M[i]-1);
|
|
1629
|
+
}
|
|
1630
|
+
return(c+1);
|
|
1631
|
+
}
|
|
1632
|
+
/*
|
|
1633
|
+
ring r=0,t,Ds;
|
|
1634
|
+
ideal I=t3+3t7,t8+5t9;
|
|
1635
|
+
ConductorBound(I);
|
|
1636
|
+
*/
|
|
1637
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1638
|
+
static proc sortMOD(ideal I)
|
|
1639
|
+
{
|
|
1640
|
+
//sorts, makes input monic and removes zeros
|
|
1641
|
+
I=simplify(I,2);
|
|
1642
|
+
I=simplify(I,1);
|
|
1643
|
+
int i;
|
|
1644
|
+
int n=1;
|
|
1645
|
+
poly p;
|
|
1646
|
+
while(n)
|
|
1647
|
+
{
|
|
1648
|
+
n=0;
|
|
1649
|
+
for(i=1;i<size(I);i++)
|
|
1650
|
+
{
|
|
1651
|
+
if(deg(lead(I[i]))>deg(lead(I[i+1])))
|
|
1652
|
+
{
|
|
1653
|
+
n=1;
|
|
1654
|
+
p=I[i];
|
|
1655
|
+
I[i]=I[i+1];
|
|
1656
|
+
I[i+1]=p;
|
|
1657
|
+
break;
|
|
1658
|
+
}
|
|
1659
|
+
}
|
|
1660
|
+
}
|
|
1661
|
+
return(I);
|
|
1662
|
+
}
|
|
1663
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1664
|
+
static proc SpolyMOD(ideal S,ideal P)
|
|
1665
|
+
{
|
|
1666
|
+
//Assume that the basering is a ring in one variable.
|
|
1667
|
+
//input two ideals ideal S=<s_1,s_2> generators of the module and ideal P=<p_1,p_2,..,p_n> the sagbi basis of the algebra
|
|
1668
|
+
//output is an ideal generated by Q[p_1,p_2,...p_n]s_1-R[p_1,p_2,...p_n]s_2 for generators of
|
|
1669
|
+
//Q[lead(p_1),lead(p_2),.,lead(p_n)]lead(s_1)-R[lead(p_1),lead(p_2),.,lead(p_n)]lead(s_2)=0 .
|
|
1670
|
+
def br=basering;
|
|
1671
|
+
int n=ncols(P);
|
|
1672
|
+
ideal P1=lead(P);
|
|
1673
|
+
ideal S1=lead(S);
|
|
1674
|
+
execute
|
|
1675
|
+
("ring T=("+charstr(br)+",x(1),z(1..n)),(y(1..2)),dp;");
|
|
1676
|
+
poly q;
|
|
1677
|
+
execute
|
|
1678
|
+
("ring R=("+charstr(br)+"),(x(1),y(1..2),z(1..n)),(lp(3),dp(n));");
|
|
1679
|
+
map phi=br,x(1);
|
|
1680
|
+
ideal G=phi(P1);
|
|
1681
|
+
ideal I=phi(S1);
|
|
1682
|
+
ideal K,J;
|
|
1683
|
+
int d,o,s,j;
|
|
1684
|
+
poly q=I[1];
|
|
1685
|
+
if(deg(I[1])>deg(I[2]))
|
|
1686
|
+
{
|
|
1687
|
+
o=1;
|
|
1688
|
+
q=I[2];
|
|
1689
|
+
}
|
|
1690
|
+
I=I/q;
|
|
1691
|
+
for(int i=1;i<=2;i++)
|
|
1692
|
+
{
|
|
1693
|
+
K[i]=I[i]-y(i);
|
|
1694
|
+
}
|
|
1695
|
+
for(i=1;i<=n;i++)
|
|
1696
|
+
{
|
|
1697
|
+
K[2+i]=G[i]-z(i);
|
|
1698
|
+
}
|
|
1699
|
+
option(redSB);
|
|
1700
|
+
K=std(K);
|
|
1701
|
+
for(i=1;i<=size(K);i++)
|
|
1702
|
+
{
|
|
1703
|
+
if((K[i]/x(1)==0)&&((diff(K[i],y(1))!=0)||(diff(K[i],y(2))!=0)))
|
|
1704
|
+
{
|
|
1705
|
+
q=K[i];
|
|
1706
|
+
for(j=1;j<=2;j++)
|
|
1707
|
+
{
|
|
1708
|
+
q=subst(q,y(j),0);
|
|
1709
|
+
}
|
|
1710
|
+
K[i]=K[i]-q+q*y(o+1);
|
|
1711
|
+
q=K[i];
|
|
1712
|
+
setring T;
|
|
1713
|
+
q=imap(R,q);
|
|
1714
|
+
s=deg(q);
|
|
1715
|
+
setring R;
|
|
1716
|
+
if(s==1){J[size(J)+1]=simplify(q,1);}
|
|
1717
|
+
}
|
|
1718
|
+
}
|
|
1719
|
+
setring br;
|
|
1720
|
+
map phi=R,maxideal(1),S,P;
|
|
1721
|
+
return(phi(J));
|
|
1722
|
+
}
|
|
1723
|
+
/*
|
|
1724
|
+
ring r=0,t,dp;
|
|
1725
|
+
ideal I=4t3,7t6+10t9;
|
|
1726
|
+
ideal J=t4,t7+t10;
|
|
1727
|
+
sortSagbi(SpolyMOD(I,J));
|
|
1728
|
+
*/
|
|
1729
|
+
|
|
1730
|
+
|
|
1731
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1732
|
+
static proc sagbiNFMODO(poly p, ideal G, ideal I,int b)
|
|
1733
|
+
{
|
|
1734
|
+
//input a poly ideal G ideal I int b is a bound
|
|
1735
|
+
//output an ideal K such that in each K[i] generators of I appear in linear.
|
|
1736
|
+
def br=basering;
|
|
1737
|
+
p=jet(p,b);
|
|
1738
|
+
if(p==0){return(p);}
|
|
1739
|
+
int i;
|
|
1740
|
+
for(i=1;i<=size(I);i++)
|
|
1741
|
+
{
|
|
1742
|
+
if(leadmonom(p)==leadmonom(I[i]))
|
|
1743
|
+
{
|
|
1744
|
+
return(p-leadcoef(p)/leadcoef(I[i])*I[i]);
|
|
1745
|
+
}
|
|
1746
|
+
}
|
|
1747
|
+
int n=ncols(G);
|
|
1748
|
+
int m=ncols(I);
|
|
1749
|
+
ideal G1=lead(G);
|
|
1750
|
+
ideal I1=lead(I);
|
|
1751
|
+
poly p1=lead(p);
|
|
1752
|
+
//create new ring with extra variables -
|
|
1753
|
+
execute
|
|
1754
|
+
("ring T=("+charstr(br)+",x(1),z(1..n)),(x(2),y(1..m)),dp;");
|
|
1755
|
+
execute
|
|
1756
|
+
("ring R=("+charstr(br)+"),(x(1..2),y(1..m),z(1..n)),(lp(2),dp(m),dp(n));"); //AENDERUNG
|
|
1757
|
+
|
|
1758
|
+
map phi = br,x(1);
|
|
1759
|
+
ideal G = phi(G);
|
|
1760
|
+
ideal I = phi(I);
|
|
1761
|
+
ideal P = phi(G1);
|
|
1762
|
+
ideal S = phi(I1);
|
|
1763
|
+
poly p=phi(p);
|
|
1764
|
+
ideal J=var(1),p,I,G;
|
|
1765
|
+
poly check = phi(p1);
|
|
1766
|
+
poly keep=S[1];
|
|
1767
|
+
S=S/keep;
|
|
1768
|
+
|
|
1769
|
+
check=check/keep;
|
|
1770
|
+
ideal M;
|
|
1771
|
+
poly q;
|
|
1772
|
+
for ( i=1;i<=m;i=i+1)
|
|
1773
|
+
{
|
|
1774
|
+
M[i]=S[i]-y(i);
|
|
1775
|
+
}
|
|
1776
|
+
for (i=1;i<=n;i=i+1)
|
|
1777
|
+
{
|
|
1778
|
+
M[m+i]=P[i]-z(i);
|
|
1779
|
+
}
|
|
1780
|
+
M[size(M)+1]=check-x(2);
|
|
1781
|
+
check=check*keep;
|
|
1782
|
+
option(redSB);
|
|
1783
|
+
M=std(M);
|
|
1784
|
+
int j,s;
|
|
1785
|
+
for(i=1;i<=size(M);i++)
|
|
1786
|
+
{
|
|
1787
|
+
if((deg(M[i]/x(2))==0)&&(M[i]/x(1)==0))
|
|
1788
|
+
{
|
|
1789
|
+
q=subst(M[i],x(2),0);
|
|
1790
|
+
for(j=1;j<=m;j++)
|
|
1791
|
+
{
|
|
1792
|
+
q=subst(q,y(j),0);
|
|
1793
|
+
}
|
|
1794
|
+
M[i]=M[i]-q+q*y(1);
|
|
1795
|
+
q=M[i];
|
|
1796
|
+
setring T;
|
|
1797
|
+
poly q=imap(R,q);
|
|
1798
|
+
s=deg(q);
|
|
1799
|
+
setring R;
|
|
1800
|
+
if(s==1){check=simplify(q,1);break;}
|
|
1801
|
+
}
|
|
1802
|
+
}
|
|
1803
|
+
poly check1=specialSubst(check,J,b);
|
|
1804
|
+
setring br;
|
|
1805
|
+
// map psi=R,maxideal(1),p,I,G;
|
|
1806
|
+
map psi1=R,var(1);
|
|
1807
|
+
return(psi1(check1));
|
|
1808
|
+
}
|
|
1809
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1810
|
+
static proc specialSubst(poly check,ideal J,int b)
|
|
1811
|
+
{
|
|
1812
|
+
poly resu,mon,r;
|
|
1813
|
+
int i,j,k;
|
|
1814
|
+
intvec v;
|
|
1815
|
+
for(i=1;i<=size(check);i++)
|
|
1816
|
+
{
|
|
1817
|
+
mon=check[i];
|
|
1818
|
+
v=leadexp(mon);
|
|
1819
|
+
r=1;
|
|
1820
|
+
for(j=1;j<=nvars(basering);j++)
|
|
1821
|
+
{
|
|
1822
|
+
for(k=1;k<=v[j];k++)
|
|
1823
|
+
{
|
|
1824
|
+
r=jet(r*J[j],b);
|
|
1825
|
+
}
|
|
1826
|
+
}
|
|
1827
|
+
resu=resu+r*leadcoef(mon);
|
|
1828
|
+
}
|
|
1829
|
+
return(jet(resu,b));
|
|
1830
|
+
}
|
|
1831
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1832
|
+
static proc sagbiNFMOD(poly p, ideal G, ideal I, int b)
|
|
1833
|
+
{
|
|
1834
|
+
poly f=jet(p,b);
|
|
1835
|
+
if(f==0){return(f);}
|
|
1836
|
+
poly h;
|
|
1837
|
+
while(leadmonom(f)!=leadmonom(h))
|
|
1838
|
+
{
|
|
1839
|
+
h=f;
|
|
1840
|
+
f=sagbiNFMODO(f,G,I,b);
|
|
1841
|
+
}
|
|
1842
|
+
return(lead(h)+sagbiNFMOD(h-lead(h),G,I,b)); //AENDERUNG
|
|
1843
|
+
}
|
|
1844
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1845
|
+
static proc createP(ideal I)
|
|
1846
|
+
{
|
|
1847
|
+
list P;
|
|
1848
|
+
int i=1;
|
|
1849
|
+
int j;
|
|
1850
|
+
while(i<=size(I)-1)
|
|
1851
|
+
{
|
|
1852
|
+
j=i+1;
|
|
1853
|
+
while(j<=size(I))
|
|
1854
|
+
{
|
|
1855
|
+
P[size(P)+1]=list(I[i],I[j]);
|
|
1856
|
+
j++;
|
|
1857
|
+
}
|
|
1858
|
+
i++;
|
|
1859
|
+
}
|
|
1860
|
+
return(P);
|
|
1861
|
+
}
|
|
1862
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1863
|
+
static proc enlargeP(poly h,list P,ideal I)
|
|
1864
|
+
{
|
|
1865
|
+
int i;
|
|
1866
|
+
for(i=1;i<=size(I);i++)
|
|
1867
|
+
{
|
|
1868
|
+
P[size(P)+1]=list(I[i],h);
|
|
1869
|
+
}
|
|
1870
|
+
return(P);
|
|
1871
|
+
}
|
|
1872
|
+
/*
|
|
1873
|
+
ring r=0,t,Ds;
|
|
1874
|
+
ideal I=4t3,7t6+10t9;
|
|
1875
|
+
ideal G=t4,t7+t10;
|
|
1876
|
+
sagbiMod(I,G,18);
|
|
1877
|
+
*/
|
|
1878
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1879
|
+
static proc sortIntvec(intvec L)
|
|
1880
|
+
{
|
|
1881
|
+
//input: intvec L.
|
|
1882
|
+
//output: L sorted, multiple elements canceled.
|
|
1883
|
+
int i;
|
|
1884
|
+
int j;
|
|
1885
|
+
int n=1;
|
|
1886
|
+
intvec M;
|
|
1887
|
+
while(n)
|
|
1888
|
+
{
|
|
1889
|
+
for(i=1;i<=size(L);i++)
|
|
1890
|
+
{
|
|
1891
|
+
for(j=i+1;j<=size(L);j++)
|
|
1892
|
+
{
|
|
1893
|
+
if(L[i]==L[j])
|
|
1894
|
+
{
|
|
1895
|
+
L[j]=0;
|
|
1896
|
+
}
|
|
1897
|
+
}
|
|
1898
|
+
}
|
|
1899
|
+
n=0;
|
|
1900
|
+
}
|
|
1901
|
+
for(i=1;i<=size(L);i++)
|
|
1902
|
+
{
|
|
1903
|
+
if((L[i]!=0)||(i==1))
|
|
1904
|
+
{
|
|
1905
|
+
M[size(M)+1]=L[i];
|
|
1906
|
+
}
|
|
1907
|
+
}
|
|
1908
|
+
int m=1;int p;
|
|
1909
|
+
while(m)
|
|
1910
|
+
{
|
|
1911
|
+
m=0;
|
|
1912
|
+
for(i=1;i<size(M);i++)
|
|
1913
|
+
{
|
|
1914
|
+
if(M[i]>M[i+1])
|
|
1915
|
+
{
|
|
1916
|
+
m=1;
|
|
1917
|
+
p=M[i];
|
|
1918
|
+
M[i]=M[i+1];
|
|
1919
|
+
M[i+1]=p;
|
|
1920
|
+
break;
|
|
1921
|
+
}
|
|
1922
|
+
}
|
|
1923
|
+
}
|
|
1924
|
+
M=M[2..size(M)];
|
|
1925
|
+
return(M);
|
|
1926
|
+
}
|
|
1927
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1928
|
+
static proc findConductor(intvec L)
|
|
1929
|
+
{
|
|
1930
|
+
//input a intvec L
|
|
1931
|
+
//output is an integer which came before the gap from right to left.
|
|
1932
|
+
int i;int j; list K;
|
|
1933
|
+
int c;
|
|
1934
|
+
for(i=size(L);i>=2;i--)
|
|
1935
|
+
{
|
|
1936
|
+
if(L[i]!=L[i-1]+1)
|
|
1937
|
+
{
|
|
1938
|
+
c=L[i];
|
|
1939
|
+
break;
|
|
1940
|
+
}
|
|
1941
|
+
}
|
|
1942
|
+
if(c==0){c=1;}
|
|
1943
|
+
return(c);
|
|
1944
|
+
}
|
|
1945
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1946
|
+
static proc cutAfterConductor(intvec L)
|
|
1947
|
+
{
|
|
1948
|
+
//input an integer vector
|
|
1949
|
+
//output cut all the integers in the intvec which came after the conductor
|
|
1950
|
+
int i;int j; intvec K;
|
|
1951
|
+
int c=findConductor(L);
|
|
1952
|
+
for(i=1;i<=size(L);i++)
|
|
1953
|
+
{
|
|
1954
|
+
if(L[i]==c)
|
|
1955
|
+
{
|
|
1956
|
+
K[1..i]=L[1..i];
|
|
1957
|
+
}
|
|
1958
|
+
}
|
|
1959
|
+
return(K);
|
|
1960
|
+
}
|
|
1961
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1962
|
+
static proc CompareList(list L,list M,int n)
|
|
1963
|
+
{
|
|
1964
|
+
//input two list L,M with the same size n
|
|
1965
|
+
//out put 0 if not equal 1 if equal.
|
|
1966
|
+
for(int i=1;i<=n;i++)
|
|
1967
|
+
{
|
|
1968
|
+
if(L[i]!=M[i])
|
|
1969
|
+
{
|
|
1970
|
+
i=0;
|
|
1971
|
+
break;
|
|
1972
|
+
}
|
|
1973
|
+
}
|
|
1974
|
+
return(i);
|
|
1975
|
+
}
|
|
1976
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1977
|
+
static proc Guess(ideal I)
|
|
1978
|
+
{
|
|
1979
|
+
// comput the sagbi basis of the module
|
|
1980
|
+
//which we guess .
|
|
1981
|
+
I=sagbiAlg(I);
|
|
1982
|
+
ideal H=diff(I,var(1));
|
|
1983
|
+
H=sagbiMod(H,I);
|
|
1984
|
+
list K=semiMod(H,I);
|
|
1985
|
+
return(K);
|
|
1986
|
+
}
|
|
1987
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
1988
|
+
|
|
1989
|
+
static proc inVar(ideal I)
|
|
1990
|
+
{
|
|
1991
|
+
// I=<x(t),y(t)>, ord(x(t))=n<ord(y(t))=m, n does not divide m
|
|
1992
|
+
// returns a list L with 5 entries
|
|
1993
|
+
// L[1] the semi group Gamma
|
|
1994
|
+
// L[2] the semi module Lambda
|
|
1995
|
+
// L[3] 0 if Lambda=Gamma or lambda=min(Lambda-Gamma) -n
|
|
1996
|
+
// L[4] the integers i, i>lambda, i+n not in Lambda, 0 if this set is empty
|
|
1997
|
+
// L[5] 0 or the smallest integer i, i not in Gamma, i+m-n not in Gamma
|
|
1998
|
+
// i-lambda not in Gamma but i+n in Lambda
|
|
1999
|
+
|
|
2000
|
+
ideal G=sagbiAlg(I);
|
|
2001
|
+
ideal M=diff(I,t);
|
|
2002
|
+
ideal K=sagbiMod(M,G);
|
|
2003
|
+
list L=semiMod(K,G);
|
|
2004
|
+
intvec v=L[3]; //semi group Gamma
|
|
2005
|
+
intvec w=L[6]+1;
|
|
2006
|
+
w=0,w; //semi module Lambda
|
|
2007
|
+
intvec mo;
|
|
2008
|
+
int i,l,k;
|
|
2009
|
+
l=-1;
|
|
2010
|
+
int n=ord(G[1]);
|
|
2011
|
+
int m=ord(G[2]);
|
|
2012
|
+
for(i=1;i<=size(w);i++)
|
|
2013
|
+
{
|
|
2014
|
+
if(v[i]!=w[i])
|
|
2015
|
+
{
|
|
2016
|
+
l=w[i]-v[2]; //lambda
|
|
2017
|
+
break;
|
|
2018
|
+
}
|
|
2019
|
+
}
|
|
2020
|
+
if(i==size(w)+1)
|
|
2021
|
+
{
|
|
2022
|
+
for(k=i;k<=size(v);k++)
|
|
2023
|
+
{
|
|
2024
|
+
if(v[k]!=w[i-1]+k-i+1)
|
|
2025
|
+
{
|
|
2026
|
+
l=w[i-1]+k-i+1-v[2]; //lambda
|
|
2027
|
+
break;
|
|
2028
|
+
}
|
|
2029
|
+
}
|
|
2030
|
+
}
|
|
2031
|
+
|
|
2032
|
+
if(l==-1){return(-1);}
|
|
2033
|
+
for(i=l+1;i<=w[size(w)]-n;i++)
|
|
2034
|
+
{
|
|
2035
|
+
if(!ivec(i+n,w))
|
|
2036
|
+
{
|
|
2037
|
+
mo=mo,i; //i+n not in Lambda
|
|
2038
|
+
}
|
|
2039
|
+
}
|
|
2040
|
+
if(size(mo)>1){mo=mo[2..size(mo)];}
|
|
2041
|
+
for(i=l+1;i<=v[size(v)]-1;i++)
|
|
2042
|
+
{
|
|
2043
|
+
if(!ivec(i,v)&&!ivec(i+n-m,v)&&ivec(i+n,w)&&(i<mo[size(mo)]))
|
|
2044
|
+
{
|
|
2045
|
+
return(list(v,w,l,mo,i));
|
|
2046
|
+
}
|
|
2047
|
+
}
|
|
2048
|
+
return(list(v,w,l,mo,0));
|
|
2049
|
+
}
|
|
2050
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2051
|
+
static proc ivec(int a, intvec v)
|
|
2052
|
+
{
|
|
2053
|
+
int i;
|
|
2054
|
+
if(a>=v[size(v)]){return(a);}
|
|
2055
|
+
for(i=1;i<=size(v);i++)
|
|
2056
|
+
{
|
|
2057
|
+
if(a==v[i]){return(i);}
|
|
2058
|
+
}
|
|
2059
|
+
return(0);
|
|
2060
|
+
}
|
|
2061
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2062
|
+
static proc normalMap(ideal I, int bound)
|
|
2063
|
+
{
|
|
2064
|
+
// returns (t^n,h) A-equivalent to I modulo <t>^bound+1
|
|
2065
|
+
|
|
2066
|
+
I=jet(I,bound);
|
|
2067
|
+
def R=basering;
|
|
2068
|
+
map phi;
|
|
2069
|
+
poly p;
|
|
2070
|
+
if(ord(I[1])>ord(I[2])){p=I[1];I[1]=I[2];I[2]=p;}
|
|
2071
|
+
I[1]=simplify(I[1],1);
|
|
2072
|
+
int n=ord(I[1]);
|
|
2073
|
+
phi=R,var(1)-1/number(n)*I[1][2]/var(1)^(n-1);
|
|
2074
|
+
I=phi(I);
|
|
2075
|
+
I=jet(I,bound);
|
|
2076
|
+
while(size(I[1])>1)
|
|
2077
|
+
{
|
|
2078
|
+
phi=R,var(1)-1/number(n)*I[1][2]/var(1)^(n-1);
|
|
2079
|
+
I=phi(I);
|
|
2080
|
+
I=jet(I,bound);
|
|
2081
|
+
}
|
|
2082
|
+
I[2]=simplify(I[2],1);
|
|
2083
|
+
p=lead(I[2])+reduc(I[2]-lead(I[2]),I,bound);
|
|
2084
|
+
I[2]=p;
|
|
2085
|
+
return(I);
|
|
2086
|
+
}
|
|
2087
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2088
|
+
static proc reduc(poly f,ideal I, int b)
|
|
2089
|
+
{
|
|
2090
|
+
// computes the normal form of f with respect to the algebra generated by I
|
|
2091
|
+
list L=1;
|
|
2092
|
+
map psi;
|
|
2093
|
+
f=jet(f,b);
|
|
2094
|
+
if(f==0){return(f);}
|
|
2095
|
+
while((f!=0) && (L[1]!=0))
|
|
2096
|
+
{
|
|
2097
|
+
L= algebra_containment(lead(f),lead(I),1);
|
|
2098
|
+
if (L[1]==1)
|
|
2099
|
+
{
|
|
2100
|
+
def S= L[2];
|
|
2101
|
+
psi= S,maxideal(1),I;
|
|
2102
|
+
f=jet(f-psi(check),b);
|
|
2103
|
+
kill S;
|
|
2104
|
+
}
|
|
2105
|
+
}
|
|
2106
|
+
return (lead(f)+reduc(f-lead(f),I,b));
|
|
2107
|
+
}
|
|
2108
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2109
|
+
proc HHnormalForm(ideal I, list #)
|
|
2110
|
+
"USAGE: HHnormalForm(I), I=<x(t),y(t)> an ideal, # optional, a bound for the
|
|
2111
|
+
conductor
|
|
2112
|
+
COMPUTE: computes the Hefez-Hernandez normal form of the ideal I=<x(t),y(t)>
|
|
2113
|
+
RETURN: a list L with 5 entries
|
|
2114
|
+
L[1] the Hefei-Hernandez normal form of the ideal I=<x(t),y(t)>
|
|
2115
|
+
L[2] the semi group Gamma
|
|
2116
|
+
L[3] the semi module Lambda
|
|
2117
|
+
L[4] 0 if Lambda=Gamma or lambda=min(Lambda-Gamma) -n, the Zariski number
|
|
2118
|
+
L[5] the integers i, i>lambda, i+n not in Lambda, 0 if this set is empty
|
|
2119
|
+
EXAMPLE: example HHnormalForm; shows an example
|
|
2120
|
+
KEYWORDS: normalform
|
|
2121
|
+
"
|
|
2122
|
+
{
|
|
2123
|
+
//computes the Hefez-Hernandez normal form of the ideal I=<x(t),y(t)>
|
|
2124
|
+
//returns a list with the normal form, the semi group Gamma, the semi module
|
|
2125
|
+
//Lambda, the Zariski number lambda, the moduli
|
|
2126
|
+
//(the integers i, i>lambda, i+n not in Lambda, 0 if this set is empty)
|
|
2127
|
+
|
|
2128
|
+
int b,i,l,k;
|
|
2129
|
+
poly p;
|
|
2130
|
+
map phi;
|
|
2131
|
+
def R=basering;
|
|
2132
|
+
if(size(#)>0)
|
|
2133
|
+
{
|
|
2134
|
+
b=#[1];
|
|
2135
|
+
ideal G=sagbiAlg(I,b);
|
|
2136
|
+
}
|
|
2137
|
+
else
|
|
2138
|
+
{
|
|
2139
|
+
ideal G=sagbiAlg(I);
|
|
2140
|
+
}
|
|
2141
|
+
ideal M=diff(I,t);
|
|
2142
|
+
ideal K=sagbiMod(M,G);
|
|
2143
|
+
list L=semiMod(K,G);
|
|
2144
|
+
intvec v=L[3]; //semi group Gamma
|
|
2145
|
+
intvec w=L[6]+1;
|
|
2146
|
+
w=0,w; //semi module Lambda
|
|
2147
|
+
b=v[size(v)]+1;
|
|
2148
|
+
I=normalMap(I,b);
|
|
2149
|
+
int n=ord(I[1]);
|
|
2150
|
+
int m=ord(I[2]);
|
|
2151
|
+
poly g;
|
|
2152
|
+
if(v==w){return(list(ideal(var(1)^n,var(1)^m),v,w,0,0));}
|
|
2153
|
+
for(i=1;i<=size(w);i++)
|
|
2154
|
+
{
|
|
2155
|
+
if(v[i]!=w[i])
|
|
2156
|
+
{
|
|
2157
|
+
l=w[i]-v[2]; //lambda
|
|
2158
|
+
break;
|
|
2159
|
+
}
|
|
2160
|
+
}
|
|
2161
|
+
if(i==size(w)+1)
|
|
2162
|
+
{
|
|
2163
|
+
for(k=i;k<=size(v);k++)
|
|
2164
|
+
{
|
|
2165
|
+
if(v[k]!=w[i-1]+k-i+1)
|
|
2166
|
+
{
|
|
2167
|
+
l=w[i-1]+k-i+1-v[2]; //lambda
|
|
2168
|
+
break;
|
|
2169
|
+
}
|
|
2170
|
+
}
|
|
2171
|
+
}
|
|
2172
|
+
intvec moduli;
|
|
2173
|
+
for(i=l+1;i<=w[size(w)]-n;i++)
|
|
2174
|
+
{
|
|
2175
|
+
if(!ivec(i+n,w))
|
|
2176
|
+
{
|
|
2177
|
+
moduli=moduli,i; //i+n not in Lambda
|
|
2178
|
+
}
|
|
2179
|
+
}
|
|
2180
|
+
if(size(moduli)>1){moduli=moduli[2..size(moduli)];}
|
|
2181
|
+
int momax=moduli[size(moduli)];
|
|
2182
|
+
if(momax==0){momax=l;}
|
|
2183
|
+
b=momax;
|
|
2184
|
+
i=1;
|
|
2185
|
+
while(i<b)
|
|
2186
|
+
{
|
|
2187
|
+
i++;
|
|
2188
|
+
k=ord(I[2][i]);
|
|
2189
|
+
if(k==-1){break;}
|
|
2190
|
+
if(k==l){i++;k=ord(I[2][i]);}
|
|
2191
|
+
if(k>b){return(list(jet(I,b),v,w,l,moduli));}
|
|
2192
|
+
if(ivec(k,v)) //k is in Gamma
|
|
2193
|
+
{
|
|
2194
|
+
I[2]=lead(I[2])+reduc(I[2]-lead(I[2]),G,b);
|
|
2195
|
+
i--;
|
|
2196
|
+
}
|
|
2197
|
+
else
|
|
2198
|
+
{
|
|
2199
|
+
if(ivec(k+n-m,v)) //k+n-m is in Gamma
|
|
2200
|
+
{
|
|
2201
|
+
phi=R,var(1)-1/number(m)*I[2][i]/var(1)^(m-1);
|
|
2202
|
+
I=phi(I);
|
|
2203
|
+
G=sagbiAlg(I); //Aenderung
|
|
2204
|
+
I[1]=lead(I[1])+reduc(I[1]-lead(I[1]),G,b);
|
|
2205
|
+
I=normalMap(I,b);
|
|
2206
|
+
i--;
|
|
2207
|
+
}
|
|
2208
|
+
else
|
|
2209
|
+
{
|
|
2210
|
+
if(ivec(k+n,w)) //k+n is in Lambda
|
|
2211
|
+
{
|
|
2212
|
+
g=findTrafo(I,i);
|
|
2213
|
+
g=jet(g,b-m+1);
|
|
2214
|
+
phi=R,g;
|
|
2215
|
+
I=phi(I);
|
|
2216
|
+
G=sagbiAlg(I); //AENDERUNG
|
|
2217
|
+
I[1]=lead(I[1])+reduc(I[1]-lead(I[1]),G,b);
|
|
2218
|
+
I[2]=lead(I[2])+reduc(I[2]-lead(I[2]),G,b);
|
|
2219
|
+
I=normalMap(I,b);
|
|
2220
|
+
i--;
|
|
2221
|
+
}
|
|
2222
|
+
}
|
|
2223
|
+
}
|
|
2224
|
+
}
|
|
2225
|
+
return(list(I,v,w,l,moduli));
|
|
2226
|
+
}
|
|
2227
|
+
example
|
|
2228
|
+
{
|
|
2229
|
+
"EXAMPLE"; echo=2;
|
|
2230
|
+
ring r=0,t,Ds;
|
|
2231
|
+
ideal I=t6+3t7,t8+t13+t19;
|
|
2232
|
+
HHnormalForm(I);
|
|
2233
|
+
}
|
|
2234
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2235
|
+
static proc findTrafo(ideal I, int i)
|
|
2236
|
+
{
|
|
2237
|
+
//I[2][i]=a*t^k, I[1]=x{t}=t^n, I[2]=y(t)=t^m+c*t^lambda+...+a*t^k+...
|
|
2238
|
+
//find the map to kill the term a*t^k of y(t) for k+n in Lambda
|
|
2239
|
+
//find g,h such that a*t^k*x'(t)=h(x(t),y(t))*x'(t)-g(x(t),y(t))*y'(t) mod t^(k+n)
|
|
2240
|
+
//return the map t---> t+g(x(t),y(t))/x'(t) mod t^(k+1)
|
|
2241
|
+
def R0=basering;
|
|
2242
|
+
int p=char(R0);
|
|
2243
|
+
int k=ord(I[2][i]);
|
|
2244
|
+
int n=ord(I[1]);
|
|
2245
|
+
int m=ord(I[2]);
|
|
2246
|
+
poly f=I[2][i]*diff(I[1],var(1));
|
|
2247
|
+
ring R=p,var(1),dp;
|
|
2248
|
+
ideal I=imap(R0,I);
|
|
2249
|
+
poly f=imap(R0,f);
|
|
2250
|
+
ideal Q=std(ideal(var(1)*f));
|
|
2251
|
+
qring T=Q;
|
|
2252
|
+
ideal I=imap(R,I);
|
|
2253
|
+
poly f=imap(R,f);
|
|
2254
|
+
ring S=p,(@z,@u,@v,@x,@y),(dp(1),dp(2),dp(2));
|
|
2255
|
+
setring T;
|
|
2256
|
+
map psi=S,f,diff(I[1],var(1)),diff(I[2],var(1)),I[1],I[2];
|
|
2257
|
+
setring S;
|
|
2258
|
+
ideal J=kernel(T,psi);
|
|
2259
|
+
option(redSB);
|
|
2260
|
+
J=std(J);
|
|
2261
|
+
//we look for an element @z-@u*h(@x,@y)-@v*g(@x,@y) in J
|
|
2262
|
+
for(i=1;i<=ncols(J);i++)
|
|
2263
|
+
{
|
|
2264
|
+
if((@z*diff(J[i],@z)+@u*diff(J[i],@u)+@v*diff(J[i],@v)==J[i])&&(deg(diff(J[i],@z))==0))
|
|
2265
|
+
{
|
|
2266
|
+
poly f=J[i]/(-diff(J[i],@z)); //the element is in the standard basis
|
|
2267
|
+
break;
|
|
2268
|
+
}
|
|
2269
|
+
}
|
|
2270
|
+
poly g;
|
|
2271
|
+
if(i==ncols(J)+1)
|
|
2272
|
+
{
|
|
2273
|
+
//the last element in the standard basis is of type @z-@u*h(@x,@y)-@v*g(@x,@y)+k(@x,@y)
|
|
2274
|
+
//we have to kill k(@x,@y) using the other standard basis elements
|
|
2275
|
+
poly f=J[i-1];
|
|
2276
|
+
ideal K;
|
|
2277
|
+
for(i=1;i<ncols(J);i++)
|
|
2278
|
+
{
|
|
2279
|
+
g=lead(J[i]);
|
|
2280
|
+
if(((g==diff(g,@u)*@u)&&(diff(g,@v)==0))||((g==diff(g,@v)*@v)&&(diff(g,@u)==0))||
|
|
2281
|
+
(g==subst(g,@u,0,@v,0)))
|
|
2282
|
+
{
|
|
2283
|
+
K[size(K)+1]=J[i];
|
|
2284
|
+
}
|
|
2285
|
+
}
|
|
2286
|
+
ring S1=p,(@z,@u,@v,@x,@y),(a(-1,-1,-1,0,0),dp(1),dp(2),dp(2));
|
|
2287
|
+
ideal K=imap(S,K);
|
|
2288
|
+
K=specialInterred(K);
|
|
2289
|
+
poly f=imap(S,f);
|
|
2290
|
+
f=specialReduce(f,K);
|
|
2291
|
+
setring S;
|
|
2292
|
+
f=imap(S1,f);
|
|
2293
|
+
f=f/(-diff(f,@z)); //f=@z-@u*h(@x,@y)-@v*g(@x,@y)
|
|
2294
|
+
}
|
|
2295
|
+
matrix M=coef(f,@v);
|
|
2296
|
+
g=M[2,1];
|
|
2297
|
+
setring T;
|
|
2298
|
+
poly g=psi(g);
|
|
2299
|
+
setring R0;
|
|
2300
|
+
poly g=imap(T,g);
|
|
2301
|
+
g=g/diff(I[1],var(1));
|
|
2302
|
+
return(var(1)-g);
|
|
2303
|
+
}
|
|
2304
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2305
|
+
static proc specialInterred(ideal K)
|
|
2306
|
+
{
|
|
2307
|
+
int i,j;
|
|
2308
|
+
int d=1;
|
|
2309
|
+
poly p;
|
|
2310
|
+
while(d)
|
|
2311
|
+
{
|
|
2312
|
+
d=0;
|
|
2313
|
+
K=simplify(K,3);
|
|
2314
|
+
K=sort(K)[1];
|
|
2315
|
+
for(i=ncols(K);i>1;i--)
|
|
2316
|
+
{
|
|
2317
|
+
for(j=1;j<i;j++)
|
|
2318
|
+
{
|
|
2319
|
+
p=lead(K[i])/lead(K[j]);
|
|
2320
|
+
if((p!=0)&&(p==subst(p,var(1),0,var(2),0)))
|
|
2321
|
+
{
|
|
2322
|
+
K[i]=K[i]-p*K[j];
|
|
2323
|
+
d=1;
|
|
2324
|
+
break;
|
|
2325
|
+
}
|
|
2326
|
+
}
|
|
2327
|
+
if(d==1){break;}
|
|
2328
|
+
}
|
|
2329
|
+
}
|
|
2330
|
+
return(K);
|
|
2331
|
+
}
|
|
2332
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2333
|
+
static proc specialReduce(poly f, ideal K)
|
|
2334
|
+
{
|
|
2335
|
+
int i;
|
|
2336
|
+
int d=1;
|
|
2337
|
+
poly p;
|
|
2338
|
+
while(d)
|
|
2339
|
+
{
|
|
2340
|
+
d=0;
|
|
2341
|
+
for(i=1;i<=size(K);i++)
|
|
2342
|
+
{
|
|
2343
|
+
p=lead(f)/lead(K[i]);
|
|
2344
|
+
if((p!=0)&&(p==subst(p,var(1),0,var(2),0)))
|
|
2345
|
+
{
|
|
2346
|
+
f=f-p*K[i];
|
|
2347
|
+
d=1;
|
|
2348
|
+
break;
|
|
2349
|
+
}
|
|
2350
|
+
}
|
|
2351
|
+
}
|
|
2352
|
+
return(f);
|
|
2353
|
+
}
|
|
2354
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2355
|
+
proc modSagbiAlg(ideal I, list #)
|
|
2356
|
+
"USAGE: modSagbiAlg(I,i); I is an ideal, i an integer (optional).
|
|
2357
|
+
RETURN: ideal, a sagbi basis for I using modular methods.
|
|
2358
|
+
PURPOSE: Computes a sagbi basis for the ideal given by the generators in I using modular techniques.
|
|
2359
|
+
@*
|
|
2360
|
+
If second argument is 0 then the result is not verified.
|
|
2361
|
+
KEYWORDS: sagbi basis
|
|
2362
|
+
EXAMPLE: example modSagbiAlg; shows an example"
|
|
2363
|
+
|
|
2364
|
+
{
|
|
2365
|
+
int exactness = 1;
|
|
2366
|
+
if (size(#) > 0) {
|
|
2367
|
+
exactness = #[1];
|
|
2368
|
+
}
|
|
2369
|
+
/* save options */
|
|
2370
|
+
intvec opt = option(get);
|
|
2371
|
+
option(redSB);
|
|
2372
|
+
/* choose the right command */
|
|
2373
|
+
string command = "sagbiAlg";
|
|
2374
|
+
/* call modular() */
|
|
2375
|
+
if (exactness) {
|
|
2376
|
+
I = modular(command, list(I), Modstd::primeTest_std,
|
|
2377
|
+
Modstd::deleteUnluckyPrimes_std, pTest_sagbi,finalTest_sagbi);
|
|
2378
|
+
}
|
|
2379
|
+
else {
|
|
2380
|
+
I = modular(command, list(I), Modstd::primeTest_std,
|
|
2381
|
+
Modstd::deleteUnluckyPrimes_std,pTest_sagbi);
|
|
2382
|
+
//Modstd::deleteUnluckyPrimes_std,pTest_sagbi,536870909);
|
|
2383
|
+
//only primes <=536870909 are used
|
|
2384
|
+
}
|
|
2385
|
+
/* return the result */
|
|
2386
|
+
option(set, opt);
|
|
2387
|
+
return(I);
|
|
2388
|
+
}
|
|
2389
|
+
example
|
|
2390
|
+
{ "EXAMPLE:"; echo=2;
|
|
2391
|
+
ring R=0,t,ds;
|
|
2392
|
+
ideal I=t8,t10+t13,t12+t15;
|
|
2393
|
+
modSagbiAlg(I,0);
|
|
2394
|
+
modSagbiAlg(I);
|
|
2395
|
+
}
|
|
2396
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2397
|
+
static proc pTest_sagbi(string command, alias list args, def result, int p)
|
|
2398
|
+
{
|
|
2399
|
+
def R0 = basering;
|
|
2400
|
+
list r = ringlist(R0);
|
|
2401
|
+
r[1] = p;
|
|
2402
|
+
def @R = ring(r);
|
|
2403
|
+
setring @R;
|
|
2404
|
+
list args = fetch(R0, args);
|
|
2405
|
+
ideal W = sagbiAlg(args[1]);
|
|
2406
|
+
def result = fetch(R0, result);
|
|
2407
|
+
int j;
|
|
2408
|
+
if(size(result)==size(W))
|
|
2409
|
+
{
|
|
2410
|
+
j=1;
|
|
2411
|
+
for(int i=1;i<=size(result);i++)
|
|
2412
|
+
{
|
|
2413
|
+
if(result[i]!=W[i])
|
|
2414
|
+
{
|
|
2415
|
+
j=0;break;
|
|
2416
|
+
}
|
|
2417
|
+
}
|
|
2418
|
+
}
|
|
2419
|
+
setring R0;
|
|
2420
|
+
return(j);
|
|
2421
|
+
}
|
|
2422
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2423
|
+
static proc finalTest_sagbi(string command, alias list args, def result)
|
|
2424
|
+
{
|
|
2425
|
+
int b=semiGroup(result)[2]+1;
|
|
2426
|
+
int i,j;
|
|
2427
|
+
for(i=1;i<=size(args[1]);i++)
|
|
2428
|
+
{
|
|
2429
|
+
if(sagbiNF(args[1][i],result,b)!=0){return(0);}
|
|
2430
|
+
}
|
|
2431
|
+
ideal W=sagbiSP(result);
|
|
2432
|
+
for(i=1;i<=ncols(W);i++)
|
|
2433
|
+
{
|
|
2434
|
+
if(sagbiNF(W[i],result,b)!=0){return(0);}
|
|
2435
|
+
}
|
|
2436
|
+
return(1);
|
|
2437
|
+
}
|
|
2438
|
+
|
|
2439
|
+
proc classSpaceCurve(ideal I)
|
|
2440
|
+
"USAGE": classSpaceCurve(I); I ideal
|
|
2441
|
+
RETURN: the normal form of I if I is simple, -1 if I is not simple
|
|
2442
|
+
EXAMPLE: example classSpaceCurve; shows an example
|
|
2443
|
+
{
|
|
2444
|
+
//====== computes the normal form of parametrized space curves =====
|
|
2445
|
+
//====== in characteristic p =====
|
|
2446
|
+
|
|
2447
|
+
int p=char(basering);
|
|
2448
|
+
list L=weakNF(I);
|
|
2449
|
+
I=L[1];
|
|
2450
|
+
if(size(I)==2){I[3]=0;}
|
|
2451
|
+
ideal K=L[8];
|
|
2452
|
+
//===== the smooth case =====
|
|
2453
|
+
|
|
2454
|
+
if(ord(I[1])==1){return(ideal(var(1),0,0));}
|
|
2455
|
+
|
|
2456
|
+
//===== the case p=2 =====
|
|
2457
|
+
|
|
2458
|
+
if(p==2)
|
|
2459
|
+
{
|
|
2460
|
+
if(ord(I[1])>3){return(-1);}
|
|
2461
|
+
if((ord(I[1])==3)&&(ord(I[2])>10)){return(-1);}
|
|
2462
|
+
I=normal2(K,L[2][1]);
|
|
2463
|
+
return(I);
|
|
2464
|
+
}
|
|
2465
|
+
|
|
2466
|
+
//====== from now on p>2 =====
|
|
2467
|
+
|
|
2468
|
+
//====== the case of multiplicity >4 (not simple) =====
|
|
2469
|
+
if(ord(I[1])>4)
|
|
2470
|
+
{
|
|
2471
|
+
return(-1);
|
|
2472
|
+
}
|
|
2473
|
+
|
|
2474
|
+
//===== the case of multiplicity 4 =====
|
|
2475
|
+
|
|
2476
|
+
if(ord(I[1])==4)
|
|
2477
|
+
{
|
|
2478
|
+
if(ord(I[2])>7)
|
|
2479
|
+
{
|
|
2480
|
+
return(-1);//not simple
|
|
2481
|
+
}
|
|
2482
|
+
if(ord(I[2])==7)
|
|
2483
|
+
{
|
|
2484
|
+
if((p==3)||(p==7)) //not simple in this characteristic
|
|
2485
|
+
{
|
|
2486
|
+
return(-1);
|
|
2487
|
+
}
|
|
2488
|
+
if(((p==5)||(p==13))&&(ord(I[3])!=9))
|
|
2489
|
+
{
|
|
2490
|
+
return(-1);//not simple in this characteristic
|
|
2491
|
+
}
|
|
2492
|
+
I=normal47(K,L[2][1]);
|
|
2493
|
+
return(I);
|
|
2494
|
+
}
|
|
2495
|
+
if(ord(I[2])==5)
|
|
2496
|
+
{
|
|
2497
|
+
I=normal45(K,L[2][1]);
|
|
2498
|
+
return(I);
|
|
2499
|
+
}
|
|
2500
|
+
if(ord(I[2])==6)
|
|
2501
|
+
{
|
|
2502
|
+
int k=L[5];
|
|
2503
|
+
int r=L[6];
|
|
2504
|
+
if(k>0)
|
|
2505
|
+
{
|
|
2506
|
+
// if((p==3)||(p==13)) //not simple in this characteristic
|
|
2507
|
+
// {
|
|
2508
|
+
// return(-1);
|
|
2509
|
+
// }
|
|
2510
|
+
if((p==5)&&(k!=7))
|
|
2511
|
+
{
|
|
2512
|
+
return(-1); //not simple in this characteristic
|
|
2513
|
+
}
|
|
2514
|
+
if((p==7)&&(k>13))
|
|
2515
|
+
{
|
|
2516
|
+
return(-1); //not simple in this characteristic
|
|
2517
|
+
}
|
|
2518
|
+
if((p==11)&&(k>8))
|
|
2519
|
+
{
|
|
2520
|
+
return(-1); //not simple in this characteristic
|
|
2521
|
+
}
|
|
2522
|
+
if((p>=17)&&(k>p-8))
|
|
2523
|
+
{
|
|
2524
|
+
return(-1); //not simple in this characteristic
|
|
2525
|
+
}
|
|
2526
|
+
I=normal46(I,L[2][1],L[5],L[6]);
|
|
2527
|
+
return(I);
|
|
2528
|
+
}
|
|
2529
|
+
if((p==3)&&(r>7))
|
|
2530
|
+
{
|
|
2531
|
+
return(-1); //not simple in this characteristic
|
|
2532
|
+
}
|
|
2533
|
+
if((p==5)&&(r>11))
|
|
2534
|
+
{
|
|
2535
|
+
return(-1); //not simple in this characteristic
|
|
2536
|
+
}
|
|
2537
|
+
if((p==7)&&(r>15))
|
|
2538
|
+
{
|
|
2539
|
+
return(-1); //not simple in this characteristic
|
|
2540
|
+
}
|
|
2541
|
+
if((p==11)&&(r>29))
|
|
2542
|
+
{
|
|
2543
|
+
return(-1); //not simple in this characteristic
|
|
2544
|
+
}
|
|
2545
|
+
if((p==13)&&(r>9))
|
|
2546
|
+
{
|
|
2547
|
+
return(-1); //not simple in this characteristic
|
|
2548
|
+
}
|
|
2549
|
+
if((p>=17)&&(r>p+8))
|
|
2550
|
+
{
|
|
2551
|
+
return(-1); //not simple in this characteristic
|
|
2552
|
+
}
|
|
2553
|
+
I=normal46(I,L[2][1],L[5],L[6]);
|
|
2554
|
+
return(I);
|
|
2555
|
+
}
|
|
2556
|
+
}
|
|
2557
|
+
//====== the case of multiplicity 3 ======
|
|
2558
|
+
|
|
2559
|
+
if(ord(I[1])==3)
|
|
2560
|
+
{
|
|
2561
|
+
int k=L[5];
|
|
2562
|
+
int l=L[7];
|
|
2563
|
+
int r=L[6];
|
|
2564
|
+
if((p==3)&&(k>7))
|
|
2565
|
+
{
|
|
2566
|
+
return(-1); //not simple in this characteristic
|
|
2567
|
+
}
|
|
2568
|
+
if((p==3)&&(k==7)&&((r>8)||(r==0)))
|
|
2569
|
+
{
|
|
2570
|
+
return(-1); //not simple in this characteristic
|
|
2571
|
+
}
|
|
2572
|
+
if((k>=p+9)&&((l==0)||(l>=k+p))&&((r==0)||(r>=k+p)))
|
|
2573
|
+
{
|
|
2574
|
+
return(-1); //not simple in this characteristic
|
|
2575
|
+
}
|
|
2576
|
+
I=normal3(I,L[2][1],L[7]);
|
|
2577
|
+
return(I);
|
|
2578
|
+
}
|
|
2579
|
+
|
|
2580
|
+
//===== the case of multiplicity 2 ======
|
|
2581
|
+
|
|
2582
|
+
if(ord(I[1])==2)
|
|
2583
|
+
{
|
|
2584
|
+
I=var(1)^2,var(1)^{ord(I[2])};
|
|
2585
|
+
return(I);
|
|
2586
|
+
}
|
|
2587
|
+
return(-77); //test for error
|
|
2588
|
+
}
|
|
2589
|
+
example
|
|
2590
|
+
{
|
|
2591
|
+
"EXAMPLE:"; echo=2;
|
|
2592
|
+
ring R=31,t,ds;
|
|
2593
|
+
ideal I=t3+6t4+13t5-13t6+10t7+2t8-6t9-10t10-15t11-6t12+8t13-2t14+t15+8t16,
|
|
2594
|
+
t7+15t8+7t9-11t10-15t11-6t12+8t13-2t14+t15+8t16,
|
|
2595
|
+
t10-11t11-6t12-t13+12t14+4t15-14t16+15t17-12t18+5t19+t20;
|
|
2596
|
+
ideal J=classSpaceCurve(I);
|
|
2597
|
+
J;
|
|
2598
|
+
}
|
|
2599
|
+
|
|
2600
|
+
static proc weakNF(ideal I)
|
|
2601
|
+
{
|
|
2602
|
+
//computes a list with an ideal,the weak normal form
|
|
2603
|
+
//of a parametrized space curve, the semigroup,
|
|
2604
|
+
//an integer max(conductor,ord(the last element
|
|
2605
|
+
//in the ideal)),the reduced saga basis of I, and
|
|
2606
|
+
//k,r (in case of (t^4,t^6+t^k,t^r)) resp. k,r,l
|
|
2607
|
+
//(in case of (t^3,t^k+t^l,t^r)) and the ideal with
|
|
2608
|
+
//coefficients
|
|
2609
|
+
int k,r,l;
|
|
2610
|
+
int s=size(I);
|
|
2611
|
+
int p=char(basering);
|
|
2612
|
+
ideal Is=sagbiAlg(I);
|
|
2613
|
+
list L=semiGroup(Is);
|
|
2614
|
+
int c=L[2]; //the conductor
|
|
2615
|
+
if(size(Is)>2)
|
|
2616
|
+
{
|
|
2617
|
+
//(t^3,t^11,t^13) has as conductor 11, but we cannot cut t^13
|
|
2618
|
+
//we have to change 11 by 13
|
|
2619
|
+
int o=ord(Is[size(Is)]);
|
|
2620
|
+
if(o>c){c=o;}
|
|
2621
|
+
}
|
|
2622
|
+
int e=leadexp(Is[1])[1];
|
|
2623
|
+
if(e mod p!=0)
|
|
2624
|
+
{
|
|
2625
|
+
I=normalMap(Is,c+1);
|
|
2626
|
+
}
|
|
2627
|
+
Is=reducedSagbiAlg(I,c+1);
|
|
2628
|
+
Is=jet(Is,c+1);
|
|
2629
|
+
ideal K=Is;
|
|
2630
|
+
Is=normalizeC(Is);
|
|
2631
|
+
//the sagbi basis Is of I may contain more elements then I
|
|
2632
|
+
//the reduced saga basis of (t^4,t^6+t^8+t^9) is (t^4,t^6+t^9,t^15)
|
|
2633
|
+
//we obtain (t^4,t^6+t^9)
|
|
2634
|
+
I=Is;
|
|
2635
|
+
|
|
2636
|
+
//===== the special case (t^4,t^6+t^k,t^r) =====
|
|
2637
|
+
//===== we compute k and r in this case =====
|
|
2638
|
+
|
|
2639
|
+
if((ord(Is[1])==4)&&(ord(Is[2])==6))
|
|
2640
|
+
{
|
|
2641
|
+
if(size(Is)==4)
|
|
2642
|
+
{
|
|
2643
|
+
ideal J =Is[1..2];
|
|
2644
|
+
J=sagbiAlg(J);
|
|
2645
|
+
k=ord(J[size(J)]);
|
|
2646
|
+
if(k==ord(Is[size(Is)]))
|
|
2647
|
+
{
|
|
2648
|
+
//the case (t^4,t^6+t^k,t^r) k+6>r=k+4
|
|
2649
|
+
r=ord(Is[size(Is)-1]);
|
|
2650
|
+
I=Is[1..size(Is)-1];
|
|
2651
|
+
}
|
|
2652
|
+
else
|
|
2653
|
+
{
|
|
2654
|
+
//the case (t^4,t^6+t^k,t^r) k+6<r=k+8
|
|
2655
|
+
J=Is;
|
|
2656
|
+
k=ord(Is[size(Is)-1]);
|
|
2657
|
+
r=ord(Is[size(Is)]);
|
|
2658
|
+
J[size(Is)-1]=0;
|
|
2659
|
+
I=simplify(J,2);
|
|
2660
|
+
}
|
|
2661
|
+
}
|
|
2662
|
+
else
|
|
2663
|
+
{
|
|
2664
|
+
if(size(Is[2])>1)
|
|
2665
|
+
{
|
|
2666
|
+
//the case (t^4,t^6+t^k,t^r), r=k-2 or k+2 or infinity
|
|
2667
|
+
ideal J=Is[1..2];
|
|
2668
|
+
J=sagbiAlg(J);
|
|
2669
|
+
k=ord(J[size(J)]);
|
|
2670
|
+
if(ord(J[size(J)])==ord(Is[size(Is)]))
|
|
2671
|
+
{
|
|
2672
|
+
I=Is[1..2]; //r=infinity
|
|
2673
|
+
}
|
|
2674
|
+
else
|
|
2675
|
+
{
|
|
2676
|
+
r=ord(Is[size(Is)]);
|
|
2677
|
+
I=Is;
|
|
2678
|
+
}
|
|
2679
|
+
}
|
|
2680
|
+
else
|
|
2681
|
+
{
|
|
2682
|
+
//the case (t^4,t^6,t^r)
|
|
2683
|
+
r=ord(Is[3]);
|
|
2684
|
+
I=Is;
|
|
2685
|
+
}
|
|
2686
|
+
}
|
|
2687
|
+
}
|
|
2688
|
+
//===== the special case (t^3,t^k+t^l,t^r) =====
|
|
2689
|
+
//===== we compute k,r and l in this case =====
|
|
2690
|
+
if(ord(Is[1])==3)
|
|
2691
|
+
{
|
|
2692
|
+
k=ord(Is[2])+6;
|
|
2693
|
+
if(size(Is[2])>1)
|
|
2694
|
+
{
|
|
2695
|
+
l=ord(Is[2][2]);
|
|
2696
|
+
}
|
|
2697
|
+
if(size(Is)==3)
|
|
2698
|
+
{
|
|
2699
|
+
r=ord(Is[3]);
|
|
2700
|
+
}
|
|
2701
|
+
}
|
|
2702
|
+
list M=I,L,c,Is,k-6,r,l,K;
|
|
2703
|
+
return(M);
|
|
2704
|
+
}
|
|
2705
|
+
|
|
2706
|
+
static proc normalizeC(ideal I)
|
|
2707
|
+
{
|
|
2708
|
+
//makes all coefficients of the polynomials of I to 1
|
|
2709
|
+
int i,j;
|
|
2710
|
+
poly p,q;
|
|
2711
|
+
for(i=1;i<=size(I);i++)
|
|
2712
|
+
{
|
|
2713
|
+
p=I[i];
|
|
2714
|
+
q=0;
|
|
2715
|
+
for(j=1;j<=size(p);j++)
|
|
2716
|
+
{
|
|
2717
|
+
q=q+leadmonom(p[j]);
|
|
2718
|
+
}
|
|
2719
|
+
I[i]=q;
|
|
2720
|
+
}
|
|
2721
|
+
return(I);
|
|
2722
|
+
}
|
|
2723
|
+
|
|
2724
|
+
static proc normal47(ideal I, intvec semi)
|
|
2725
|
+
{
|
|
2726
|
+
//here we compute the normal forms with semigroup <4,7,...>
|
|
2727
|
+
|
|
2728
|
+
if(semi==intvec(4,7))
|
|
2729
|
+
{
|
|
2730
|
+
if(I[2][2]==var(1)^9){return(ideal(var(1)^4,var(1)^7+var(1)^9));}
|
|
2731
|
+
if(I[2][2]==0){return(ideal(var(1)^4,var(1)^7));}
|
|
2732
|
+
return(ideal(var(1)^4,var(1)^7+var(1)^13));
|
|
2733
|
+
}
|
|
2734
|
+
if(semi==intvec(4,7,9))
|
|
2735
|
+
{
|
|
2736
|
+
if(I[2][2]!=0){I[2]=var(1)^7;}
|
|
2737
|
+
return(I);
|
|
2738
|
+
}
|
|
2739
|
+
if(semi==intvec(4,7,10))
|
|
2740
|
+
{
|
|
2741
|
+
I[3]=var(1)^10;
|
|
2742
|
+
if(I[2][2]==var(1)^9)
|
|
2743
|
+
{
|
|
2744
|
+
I[2]=var(1)^7+var(1)^9;
|
|
2745
|
+
}
|
|
2746
|
+
else
|
|
2747
|
+
{
|
|
2748
|
+
I[2]=var(1)^7;
|
|
2749
|
+
}
|
|
2750
|
+
return(I);
|
|
2751
|
+
}
|
|
2752
|
+
if(semi==intvec(4,7,13))
|
|
2753
|
+
{
|
|
2754
|
+
I[3]=var(1)^13;
|
|
2755
|
+
if(I[2][2]==var(1)^9)
|
|
2756
|
+
{
|
|
2757
|
+
I[2]=var(1)^7+var(1)^9;
|
|
2758
|
+
}
|
|
2759
|
+
else
|
|
2760
|
+
{
|
|
2761
|
+
I[2]=var(1)^7;
|
|
2762
|
+
}
|
|
2763
|
+
return(I);
|
|
2764
|
+
}
|
|
2765
|
+
if(semi==intvec(4,7,17))
|
|
2766
|
+
{
|
|
2767
|
+
I[3]=var(1)^17;
|
|
2768
|
+
if(I[2][2]==var(1)^9)
|
|
2769
|
+
{
|
|
2770
|
+
I[2]=var(1)^7+var(1)^9;
|
|
2771
|
+
}
|
|
2772
|
+
if(ord(I[2][2])>9)
|
|
2773
|
+
{
|
|
2774
|
+
number a=leadcoef(I[2][2]);
|
|
2775
|
+
number b=leadcoef(I[2][3]);
|
|
2776
|
+
if(17*a^2==14*b)
|
|
2777
|
+
{
|
|
2778
|
+
I[2]=var(1)^7;
|
|
2779
|
+
}
|
|
2780
|
+
else
|
|
2781
|
+
{
|
|
2782
|
+
I[2]=var(1)^7+var(1)^13;
|
|
2783
|
+
}
|
|
2784
|
+
}
|
|
2785
|
+
return(I);
|
|
2786
|
+
}
|
|
2787
|
+
}
|
|
2788
|
+
|
|
2789
|
+
static proc normal45(ideal I, intvec semi)
|
|
2790
|
+
{
|
|
2791
|
+
//here we compute the normal forms with semigroup <4,5,...>
|
|
2792
|
+
int p=char(basering);
|
|
2793
|
+
number a=leadcoef(I[2][2]);
|
|
2794
|
+
number b=leadcoef(I[2][3]);
|
|
2795
|
+
if(semi==intvec(4,5))
|
|
2796
|
+
{
|
|
2797
|
+
if(10*b==11*a^2)
|
|
2798
|
+
{
|
|
2799
|
+
I=var(1)^4,var(1)^5;
|
|
2800
|
+
}
|
|
2801
|
+
else
|
|
2802
|
+
{
|
|
2803
|
+
I=var(1)^4,var(1)^5+var(1)^7;
|
|
2804
|
+
}
|
|
2805
|
+
if((p==5)&&(a!=0))
|
|
2806
|
+
{
|
|
2807
|
+
I=var(1)^4,var(1)^5+var(1)^6;
|
|
2808
|
+
}
|
|
2809
|
+
}
|
|
2810
|
+
if(semi==intvec(4,5,6))
|
|
2811
|
+
{
|
|
2812
|
+
if((p==3)&&(ord(I[3][2])==7))
|
|
2813
|
+
{
|
|
2814
|
+
I=var(1)^4,var(1)^5,var(1)^6+var(1)^7;
|
|
2815
|
+
}
|
|
2816
|
+
else
|
|
2817
|
+
{
|
|
2818
|
+
I=var(1)^4,var(1)^5,var(1)^6;
|
|
2819
|
+
}
|
|
2820
|
+
}
|
|
2821
|
+
if(semi==intvec(4,5,7))
|
|
2822
|
+
{
|
|
2823
|
+
if((p==5)&&(ord(I[2][2])==6))
|
|
2824
|
+
{
|
|
2825
|
+
I=var(1)^4,var(1)^5+var(1)^6,var(1)^7;
|
|
2826
|
+
}
|
|
2827
|
+
else
|
|
2828
|
+
{
|
|
2829
|
+
I=var(1)^4,var(1)^5,var(1)^7;
|
|
2830
|
+
}
|
|
2831
|
+
}
|
|
2832
|
+
if(semi==intvec(4,5,11))
|
|
2833
|
+
{
|
|
2834
|
+
if((p==5)&&(ord(I[2][2])==6))
|
|
2835
|
+
{
|
|
2836
|
+
I=var(1)^4,var(1)^5+var(1)^6,var(1)^11;
|
|
2837
|
+
}
|
|
2838
|
+
else
|
|
2839
|
+
{
|
|
2840
|
+
I=var(1)^4,var(1)^5,var(1)^11;
|
|
2841
|
+
if(11*a^2!=10*b)
|
|
2842
|
+
{
|
|
2843
|
+
I=var(1)^4,var(1)^5+var(1)^7,var(1)^11;
|
|
2844
|
+
}
|
|
2845
|
+
}
|
|
2846
|
+
}
|
|
2847
|
+
return(I);
|
|
2848
|
+
}
|
|
2849
|
+
|
|
2850
|
+
static proc normal46(ideal I, intvec semi, int k, int r)
|
|
2851
|
+
{
|
|
2852
|
+
//here we compute the normal forms with semigroup <4,6,...>
|
|
2853
|
+
if(char(basering)==3)
|
|
2854
|
+
{
|
|
2855
|
+
if(ord(I[2][2])==9)
|
|
2856
|
+
{
|
|
2857
|
+
I=var(1)^4,var(1)^6+var(1)^9,var(1)^7;
|
|
2858
|
+
}
|
|
2859
|
+
else
|
|
2860
|
+
{
|
|
2861
|
+
I=var(1)^4,var(1)^6,var(1)^7;
|
|
2862
|
+
}
|
|
2863
|
+
return(I);
|
|
2864
|
+
}
|
|
2865
|
+
if(char(basering)==13)
|
|
2866
|
+
{
|
|
2867
|
+
if(ord(I[3])==7)
|
|
2868
|
+
{
|
|
2869
|
+
I=var(1)^4,var(1)^6,var(1)^7;
|
|
2870
|
+
}
|
|
2871
|
+
if(ord(I[3])==9)
|
|
2872
|
+
{
|
|
2873
|
+
if(ord(I[2][2])==7)
|
|
2874
|
+
{
|
|
2875
|
+
I=var(1)^4,var(1)^6+var(1)^7,var(1)^9;
|
|
2876
|
+
}
|
|
2877
|
+
else
|
|
2878
|
+
{
|
|
2879
|
+
I=var(1)^4,var(1)^6,var(1)^9;
|
|
2880
|
+
}
|
|
2881
|
+
}
|
|
2882
|
+
return(I);
|
|
2883
|
+
}
|
|
2884
|
+
if(size(semi)==4)
|
|
2885
|
+
{
|
|
2886
|
+
I=var(1)^4,var(1)^6+var(1)^k,var(1)^r;
|
|
2887
|
+
}
|
|
2888
|
+
if(size(semi)==3)
|
|
2889
|
+
{
|
|
2890
|
+
if(k<0)
|
|
2891
|
+
{
|
|
2892
|
+
I=var(1)^4,var(1)^6,var(1)^r;
|
|
2893
|
+
}
|
|
2894
|
+
if(r==0)
|
|
2895
|
+
{
|
|
2896
|
+
I=var(1)^4,var(1)^6+var(1)^k;
|
|
2897
|
+
}
|
|
2898
|
+
if((r>0)&&(k>0))
|
|
2899
|
+
{
|
|
2900
|
+
I=var(1)^4,var(1)^6+var(1)^k,var(1)^r;
|
|
2901
|
+
}
|
|
2902
|
+
}
|
|
2903
|
+
return(I);
|
|
2904
|
+
}
|
|
2905
|
+
|
|
2906
|
+
static proc normal3(ideal I, intvec semi, int l)
|
|
2907
|
+
{
|
|
2908
|
+
//here we compute the normal forms with semigroup <3,...>
|
|
2909
|
+
if(char(basering)==3)
|
|
2910
|
+
{
|
|
2911
|
+
if(semi==intvec(3,5))
|
|
2912
|
+
{
|
|
2913
|
+
if(ord(I[1][2])==4)
|
|
2914
|
+
{
|
|
2915
|
+
I=var(1)^3+var(1)^4,var(1)^5;
|
|
2916
|
+
}
|
|
2917
|
+
else
|
|
2918
|
+
{
|
|
2919
|
+
I=var(1)^3,var(1)^5;
|
|
2920
|
+
}
|
|
2921
|
+
return(I);
|
|
2922
|
+
}
|
|
2923
|
+
if(semi==intvec(3,5,7))
|
|
2924
|
+
{
|
|
2925
|
+
if(ord(I[1][2])==4)
|
|
2926
|
+
{
|
|
2927
|
+
I=var(1)^3+var(1)^4,var(1)^5,var(1)^7;
|
|
2928
|
+
}
|
|
2929
|
+
else
|
|
2930
|
+
{
|
|
2931
|
+
I=var(1)^3,var(1)^5,var(1)^7;
|
|
2932
|
+
}
|
|
2933
|
+
return(I);
|
|
2934
|
+
}
|
|
2935
|
+
if(semi==intvec(3,7,8))
|
|
2936
|
+
{
|
|
2937
|
+
if(ord(I[1][2])==4)
|
|
2938
|
+
{
|
|
2939
|
+
I=var(1)^3+var(1)^4,var(1)^7,var(1)^8;
|
|
2940
|
+
return(I);
|
|
2941
|
+
}
|
|
2942
|
+
if(ord(I[1][2])==5)
|
|
2943
|
+
{
|
|
2944
|
+
I=var(1)^3+var(1)^5,var(1)^7,var(1)^8;
|
|
2945
|
+
}
|
|
2946
|
+
else
|
|
2947
|
+
{
|
|
2948
|
+
I=var(1)^3,var(1)^7,var(1)^8;
|
|
2949
|
+
}
|
|
2950
|
+
return(I);
|
|
2951
|
+
|
|
2952
|
+
}
|
|
2953
|
+
return(-1);
|
|
2954
|
+
}
|
|
2955
|
+
int k=semi[2];
|
|
2956
|
+
int r;
|
|
2957
|
+
if(size(semi)==3)
|
|
2958
|
+
{
|
|
2959
|
+
r=semi[3];
|
|
2960
|
+
}
|
|
2961
|
+
if(l==0)
|
|
2962
|
+
{
|
|
2963
|
+
if(r==0)
|
|
2964
|
+
{
|
|
2965
|
+
I=var(1)^3,var(1)^k;
|
|
2966
|
+
}
|
|
2967
|
+
else
|
|
2968
|
+
{
|
|
2969
|
+
I=var(1)^3,var(1)^k,var(1)^r;
|
|
2970
|
+
}
|
|
2971
|
+
}
|
|
2972
|
+
else
|
|
2973
|
+
{
|
|
2974
|
+
if(r==0)
|
|
2975
|
+
{
|
|
2976
|
+
I=var(1)^3,var(1)^k+var(1)^l;
|
|
2977
|
+
}
|
|
2978
|
+
else
|
|
2979
|
+
{
|
|
2980
|
+
I=var(1)^3,var(1)^k+var(1)^l,var(1)^r;
|
|
2981
|
+
}
|
|
2982
|
+
}
|
|
2983
|
+
return(I);
|
|
2984
|
+
}
|
|
2985
|
+
|
|
2986
|
+
static proc normal2(ideal I, intvec semi)
|
|
2987
|
+
{
|
|
2988
|
+
//here we compute the normal forms in characteristic 2
|
|
2989
|
+
if(ord(I[1])==2)
|
|
2990
|
+
{
|
|
2991
|
+
int k=ord(I[1][2]);
|
|
2992
|
+
if(k>0){I=var(1)^2+var(1)^k,I[2];}
|
|
2993
|
+
}
|
|
2994
|
+
if(semi==intvec(3,4))
|
|
2995
|
+
{
|
|
2996
|
+
if(ord(I[2][2])==5)
|
|
2997
|
+
{
|
|
2998
|
+
I=var(1)^3,var(1)^4+var(1)^5;
|
|
2999
|
+
}
|
|
3000
|
+
else
|
|
3001
|
+
{
|
|
3002
|
+
I=var(1)^3,var(1)^4;
|
|
3003
|
+
}
|
|
3004
|
+
}
|
|
3005
|
+
if(semi==intvec(3,4,5))
|
|
3006
|
+
{
|
|
3007
|
+
I=var(1)^3,var(1)^4,var(1)^5;
|
|
3008
|
+
}
|
|
3009
|
+
if(semi==intvec(3,5))
|
|
3010
|
+
{
|
|
3011
|
+
I=var(1)^3,var(1)^5;
|
|
3012
|
+
}
|
|
3013
|
+
if(semi==intvec(3,5,7))
|
|
3014
|
+
{
|
|
3015
|
+
I=var(1)^3,var(1)^5,var(1)^7;
|
|
3016
|
+
}
|
|
3017
|
+
if(semi==intvec(3,7))
|
|
3018
|
+
{
|
|
3019
|
+
if(ord(I[2][2])==8)
|
|
3020
|
+
{
|
|
3021
|
+
I=var(1)^3,var(1)^7+var(1)^8;
|
|
3022
|
+
}
|
|
3023
|
+
else
|
|
3024
|
+
{
|
|
3025
|
+
I=var(1)^3,var(1)^7;
|
|
3026
|
+
}
|
|
3027
|
+
}
|
|
3028
|
+
if(semi==intvec(3,7,8))
|
|
3029
|
+
{
|
|
3030
|
+
I=var(1)^3,var(1)^7,var(1)^8;
|
|
3031
|
+
}
|
|
3032
|
+
if(semi==intvec(3,7,11))
|
|
3033
|
+
{
|
|
3034
|
+
if(ord(I[2][2])==8)
|
|
3035
|
+
{
|
|
3036
|
+
I=var(1)^3,var(1)^7+var(1)^8,var(1)^11;
|
|
3037
|
+
}
|
|
3038
|
+
else
|
|
3039
|
+
{
|
|
3040
|
+
I=var(1)^3,var(1)^7,var(1)^11;
|
|
3041
|
+
}
|
|
3042
|
+
}
|
|
3043
|
+
if(semi==intvec(3,8,10))
|
|
3044
|
+
{
|
|
3045
|
+
I=var(1)^3,var(1)^8,var(1)^10;
|
|
3046
|
+
}
|
|
3047
|
+
if(semi==intvec(3,8,13))
|
|
3048
|
+
{
|
|
3049
|
+
if(ord(I[2][2])==10)
|
|
3050
|
+
{
|
|
3051
|
+
I=var(1)^3,var(1)^8+var(1)^10,var(1)^13;
|
|
3052
|
+
}
|
|
3053
|
+
else
|
|
3054
|
+
{
|
|
3055
|
+
I=var(1)^3,var(1)^8,var(1)^13;
|
|
3056
|
+
}
|
|
3057
|
+
}
|
|
3058
|
+
if(semi==intvec(3,10,11))
|
|
3059
|
+
{
|
|
3060
|
+
I=var(1)^3,var(1)^10,var(1)^11;
|
|
3061
|
+
}
|
|
3062
|
+
if(semi==intvec(3,10,14))
|
|
3063
|
+
{
|
|
3064
|
+
if(ord(I[2][2])==11)
|
|
3065
|
+
{
|
|
3066
|
+
I=var(1)^3,var(1)^10+var(1)^11,var(1)^14;
|
|
3067
|
+
}
|
|
3068
|
+
else
|
|
3069
|
+
{
|
|
3070
|
+
I=var(1)^3,var(1)^10,var(1)^14;
|
|
3071
|
+
}
|
|
3072
|
+
|
|
3073
|
+
}
|
|
3074
|
+
return(I);
|
|
3075
|
+
}
|
|
3076
|
+
|
|
3077
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
3078
|
+
//============================ Examples========================
|
|
3079
|
+
/*
|
|
3080
|
+
ring r=0,t,(c,ds);
|
|
3081
|
+
ideal I=t4+t7,t6+t7;
|
|
3082
|
+
HHnormalForm(I);
|
|
3083
|
+
|
|
3084
|
+
ring r=0,t,(c,ds);
|
|
3085
|
+
ideal I=t4+t7+t9,t6+t11;
|
|
3086
|
+
HHnormalForm(I);
|
|
3087
|
+
|
|
3088
|
+
ring r=0,t,(c,ds);
|
|
3089
|
+
ideal I=t4+t5,t9+t10;
|
|
3090
|
+
HHnormalForm(I);
|
|
3091
|
+
|
|
3092
|
+
ring r=0,t,Ds;
|
|
3093
|
+
ideal I=t6+3t7,t8+t13+t19;
|
|
3094
|
+
HHnormalForm(I);
|
|
3095
|
+
|
|
3096
|
+
ring r=32003,t,Ds;
|
|
3097
|
+
ideal I=t8,t12+3t15+7t19;
|
|
3098
|
+
HHnormalForm(I);
|
|
3099
|
+
|
|
3100
|
+
ring r=32003,t,Ds;
|
|
3101
|
+
ideal I=t16,t24+t28+t30+t31;
|
|
3102
|
+
HHnormalForm(I);
|
|
3103
|
+
|
|
3104
|
+
*/
|
|
3105
|
+
|
|
3106
|
+
/*
|
|
3107
|
+
=============================== Examples==========================================
|
|
3108
|
+
ideal I=t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16,t7+7t8+22t9+51t10+113t11+219t12+366t13+589t14+876t15+1170t16+1514t17+1828t1
|
|
3109
|
+
8+2011t19+2165t20+2163t21+1982t22+1806t23+1491t24+1141t25+889t26+588t27+379t28+2
|
|
3110
|
+
52t29+120t30+72t31+36t32+9t33+9t34+t36;
|
|
3111
|
+
planeCur(I);
|
|
3112
|
+
//=============================
|
|
3113
|
+
ideal I=t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16,t7+7t8+21t9+42t10+77t11+126t12+168t13+211t14+252t15+252t16+245t17+231t18+17
|
|
3114
|
+
5t19+140t20+105t21+56t22+42t23+21t24+7t25+7t26+t28
|
|
3115
|
+
planeCur(I);
|
|
3116
|
+
//===============================
|
|
3117
|
+
ideal I=t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16,t5+5t6+11t7+22t8+46t9+73t10+107t11+161t12+198t13+231t14+272t15+262t16+250t1
|
|
3118
|
+
7+236t18+175t19+141t20+105t21+56t22+42t23+21t24+7t25+7t26+t28
|
|
3119
|
+
planeCur(I);
|
|
3120
|
+
//===============================
|
|
3121
|
+
ideal I=t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16,t6+7t7+22t8+47t9+87t10+143t11+202t12+258t13+307t14+332t15+327t16+305t17+266
|
|
3122
|
+
t18+205t19+155t20+111t21+62t22+42t23+22t24+7t25+7t26+t28
|
|
3123
|
+
planeCur(I);
|
|
3124
|
+
//===============================
|
|
3125
|
+
ideal I=t2+2t3+t4+2t5+2t6+t8,t+t2+t4;
|
|
3126
|
+
planeCur(I);
|
|
3127
|
+
//===============================
|
|
3128
|
+
ideal I=t2+2t3+t4+2t5+2t6+t8,t3+3t4+3t5+4t6+6t7+3t8+3t9+3t10+t12;
|
|
3129
|
+
planeCur(I);
|
|
3130
|
+
//===============================
|
|
3131
|
+
ideal I=t2+2t3+t4+2t5+2t6+t8,t5+5t6+10t7+15t8+25t9+31t10+30t11+35t12+30t13+20t14+20t15+10t16+5t17+5t18+t
|
|
3132
|
+
20;
|
|
3133
|
+
planeCur(I);
|
|
3134
|
+
//================================================================
|
|
3135
|
+
ideal I=t2+2t3+t4+2t5+2t6+t8,t11+11t12+55t13+176t14+440t15+957t16+1837t17+3135t18+4917t19+7150t20+9581t2
|
|
3136
|
+
1+12046t22+14300t23+15851t24+16665t25+16687t26+15642t27+14025t28+12012t29+9570t3
|
|
3137
|
+
0+7392t31+5412t32+3630t33+2442t34+1485t35+825t36+495t37+220t38+110t39+55t40+11t4
|
|
3138
|
+
1+11t42+t44
|
|
3139
|
+
planeCur(I);
|
|
3140
|
+
//===============================
|
|
3141
|
+
ideal I=t2+2t3+t4+2t5+2t6+t8,t45+45t46+990t47+14235t48+150975t49+1264329t50+8742030t51+51530985t52+26531
|
|
3142
|
+
7525t53+1216052255t54+5037384726t55+19091253735t56+66860434260t57+218159032410t5
|
|
3143
|
+
8+667743178590t59+1928258130018t60+5278946615910t61+13758022145340t62+3425642198
|
|
3144
|
+
1760t63+81743054778990t64+187438301870193t65+413998043743845t66+882643063827960t
|
|
3145
|
+
67+1819834573178925t68+3634672399863945t69+7042671464388093t70+13256726980146210
|
|
3146
|
+
t71+24271349963247255t72+43270648586469315t73+75192560924341905t74+1274795590273
|
|
3147
|
+
39134t75+211037186585880765t76+341404127193205395t77+540109313678250885t78+83615
|
|
3148
|
+
2328502076770t79+1267494306126371433t80+1882391473790147350t81+27403488768330021
|
|
3149
|
+
60t82+3912426884928977910t83+5480608823069934180t84+7535946071701345419t85+10175
|
|
3150
|
+
247273088233765t86+13496177050168252770t87+17590776929351920305t88+2253760903474
|
|
3151
|
+
9950330t89+28392934993342165732t90+35181553858703840610t91+42888103580926417860t
|
|
3152
|
+
92+51449748796644626670t93+60751205041524651720t94+70622965899108523296t95+80843
|
|
3153
|
+
398349265488310t96+91145062374529367655t97+101225220090613564275t98+110760068529
|
|
3154
|
+
877638960t99+119421810187582522995t100+126897320456330125725t101+132906930278955
|
|
3155
|
+
392505t102+137221752614812709130t103+139678059865381605315t104+14018746206071963
|
|
3156
|
+
5683t105+138742016728357115865t106+135413875517988518550t107+1303495836626693311
|
|
3157
|
+
25t108+123759636437037165840t109+115904304930914703126t110+107077029168089360280
|
|
3158
|
+
t111+97586814544772570280t112+87741050370279892245t113+77830012377996062865t114+
|
|
3159
|
+
68114044171037561004t115+58814074232856531765t116+50105762317964865600t117+42117
|
|
3160
|
+
223130580686220t118+34929979773602146200t119+28582581501297657240t120+2307618932
|
|
3161
|
+
9698326690t121+18381388272325750530t122+14445518786710710480t123+111999120315284
|
|
3162
|
+
53530t124+8566543884036576384t125+6463772035817658320t126+4810966835075093880t12
|
|
3163
|
+
7+3531977599087147320t128+2557482632962404180t129+1826346112628778972t130+128615
|
|
3164
|
+
1054039308160t131+893096793855988260t132+611445912380539110t133+4126879484894709
|
|
3165
|
+
90t134+274559737461674588t135+180030436220988810t136+116328756134241090t137+7406
|
|
3166
|
+
1684381355110t138+46450833440621940t139+28695217633493598t140+17456561066064945t
|
|
3167
|
+
141+10455665532950385t142+6164429567615550t143+3576677924170795t144+204174682346
|
|
3168
|
+
8917t145+1146414046643415t146+632953124099190t147+343522434444255t148+1832093883
|
|
3169
|
+
47205t149+95981896978935t150+49375510221510t151+24930700142535t152+1234956944936
|
|
3170
|
+
0t153+5998779092790t154+2855797655022t155+1331635383390t156+607860009900t157+271
|
|
3171
|
+
401068250t158+118455934740t159+50498441136t160+20999419155t161+8518084355t162+33
|
|
3172
|
+
61582620t163+1290701115t164+481780299t165+173664315t166+61087950t167+20511645t16
|
|
3173
|
+
8+6704775t169+2115729t170+610170t171+191565t172+42570t173+15180t174+1980t175+990
|
|
3174
|
+
t176+45t177+45t178+t180
|
|
3175
|
+
planeCur(I);
|
|
3176
|
+
//===============================
|
|
3177
|
+
ideal I=t3+3t4+3t5+4t6+6t7+3t8+3t9+3t10+t12,t2+2t3+t4+2t5+2t6+t8
|
|
3178
|
+
planeCur(I);
|
|
3179
|
+
//===============================
|
|
3180
|
+
ideal I=t3+3t4+3t5+4t6+6t7+3t8+3t9+3t10+t12,t5+5t6+10t7+15t8+25t9+31t10+30t11+35t12+30t13+20t14+20t15+10t16+5t17+5t18+t20
|
|
3181
|
+
planeCur(I);
|
|
3182
|
+
//===============================
|
|
3183
|
+
ideal I=t3+3t4+3t5+4t6+6t7+3t8+3t9+3t10+t12,t4+4t5+6t6+8t7+13t8+12t9+10t10+12t11+6t12+4t13+4t14+t16
|
|
3184
|
+
planeCur(I);
|
|
3185
|
+
//==========================================================================
|
|
3186
|
+
ring r=0,t,Ds;
|
|
3187
|
+
ideal I=t3,t10+t14;
|
|
3188
|
+
planeCur(I);
|
|
3189
|
+
//===============================
|
|
3190
|
+
ideal I=t3+3t4+3t5+t6,t10+10t11+45t12+120t13+211t14+266t15+301t16+484t17+1046t18+2012t19+3004t20+
|
|
3191
|
+
3432t21+3003t22+2002t23+1001t24+364t25+91t26+14t27+t28
|
|
3192
|
+
planeCur(I);
|
|
3193
|
+
//=======================================
|
|
3194
|
+
ideal I=t3+3t4+3t5+t6,t10+10t11+45t12+120t13+210t14+252t15+210t16+120t17+45t18+10t19+t20
|
|
3195
|
+
planeCur(I);
|
|
3196
|
+
//===============================
|
|
3197
|
+
ring r=0,t,Ds;
|
|
3198
|
+
ideal I=t3+3t4+3t5+t6,t13+14t14+92t15+377t16+1079t17+2288t18+3718t19+4719t20+4719t21+3718t22+2288
|
|
3199
|
+
t23+1079t24+377t25+92t26+14t27+t28,t20+20t21+190t22+1140t23+4845t24+15504t25+38760t26+77520t27+125970t28+16796
|
|
3200
|
+
0t29+184756t30+167960t31+125970t32+77520t33+38760t34+15504t35+4845t36+1140t37+19
|
|
3201
|
+
0t38+20t39+t40
|
|
3202
|
+
spaceCur(I);
|
|
3203
|
+
//=====================================================
|
|
3204
|
+
ideal I=t3+3t4+3t5+t6,t13+14t14+92t15+377t16+1079t17+2288t18+3718t19+4719t20+4719t21+3718t22+2288
|
|
3205
|
+
t23+1079t24+377t25+92t26+14t27+t28,t17+17t18+136t19+680t20+2380t21+6188t22+12376t23+19448t24+24310t25+24310t26
|
|
3206
|
+
+19448t27+12376t28+6188t29+2380t30+680t31+136t32+17t33+t34
|
|
3207
|
+
spaceCur(I);
|
|
3208
|
+
//========================================================
|
|
3209
|
+
ideal I=t3,t16,t14;
|
|
3210
|
+
spaceCur(I);
|
|
3211
|
+
//=============================================
|
|
3212
|
+
ideal I=t3,t19,t14;
|
|
3213
|
+
spaceCur(I);
|
|
3214
|
+
//==============================================
|
|
3215
|
+
ideal I=t3,t14+t16,t19;
|
|
3216
|
+
spaceCur(I);
|
|
3217
|
+
//===============================================
|
|
3218
|
+
ideal I=t3,t14+t16,t25;
|
|
3219
|
+
spaceCur(I);
|
|
3220
|
+
//=======================================
|
|
3221
|
+
ideal I=t3+3t4+3t5+t6,t14+14t15+91t16+364t17+1001t18+2002t19+3003t20+3432t21+3004t22+2024t23+1232
|
|
3222
|
+
t24+1904t25+7406t26+26348t27+74614t28+170544t29+319770t30+497420t31+646646t32+70
|
|
3223
|
+
5432t33+646646t34+497420t35+319770t36+170544t37+74613t38+26334t39+7315t40+1540t4
|
|
3224
|
+
1+231t42+22t43+t44,t25+25t26+300t27+2300t28+12650t29+53130t30+177100t31+480700t32+1081575t33+2
|
|
3225
|
+
042975t34+3268760t35+4457400t36+5200300t37+5200300t38+4457400t39+3268760t40+2042
|
|
3226
|
+
975t41+1081575t42+480700t43+177100t44+53130t45+12650t46+2300t47+300t48+25t49+t50
|
|
3227
|
+
spaceCur(I);
|
|
3228
|
+
//=========================================================
|
|
3229
|
+
ideal I=t3+3t4+3t5+t6,t14+14t15+91t16+364t17+1001t18+2003t19+3022t20+3603t21+3972t22+5878t23+1262
|
|
3230
|
+
9t24+27496t25+50479t26+75596t27+92379t28+92378t29+75582t30+50388t31+27132t32+116
|
|
3231
|
+
28t33+3876t34+969t35+171t36+19t37+t38,t25+25t26+300t27+2300t28+12650t29+53130t30+177100t31+480700t32+1081575t33+2
|
|
3232
|
+
042975t34+3268760t35+4457400t36+5200300t37+5200300t38+4457400t39+3268760t40+2042
|
|
3233
|
+
975t41+1081575t42+480700t43+177100t44+53130t45+12650t46+2300t47+300t48+25t49+t50
|
|
3234
|
+
spaceCur(I);
|
|
3235
|
+
//==============================================================
|
|
3236
|
+
ideal I=t3+3t4+3t5+t6,t14+14t15+92t16+380t17+1121t18+2562t19+4823t20+7800t21+11011t22+13442t23+13
|
|
3237
|
+
871t24+11804t25+8099t26+4382t27+1821t28+560t29+120t30+16t31+t32,t19+19t20+171t21+969t22+3876t23+11628t24+27132t25+50388t26+75582t27+92378t2
|
|
3238
|
+
8+92378t29+75582t30+50388t31+27132t32+11628t33+3876t34+969t35+171t36+19t37+t38
|
|
3239
|
+
spaceCur(I);
|
|
3240
|
+
//======================================================================
|
|
3241
|
+
ideal I=t3+3t4+3t5+t6,t14+14t15+92t16+380t17+1121t18+2562t19+4823t20+7800t21+11011t22+13442t23+13
|
|
3242
|
+
871t24+11804t25+8099t26+4382t27+1821t28+560t29+120t30+16t31+t32,t25+25t26+300t27+2300t28+12650t29+53130t30+177100t31+480700t32+1081575t33+2
|
|
3243
|
+
042975t34+3268760t35+4457400t36+5200300t37+5200300t38+4457400t39+3268760t40+2042
|
|
3244
|
+
975t41+1081575t42+480700t43+177100t44+53130t45+12650t46+2300t47+300t48+25t49+t50
|
|
3245
|
+
spaceCur(I);
|
|
3246
|
+
//================================================================
|
|
3247
|
+
ideal I=t3+3t4+3t5+t6,t16+16t17+120t18+560t19+1820t20+4368t21+8008t22+11440t23+12870t24+11440t25+
|
|
3248
|
+
8008t26+4368t27+1820t28+560t29+120t30+16t31+t32
|
|
3249
|
+
,t14+14t15+91t16+364t17+1001t18+2002t19+3003t20+3432t21+3003t22+2002t23+1001
|
|
3250
|
+
t24+364t25+91t26+14t27+t28
|
|
3251
|
+
spaceCur(I);
|
|
3252
|
+
//===========================================================================================
|
|
3253
|
+
*/
|