passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,2261 @@
|
|
|
1
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version numerDecom.lib 4.1.2.0 Feb_2019 "; // $Id: 8f86c78a76e56f66301c470a99433e4464abb3be $
|
|
3
|
+
category="Algebraic Geometry";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: NumDecom.lib Numerical Decomposition of Ideals
|
|
6
|
+
OVERVIEW:
|
|
7
|
+
The library contains procedures to compute
|
|
8
|
+
numerical irreducible decomposition, and
|
|
9
|
+
numerical primary decomposition of an algebraic variety defined by a
|
|
10
|
+
polynomial system. The use of the library requires to install Bertini
|
|
11
|
+
(@uref{http://www.nd.edu/~sommese/bertini}).
|
|
12
|
+
AUTHOR: Shawki AlRashed, rashed@mathematik.uni-kl.de; sh.shawki@yahoo.de
|
|
13
|
+
|
|
14
|
+
PROCEDURES:
|
|
15
|
+
|
|
16
|
+
re2squ(ideal I); reduction to square system
|
|
17
|
+
|
|
18
|
+
UseBertini(ideal H,string sv); use Bertini to compute the solutions of the homotopy function
|
|
19
|
+
|
|
20
|
+
Singular2bertini(list L); adopt the list to be a read file in Bertini as a start solution set
|
|
21
|
+
|
|
22
|
+
bertini2Singular(string snp, int q); adopt the file of solutions of the homotopy function to be a list in SINGULAR
|
|
23
|
+
|
|
24
|
+
ReJunkUseHomo(ideal I, ideal L, list W, list w); remove junk points using the homotopy function
|
|
25
|
+
|
|
26
|
+
JuReTopDim(ideal J,list w,int tt, int d); remove junk points that are on top-dimensional component
|
|
27
|
+
|
|
28
|
+
JuReZeroDim(ideal J,list w, int d); remove junk points from 0-dimensional component
|
|
29
|
+
|
|
30
|
+
WitSupSet(ideal I); witness point super set
|
|
31
|
+
|
|
32
|
+
WitSet(ideal I); witness point set
|
|
33
|
+
|
|
34
|
+
NumIrrDecom(ideal I); numerical irreducible decomposition
|
|
35
|
+
|
|
36
|
+
defl(ideal I, int d); deflation of ideal I
|
|
37
|
+
|
|
38
|
+
NumPrimDecom(ideal I, int d); numerical primary decomposition
|
|
39
|
+
|
|
40
|
+
KEYWORDS: numerical irreducible decomposition; decomposition, numerical; primary decomposition, numerical;bertini; numerAlg_lib
|
|
41
|
+
";
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
LIB "solve.lib";
|
|
45
|
+
LIB "matrix.lib";
|
|
46
|
+
|
|
47
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
48
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
49
|
+
proc re2squ(ideal I)
|
|
50
|
+
"USAGE: re2squ(ideal I);I ideal
|
|
51
|
+
RETURN: ideal J defined by the polynomial system of the same number of polynomials and unknowns
|
|
52
|
+
EXAMPLE: example re2squ;shows an example
|
|
53
|
+
"
|
|
54
|
+
{
|
|
55
|
+
def S=basering;
|
|
56
|
+
int n=nvars(basering);
|
|
57
|
+
ideal J;
|
|
58
|
+
poly p;
|
|
59
|
+
int N=size(I);
|
|
60
|
+
int i,j;
|
|
61
|
+
if(n==N)
|
|
62
|
+
{
|
|
63
|
+
J=I;
|
|
64
|
+
}
|
|
65
|
+
else
|
|
66
|
+
{
|
|
67
|
+
if(N<n)
|
|
68
|
+
{
|
|
69
|
+
for(i=1;i<=n;i++)
|
|
70
|
+
{
|
|
71
|
+
if(i<=N)
|
|
72
|
+
{
|
|
73
|
+
J[i]=I[i];
|
|
74
|
+
}
|
|
75
|
+
else
|
|
76
|
+
{
|
|
77
|
+
J[i]=0;
|
|
78
|
+
}
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
else
|
|
82
|
+
{
|
|
83
|
+
for(i=1;i<=n;i++)
|
|
84
|
+
{
|
|
85
|
+
p=0;
|
|
86
|
+
for(j=N-n;j<=N;j++)
|
|
87
|
+
{
|
|
88
|
+
p=p+random(1,101)*I[j];
|
|
89
|
+
}
|
|
90
|
+
J[i]=I[i]+p;
|
|
91
|
+
}
|
|
92
|
+
}
|
|
93
|
+
}
|
|
94
|
+
export(J);
|
|
95
|
+
setring S;
|
|
96
|
+
return(S);
|
|
97
|
+
}
|
|
98
|
+
example
|
|
99
|
+
{ "EXAMPLE:";echo = 2;
|
|
100
|
+
ring r=0,(x,y,z),dp;
|
|
101
|
+
ideal I= x3+y4,z4+yx,xz+3x,x2y+z;
|
|
102
|
+
def D=re2squ(I);
|
|
103
|
+
setring D;
|
|
104
|
+
J;
|
|
105
|
+
}
|
|
106
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
107
|
+
|
|
108
|
+
proc Singular2bertini(list L)
|
|
109
|
+
"USAGE: Singular2bertini(list L);L a list
|
|
110
|
+
RETURN: text file called start
|
|
111
|
+
NOTE: adopting the list L to be as a start solution of the homptopy function in Bertini
|
|
112
|
+
EXAMPLE: Singular2bertini;shows an example
|
|
113
|
+
"
|
|
114
|
+
{
|
|
115
|
+
write("start",string(size(L)));
|
|
116
|
+
int i,j;
|
|
117
|
+
number a,b;
|
|
118
|
+
string s;
|
|
119
|
+
list LLL;
|
|
120
|
+
for(i=1;i<=size(L);i++)
|
|
121
|
+
{
|
|
122
|
+
LLL=L[i];
|
|
123
|
+
for(j=1;j<=size(LLL);j++)
|
|
124
|
+
{
|
|
125
|
+
a=repart(LLL[j]);
|
|
126
|
+
b=impart(LLL[j]);
|
|
127
|
+
s=string(a)+" "+string(b)+";";
|
|
128
|
+
write("start",s);
|
|
129
|
+
}
|
|
130
|
+
}
|
|
131
|
+
return(0);
|
|
132
|
+
}
|
|
133
|
+
example
|
|
134
|
+
{ "EXAMPLE:";echo = 2;
|
|
135
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
136
|
+
list L=list(1,2,3),list(4,5,6+I*2);
|
|
137
|
+
def D=Singular2bertini(L);
|
|
138
|
+
}
|
|
139
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
140
|
+
proc UseBertini(ideal H,string sv)
|
|
141
|
+
"USAGE: UseBertini(ideal H,string sv);
|
|
142
|
+
H ideal, sv string of the variable of ring
|
|
143
|
+
RETURN: text file called input used in Bertini to compute the solution of
|
|
144
|
+
the homotopy function H that existed in file input.text
|
|
145
|
+
NOTE: Need to define a start solution of H
|
|
146
|
+
EXAMPLE: example Use;shows an example
|
|
147
|
+
"
|
|
148
|
+
{
|
|
149
|
+
int ii,j,k, ph;
|
|
150
|
+
ph=size(H);
|
|
151
|
+
string sff,sf;
|
|
152
|
+
link l=":w ./input";
|
|
153
|
+
write(l,"");
|
|
154
|
+
write(l,"CONFIG");
|
|
155
|
+
write(l,"");
|
|
156
|
+
write(l,"USERHOMOTOPY: 1;");
|
|
157
|
+
write(l,"");
|
|
158
|
+
write(l,"END;");
|
|
159
|
+
write(l,"");
|
|
160
|
+
write(l,"INPUT");
|
|
161
|
+
write(l,"");
|
|
162
|
+
for( ii=1;ii<=size(sv);ii++)
|
|
163
|
+
{
|
|
164
|
+
if((sv[ii]=="(")||(sv[ii]==")"))
|
|
165
|
+
{
|
|
166
|
+
sv=sv[1,ii-1]+sv[ii+1,size(sv)];
|
|
167
|
+
}
|
|
168
|
+
}
|
|
169
|
+
write(l,"variable "+sv+";");
|
|
170
|
+
sff="function";
|
|
171
|
+
if(ph!=1)
|
|
172
|
+
{
|
|
173
|
+
for( ii=1;ii<=ph-1;ii++)
|
|
174
|
+
{
|
|
175
|
+
sff=sff+" f"+string(ii)+",";
|
|
176
|
+
}
|
|
177
|
+
sff=sff+"f"+string(ph)+";";
|
|
178
|
+
}
|
|
179
|
+
else
|
|
180
|
+
{
|
|
181
|
+
sff=sff+" f"+string(1)+",";
|
|
182
|
+
}
|
|
183
|
+
write(l,sff);
|
|
184
|
+
write(l,"pathvariable t;");
|
|
185
|
+
write(l,"parameter s;");
|
|
186
|
+
write(l,"constant gamma;");
|
|
187
|
+
write(l,"");
|
|
188
|
+
write(l,"gamma = 0.8 + 1.1*I;");
|
|
189
|
+
write(l,"");
|
|
190
|
+
write(l,"s=t;");
|
|
191
|
+
write(l,"");
|
|
192
|
+
short=0;
|
|
193
|
+
for( ii=1;ii<=ph;ii++)
|
|
194
|
+
{
|
|
195
|
+
sf=string(H[ii]);
|
|
196
|
+
k=find(sf,newline);
|
|
197
|
+
for( j=1;j<=size(sf);j++)
|
|
198
|
+
{
|
|
199
|
+
if(sf[j]=="(")
|
|
200
|
+
{
|
|
201
|
+
if(sf[j+2]==")")
|
|
202
|
+
{
|
|
203
|
+
sf[j]=" ";
|
|
204
|
+
sf=sf[1,j-1]+sf[j+1,size(sf)];
|
|
205
|
+
sf[j+1]=" ";
|
|
206
|
+
sf=sf[1,j]+sf[j+2,size(sf)];
|
|
207
|
+
}
|
|
208
|
+
}
|
|
209
|
+
}
|
|
210
|
+
write(l,"f"+string(ii)+"="+sf+";");
|
|
211
|
+
}
|
|
212
|
+
write(l,"END;");
|
|
213
|
+
system(("sh","bertini<./input"));
|
|
214
|
+
return(0);
|
|
215
|
+
}
|
|
216
|
+
example
|
|
217
|
+
{ "EXAMPLE:";echo = 2;
|
|
218
|
+
ring r=0,(x,y,z),dp;
|
|
219
|
+
ideal I= x3+y4,z4+yx,xz+3x,x2y+z;
|
|
220
|
+
string sv=varstr(basering);
|
|
221
|
+
def A=UseBertini(I,sv);
|
|
222
|
+
}
|
|
223
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
224
|
+
proc bertini2Singular(string snp, int q)
|
|
225
|
+
"USAGE: bertini2Singular(string snp, int q);
|
|
226
|
+
snp string, q=nvars(basering) integer
|
|
227
|
+
RETURN: re list of the solutions of the homotopy function computed by Bertini
|
|
228
|
+
EXAMPLE: example bertini2Singular;shows an example
|
|
229
|
+
"
|
|
230
|
+
{
|
|
231
|
+
def S=basering;
|
|
232
|
+
int nn=nvars(basering);
|
|
233
|
+
int n=q;
|
|
234
|
+
ring R = create_ring("(complex,18,I)", "("+varstr(S)+")", "dp");
|
|
235
|
+
number r1,r2;
|
|
236
|
+
list re,ru;
|
|
237
|
+
string sss=read(snp);
|
|
238
|
+
sss=sss+"";
|
|
239
|
+
int i,j,k,m,p;
|
|
240
|
+
string ss;
|
|
241
|
+
ss=sss[1];
|
|
242
|
+
i=2;
|
|
243
|
+
while(sss[i]!=" ")
|
|
244
|
+
{
|
|
245
|
+
ss=ss+sss[i];
|
|
246
|
+
i++;
|
|
247
|
+
}
|
|
248
|
+
execute("m="+ss+";");
|
|
249
|
+
for(i=1;i<=size(sss);i++)
|
|
250
|
+
{
|
|
251
|
+
if(sss[i]=="e")
|
|
252
|
+
{
|
|
253
|
+
if(!((sss[i+1]=="+")||(sss[i+1]=="-")))
|
|
254
|
+
{
|
|
255
|
+
ss=sss[i+1,size(sss)];
|
|
256
|
+
sss=sss[1,i];
|
|
257
|
+
sss=sss+"+"+ss;
|
|
258
|
+
}
|
|
259
|
+
}
|
|
260
|
+
}
|
|
261
|
+
j=1;
|
|
262
|
+
j=find(sss,newline,j)+1;
|
|
263
|
+
while(sss[j]==newline){j++;}
|
|
264
|
+
for(q=1;q<=m;q++)
|
|
265
|
+
{
|
|
266
|
+
for(p=1;p<=n;p++)
|
|
267
|
+
{
|
|
268
|
+
k=find(sss,newline,j);
|
|
269
|
+
ss=sss[j,k-j];
|
|
270
|
+
i=find (ss," ");
|
|
271
|
+
execute("r1="+ss[1,i-1]+";");
|
|
272
|
+
execute("r2="+ss[i+1,size(ss)-i+1]+";");
|
|
273
|
+
ru[p]=r1+I*r2;
|
|
274
|
+
j=k+1;
|
|
275
|
+
}
|
|
276
|
+
j=j+1;
|
|
277
|
+
re[size(re)+1]=ru;
|
|
278
|
+
}
|
|
279
|
+
export(re);
|
|
280
|
+
setring S;
|
|
281
|
+
return(R);
|
|
282
|
+
}
|
|
283
|
+
example
|
|
284
|
+
{ "EXAMPLE:";echo = 2;
|
|
285
|
+
ring r = 0,(a,b,c),ds;
|
|
286
|
+
int q=nvars(basering);
|
|
287
|
+
def T=bertini2Singular("nonsingular_solutions",q);
|
|
288
|
+
re;
|
|
289
|
+
}
|
|
290
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
291
|
+
proc WitSupSet(ideal I)
|
|
292
|
+
"USAGE: WitSupSet(ideal I);I ideal
|
|
293
|
+
RETURN: list of Witness point Super Sets W(i) for i=1,...,dim(V(I)),
|
|
294
|
+
L list of generic linear polynomials and N(0) list of a polynomial system of the same number of
|
|
295
|
+
polynomials and unknowns. // if W(i) = x, then V(I) has no component of dimension i
|
|
296
|
+
EXAMPLE: example WitSupSet;shows an example
|
|
297
|
+
"
|
|
298
|
+
{
|
|
299
|
+
def S=basering;
|
|
300
|
+
int n=nvars(basering);
|
|
301
|
+
ideal II=I;
|
|
302
|
+
int dd=dim(std(I));
|
|
303
|
+
if(n==1)
|
|
304
|
+
{
|
|
305
|
+
ERROR("n=1");
|
|
306
|
+
}
|
|
307
|
+
else
|
|
308
|
+
{
|
|
309
|
+
if(dd==0)
|
|
310
|
+
{
|
|
311
|
+
ring R = create_ring(0, "("+varstr(S)+")", "dp");
|
|
312
|
+
int i,j;
|
|
313
|
+
ideal I=imap(S,I);
|
|
314
|
+
list V(dd),W(dd);
|
|
315
|
+
def T(dd+1)=solve(I,"nodisplay");
|
|
316
|
+
setring T(dd+1);
|
|
317
|
+
W(dd)=SOL;
|
|
318
|
+
ideal N(dd)=imap(S,I);
|
|
319
|
+
export(N(dd));
|
|
320
|
+
ideal LL;
|
|
321
|
+
export(LL);
|
|
322
|
+
int c(0);
|
|
323
|
+
c(0)=0;
|
|
324
|
+
export(c(0));
|
|
325
|
+
export(dd);
|
|
326
|
+
list w(1..size(W(dd)));
|
|
327
|
+
for(i=1;i<=size(W(dd));i++)
|
|
328
|
+
{
|
|
329
|
+
w(i)=W(dd)[i];
|
|
330
|
+
export(w(i));
|
|
331
|
+
}
|
|
332
|
+
"===========================================";
|
|
333
|
+
"===========================================";
|
|
334
|
+
"Dimension";
|
|
335
|
+
dd;
|
|
336
|
+
"Number of Components";
|
|
337
|
+
size(W(dd));
|
|
338
|
+
setring S;
|
|
339
|
+
return(T(dd+1));
|
|
340
|
+
}
|
|
341
|
+
else
|
|
342
|
+
{
|
|
343
|
+
matrix MJJ=jacob(I);
|
|
344
|
+
int rn=rank(MJJ);
|
|
345
|
+
I=imap(S,II);
|
|
346
|
+
def rs=re2squ(I);
|
|
347
|
+
setring rs;
|
|
348
|
+
I=J;
|
|
349
|
+
if((n-rn)!=dd)
|
|
350
|
+
{
|
|
351
|
+
list l2 = ringlist(S)[2];
|
|
352
|
+
for (int ii = 1; ii <= dd; ii++)
|
|
353
|
+
{
|
|
354
|
+
l2[size(l2)+1] = "z("+string(ii)+")";
|
|
355
|
+
}
|
|
356
|
+
ring R = create_ring(0, l2, "dp");
|
|
357
|
+
ideal I=imap(rs,I);
|
|
358
|
+
ideal H(0..n),L,LL,L(1..dd),LL(1..dd),h(1..dd),N(0..dd);
|
|
359
|
+
poly p,p(0..n),e;
|
|
360
|
+
int i,j,k,kk,q,qq,t,m,d,jj,rii,c(0),ii;
|
|
361
|
+
for(i=1;i<=dd;i++)
|
|
362
|
+
{
|
|
363
|
+
p=0;
|
|
364
|
+
for(j=1;j<=n;j++)
|
|
365
|
+
{
|
|
366
|
+
p=p+random(1,2*n+7)*var(j);
|
|
367
|
+
}
|
|
368
|
+
if(i<dd)
|
|
369
|
+
{
|
|
370
|
+
LL[i]=random(2*n+7,4*n+1)+p;
|
|
371
|
+
}
|
|
372
|
+
else
|
|
373
|
+
{
|
|
374
|
+
c(0)=random(4*n+1,5*n+13);
|
|
375
|
+
LL[i]=c(0)+p;
|
|
376
|
+
}
|
|
377
|
+
}
|
|
378
|
+
export(c(0));
|
|
379
|
+
p(0)=0;
|
|
380
|
+
for(t=1;t<=n;t++)
|
|
381
|
+
{
|
|
382
|
+
for(j=1;j<=dd;j++)
|
|
383
|
+
{
|
|
384
|
+
p(j)=p(j-1)+random(1,2*n+10)*var(n+j);
|
|
385
|
+
h(j)[t]=I[t]+p(j);
|
|
386
|
+
}
|
|
387
|
+
}
|
|
388
|
+
for(q=1;q<=dd;q++)
|
|
389
|
+
{
|
|
390
|
+
for(i=1;i<=q;i++)
|
|
391
|
+
{
|
|
392
|
+
L(q)[i]=LL[i]+var(n+i);
|
|
393
|
+
}
|
|
394
|
+
}
|
|
395
|
+
for(i=1;i<=dd;i++)
|
|
396
|
+
{
|
|
397
|
+
N(i)=h(i),L(i);
|
|
398
|
+
}
|
|
399
|
+
for(i=1;i<=n;i++)
|
|
400
|
+
{
|
|
401
|
+
N(0)[i]=I[i];
|
|
402
|
+
}
|
|
403
|
+
ideal JJ=N(0);
|
|
404
|
+
if(dim(std(N(dd)))!=0)
|
|
405
|
+
{
|
|
406
|
+
"Try Again";
|
|
407
|
+
}
|
|
408
|
+
else
|
|
409
|
+
{
|
|
410
|
+
def T=solve(N(dd),100,"nodisplay");
|
|
411
|
+
setring T;
|
|
412
|
+
ring T(dd+1) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
413
|
+
list M,Y;
|
|
414
|
+
list W(dd),V(dd);
|
|
415
|
+
list SOL=imap(T,SOL);
|
|
416
|
+
Y=SOL;
|
|
417
|
+
number rp,ip,rip;
|
|
418
|
+
for( i=1;i<=size(SOL);i++)
|
|
419
|
+
{
|
|
420
|
+
M=Y[i];
|
|
421
|
+
for(j=dd;j>=1;j--)
|
|
422
|
+
{
|
|
423
|
+
rp=repart(M[n+j]);
|
|
424
|
+
ip=impart(M[n+j]);
|
|
425
|
+
rip=rp^2 + ip^2;
|
|
426
|
+
if(rip<0.0000000000000001)
|
|
427
|
+
{
|
|
428
|
+
M=delete(M,n+j);
|
|
429
|
+
Y[i]=M;
|
|
430
|
+
}
|
|
431
|
+
}
|
|
432
|
+
}
|
|
433
|
+
k=1;
|
|
434
|
+
kk=1;
|
|
435
|
+
for( i=1;i<=size(Y);i++)
|
|
436
|
+
{
|
|
437
|
+
if(size(Y[i])==n)
|
|
438
|
+
{
|
|
439
|
+
W(dd)[k]=Y[i];
|
|
440
|
+
k=k+1;
|
|
441
|
+
}
|
|
442
|
+
else
|
|
443
|
+
{
|
|
444
|
+
V(dd)[kk]=Y[i];
|
|
445
|
+
kk=kk+1;
|
|
446
|
+
}
|
|
447
|
+
}
|
|
448
|
+
ideal JJ=imap(S,II);
|
|
449
|
+
k=1;
|
|
450
|
+
number al,ar,ai,ri;
|
|
451
|
+
for(j=1;j<=size(W(dd));j++)
|
|
452
|
+
{
|
|
453
|
+
ri=0;
|
|
454
|
+
al=0;
|
|
455
|
+
ai=0;
|
|
456
|
+
ar=0;
|
|
457
|
+
for(ii=1;ii<=size(JJ);ii++)
|
|
458
|
+
{
|
|
459
|
+
for(i=1;i<=n;i++)
|
|
460
|
+
{
|
|
461
|
+
JJ[ii]=subst(JJ[ii],var(i),W(dd)[j][i]);
|
|
462
|
+
}
|
|
463
|
+
al=leadcoef(JJ[ii]);
|
|
464
|
+
ar=repart(al);
|
|
465
|
+
ai=impart(al);
|
|
466
|
+
ri=ar^2+ai^2+ri;
|
|
467
|
+
}
|
|
468
|
+
if(ri<=0.000000000000000001)
|
|
469
|
+
{
|
|
470
|
+
W(dd)[k]=W(dd)[j];
|
|
471
|
+
k=k+1;
|
|
472
|
+
}
|
|
473
|
+
}
|
|
474
|
+
ideal L(dd)=imap(R,L(dd));
|
|
475
|
+
export(L(dd));
|
|
476
|
+
export(W(dd));
|
|
477
|
+
export(V(dd));
|
|
478
|
+
string sff,sf,sv;
|
|
479
|
+
int nv(dd)=size(V(dd));
|
|
480
|
+
int nv(0..dd-1);
|
|
481
|
+
if(size(W(dd))<size(Y))
|
|
482
|
+
{
|
|
483
|
+
def SB(dd)=Singular2bertini(V(dd));
|
|
484
|
+
}
|
|
485
|
+
for( q=dd;q>=n-rn+1;q--)
|
|
486
|
+
{
|
|
487
|
+
if(nv(q)!=0)
|
|
488
|
+
{
|
|
489
|
+
int w(q-1)=0;
|
|
490
|
+
list l2 = ringlist(S)[2];
|
|
491
|
+
for (int ii = 1; ii <= q; ii++)
|
|
492
|
+
{
|
|
493
|
+
l2[size(l2)+1] = "z("+string(ii)+")";
|
|
494
|
+
}
|
|
495
|
+
ring D(q) = create_ring("(0,s,gamma)", l2, "dp");
|
|
496
|
+
string nonsin(q),stnonsin(q);
|
|
497
|
+
ideal H(1..q);
|
|
498
|
+
ideal N(q)=imap(R,N(q));
|
|
499
|
+
ideal N(q-1)=imap(R,N(q-1));
|
|
500
|
+
for(j=1;j<=n+q-1;j++)
|
|
501
|
+
{
|
|
502
|
+
H(q)[j]=s*gamma*N(q)[j]+(1-s)*N(q-1)[j];
|
|
503
|
+
}
|
|
504
|
+
H(q)[n+q]=s*gamma*N(q)[n+q]+(1-s)*var(n+q);
|
|
505
|
+
ideal H=H(q);
|
|
506
|
+
export(H(q));
|
|
507
|
+
string sv(q)=varstr(basering);
|
|
508
|
+
sv=sv(q);
|
|
509
|
+
def Q(q)=UseBertini(H,sv);
|
|
510
|
+
system("sh","rm start");
|
|
511
|
+
nonsin(q)=read("nonsingular_solutions");
|
|
512
|
+
if(size(nonsin(q))>=52)
|
|
513
|
+
{
|
|
514
|
+
def T(q)=bertini2Singular("nonsingular_solutions",nvars(basering));
|
|
515
|
+
setring T(q);
|
|
516
|
+
list C=re;
|
|
517
|
+
list B,X,A,G;
|
|
518
|
+
for(i=1;i<=size(C);i++)
|
|
519
|
+
{
|
|
520
|
+
B=re[i];
|
|
521
|
+
B=delete(B,n+q);
|
|
522
|
+
C[i]=B;
|
|
523
|
+
}
|
|
524
|
+
X=C;
|
|
525
|
+
if(q>=2)
|
|
526
|
+
{
|
|
527
|
+
for(j=q-1;j>=1;j--)
|
|
528
|
+
{
|
|
529
|
+
for(i=1;i<=size(X);i++)
|
|
530
|
+
{
|
|
531
|
+
A[i]=X[i];
|
|
532
|
+
G=A[i];
|
|
533
|
+
G=delete(G,n+j);
|
|
534
|
+
A[i]=G;
|
|
535
|
+
}
|
|
536
|
+
X=A;
|
|
537
|
+
}
|
|
538
|
+
}
|
|
539
|
+
else
|
|
540
|
+
{
|
|
541
|
+
X=C;
|
|
542
|
+
}
|
|
543
|
+
list W(q-1),V(q-1);
|
|
544
|
+
ideal JJ=imap(S,II);
|
|
545
|
+
k=1;
|
|
546
|
+
poly tj;
|
|
547
|
+
number al,ar,ai,ri;
|
|
548
|
+
for(j=1;j<=size(C);j++)
|
|
549
|
+
{
|
|
550
|
+
ri=0;
|
|
551
|
+
al=0;
|
|
552
|
+
ai=0;
|
|
553
|
+
ar=0;
|
|
554
|
+
for(i=1;i<=size(JJ);i++)
|
|
555
|
+
{
|
|
556
|
+
tj=JJ[i];
|
|
557
|
+
for(i=1;i<=n;i++)
|
|
558
|
+
{
|
|
559
|
+
tj=subst(tj,var(i),X[j][i]);
|
|
560
|
+
}
|
|
561
|
+
al=leadcoef(tj);
|
|
562
|
+
ar=repart(al);
|
|
563
|
+
ai=impart(al);
|
|
564
|
+
ri=ar^2+ai^2+ri;
|
|
565
|
+
}
|
|
566
|
+
if(ri<=0.000000000000000001)
|
|
567
|
+
{
|
|
568
|
+
W(q-1)[k]=X[j];
|
|
569
|
+
k=k+1;
|
|
570
|
+
}
|
|
571
|
+
else
|
|
572
|
+
{
|
|
573
|
+
nv(q-1)=nv(q-1)+1;
|
|
574
|
+
V(q-1)[nv(q-1)]=C[j];
|
|
575
|
+
}
|
|
576
|
+
}
|
|
577
|
+
if(nv(q-1)==size(C))
|
|
578
|
+
{
|
|
579
|
+
list W(q-1)=var(1);
|
|
580
|
+
}
|
|
581
|
+
if(q>=2)
|
|
582
|
+
{
|
|
583
|
+
if(nv(q-1)!=0)
|
|
584
|
+
{
|
|
585
|
+
def SB(qq-1)=Singular2bertini(V(q-1));
|
|
586
|
+
}
|
|
587
|
+
else
|
|
588
|
+
{
|
|
589
|
+
for(qq=q-1;qq>=1;qq--)
|
|
590
|
+
{
|
|
591
|
+
list l2 = ringlist(S)[2];
|
|
592
|
+
for (int ii = 1; ii <= qq; ii++)
|
|
593
|
+
{
|
|
594
|
+
l2[size(l2)+1] = "z("+string(ii)+")";
|
|
595
|
+
}
|
|
596
|
+
ring T(qq) = create_ring("(complex,16,I)", l2, "dp");
|
|
597
|
+
list W(qq-1)=var(1);
|
|
598
|
+
}
|
|
599
|
+
q=1;
|
|
600
|
+
}
|
|
601
|
+
}
|
|
602
|
+
}
|
|
603
|
+
else
|
|
604
|
+
{
|
|
605
|
+
for(qq=q;qq>=1;qq--)
|
|
606
|
+
{
|
|
607
|
+
int w(qq-1);
|
|
608
|
+
list l2 = ringlist(S)[2];
|
|
609
|
+
for (int ii = 1; ii <= qq; ii++)
|
|
610
|
+
{
|
|
611
|
+
l2[size(l2)+1] = "z("+string(ii)+")";
|
|
612
|
+
}
|
|
613
|
+
ring T(qq) = create_ring("(complex,16,I)", l2, "dp");
|
|
614
|
+
list W(qq-1)=var(1);
|
|
615
|
+
}
|
|
616
|
+
}
|
|
617
|
+
}
|
|
618
|
+
else
|
|
619
|
+
{
|
|
620
|
+
for(qq=q;qq>=1;qq--)
|
|
621
|
+
{
|
|
622
|
+
list l2 = ringlist(S)[2];
|
|
623
|
+
for (int ii = 1; ii <= qq; ii++)
|
|
624
|
+
{
|
|
625
|
+
l2[size(l2)+1] = "z("+string(ii)+")";
|
|
626
|
+
}
|
|
627
|
+
ring T(qq) = create_ring("(complex,16,I)", l2, "dp");
|
|
628
|
+
list W(qq-1)=var(1);
|
|
629
|
+
}
|
|
630
|
+
}
|
|
631
|
+
}
|
|
632
|
+
ring D = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
633
|
+
for(i=0;i<=dd;i++)
|
|
634
|
+
{
|
|
635
|
+
list W(i)=imap(T(i+1),W(i));
|
|
636
|
+
export(W(i));
|
|
637
|
+
}
|
|
638
|
+
ideal L=imap(R,LL);
|
|
639
|
+
export(L);
|
|
640
|
+
ideal N(0)=imap(R,N(0));
|
|
641
|
+
export(N(0));
|
|
642
|
+
setring S;
|
|
643
|
+
return(D);
|
|
644
|
+
}
|
|
645
|
+
}
|
|
646
|
+
else
|
|
647
|
+
{
|
|
648
|
+
ring R = create_ring(0, "("+varstr(S)+")", "dp");
|
|
649
|
+
int i,j,c(0);
|
|
650
|
+
poly p;
|
|
651
|
+
ideal LL;
|
|
652
|
+
for(i=1;i<=dd;i++)
|
|
653
|
+
{
|
|
654
|
+
p=0;
|
|
655
|
+
for(j=1;j<=n;j++)
|
|
656
|
+
{
|
|
657
|
+
p=p+random(1,100)*var(j);
|
|
658
|
+
}
|
|
659
|
+
if(i<dd)
|
|
660
|
+
{
|
|
661
|
+
LL[i]=random(101,200)+p;
|
|
662
|
+
}
|
|
663
|
+
else
|
|
664
|
+
{
|
|
665
|
+
c(0)=random(201,300);
|
|
666
|
+
LL[i]=c(0)+p;
|
|
667
|
+
}
|
|
668
|
+
}
|
|
669
|
+
ideal I=imap(S,I);
|
|
670
|
+
ideal N(dd)=I,LL;
|
|
671
|
+
def T=solve(N(dd),100,"nodisplay");
|
|
672
|
+
setring T;
|
|
673
|
+
list W(0..dd);
|
|
674
|
+
W(dd)=SOL;
|
|
675
|
+
export(W(dd));
|
|
676
|
+
for(i=0;i<=dd-1;i++)
|
|
677
|
+
{
|
|
678
|
+
W(i)=var(1);
|
|
679
|
+
export(W(i));
|
|
680
|
+
}
|
|
681
|
+
ideal L=imap(R,LL);
|
|
682
|
+
export(L);
|
|
683
|
+
ideal N(0)=imap(S,I);
|
|
684
|
+
export(N(0));
|
|
685
|
+
setring S;
|
|
686
|
+
return(T);
|
|
687
|
+
}
|
|
688
|
+
}
|
|
689
|
+
}
|
|
690
|
+
}
|
|
691
|
+
example
|
|
692
|
+
{ "EXAMPLE:";echo = 2;
|
|
693
|
+
ring r=0,(x,y,z),dp;
|
|
694
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
695
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
696
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
697
|
+
ideal I=f1,f2,f3;
|
|
698
|
+
def W=WitSupSet(I);
|
|
699
|
+
setring W;
|
|
700
|
+
W(2);
|
|
701
|
+
// witness point super set of a pure 2-dimensional component of V(I)
|
|
702
|
+
W(1);
|
|
703
|
+
// witness point super set of a pure 1-dimensional component of V(I)
|
|
704
|
+
W(0);
|
|
705
|
+
// witness point super set of a pure 0-dimensional component of V(I)
|
|
706
|
+
L;
|
|
707
|
+
// list of generic linear polynomials
|
|
708
|
+
}
|
|
709
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
710
|
+
proc ReJunkUseHomo(ideal I, ideal L, list W, list w)
|
|
711
|
+
"USAGE: ReJunkUseHomo(ideal I, ideal L, list W, list w);
|
|
712
|
+
I ideal, L list of generic linear polynomials {l_1,...,l_i},
|
|
713
|
+
W list of a subset of the solution set of the generic slicing V(L) with V(J),
|
|
714
|
+
w list of a point in V(J)
|
|
715
|
+
RETURN: t=1 if w on an i-dimensional component of V(I),
|
|
716
|
+
otherwise t=0. Where i=size(L)
|
|
717
|
+
EXAMPLE: example ReJunkUseHomo;shows an example
|
|
718
|
+
"
|
|
719
|
+
{
|
|
720
|
+
def S=basering;
|
|
721
|
+
int n=nvars(basering);
|
|
722
|
+
int ii,i,in,j,jjj,jj,k,zi,a,kk,kkk;
|
|
723
|
+
string sf,sff,sv;
|
|
724
|
+
i=size(W);
|
|
725
|
+
in=size(w);
|
|
726
|
+
ideal LL;
|
|
727
|
+
jjj=size(L);
|
|
728
|
+
poly pp;
|
|
729
|
+
for(jj=1;jj<=jjj;jj++)
|
|
730
|
+
{
|
|
731
|
+
for(ii=1;ii<=in;ii++)
|
|
732
|
+
{
|
|
733
|
+
pp=random(1,3*n+1)*(var(ii)-w[ii])+pp;
|
|
734
|
+
}
|
|
735
|
+
LL[jj]=pp;
|
|
736
|
+
}
|
|
737
|
+
export(LL);
|
|
738
|
+
ring R = create_ring("(complex,16,I)", "("+varstr(S)+",gamma,s)", "dp");
|
|
739
|
+
ideal L=imap(S,L);
|
|
740
|
+
ideal LL=imap(S,LL);
|
|
741
|
+
ideal I=imap(S,I);
|
|
742
|
+
list w=imap(S,w);
|
|
743
|
+
zi=size(I);
|
|
744
|
+
ideal H;
|
|
745
|
+
for(a=1;a<=zi;a++)
|
|
746
|
+
{
|
|
747
|
+
H[a]=s*gamma*I[a]+(1-s)*I[a];
|
|
748
|
+
}
|
|
749
|
+
for(kk=1;kk<=jjj;kk++)
|
|
750
|
+
{
|
|
751
|
+
H[kk+zi]=s*gamma*L[kk]+(1-s)*LL[kk];
|
|
752
|
+
}
|
|
753
|
+
list W=imap(S,W);
|
|
754
|
+
def SB1=Singular2bertini(W);
|
|
755
|
+
sv=varstr(S);
|
|
756
|
+
def Q=UseBertini(H,sv);
|
|
757
|
+
system("sh","rm start");
|
|
758
|
+
string nonsin=read("nonsingular_solutions");
|
|
759
|
+
if(size(nonsin)>=52)
|
|
760
|
+
{
|
|
761
|
+
def TT=bertini2Singular("nonsingular_solutions",nvars(basering)-2);
|
|
762
|
+
setring TT;
|
|
763
|
+
list w=imap(S,w);
|
|
764
|
+
list C=re;
|
|
765
|
+
list ww,v;
|
|
766
|
+
number rp,ip,rp(1..size(w)),ip(1..size(w)),irp,t;
|
|
767
|
+
for(k=1;k<=size(C);k++)
|
|
768
|
+
{
|
|
769
|
+
ww=re[k];
|
|
770
|
+
for(jj=1;jj<=size(w);jj++)
|
|
771
|
+
{
|
|
772
|
+
rp(jj)=(repart(ww[jj])-repart(w[jj]))^2;
|
|
773
|
+
ip(jj)=(impart(ww[jj])-impart(w[jj]))^2;
|
|
774
|
+
rp=rp+rp(jj);
|
|
775
|
+
ip=ip+ip(jj);
|
|
776
|
+
}
|
|
777
|
+
irp=ip+rp;
|
|
778
|
+
if(irp<=0.000000000000000000000001)
|
|
779
|
+
{
|
|
780
|
+
t=1.0;
|
|
781
|
+
}
|
|
782
|
+
else
|
|
783
|
+
{
|
|
784
|
+
t=0.0;
|
|
785
|
+
}
|
|
786
|
+
}
|
|
787
|
+
}
|
|
788
|
+
else
|
|
789
|
+
{
|
|
790
|
+
ring TT = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
791
|
+
list w=imap(S,w);
|
|
792
|
+
number t=1.0;
|
|
793
|
+
}
|
|
794
|
+
export(t);
|
|
795
|
+
setring S;
|
|
796
|
+
return(TT);
|
|
797
|
+
}
|
|
798
|
+
example
|
|
799
|
+
{ "EXAMPLE:";echo = 2;
|
|
800
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
801
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
802
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
803
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
804
|
+
ideal J=f1,f2,f3;
|
|
805
|
+
poly l1=15x+16y+6z+17;
|
|
806
|
+
poly l2=2x+14y+4z+18;
|
|
807
|
+
ideal L=l1,l2;
|
|
808
|
+
list W1=list(0.5372775295412116,-0.7105339291010922,-2.2817700129167831+I*0),list(0.09201175741935605,-1.7791717821935455,1.6810953589677311);
|
|
809
|
+
list w=list(2,2,-131666666/10000000);
|
|
810
|
+
def D=ReJunkUseHomo(J,L,W1,w);
|
|
811
|
+
setring D;
|
|
812
|
+
t;
|
|
813
|
+
}
|
|
814
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
815
|
+
proc JuReTopDim(ideal J,list w,int tt, int d);
|
|
816
|
+
"USAGE: JuReTopDim(ideal J,list w,int tt, int d);J ideal, w list of a point in V(J),
|
|
817
|
+
tt the degree of d-dimensional component of V(J), d dimension of V(J)
|
|
818
|
+
RETURN: t=1 if w on a d-dimensional component of V(I), otherwise t=0.
|
|
819
|
+
EXAMPLE: example JuReTopDim;shows an example
|
|
820
|
+
"
|
|
821
|
+
{
|
|
822
|
+
def S=basering;
|
|
823
|
+
int n=nvars(basering);
|
|
824
|
+
int i,j,k;
|
|
825
|
+
list iw,rw;
|
|
826
|
+
for(k=1;k<=n;k++)
|
|
827
|
+
{
|
|
828
|
+
rw[k]=repart(w[k]);
|
|
829
|
+
iw[k]=impart(w[k]);
|
|
830
|
+
}
|
|
831
|
+
ring R = create_ring(list("real"), "("+varstr(S)+",I)", "dp");
|
|
832
|
+
list iw=imap(S,iw);
|
|
833
|
+
list rw=imap(S,rw);
|
|
834
|
+
ideal J=imap(S,J);
|
|
835
|
+
ring RR = create_ring(0, "("+varstr(S)+",I)", "dp");
|
|
836
|
+
ideal J=imap(R,J);
|
|
837
|
+
list iw=imap(R,iw);
|
|
838
|
+
list rw=imap(R,rw);
|
|
839
|
+
ideal L;
|
|
840
|
+
poly p;
|
|
841
|
+
for(i=1;i<=d;i++)
|
|
842
|
+
{
|
|
843
|
+
p=0;
|
|
844
|
+
for(j=1;j<=n;j++)
|
|
845
|
+
{
|
|
846
|
+
p=p+random(1,100)*(var(j)-rw[j]-I*iw[j]);
|
|
847
|
+
}
|
|
848
|
+
L[i]=p;
|
|
849
|
+
}
|
|
850
|
+
ideal JJ;
|
|
851
|
+
for(i=1;i<=size(J);i++)
|
|
852
|
+
{
|
|
853
|
+
p=J[i];
|
|
854
|
+
for(j=1;j<=n;j++)
|
|
855
|
+
{
|
|
856
|
+
p=subst(p,var(j),rw[j]+I*iw[j]);
|
|
857
|
+
}
|
|
858
|
+
JJ[i]=p;
|
|
859
|
+
}
|
|
860
|
+
poly pp;
|
|
861
|
+
pp=I^2 +1;
|
|
862
|
+
ideal T=L,J,pp;
|
|
863
|
+
int di=dim(std(T));
|
|
864
|
+
if(di==0)
|
|
865
|
+
{
|
|
866
|
+
def T(d)=solve(T,10,"nodisplay");
|
|
867
|
+
setring T(d);
|
|
868
|
+
number t,ie,re,rt;
|
|
869
|
+
int zi=size(SOL);
|
|
870
|
+
list iw=imap(S,iw);
|
|
871
|
+
list rw=imap(S,rw);
|
|
872
|
+
if(zi==2*tt)
|
|
873
|
+
{
|
|
874
|
+
t=1.0/1;
|
|
875
|
+
}
|
|
876
|
+
else
|
|
877
|
+
{
|
|
878
|
+
t=0.0/1;
|
|
879
|
+
}
|
|
880
|
+
}
|
|
881
|
+
else
|
|
882
|
+
{
|
|
883
|
+
ring T(d) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
884
|
+
"Try Again";
|
|
885
|
+
-----
|
|
886
|
+
}
|
|
887
|
+
export(t);
|
|
888
|
+
setring S;
|
|
889
|
+
return(T(d));
|
|
890
|
+
}
|
|
891
|
+
example
|
|
892
|
+
{ "EXAMPLE:";echo = 2;
|
|
893
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
894
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
895
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
896
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
897
|
+
ideal J=f1,f2,f3;
|
|
898
|
+
list w=list(0.5372775295412116,-0.7105339291010922,-2.2817700129167831);
|
|
899
|
+
def D=JuReTopDim(J,w,2,2);
|
|
900
|
+
setring D;
|
|
901
|
+
t;
|
|
902
|
+
}
|
|
903
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
904
|
+
proc JuReZeroDim(ideal J,list w, int d);
|
|
905
|
+
"USAGE: JuReZeroDim(ideal J,list w, int d);J ideal,
|
|
906
|
+
w list of a point in V(J), d dimension of V(J)
|
|
907
|
+
RETURN: t=1 if w on a positive-dimensional component of V(I),
|
|
908
|
+
i.e w is not isolated point in V(J)
|
|
909
|
+
EXAMPLE: example JuReZeroDim;shows an example
|
|
910
|
+
"
|
|
911
|
+
{
|
|
912
|
+
def S=basering;
|
|
913
|
+
int n=nvars(basering);
|
|
914
|
+
int i,j,k;
|
|
915
|
+
list iw,rw;
|
|
916
|
+
for(k=1;k<=n;k++)
|
|
917
|
+
{
|
|
918
|
+
rw[k]=repart(w[k]);
|
|
919
|
+
iw[k]=impart(w[k]);
|
|
920
|
+
}
|
|
921
|
+
ring R = create_ring(list("real"), "("+varstr(S)+",I)", "dp");
|
|
922
|
+
list iw=imap(S,iw);
|
|
923
|
+
ideal J=imap(S,J);
|
|
924
|
+
list rw=imap(S,rw);
|
|
925
|
+
ring RR = create_ring(0, "("+varstr(S)+",I)", "dp");
|
|
926
|
+
list iw=imap(R,iw);
|
|
927
|
+
ideal J=imap(R,J);
|
|
928
|
+
list rw=imap(R,rw);
|
|
929
|
+
ideal LL;
|
|
930
|
+
poly p;
|
|
931
|
+
for(i=1;i<=d;i++)
|
|
932
|
+
{
|
|
933
|
+
p=0;
|
|
934
|
+
for(j=1;j<=n;j++)
|
|
935
|
+
{
|
|
936
|
+
p=p+random(1,100)*(var(j)-rw[j]-I*iw[j]);
|
|
937
|
+
}
|
|
938
|
+
LL[i]=p;
|
|
939
|
+
}
|
|
940
|
+
poly pp;
|
|
941
|
+
pp=I^2 +1;
|
|
942
|
+
ideal TT=LL,J,pp;
|
|
943
|
+
def TT(d)=solve(TT,16,"nodisplay");
|
|
944
|
+
setring TT(d);
|
|
945
|
+
int zii=size(SOL);
|
|
946
|
+
ring RR1 = create_ring(0, "("+varstr(S)+",I)", "dp");
|
|
947
|
+
list iw=imap(R,iw);
|
|
948
|
+
ideal J=imap(R,J);
|
|
949
|
+
list rw=imap(R,rw);
|
|
950
|
+
ideal L;
|
|
951
|
+
poly p;
|
|
952
|
+
for(i=1;i<=d;i++)
|
|
953
|
+
{
|
|
954
|
+
p=0;
|
|
955
|
+
for(j=1;j<=n;j++)
|
|
956
|
+
{
|
|
957
|
+
p=p+random(1,100)*(var(j)-rw[j]-I*iw[j]-1/100000000000000);
|
|
958
|
+
}
|
|
959
|
+
L[i]=p;
|
|
960
|
+
}
|
|
961
|
+
poly pp;
|
|
962
|
+
pp=I^2 +1;
|
|
963
|
+
ideal T=L,J,pp;
|
|
964
|
+
int di=dim(std(T));
|
|
965
|
+
if(di==0)
|
|
966
|
+
{
|
|
967
|
+
def T(d)=solve(T,16,"nodisplay");
|
|
968
|
+
setring T(d);
|
|
969
|
+
number t;
|
|
970
|
+
int zi=size(SOL);
|
|
971
|
+
list iw=imap(S,iw);
|
|
972
|
+
list rw=imap(S,rw);
|
|
973
|
+
if(zi==zii)
|
|
974
|
+
{
|
|
975
|
+
t=1.0/1;
|
|
976
|
+
}
|
|
977
|
+
else
|
|
978
|
+
{
|
|
979
|
+
t=0.0/1;
|
|
980
|
+
}
|
|
981
|
+
}
|
|
982
|
+
else
|
|
983
|
+
{
|
|
984
|
+
ring T(d) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
985
|
+
"Try Again";
|
|
986
|
+
-----
|
|
987
|
+
}
|
|
988
|
+
export(t);
|
|
989
|
+
setring S;
|
|
990
|
+
return(T(d));
|
|
991
|
+
}
|
|
992
|
+
example
|
|
993
|
+
{ "EXAMPLE:";echo = 2;
|
|
994
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
995
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
996
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
997
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
998
|
+
ideal J=f1,f2,f3;
|
|
999
|
+
list w1=list(0.5372775295412116,-0.7105339291010922,-2.2817700129167831);
|
|
1000
|
+
def D1=JuReZeroDim(J,w1,2);
|
|
1001
|
+
setring D1;
|
|
1002
|
+
t;
|
|
1003
|
+
}
|
|
1004
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1005
|
+
proc WitSet(ideal I)
|
|
1006
|
+
"USAGE: WitSet(ideal I); I ideal
|
|
1007
|
+
RETURN: lists W(0..d) of witness point sets of i-dimensional components
|
|
1008
|
+
of V(J) for i=0,...d respectively, where d the dimension of V(J),
|
|
1009
|
+
L list of generic linear polynomials
|
|
1010
|
+
NOTE: if W(i)=x, then V(J) has no component of dimension i
|
|
1011
|
+
EXAMPLE: example WitSet;shows an example
|
|
1012
|
+
"
|
|
1013
|
+
{
|
|
1014
|
+
def S=basering;
|
|
1015
|
+
int n=nvars(basering);
|
|
1016
|
+
int ii,i,j,b,bb,k,kk,dt;
|
|
1017
|
+
def TJ(0)=WitSupSet(I);
|
|
1018
|
+
setring TJ(0);
|
|
1019
|
+
ideal LL=L;
|
|
1020
|
+
int d=size(LL);
|
|
1021
|
+
if(d==0)
|
|
1022
|
+
{
|
|
1023
|
+
setring S;
|
|
1024
|
+
return(TJ(0));
|
|
1025
|
+
}
|
|
1026
|
+
else
|
|
1027
|
+
{
|
|
1028
|
+
for( i=0;i<=d;i++)
|
|
1029
|
+
{
|
|
1030
|
+
list Ww(i)=W(i);
|
|
1031
|
+
int z(i)=size(W(i));
|
|
1032
|
+
export(Ww(i));
|
|
1033
|
+
}
|
|
1034
|
+
for(i=d-1;i>=0;i--)
|
|
1035
|
+
{
|
|
1036
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1037
|
+
if(size(W(i)[1])>1)
|
|
1038
|
+
{
|
|
1039
|
+
for(j=1;j<=z(i);j++)
|
|
1040
|
+
{
|
|
1041
|
+
ring Rr(j+i) = create_ring("(complex,106,I)", "("+varstr(S)+")", "ds");
|
|
1042
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1043
|
+
list w=W(i)[j];
|
|
1044
|
+
ideal J=imap(TJ(0),N(0));
|
|
1045
|
+
ideal J(j),K(j);
|
|
1046
|
+
for(k=1;k<=size(J);k++)
|
|
1047
|
+
{
|
|
1048
|
+
J(j)[k]=J[k];
|
|
1049
|
+
for(kk=1;kk<=n;kk++)
|
|
1050
|
+
{
|
|
1051
|
+
J(j)[k]=subst(J(j)[k],var(kk),w[kk]);
|
|
1052
|
+
}
|
|
1053
|
+
K(j)[k]=J[k]-J(j)[k];
|
|
1054
|
+
}
|
|
1055
|
+
poly p(1..n);
|
|
1056
|
+
for(k=1;k<=n;k++)
|
|
1057
|
+
{
|
|
1058
|
+
p(k)=var(k)+w[k];
|
|
1059
|
+
}
|
|
1060
|
+
map f(j)=Rr(j+i),p(1..n);
|
|
1061
|
+
ideal JJ=f(j)(K(j));
|
|
1062
|
+
if(dim(std(JJ))>i)
|
|
1063
|
+
{
|
|
1064
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1065
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1066
|
+
list w(j)=var(1);
|
|
1067
|
+
}
|
|
1068
|
+
else
|
|
1069
|
+
{
|
|
1070
|
+
if(i==0)
|
|
1071
|
+
{
|
|
1072
|
+
ring RR(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1073
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1074
|
+
list w=W(i)[j];
|
|
1075
|
+
ideal J=imap(TJ(0),N(0));
|
|
1076
|
+
def AA(j)=JuReZeroDim( J,w,d);
|
|
1077
|
+
setring AA(j);
|
|
1078
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1079
|
+
if(t<1)
|
|
1080
|
+
{
|
|
1081
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1082
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1083
|
+
list w(j)=W(i)[j];
|
|
1084
|
+
}
|
|
1085
|
+
else
|
|
1086
|
+
{
|
|
1087
|
+
ring RRR(j) = create_ring("(complex,106,I)", "("+varstr(S)+")", "dp");
|
|
1088
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1089
|
+
list w=W(i)[j];
|
|
1090
|
+
ideal J=imap(TJ(0),N(0));
|
|
1091
|
+
def AAA(j)=JuReTopDim( J,w, z(d),d);
|
|
1092
|
+
setring AAA(j);
|
|
1093
|
+
number ts=t;
|
|
1094
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1095
|
+
if(ts<1)
|
|
1096
|
+
{
|
|
1097
|
+
dt=d-1;
|
|
1098
|
+
}
|
|
1099
|
+
else
|
|
1100
|
+
{
|
|
1101
|
+
dt=d;
|
|
1102
|
+
}
|
|
1103
|
+
if(dt>i)
|
|
1104
|
+
{
|
|
1105
|
+
for(ii=i+1;ii<=dt;ii++)
|
|
1106
|
+
{
|
|
1107
|
+
ring RRRR(ii+j) = create_ring("(complex,106,I)", "("+varstr(S)+")", "ds");
|
|
1108
|
+
list Ww(ii)=imap(TJ(0),Ww(ii));
|
|
1109
|
+
if(size(Ww(ii)[1])>1)
|
|
1110
|
+
{
|
|
1111
|
+
ring RRRRR(ii+j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1112
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1113
|
+
list w=W(i)[j];
|
|
1114
|
+
list Ww(ii)=imap(TJ(0),Ww(ii));
|
|
1115
|
+
ideal J=imap(TJ(0),N(0));
|
|
1116
|
+
ideal L=imap(TJ(0),LL);
|
|
1117
|
+
ideal L(ii);
|
|
1118
|
+
for(k=1;k<=ii;k++)
|
|
1119
|
+
{
|
|
1120
|
+
L(ii)[k]=L[k];
|
|
1121
|
+
}
|
|
1122
|
+
def AAA(ii+j)=ReJunkUseHomo(J,L(ii),Ww(ii),w);
|
|
1123
|
+
setring AAA(ii+j);
|
|
1124
|
+
number ts=t;
|
|
1125
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1126
|
+
if(ts>0)
|
|
1127
|
+
{
|
|
1128
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1129
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1130
|
+
list w(j)=var(1);
|
|
1131
|
+
ii=d+1;
|
|
1132
|
+
}
|
|
1133
|
+
else
|
|
1134
|
+
{
|
|
1135
|
+
if(ii==dt)
|
|
1136
|
+
{
|
|
1137
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1138
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1139
|
+
}
|
|
1140
|
+
list w(j)=W(i)[j];
|
|
1141
|
+
}
|
|
1142
|
+
}
|
|
1143
|
+
}
|
|
1144
|
+
}
|
|
1145
|
+
else
|
|
1146
|
+
{
|
|
1147
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1148
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1149
|
+
list w(j)=W(i)[j];
|
|
1150
|
+
}
|
|
1151
|
+
}
|
|
1152
|
+
}
|
|
1153
|
+
else
|
|
1154
|
+
{
|
|
1155
|
+
ring RRRRRRR(j) = create_ring("(complex,106,I)", "("+varstr(S)+")", "dp");
|
|
1156
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1157
|
+
list w=W(i)[j];
|
|
1158
|
+
ideal J=imap(TJ(0),N(0));
|
|
1159
|
+
def Aaa(j)=JuReTopDim( J,w,z(d),d);
|
|
1160
|
+
setring Aaa(j);
|
|
1161
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1162
|
+
number ts =t;
|
|
1163
|
+
if(ts<1)
|
|
1164
|
+
{
|
|
1165
|
+
dt=d-1;
|
|
1166
|
+
}
|
|
1167
|
+
else
|
|
1168
|
+
{
|
|
1169
|
+
dt=d;
|
|
1170
|
+
}
|
|
1171
|
+
if(dt>i)
|
|
1172
|
+
{
|
|
1173
|
+
for(ii=i+1;ii<=dt;ii++)
|
|
1174
|
+
{
|
|
1175
|
+
ring RRRRRRRR(ii+j) = create_ring("(complex,106,I)", "("+varstr(S)+")", "ds");
|
|
1176
|
+
list Ww(ii)=imap(TJ(0),Ww(ii));
|
|
1177
|
+
if(size(Ww(ii)[1])>1)
|
|
1178
|
+
{
|
|
1179
|
+
ring R1(ii+j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1180
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1181
|
+
list w=W(i)[j];
|
|
1182
|
+
list Ww(ii)=imap(TJ(0),Ww(ii));
|
|
1183
|
+
ideal J=imap(TJ(0),N(0));
|
|
1184
|
+
ideal L=imap(TJ(0),LL);
|
|
1185
|
+
ideal L(ii);
|
|
1186
|
+
for(k=1;k<=ii;k++)
|
|
1187
|
+
{
|
|
1188
|
+
L(ii)[k]=L[k];
|
|
1189
|
+
}
|
|
1190
|
+
def AA(ii+j)=ReJunkUseHomo(J,L(ii),Ww(ii),w);
|
|
1191
|
+
setring AA(ii+j);
|
|
1192
|
+
number ts=t;
|
|
1193
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1194
|
+
if(ts>0)
|
|
1195
|
+
{
|
|
1196
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1197
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1198
|
+
list w(j)=var(1);
|
|
1199
|
+
ii=d+1;
|
|
1200
|
+
}
|
|
1201
|
+
else
|
|
1202
|
+
{
|
|
1203
|
+
if(ii==dt)
|
|
1204
|
+
{
|
|
1205
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1206
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1207
|
+
}
|
|
1208
|
+
list w(j)=W(i)[j];
|
|
1209
|
+
}
|
|
1210
|
+
}
|
|
1211
|
+
}
|
|
1212
|
+
}
|
|
1213
|
+
else
|
|
1214
|
+
{
|
|
1215
|
+
ring A(j) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1216
|
+
list W(i)=imap(TJ(0),Ww(i));
|
|
1217
|
+
list w(j)=W(i)[j];
|
|
1218
|
+
}
|
|
1219
|
+
}
|
|
1220
|
+
}
|
|
1221
|
+
if(j==z(i))
|
|
1222
|
+
{
|
|
1223
|
+
ring R(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1224
|
+
list W(i),w;
|
|
1225
|
+
int k(i)=0;
|
|
1226
|
+
for(k=1;k<=z(i);k++)
|
|
1227
|
+
{
|
|
1228
|
+
w=imap(A(k),w(k));
|
|
1229
|
+
if(size(w)>1)
|
|
1230
|
+
{
|
|
1231
|
+
k(i)=k(i)+1;
|
|
1232
|
+
W(i)[k(i)]=w;
|
|
1233
|
+
}
|
|
1234
|
+
}
|
|
1235
|
+
if(k(i)==0)
|
|
1236
|
+
{
|
|
1237
|
+
W(i)=var(1);
|
|
1238
|
+
}
|
|
1239
|
+
}
|
|
1240
|
+
}
|
|
1241
|
+
}
|
|
1242
|
+
}
|
|
1243
|
+
ring T = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1244
|
+
int bt=0;
|
|
1245
|
+
for(i=0;i<=d-1;i++)
|
|
1246
|
+
{
|
|
1247
|
+
list Ww(i)=imap(TJ(0),W(i));
|
|
1248
|
+
if(size(Ww(i)[1])>1)
|
|
1249
|
+
{
|
|
1250
|
+
list W(i)=imap(R(i),W(i));
|
|
1251
|
+
}
|
|
1252
|
+
else
|
|
1253
|
+
{
|
|
1254
|
+
list W(i)=Ww(i);
|
|
1255
|
+
}
|
|
1256
|
+
export(W(i));
|
|
1257
|
+
}
|
|
1258
|
+
list W(d)=imap(TJ(0),W(d));
|
|
1259
|
+
export(W(d));
|
|
1260
|
+
ideal L=imap(TJ(0),LL);
|
|
1261
|
+
export(L);
|
|
1262
|
+
ideal N(0)=imap(TJ(0),N(0));
|
|
1263
|
+
export(N(0));
|
|
1264
|
+
setring S;
|
|
1265
|
+
return(T);
|
|
1266
|
+
}
|
|
1267
|
+
}
|
|
1268
|
+
example
|
|
1269
|
+
{ "EXAMPLE:";echo = 2;
|
|
1270
|
+
ring r=0,(x,y,z),dp;
|
|
1271
|
+
poly f1=(x3+z)*(x2-y);
|
|
1272
|
+
poly f2=(x3+y)*(x2-z);
|
|
1273
|
+
poly f3=(x3+y)*(x3+z)*(z2-y);
|
|
1274
|
+
ideal I=f1,f2,f3;
|
|
1275
|
+
def W=WitSet(I);
|
|
1276
|
+
setring W;
|
|
1277
|
+
W(1);
|
|
1278
|
+
// witness point set of a pure 1-dimensional component of V(I)
|
|
1279
|
+
W(0);
|
|
1280
|
+
// witness point set of a pure 0-dimensional component of V(I)
|
|
1281
|
+
L;
|
|
1282
|
+
// list of generic linear polynomials
|
|
1283
|
+
}
|
|
1284
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1285
|
+
static proc ZSR1(ideal I, ideal L, list W )
|
|
1286
|
+
"USAGE: ZSR1(ideal I, ideal L, list W );I ideal,
|
|
1287
|
+
L ideal defined by generic linear polynomials,
|
|
1288
|
+
W list of a point in the generic slicing of V(I) and V(L)
|
|
1289
|
+
RETURN: ts number;zero sum relation of W
|
|
1290
|
+
EXAMPLE: example ZSR1;shows an example
|
|
1291
|
+
"
|
|
1292
|
+
{
|
|
1293
|
+
def S=basering;
|
|
1294
|
+
int n=nvars(basering);
|
|
1295
|
+
int c(1)=5*n;
|
|
1296
|
+
int c(2)=23*n;
|
|
1297
|
+
int iii=size(L);
|
|
1298
|
+
ring R = create_ring("(complex,16,I)", "("+varstr(S)+")", "ds");
|
|
1299
|
+
number c(0);
|
|
1300
|
+
ideal LL=imap(S,L);
|
|
1301
|
+
c(0)=leadcoef(LL[iii]);
|
|
1302
|
+
string sv=varstr(S);
|
|
1303
|
+
int j,ii,jj,k,a,b,te,zi,si;
|
|
1304
|
+
string sf,sff;
|
|
1305
|
+
list VV;
|
|
1306
|
+
list W=imap(S,W);
|
|
1307
|
+
VV[1]=W;
|
|
1308
|
+
def SB1=Singular2bertini(VV);
|
|
1309
|
+
ring R = create_ring("(complex,16,I)", "("+varstr(S)+",gamma,s)", "dp");
|
|
1310
|
+
ideal I=imap(S,I);
|
|
1311
|
+
zi=size(I);
|
|
1312
|
+
ideal LL=imap(S,L);
|
|
1313
|
+
ideal H, ll;
|
|
1314
|
+
for(a=1;a<=zi;a++)
|
|
1315
|
+
{
|
|
1316
|
+
H[a]=s*gamma*I[a]+(1-s)*I[a];
|
|
1317
|
+
}
|
|
1318
|
+
if(iii>1)
|
|
1319
|
+
{
|
|
1320
|
+
for(k=1;k<=iii-1;k++)
|
|
1321
|
+
{
|
|
1322
|
+
ll[k]=LL[k];
|
|
1323
|
+
H[k+zi]=s*gamma*LL[k]+(1-s)*ll[k];
|
|
1324
|
+
}
|
|
1325
|
+
ll[iii]=LL[iii]+c(1)-c(0);
|
|
1326
|
+
H[iii+zi]=s*gamma*LL[iii]+(1-s)*ll[iii];
|
|
1327
|
+
}
|
|
1328
|
+
else
|
|
1329
|
+
{
|
|
1330
|
+
ll[iii]=LL[iii]+c(1)-c(0);
|
|
1331
|
+
H[iii+zi]=s*gamma*LL[iii]+(1-s)*ll[iii];
|
|
1332
|
+
}
|
|
1333
|
+
def Q(1)=UseBertini(H,sv);
|
|
1334
|
+
string siaa=read("singular_solutions");
|
|
1335
|
+
string saa=read("nonsingular_solutions");
|
|
1336
|
+
def TT(1)=bertini2Singular("nonsingular_solutions",nvars(basering)-2);
|
|
1337
|
+
setring TT(1);
|
|
1338
|
+
list wr=re;
|
|
1339
|
+
if(size(wr)==0)
|
|
1340
|
+
{
|
|
1341
|
+
ring TT(2) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1342
|
+
number tte, ts;
|
|
1343
|
+
tte=11;
|
|
1344
|
+
ts=0;
|
|
1345
|
+
export(ts);
|
|
1346
|
+
export(tte);
|
|
1347
|
+
}
|
|
1348
|
+
else
|
|
1349
|
+
{
|
|
1350
|
+
ring R1 = create_ring("(complex,16,I)", "("+varstr(S)+",gamma,s)", "dp");
|
|
1351
|
+
ideal I=imap(S,I);
|
|
1352
|
+
si=size(I);
|
|
1353
|
+
ideal LL=imap(S,L);
|
|
1354
|
+
ideal H, ll;
|
|
1355
|
+
for(a=1;a<=si;a++)
|
|
1356
|
+
{
|
|
1357
|
+
H[a]=s*gamma*I[a]+(1-s)*I[a];
|
|
1358
|
+
}
|
|
1359
|
+
if(iii>1)
|
|
1360
|
+
{
|
|
1361
|
+
for(k=1;k<=iii-1;k++)
|
|
1362
|
+
{
|
|
1363
|
+
ll[k]=LL[k];
|
|
1364
|
+
H[k+si]=s*gamma*LL[k]+(1-s)*ll[k];
|
|
1365
|
+
}
|
|
1366
|
+
ll[iii]=LL[iii]+c(2)-c(0);
|
|
1367
|
+
H[iii+si]=s*gamma*LL[iii]+(1-s)*ll[iii];
|
|
1368
|
+
}
|
|
1369
|
+
else
|
|
1370
|
+
{
|
|
1371
|
+
ll[iii]=LL[iii]+c(2)-c(0);
|
|
1372
|
+
H[iii+si]=s*gamma*LL[iii]+(1-s)*ll[iii];
|
|
1373
|
+
}
|
|
1374
|
+
def Q(2)=UseBertini(H,sv);
|
|
1375
|
+
string saaa=read("nonsingular_solutions");
|
|
1376
|
+
string siaaa=read("singular_solutions");
|
|
1377
|
+
if(size(saaa)<52)
|
|
1378
|
+
{
|
|
1379
|
+
if(size(siaaa)<52)
|
|
1380
|
+
{
|
|
1381
|
+
"ERROR( Try again try);";
|
|
1382
|
+
}
|
|
1383
|
+
}
|
|
1384
|
+
if(size(saaa)>=52)
|
|
1385
|
+
{
|
|
1386
|
+
def TT(2)=bertini2Singular("nonsingular_solutions",nvars(basering)-2);
|
|
1387
|
+
setring TT(2);
|
|
1388
|
+
list wwr=re;
|
|
1389
|
+
list wr=imap(TT(1),wr);
|
|
1390
|
+
list W=imap(S,W);
|
|
1391
|
+
list w,ww,www;
|
|
1392
|
+
number s(0),s(1),s(2),ts;
|
|
1393
|
+
zi=size(W)/n;
|
|
1394
|
+
for(jj=1;jj<=zi;jj++)
|
|
1395
|
+
{
|
|
1396
|
+
s(0)=0;
|
|
1397
|
+
s(1)=0;
|
|
1398
|
+
s(2)=0;
|
|
1399
|
+
w=W;
|
|
1400
|
+
ww=wr[jj];
|
|
1401
|
+
www=wwr[jj];
|
|
1402
|
+
for(j=1;j<=n;j++)
|
|
1403
|
+
{
|
|
1404
|
+
s(0)=s(0)+j*w[j];
|
|
1405
|
+
}
|
|
1406
|
+
for(j=1;j<=n;j++)
|
|
1407
|
+
{
|
|
1408
|
+
s(1)=s(1)+j*ww[j];
|
|
1409
|
+
}
|
|
1410
|
+
for(j=1;j<=n;j++)
|
|
1411
|
+
{
|
|
1412
|
+
s(2)=s(2)+j*www[j];
|
|
1413
|
+
}
|
|
1414
|
+
}
|
|
1415
|
+
ts=s(0)*(c(1)-c(2))+s(1)*(c(2)-c(0))+s(2)*(c(0)-c(1));
|
|
1416
|
+
}
|
|
1417
|
+
else
|
|
1418
|
+
{
|
|
1419
|
+
def TT(2)=bertini2Singular("singular_solutions",nvars(basering)-2);
|
|
1420
|
+
setring TT(2);
|
|
1421
|
+
list wwr=re;
|
|
1422
|
+
list wr=imap(TT(1),wr);
|
|
1423
|
+
list W=imap(S,W);
|
|
1424
|
+
list w,ww,www;
|
|
1425
|
+
number s(0),s(1),s(2),ts;
|
|
1426
|
+
zi=size(W)/n;
|
|
1427
|
+
for(jj=1;jj<=zi;jj++)
|
|
1428
|
+
{
|
|
1429
|
+
s(0)=0;
|
|
1430
|
+
s(1)=0;
|
|
1431
|
+
s(2)=0;
|
|
1432
|
+
w=W;
|
|
1433
|
+
ww=wr[jj];
|
|
1434
|
+
www=wwr[jj];
|
|
1435
|
+
for(j=1;j<=n;j++)
|
|
1436
|
+
{
|
|
1437
|
+
s(0)=s(0)+j*w[j];
|
|
1438
|
+
}
|
|
1439
|
+
for(j=1;j<=n;j++)
|
|
1440
|
+
{
|
|
1441
|
+
s(1)=s(1)+j*ww[j];
|
|
1442
|
+
}
|
|
1443
|
+
for(j=1;j<=n;j++)
|
|
1444
|
+
{
|
|
1445
|
+
s(2)=s(2)+j*www[j];
|
|
1446
|
+
}
|
|
1447
|
+
}
|
|
1448
|
+
ts=s(0)*(c(1)-c(2))+s(1)*(c(2)-c(0))+s(2)*(c(0)-c(1));
|
|
1449
|
+
}
|
|
1450
|
+
}
|
|
1451
|
+
ring e = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1452
|
+
number ts=imap(TT(2),ts);
|
|
1453
|
+
export(ts);
|
|
1454
|
+
number tte;
|
|
1455
|
+
tte=11;
|
|
1456
|
+
export(tte);
|
|
1457
|
+
system("sh","rm start");
|
|
1458
|
+
setring S;
|
|
1459
|
+
return (e);
|
|
1460
|
+
}
|
|
1461
|
+
example
|
|
1462
|
+
{ "EXAMPLE:";echo = 2;
|
|
1463
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
1464
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
1465
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
1466
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
1467
|
+
ideal J=f1,f2,f3;
|
|
1468
|
+
ideal L=2*x+7*y+3*z+29;
|
|
1469
|
+
list W=2,1.999999999999999,-15.6666666666664;
|
|
1470
|
+
def D=ZSR1(J,L,W );
|
|
1471
|
+
setring D;
|
|
1472
|
+
ts;
|
|
1473
|
+
}
|
|
1474
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1475
|
+
static proc perSumZ(list A)
|
|
1476
|
+
"USAGE: perSumZ(list A);A list of different complex numbers
|
|
1477
|
+
RETURN: all subsets of A, whose sum of their elements is zero
|
|
1478
|
+
EXAMPLE: example perSumZ;shows an example
|
|
1479
|
+
"
|
|
1480
|
+
{
|
|
1481
|
+
list B, C;
|
|
1482
|
+
int i, j;
|
|
1483
|
+
number t,tr;
|
|
1484
|
+
if(size(A)==0)
|
|
1485
|
+
{
|
|
1486
|
+
B[1]=A;
|
|
1487
|
+
}
|
|
1488
|
+
if(size(A)==1)
|
|
1489
|
+
{
|
|
1490
|
+
if(((repart(A[1]))^2+(impart(A[1]))^2)<=0.000000000000001)
|
|
1491
|
+
{
|
|
1492
|
+
B[1]=A;
|
|
1493
|
+
}
|
|
1494
|
+
}
|
|
1495
|
+
for(i=1;i<=size(A);i++)
|
|
1496
|
+
{
|
|
1497
|
+
t=t+A[i];
|
|
1498
|
+
}
|
|
1499
|
+
if(((repart(t))^2+(impart(t))^2)<=0.000000000000001)
|
|
1500
|
+
{
|
|
1501
|
+
B[1]=A;
|
|
1502
|
+
}
|
|
1503
|
+
for(i=1;i<=size(A);i++)
|
|
1504
|
+
{
|
|
1505
|
+
C=delete(A,i);
|
|
1506
|
+
C=perSumZ(C);
|
|
1507
|
+
for(j=1;j<=size(C);j++)
|
|
1508
|
+
{
|
|
1509
|
+
if(size(C[j])>0)
|
|
1510
|
+
{
|
|
1511
|
+
B[size(B)+1]=C[j];
|
|
1512
|
+
}
|
|
1513
|
+
}
|
|
1514
|
+
}
|
|
1515
|
+
return(B);
|
|
1516
|
+
}
|
|
1517
|
+
example
|
|
1518
|
+
{ "EXAMPLE:";echo = 2;
|
|
1519
|
+
ring r=(complex,16,I),x,lp;
|
|
1520
|
+
list A=1,-1,2-I,I,-2;
|
|
1521
|
+
def D=perSumZ(A);
|
|
1522
|
+
D;
|
|
1523
|
+
}
|
|
1524
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1525
|
+
static proc ZSROFWitSet(ideal I)
|
|
1526
|
+
"USAGE: ZSROFWitSet(ideal I);I ideal
|
|
1527
|
+
RETURN: ZSR(i) lists of the zero sum relation of witness point
|
|
1528
|
+
sets W(i) for i=1,...dim(V(I))
|
|
1529
|
+
EXAMPLE: example ZSROFWitSet;shows an example
|
|
1530
|
+
"
|
|
1531
|
+
{
|
|
1532
|
+
def S=basering;
|
|
1533
|
+
int n=nvars(basering);
|
|
1534
|
+
def T(0)=WitSet(I);
|
|
1535
|
+
setring T(0);
|
|
1536
|
+
ideal LL=L;
|
|
1537
|
+
int dd=size(LL);
|
|
1538
|
+
int a=c(0);
|
|
1539
|
+
if(a==0)
|
|
1540
|
+
{
|
|
1541
|
+
return(T(0));
|
|
1542
|
+
}
|
|
1543
|
+
else
|
|
1544
|
+
{
|
|
1545
|
+
int i,j,ii,jj,k,sv(0..dd),j(0..dd),kk;
|
|
1546
|
+
string sv;
|
|
1547
|
+
for(i=1;i<=dd;i++)
|
|
1548
|
+
{
|
|
1549
|
+
jj=0;
|
|
1550
|
+
list V(i)=imap(T(0),W(i));
|
|
1551
|
+
if(size(V(i)[1])>1)
|
|
1552
|
+
{
|
|
1553
|
+
if(size(V(i))==1)
|
|
1554
|
+
{
|
|
1555
|
+
ring L(i)(1) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1556
|
+
list W(i),ZSR(i);
|
|
1557
|
+
list V(i)=imap(T(0),W(i));
|
|
1558
|
+
W(i)=V(i);
|
|
1559
|
+
ZSR(i)[1]=0.000;
|
|
1560
|
+
}
|
|
1561
|
+
else
|
|
1562
|
+
{
|
|
1563
|
+
if(i>1)
|
|
1564
|
+
{
|
|
1565
|
+
ring ee(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1566
|
+
list V(i)=imap(T(0),W(i));
|
|
1567
|
+
}
|
|
1568
|
+
sv(i)=size(V(i));
|
|
1569
|
+
for(j=1;j<=sv(i);j++)
|
|
1570
|
+
{
|
|
1571
|
+
ideal N=imap(T(0),N(0));
|
|
1572
|
+
ideal LLL=imap(T(0),LL);
|
|
1573
|
+
ideal L;
|
|
1574
|
+
for(kk=1;kk<=i;kk++)
|
|
1575
|
+
{
|
|
1576
|
+
L[kk]=LLL[kk];
|
|
1577
|
+
}
|
|
1578
|
+
def L(i)(j)=ZSR1(N,L,V(i)[j]);
|
|
1579
|
+
setring L(i)(j);
|
|
1580
|
+
if(j==1)
|
|
1581
|
+
{
|
|
1582
|
+
list W(i),ZSR(i);
|
|
1583
|
+
}
|
|
1584
|
+
else
|
|
1585
|
+
{
|
|
1586
|
+
list W(i)=imap(L(i)(j-1),W(i));
|
|
1587
|
+
list ZSR(i)=imap(L(i)(j-1),ZSR(i));
|
|
1588
|
+
export(ZSR(i));
|
|
1589
|
+
}
|
|
1590
|
+
list V(i)=imap(T(0),W(i));
|
|
1591
|
+
jj=jj+1;
|
|
1592
|
+
ZSR(i)[jj]=ts;
|
|
1593
|
+
W(i)[jj]=V(i)[j];
|
|
1594
|
+
}
|
|
1595
|
+
}
|
|
1596
|
+
}
|
|
1597
|
+
}
|
|
1598
|
+
ring Q = create_ring("(complex,12,I)", "("+varstr(S)+")", "dp");
|
|
1599
|
+
list W(0)=imap(T(0),W(0));
|
|
1600
|
+
export(W(0));
|
|
1601
|
+
for(jj=1;jj<=dd;jj++)
|
|
1602
|
+
{
|
|
1603
|
+
number pt(jj);
|
|
1604
|
+
list V(jj)=imap(T(0),W(jj));
|
|
1605
|
+
if(size(V(jj)[1])>1)
|
|
1606
|
+
{
|
|
1607
|
+
sv(jj)=size(V(jj));
|
|
1608
|
+
if(jj>0)
|
|
1609
|
+
{
|
|
1610
|
+
list ZSR(jj)=imap(L(jj)(sv(jj)),ZSR(jj));
|
|
1611
|
+
export(ZSR(jj));
|
|
1612
|
+
list W(jj)=imap(L(jj)(sv(jj)),W(jj));
|
|
1613
|
+
export(W(jj));
|
|
1614
|
+
}
|
|
1615
|
+
}
|
|
1616
|
+
else
|
|
1617
|
+
{
|
|
1618
|
+
list ZSR(jj)=var(1);
|
|
1619
|
+
export(ZSR(jj));
|
|
1620
|
+
list W(jj)=var(1);
|
|
1621
|
+
export(W(jj));
|
|
1622
|
+
}
|
|
1623
|
+
}
|
|
1624
|
+
ideal L=imap(T(0),LL);
|
|
1625
|
+
export(L);
|
|
1626
|
+
export(dd);
|
|
1627
|
+
system("sh","rm singular_solutions");
|
|
1628
|
+
system("sh","rm nonsingular_solutions");
|
|
1629
|
+
system("sh","rm real_solutions");
|
|
1630
|
+
system("sh","rm raw_solutions");
|
|
1631
|
+
system("sh","rm raw_data");
|
|
1632
|
+
system("sh","rm output");
|
|
1633
|
+
system("sh","rm midpath_data");
|
|
1634
|
+
system("sh","rm main_data");
|
|
1635
|
+
system("sh","rm input");
|
|
1636
|
+
system("sh","rm failed_paths");
|
|
1637
|
+
setring S;
|
|
1638
|
+
return(Q);
|
|
1639
|
+
}
|
|
1640
|
+
}
|
|
1641
|
+
example
|
|
1642
|
+
{ "EXAMPLE:";echo = 2;
|
|
1643
|
+
ring r = 0,(x,y,z),dp;
|
|
1644
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
1645
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
1646
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
1647
|
+
ideal J=f1,f2,f3;
|
|
1648
|
+
def D=ZSROFWitSet(J);
|
|
1649
|
+
setring D;
|
|
1650
|
+
ZSR(1);
|
|
1651
|
+
W(1);
|
|
1652
|
+
ZSR(2);
|
|
1653
|
+
W(2);
|
|
1654
|
+
}
|
|
1655
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1656
|
+
static proc ReWitZSR(list A, list W, int di)
|
|
1657
|
+
"USAGE: ReWitZSR(list A, list W, int di);A ideal of complex numbers,
|
|
1658
|
+
W list of points on di-dimensional component,
|
|
1659
|
+
di integer
|
|
1660
|
+
RETURN: tw(di) integer, list Z(size(Z));
|
|
1661
|
+
if tw(di)>0, else Z(0), list Z1(tw1(di))
|
|
1662
|
+
EXAMPLE: example ReWitZSR;shows an example
|
|
1663
|
+
"
|
|
1664
|
+
{
|
|
1665
|
+
def S=basering;
|
|
1666
|
+
ring e = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1667
|
+
list A=imap(S,A);
|
|
1668
|
+
list W=imap(S,W);
|
|
1669
|
+
list D, B(1..size(A)),C(1..size(A)),D(1..size(A)),Z1(1..size(A)),Z(1..size(A)),Z,Y,ZY;
|
|
1670
|
+
int i,j,k,tw(di),tw1(di),tw2(di),tw3(di),tr,tc;
|
|
1671
|
+
list AA;
|
|
1672
|
+
list WW;
|
|
1673
|
+
for(i=1;i<=size(A);i++)
|
|
1674
|
+
{
|
|
1675
|
+
if(((repart(A[i]))^2+(impart(A[i]))^2)<=0.0000000000000001)
|
|
1676
|
+
{
|
|
1677
|
+
tc=tc+1;
|
|
1678
|
+
tw1(di)=tw1(di)+1;
|
|
1679
|
+
ZY[i]=A[i];
|
|
1680
|
+
Z1(tw1(di))=W[i];
|
|
1681
|
+
export(Z1(tw1(di)));
|
|
1682
|
+
}
|
|
1683
|
+
else
|
|
1684
|
+
{
|
|
1685
|
+
tr=tr+1;
|
|
1686
|
+
tw2(di)=tw2(di)+1;
|
|
1687
|
+
AA[tr]=A[i];
|
|
1688
|
+
WW[tr]=W[i];
|
|
1689
|
+
}
|
|
1690
|
+
}
|
|
1691
|
+
A=AA;
|
|
1692
|
+
W=WW;
|
|
1693
|
+
if(size(A)>0)
|
|
1694
|
+
{
|
|
1695
|
+
def B=perSumZ(A);
|
|
1696
|
+
for(i=1;i<=size(A);i++)
|
|
1697
|
+
{
|
|
1698
|
+
tc=0;
|
|
1699
|
+
B(i)=A[i];
|
|
1700
|
+
for(j=1;j<=size(B);j++)
|
|
1701
|
+
{
|
|
1702
|
+
tr=0;
|
|
1703
|
+
for(k=1;k<=size(B[j]);k++)
|
|
1704
|
+
{
|
|
1705
|
+
if(B(i)[1]==B[j][k])
|
|
1706
|
+
{
|
|
1707
|
+
tr=tr+1;
|
|
1708
|
+
}
|
|
1709
|
+
}
|
|
1710
|
+
if(tr>0)
|
|
1711
|
+
{
|
|
1712
|
+
tc=tc+1;
|
|
1713
|
+
C(i)[tc]=B[j];
|
|
1714
|
+
}
|
|
1715
|
+
}
|
|
1716
|
+
for(j=1;j<=size(C(i));j++)
|
|
1717
|
+
{
|
|
1718
|
+
D(i)=C(i)[j];
|
|
1719
|
+
for(k=1;k<=size(C(i));k++)
|
|
1720
|
+
{
|
|
1721
|
+
if(size(D(i))<size(C(i)[k]))
|
|
1722
|
+
{
|
|
1723
|
+
D(i)=D(i);
|
|
1724
|
+
}
|
|
1725
|
+
else
|
|
1726
|
+
{
|
|
1727
|
+
D(i)=C(i)[k];
|
|
1728
|
+
}
|
|
1729
|
+
}
|
|
1730
|
+
}
|
|
1731
|
+
}
|
|
1732
|
+
for(i=1;i<=size(A);i++)
|
|
1733
|
+
{
|
|
1734
|
+
Z[i]=D(i);
|
|
1735
|
+
}
|
|
1736
|
+
for(i=1;i<=size(Z);i++)
|
|
1737
|
+
{
|
|
1738
|
+
if(size(Z[i])>0)
|
|
1739
|
+
{
|
|
1740
|
+
D=Z[i];
|
|
1741
|
+
for(k=size(Z);k>0;k--)
|
|
1742
|
+
{
|
|
1743
|
+
if(size(Z[k])>0)
|
|
1744
|
+
{
|
|
1745
|
+
B=Z[k];
|
|
1746
|
+
if(i!=k)
|
|
1747
|
+
{
|
|
1748
|
+
if(D[1]==B[1])
|
|
1749
|
+
{
|
|
1750
|
+
Z=delete(Z,k);
|
|
1751
|
+
}
|
|
1752
|
+
}
|
|
1753
|
+
}
|
|
1754
|
+
}
|
|
1755
|
+
}
|
|
1756
|
+
}
|
|
1757
|
+
for(j=1;j<=size(Z);j++)
|
|
1758
|
+
{
|
|
1759
|
+
tr=0;
|
|
1760
|
+
D=Z[j];
|
|
1761
|
+
for(i=1;i<=size(A);i++)
|
|
1762
|
+
{
|
|
1763
|
+
for(k=1;k<=size(D);k++)
|
|
1764
|
+
{
|
|
1765
|
+
if(A[i]==D[k])
|
|
1766
|
+
{
|
|
1767
|
+
tr=tr+1;
|
|
1768
|
+
tw(di)=tw(di)+1;
|
|
1769
|
+
Z(j)[tr]=W[i];
|
|
1770
|
+
}
|
|
1771
|
+
}
|
|
1772
|
+
}
|
|
1773
|
+
export(Z(j));
|
|
1774
|
+
}
|
|
1775
|
+
export(Z);
|
|
1776
|
+
}
|
|
1777
|
+
if(tw1(di)==0)
|
|
1778
|
+
{
|
|
1779
|
+
list Z1(0);
|
|
1780
|
+
Z1(0)="Empty set";
|
|
1781
|
+
export(Z1(0));
|
|
1782
|
+
}
|
|
1783
|
+
if(tw(di)==0)
|
|
1784
|
+
{
|
|
1785
|
+
list Z(0);
|
|
1786
|
+
Z(0)="Empty set";
|
|
1787
|
+
export(Z(0));
|
|
1788
|
+
}
|
|
1789
|
+
export(tw1(di));
|
|
1790
|
+
export(tw(di));
|
|
1791
|
+
setring S;
|
|
1792
|
+
return (e);
|
|
1793
|
+
}
|
|
1794
|
+
example
|
|
1795
|
+
{ "EXAMPLE:";echo = 2;
|
|
1796
|
+
ring r=(complex,16,I),(x,y,z),dp;
|
|
1797
|
+
list A= 3.7794571034732007+I*21.1724850800421247,
|
|
1798
|
+
-3.7794571034752664-I*21.1724850800419908;
|
|
1799
|
+
list W=list(-2.0738016397747976,1.29520655909919,-0.1476032795495952),
|
|
1800
|
+
list(-1.354769788796631,-1.5809208448134761,1.2904604224067381);
|
|
1801
|
+
int di=1;
|
|
1802
|
+
def D=ReWitZSR(A,W,di);
|
|
1803
|
+
setring D;
|
|
1804
|
+
tw(di);
|
|
1805
|
+
Z(size(Z));// if tw(di)>0, else Z(0);
|
|
1806
|
+
Z1(tw1(di));
|
|
1807
|
+
}
|
|
1808
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1809
|
+
proc NumIrrDecom(ideal I) Numerical Irreducible Decomposition
|
|
1810
|
+
"USAGE: NumIrrDecom(ideal I);I ideal
|
|
1811
|
+
RETURN: w(1),..., w(t) lists of irreducible witness point sets of
|
|
1812
|
+
irreducible components of V(J)
|
|
1813
|
+
EXAMPLE: example NumIrrDecom;shows an example
|
|
1814
|
+
"
|
|
1815
|
+
{
|
|
1816
|
+
def S=basering;
|
|
1817
|
+
int i,ii;
|
|
1818
|
+
def WW=ZSROFWitSet(I);
|
|
1819
|
+
setring WW;
|
|
1820
|
+
if(c(0)==0)
|
|
1821
|
+
{
|
|
1822
|
+
setring S;
|
|
1823
|
+
return(WW);
|
|
1824
|
+
}
|
|
1825
|
+
else
|
|
1826
|
+
{
|
|
1827
|
+
int d=size(L);
|
|
1828
|
+
for(i=0;i<=d;i++)
|
|
1829
|
+
{
|
|
1830
|
+
int co(i)=0;
|
|
1831
|
+
if(i==0)
|
|
1832
|
+
{
|
|
1833
|
+
ring q(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1834
|
+
list V(i)=imap(WW,W(i));
|
|
1835
|
+
list W(0..size(V(i)));
|
|
1836
|
+
if(size(V(i)[1])>1)
|
|
1837
|
+
{
|
|
1838
|
+
co(i)=size(V(i));
|
|
1839
|
+
for(ii=1;ii<=size(V(i));ii++)
|
|
1840
|
+
{
|
|
1841
|
+
list w(ii)=V(i)[ii];
|
|
1842
|
+
export(w(ii));
|
|
1843
|
+
}
|
|
1844
|
+
}
|
|
1845
|
+
else
|
|
1846
|
+
{
|
|
1847
|
+
W(1)[1]="Empty Set";
|
|
1848
|
+
}
|
|
1849
|
+
}
|
|
1850
|
+
else
|
|
1851
|
+
{
|
|
1852
|
+
list WW(i);
|
|
1853
|
+
list V(i)=imap(WW,W(i));
|
|
1854
|
+
list a(i)=imap(WW,ZSR(i));
|
|
1855
|
+
if(size(V(i)[1])>1)
|
|
1856
|
+
{
|
|
1857
|
+
def q(i)=ReWitZSR(a(i),V(i),i);
|
|
1858
|
+
setring q(i);
|
|
1859
|
+
if(tw1(i)>0)
|
|
1860
|
+
{
|
|
1861
|
+
for(ii=1;ii<=tw1(i);ii++)
|
|
1862
|
+
{
|
|
1863
|
+
WW(i)[ii]=Z1(ii);
|
|
1864
|
+
}
|
|
1865
|
+
co(i)=tw1(i);
|
|
1866
|
+
}
|
|
1867
|
+
if(tw(i)>0)
|
|
1868
|
+
{
|
|
1869
|
+
for(ii=1;ii<=size(Z);ii++)
|
|
1870
|
+
{
|
|
1871
|
+
if(size(Z[ii])>1)
|
|
1872
|
+
{
|
|
1873
|
+
co(i)=co(i)+1;
|
|
1874
|
+
WW(i)[ii+tw1(i)]=Z(ii);
|
|
1875
|
+
}
|
|
1876
|
+
}
|
|
1877
|
+
}
|
|
1878
|
+
for(ii=1;ii<=size(WW(i));ii++)
|
|
1879
|
+
{
|
|
1880
|
+
list w(ii);
|
|
1881
|
+
w(ii)=WW(i)[ii];
|
|
1882
|
+
}
|
|
1883
|
+
}
|
|
1884
|
+
else
|
|
1885
|
+
{
|
|
1886
|
+
ring q(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1887
|
+
WW(i)[1]="Empty Set";
|
|
1888
|
+
}
|
|
1889
|
+
}
|
|
1890
|
+
}
|
|
1891
|
+
for(i=0;i<=d;i++)
|
|
1892
|
+
{
|
|
1893
|
+
ring qq(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
1894
|
+
for(ii=1;ii<=co(i);ii++)
|
|
1895
|
+
{
|
|
1896
|
+
list w(ii)=imap(q(i),w(ii));
|
|
1897
|
+
export w(ii);
|
|
1898
|
+
}
|
|
1899
|
+
"===========================================";
|
|
1900
|
+
"===========================================";
|
|
1901
|
+
"Dimension";
|
|
1902
|
+
i;
|
|
1903
|
+
"Number of Components";
|
|
1904
|
+
co(i);
|
|
1905
|
+
number cco(i)=co(i)/1;
|
|
1906
|
+
export(cco(i));
|
|
1907
|
+
}
|
|
1908
|
+
ideal L=imap(WW,L);
|
|
1909
|
+
export(L);
|
|
1910
|
+
"The generic Linear Space L";
|
|
1911
|
+
L;
|
|
1912
|
+
return(qq(0..d));
|
|
1913
|
+
}
|
|
1914
|
+
}
|
|
1915
|
+
example
|
|
1916
|
+
{ "EXAMPLE:";echo = 2;
|
|
1917
|
+
ring r=0,(x,y,z),dp;
|
|
1918
|
+
poly f1=(x2+y2+z2-6)*(x-y)*(x-1);
|
|
1919
|
+
poly f2=(x2+y2+z2-6)*(x-z)*(y-2);
|
|
1920
|
+
poly f3=(x2+y2+z2-6)*(x-y)*(x-z)*(z-3);
|
|
1921
|
+
ideal I=f1,f2,f3;
|
|
1922
|
+
list W=NumIrrDecom(I);
|
|
1923
|
+
==>
|
|
1924
|
+
Dimension
|
|
1925
|
+
0
|
|
1926
|
+
Number of Components
|
|
1927
|
+
1
|
|
1928
|
+
Dimension
|
|
1929
|
+
1
|
|
1930
|
+
Number of Components
|
|
1931
|
+
3
|
|
1932
|
+
Dimension
|
|
1933
|
+
2
|
|
1934
|
+
Number of Components
|
|
1935
|
+
1
|
|
1936
|
+
def A(0)=W[1];
|
|
1937
|
+
// corresponding 0-dimensional components
|
|
1938
|
+
setring A(0);
|
|
1939
|
+
w(1);
|
|
1940
|
+
// corresponding 0-dimensional irreducible component
|
|
1941
|
+
==> 0-Witness point set (one point)
|
|
1942
|
+
def A(1)=W[2];
|
|
1943
|
+
// corresponding 1-dimensional components
|
|
1944
|
+
setring A(1);
|
|
1945
|
+
w(1);
|
|
1946
|
+
// corresponding 1-dimensional irreducible component
|
|
1947
|
+
==> 1-Witness point set (one point)
|
|
1948
|
+
w(2);
|
|
1949
|
+
// corresponding 1-dimensional irreducible component
|
|
1950
|
+
==> 1-Witness point set (one point)
|
|
1951
|
+
w(3);
|
|
1952
|
+
// corresponding 1-dimensional irreducible component
|
|
1953
|
+
==> 1-Witness point set (one point)
|
|
1954
|
+
def A(2)=W[3];
|
|
1955
|
+
// corresponding 2-dimensional components
|
|
1956
|
+
setring A(2);
|
|
1957
|
+
w(1);
|
|
1958
|
+
// corresponding 2-dimensional irreducible component
|
|
1959
|
+
==> 1-Witness point set (two points)
|
|
1960
|
+
}
|
|
1961
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1962
|
+
proc defl(ideal I, int d)
|
|
1963
|
+
"USAGE: defl(ideal I, int d); I ideal, int d order of the deflation
|
|
1964
|
+
RETURN: deflation ideal DI of I
|
|
1965
|
+
EXAMPLE: example defl; shows an example
|
|
1966
|
+
"
|
|
1967
|
+
{
|
|
1968
|
+
def S=basering;
|
|
1969
|
+
int n=nvars(basering);
|
|
1970
|
+
int i,j;
|
|
1971
|
+
for(i=1;i<=d;i++)
|
|
1972
|
+
{
|
|
1973
|
+
def R(i)=symmetricBasis(n,i,"x");
|
|
1974
|
+
setring R(i);
|
|
1975
|
+
ideal J(i)=symBasis;
|
|
1976
|
+
export(J(i));
|
|
1977
|
+
}
|
|
1978
|
+
list l2;
|
|
1979
|
+
for (int ii = 1; ii <= n; ii++)
|
|
1980
|
+
{
|
|
1981
|
+
l2[ii] = "x("+string(ii)+")";
|
|
1982
|
+
}
|
|
1983
|
+
l2 = l2+ringlist(S)[2];
|
|
1984
|
+
ring RR = create_ring(0, l2, "dp");
|
|
1985
|
+
for(i=1;i<=d;i++)
|
|
1986
|
+
{
|
|
1987
|
+
ideal J(i)=imap(R(i),J(i));
|
|
1988
|
+
for(j=1;j<=n;j++)
|
|
1989
|
+
{
|
|
1990
|
+
J(i)=subst(J(i),x(j),var(n+j));
|
|
1991
|
+
}
|
|
1992
|
+
}
|
|
1993
|
+
ring R = create_ring(0, "("+varstr(S)+")", "dp");
|
|
1994
|
+
ideal I=imap(S,I);
|
|
1995
|
+
if(d>1)
|
|
1996
|
+
{
|
|
1997
|
+
for(i=1;i<=d-1;i++)
|
|
1998
|
+
{
|
|
1999
|
+
ideal J(i)=imap(RR,J(i));
|
|
2000
|
+
for(j=1;j<=size(I);j++)
|
|
2001
|
+
{
|
|
2002
|
+
ideal I(j);
|
|
2003
|
+
for(k=1;k<=size(J(i));k++)
|
|
2004
|
+
{
|
|
2005
|
+
I(j)[k]=J(i)[k]*I[j];
|
|
2006
|
+
}
|
|
2007
|
+
export(I(j));
|
|
2008
|
+
}
|
|
2009
|
+
}
|
|
2010
|
+
ideal J(d)=imap(RR,J(d));
|
|
2011
|
+
ideal D(d)=J(1..d);
|
|
2012
|
+
ideal II(d)=I,I(1..size(I));
|
|
2013
|
+
matrix T(d)=diff(D(d),II(d));
|
|
2014
|
+
matrix TT(d)=transpose(T(d));
|
|
2015
|
+
export(TT(d));
|
|
2016
|
+
}
|
|
2017
|
+
else
|
|
2018
|
+
{
|
|
2019
|
+
ideal J(d)=imap(RR,J(d));
|
|
2020
|
+
ideal D(d)=J(d);
|
|
2021
|
+
ideal II(d)=I;
|
|
2022
|
+
matrix T(d)=diff(D(d),II(d));
|
|
2023
|
+
matrix TT(d)=transpose(T(d));
|
|
2024
|
+
export(TT(d));
|
|
2025
|
+
}
|
|
2026
|
+
int zc=size(D(d));
|
|
2027
|
+
export(zc);
|
|
2028
|
+
list l2 = ringlist(S)[2];
|
|
2029
|
+
for (int ii = 1; ii <= zc; ii++)
|
|
2030
|
+
{
|
|
2031
|
+
l2[size(l2)+1] = "x("+string(ii)+")";
|
|
2032
|
+
}
|
|
2033
|
+
ring DR = create_ring(0, l2, "dp");
|
|
2034
|
+
matrix TT(d)=imap(R,TT(d));
|
|
2035
|
+
ideal I=imap(S,I);
|
|
2036
|
+
vector v=[x(1..zc)];
|
|
2037
|
+
ideal DI=I,TT(d)*v;
|
|
2038
|
+
export(DI);
|
|
2039
|
+
export(I);
|
|
2040
|
+
setring S;
|
|
2041
|
+
return(DR);
|
|
2042
|
+
}
|
|
2043
|
+
example
|
|
2044
|
+
{ "EXAMPLE:"; echo = 2;
|
|
2045
|
+
ring r=0,(x,y,z),dp;
|
|
2046
|
+
poly f1=z^2;
|
|
2047
|
+
poly f2=z*(x^2+y);
|
|
2048
|
+
ideal I=f1,f2;
|
|
2049
|
+
def D=defl(I,1);
|
|
2050
|
+
setring D;
|
|
2051
|
+
DI;
|
|
2052
|
+
}
|
|
2053
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2054
|
+
static proc NIDofDI(ideal I)
|
|
2055
|
+
"USAGE: NIDofDI(ideal I); I ideal
|
|
2056
|
+
RETURN: numerical irreducible decomposition of I
|
|
2057
|
+
EXAMPLE: NIDofDI; shows an example
|
|
2058
|
+
"
|
|
2059
|
+
{
|
|
2060
|
+
def S=basering;
|
|
2061
|
+
int i,ii;
|
|
2062
|
+
def WW=ZSROFWitSet(I);
|
|
2063
|
+
setring WW;
|
|
2064
|
+
if(c(0)==0)
|
|
2065
|
+
{
|
|
2066
|
+
setring S;
|
|
2067
|
+
return(WW);
|
|
2068
|
+
}
|
|
2069
|
+
else
|
|
2070
|
+
{
|
|
2071
|
+
int d=size(L);
|
|
2072
|
+
for(i=0;i<=d;i++)
|
|
2073
|
+
{
|
|
2074
|
+
int co(i)=0;
|
|
2075
|
+
if(i==0)
|
|
2076
|
+
{
|
|
2077
|
+
ring q(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
2078
|
+
list V(i)=imap(WW,W(i));
|
|
2079
|
+
list W(0..size(V(i)));
|
|
2080
|
+
if(size(V(i)[1])>1)
|
|
2081
|
+
{
|
|
2082
|
+
co(i)=size(V(i));
|
|
2083
|
+
for(ii=1;ii<=size(V(i));ii++)
|
|
2084
|
+
{
|
|
2085
|
+
list w(ii)=V(i)[ii];
|
|
2086
|
+
export(w(ii));
|
|
2087
|
+
}
|
|
2088
|
+
}
|
|
2089
|
+
else
|
|
2090
|
+
{
|
|
2091
|
+
W(1)[1]="Empty Set";
|
|
2092
|
+
}
|
|
2093
|
+
}
|
|
2094
|
+
else
|
|
2095
|
+
{
|
|
2096
|
+
list WW(i);
|
|
2097
|
+
list V(i)=imap(WW,W(i));
|
|
2098
|
+
list a(i)=imap(WW,ZSR(i));
|
|
2099
|
+
if(size(V(i)[1])>1)
|
|
2100
|
+
{
|
|
2101
|
+
def q(i)=ReWitZSR(a(i),V(i),i);
|
|
2102
|
+
setring q(i);
|
|
2103
|
+
if(tw1(i)>0)
|
|
2104
|
+
{
|
|
2105
|
+
for(ii=1;ii<=tw1(i);ii++)
|
|
2106
|
+
{
|
|
2107
|
+
WW(i)[ii]=Z1(ii);
|
|
2108
|
+
}
|
|
2109
|
+
co(i)=tw1(i);
|
|
2110
|
+
}
|
|
2111
|
+
if(tw(i)>0)
|
|
2112
|
+
{
|
|
2113
|
+
for(ii=1;ii<=size(Z);ii++)
|
|
2114
|
+
{
|
|
2115
|
+
if(size(Z[ii])>1)
|
|
2116
|
+
{
|
|
2117
|
+
co(i)=co(i)+1;
|
|
2118
|
+
WW(i)[ii+tw1(i)]=Z(ii);
|
|
2119
|
+
}
|
|
2120
|
+
}
|
|
2121
|
+
}
|
|
2122
|
+
for(ii=1;ii<=size(WW(i));ii++)
|
|
2123
|
+
{
|
|
2124
|
+
list w(ii);
|
|
2125
|
+
w(ii)=WW(i)[ii];
|
|
2126
|
+
}
|
|
2127
|
+
}
|
|
2128
|
+
else
|
|
2129
|
+
{
|
|
2130
|
+
ring q(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
2131
|
+
WW(i)[1]="Empty Set";
|
|
2132
|
+
}
|
|
2133
|
+
}
|
|
2134
|
+
}
|
|
2135
|
+
for(i=0;i<=d;i++)
|
|
2136
|
+
{
|
|
2137
|
+
ring qq(i) = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
2138
|
+
list ww(i);
|
|
2139
|
+
if(co(i)>0)
|
|
2140
|
+
{
|
|
2141
|
+
for(ii=1;ii<=co(i);ii++)
|
|
2142
|
+
{
|
|
2143
|
+
list v(ii)=imap(q(i),w(ii));
|
|
2144
|
+
ww(i)=v(ii)[1];
|
|
2145
|
+
if(size(ww(i))==1)
|
|
2146
|
+
{
|
|
2147
|
+
list w(ii);
|
|
2148
|
+
w(ii)[1]=v(ii);
|
|
2149
|
+
}
|
|
2150
|
+
else
|
|
2151
|
+
{
|
|
2152
|
+
list w(ii)=v(ii);
|
|
2153
|
+
}
|
|
2154
|
+
export(w(ii));
|
|
2155
|
+
}
|
|
2156
|
+
}
|
|
2157
|
+
else
|
|
2158
|
+
{
|
|
2159
|
+
list w(1);
|
|
2160
|
+
w(1)[1]=var(1);
|
|
2161
|
+
export(w(1));
|
|
2162
|
+
}
|
|
2163
|
+
number cco(i)=co(i)/1;
|
|
2164
|
+
export(cco(i));
|
|
2165
|
+
}
|
|
2166
|
+
ideal L=imap(WW,L);
|
|
2167
|
+
export(L);
|
|
2168
|
+
return(qq(0..d));
|
|
2169
|
+
}
|
|
2170
|
+
}
|
|
2171
|
+
example
|
|
2172
|
+
{ "EXAMPLE:"; echo = 2;
|
|
2173
|
+
ring r=0,(x,y,z),dp;
|
|
2174
|
+
poly f1=z^2;
|
|
2175
|
+
poly f2=z*(x^2+y);
|
|
2176
|
+
ideal I=f1,f2;
|
|
2177
|
+
list DD=NIDofDI(I);
|
|
2178
|
+
def D(0)=DD[1];
|
|
2179
|
+
setring D(0);
|
|
2180
|
+
w(1); // w(1)= x, i.e. no components
|
|
2181
|
+
def D(1)=DD[2];
|
|
2182
|
+
setring D(1);
|
|
2183
|
+
w(1);
|
|
2184
|
+
def D(2)=DD[3];
|
|
2185
|
+
setring D(2);
|
|
2186
|
+
w(1);
|
|
2187
|
+
}
|
|
2188
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
2189
|
+
proc NumPrimDecom(ideal I,int d)
|
|
2190
|
+
"USAGE: NumPrimDecom(ideal I,int d); I ideal, d order of the deflation
|
|
2191
|
+
RETURN: lists of the numerical primary decomposition
|
|
2192
|
+
EXAMPLE: example NumPrimDecom; shows an example
|
|
2193
|
+
"
|
|
2194
|
+
{
|
|
2195
|
+
def S=basering;
|
|
2196
|
+
int n=nvars(basering);
|
|
2197
|
+
int i,Dd,j,k,jj;
|
|
2198
|
+
def D=defl(I,d);
|
|
2199
|
+
setring D;
|
|
2200
|
+
ideal J=DI;
|
|
2201
|
+
Dd=dim(std(DI));
|
|
2202
|
+
list W=NIDofDI(J);
|
|
2203
|
+
for(i=0;i<=Dd;i++)
|
|
2204
|
+
{
|
|
2205
|
+
def A(i+1)=W[i+1];
|
|
2206
|
+
setring A(i+1);
|
|
2207
|
+
if(cco(i)>0)
|
|
2208
|
+
{
|
|
2209
|
+
for(j=1;j<=cco(i);j++)
|
|
2210
|
+
{
|
|
2211
|
+
list W(j)=w(j);
|
|
2212
|
+
for(k=1;k<=size(w(j));k++)
|
|
2213
|
+
{
|
|
2214
|
+
for(jj=size(W(j)[k]);jj>=n+1;jj--)
|
|
2215
|
+
{
|
|
2216
|
+
W(j)[k]=delete(W(j)[k],jj);
|
|
2217
|
+
}
|
|
2218
|
+
W(j)[k]=W(j)[k];
|
|
2219
|
+
}
|
|
2220
|
+
}
|
|
2221
|
+
}
|
|
2222
|
+
else
|
|
2223
|
+
{
|
|
2224
|
+
list W(1)=var(1);
|
|
2225
|
+
}
|
|
2226
|
+
}
|
|
2227
|
+
ring R = create_ring("(complex,16,I)", "("+varstr(S)+")", "dp");
|
|
2228
|
+
jj=0;
|
|
2229
|
+
for(i=0;i<=Dd;i++)
|
|
2230
|
+
{
|
|
2231
|
+
number cco(i)=imap(A(i+1),cco(i));
|
|
2232
|
+
if(cco(i)>0)
|
|
2233
|
+
{
|
|
2234
|
+
for(j=1;j<=cco(i);j++)
|
|
2235
|
+
{
|
|
2236
|
+
jj=jj+1;
|
|
2237
|
+
list w(jj)=imap(A(i+1),W(j));
|
|
2238
|
+
export(w(jj));
|
|
2239
|
+
"===========================================";
|
|
2240
|
+
"===========================================";
|
|
2241
|
+
"Numerical Primary Component";
|
|
2242
|
+
w(jj);
|
|
2243
|
+
}
|
|
2244
|
+
}
|
|
2245
|
+
}
|
|
2246
|
+
return(R);
|
|
2247
|
+
}
|
|
2248
|
+
example
|
|
2249
|
+
{ "EXAMPLE:"; echo = 2;
|
|
2250
|
+
ring r=0,(x,y),dp;
|
|
2251
|
+
poly f1=yx;
|
|
2252
|
+
poly f2=x2;
|
|
2253
|
+
ideal I=f1,f2;
|
|
2254
|
+
def W=NumPrimDecom(I,1);
|
|
2255
|
+
setring W;
|
|
2256
|
+
w(1);
|
|
2257
|
+
==> 1-Witness point set (one point)
|
|
2258
|
+
w(2);
|
|
2259
|
+
==> 1-Witness point set (one point)
|
|
2260
|
+
}
|
|
2261
|
+
///////////////////////////////////////////////////////////////////////////////
|