passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1123 @@
|
|
|
1
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version groups.lib 4.1.2.0 Feb_2019 "; // $Id: 6bd637347758b27934b53ff19d6c36da32d60438 $
|
|
3
|
+
category="Applications";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: groups.lib Finite Group Theory
|
|
6
|
+
AUTHORS: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de @*
|
|
7
|
+
Gerhard Pfister, email: pfister@mathematik.uni-kl.de
|
|
8
|
+
|
|
9
|
+
PROCEDURES:
|
|
10
|
+
|
|
11
|
+
noSolution(I) I an ideal in a polynomial ring over Z[x1..xn]
|
|
12
|
+
returns a list l of primes <=32003 such that 1
|
|
13
|
+
is in IZ/p[x1..xn] for p not in l or an ERROR
|
|
14
|
+
if this is wrong or not decided.
|
|
15
|
+
"
|
|
16
|
+
/*
|
|
17
|
+
// ===================== A Problem in Finite Group Theory ===================
|
|
18
|
+
// Posed by Boris Kunyavskii, Bar-Ilan University, Tel Aviv
|
|
19
|
+
//
|
|
20
|
+
// For any word w in X,Y,X^(-1),Y^(-1) consider the sequence U_n
|
|
21
|
+
// of words (depending on w) inductively
|
|
22
|
+
// U_1 = w
|
|
23
|
+
// U_n+1 = [X*U_n*X^(-1),Y*U_n*Y^(-1)]
|
|
24
|
+
// with
|
|
25
|
+
// [X,Y] = X*Y*X^(-1)*Y^(-1) (the commutator)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
// Conjecture (1):
|
|
29
|
+
// (by B. Plotkin, slightly modified):
|
|
30
|
+
// A finite group G is solvable <==>
|
|
31
|
+
// there is an n >= 1 such that U_n(x,y) = 1 for all x,y in G
|
|
32
|
+
// and for any of the 4 following words
|
|
33
|
+
// w1 = X^(-1)*Y*X*Y^(-1)*X
|
|
34
|
+
// w2 = X^(-2)*Y^(-1)*X
|
|
35
|
+
// w3 = Y^(-2)*X^(-1)*X
|
|
36
|
+
// w4 = X*Y^(-2)*X^(-1)*Y*X^(-1)
|
|
37
|
+
//
|
|
38
|
+
// (These words remained as possibly good words by a computer search
|
|
39
|
+
// through about 10 000 candidates, by Fritz Grunewald)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
// ==> is clear
|
|
43
|
+
// The minimal finite non-solvable groups (i.e. every proper subgroup is
|
|
44
|
+
// solvable) have been classified by Thompson in 1968, they are:
|
|
45
|
+
//
|
|
46
|
+
// 1. PSL(2,p) (p=5 or p=+-2 (mod 5), p!=3)
|
|
47
|
+
// 2. PSL(2,2^p)
|
|
48
|
+
// 3. PSL(2,3^p) (p odd)
|
|
49
|
+
// 4. Sz(2^p) (p odd) (Suzuki group)
|
|
50
|
+
// 5. PSL(3,3)
|
|
51
|
+
//
|
|
52
|
+
// In view of this result Conjecture (1) is equivalent to
|
|
53
|
+
//
|
|
54
|
+
// Conjecture (2):
|
|
55
|
+
// Let G be one of the groups above, then, for at least one of the 4 words w
|
|
56
|
+
// above there are x,y in G such that 1 != U_n(x,y) = U_n+1(x,y) for some n.
|
|
57
|
+
// (then U_n(x,y) != 1 for all n by definitionof U_n)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
// We give a computer aided proof, using SINGULAR, of Conjecture (2) for
|
|
61
|
+
// the groups 1. - 3. (up to checking for a small, explicit number of primes)
|
|
62
|
+
// Hence only the Suzuki groups have to be checked.
|
|
63
|
+
//
|
|
64
|
+
// We show: 1 != U_1(x,y) = U_2(x,y) for word w1 and some x,y in G
|
|
65
|
+
// We need:
|
|
66
|
+
// Theory
|
|
67
|
+
// - simple facts from algebraic geometry, singularity theory, finite fields
|
|
68
|
+
// - theorem of Lang-Weil, estimating the number of rational points on an
|
|
69
|
+
// absolutely irreducible projective curve C defined over Z (g=genus):
|
|
70
|
+
// if q >= N(g) ==> #C(F_q) != 0
|
|
71
|
+
// (N(g) = 4g^2 -2, g arithmetic genus)
|
|
72
|
+
// SINGULAR
|
|
73
|
+
// - Groebner basis (elimination), multivariate factorization, resolution of
|
|
74
|
+
// plane curve singularities (Hamburger Noether development), primary
|
|
75
|
+
// decomposition
|
|
76
|
+
|
|
77
|
+
*/
|
|
78
|
+
|
|
79
|
+
LIB "standard.lib";
|
|
80
|
+
LIB "general.lib";
|
|
81
|
+
LIB "matrix.lib";
|
|
82
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
83
|
+
|
|
84
|
+
static proc splitS1(ideal I,int s,list #)
|
|
85
|
+
"USAGE: splitS1(I,s[,l]) I ideal, s integer, l list of ideals
|
|
86
|
+
COMPUTE: Factorizes the generators of I. If for one generator f=f1*f2 and
|
|
87
|
+
fi=ni*gi^ri, ni an integer and gi a polynomial, then
|
|
88
|
+
compute a standardbasis of I1=I,g1 and I2=I,g2, if this can be
|
|
89
|
+
done in < s seconds. Then apply splitS to I1 and I2 and continue
|
|
90
|
+
in the same way. The procedure stops if no generator can be
|
|
91
|
+
factorized.
|
|
92
|
+
RETURN: A list L of ideals and prime numbers
|
|
93
|
+
L[1]: A list of ideals such that the radical of the intersection
|
|
94
|
+
of these ideals coincides with the radical of I
|
|
95
|
+
If the optional list l of the input is not empty then
|
|
96
|
+
the ideals of L[1] which contain an ideal of l are canceled.
|
|
97
|
+
L[2]: A list of prime numbers appearing as factors of the ni.
|
|
98
|
+
NOTE: The computation avoids division by integers (by using
|
|
99
|
+
option(contentSB)) hence the result is correct modulo any prime
|
|
100
|
+
number which does not appear in the list L[2].
|
|
101
|
+
EXAMPLE: example splitS1; shows an example
|
|
102
|
+
"
|
|
103
|
+
{
|
|
104
|
+
option(redSB);
|
|
105
|
+
option(contentSB);
|
|
106
|
+
int j,k,e;
|
|
107
|
+
int i=1;
|
|
108
|
+
int l=attrib(I,"isSB");
|
|
109
|
+
ideal J;
|
|
110
|
+
list re,fac,te,pr,qr,w;
|
|
111
|
+
number n;
|
|
112
|
+
poly p;
|
|
113
|
+
re=#;
|
|
114
|
+
|
|
115
|
+
if(deg(I[1])==0){return(list(re+list(std(I)),qr));}
|
|
116
|
+
|
|
117
|
+
fac=factorize(I[1]);
|
|
118
|
+
|
|
119
|
+
while((size(fac[1])==2)&&(i<size(I)))
|
|
120
|
+
{
|
|
121
|
+
I[i]=fac[1][2]*fac[1][1]; //not in splitS
|
|
122
|
+
i++;
|
|
123
|
+
fac=factorize(I[i]);
|
|
124
|
+
}
|
|
125
|
+
if(size(fac[1])==2){I[size(I)]=fac[1][2]*fac[1][1];} //not in splitS
|
|
126
|
+
if(size(fac[1])>2)
|
|
127
|
+
{
|
|
128
|
+
w=squarefreeP(number(fac[1][1]));
|
|
129
|
+
n=w[1];
|
|
130
|
+
qr=insResult(qr,w[2]);
|
|
131
|
+
for(j=2;j<=size(fac[1]);j++)
|
|
132
|
+
{
|
|
133
|
+
I[i]=fac[1][j];
|
|
134
|
+
attrib(I,"isSB",1);
|
|
135
|
+
e=1;
|
|
136
|
+
k=0;
|
|
137
|
+
while(k<size(re))
|
|
138
|
+
{
|
|
139
|
+
k++;
|
|
140
|
+
if(size(reduce(re[k],I,5))==0){e=0;break;}
|
|
141
|
+
attrib(re[k],"isSB",1);
|
|
142
|
+
if(size(reduce(I,re[k],5))==0){re=delete(re,k);k--;}
|
|
143
|
+
}
|
|
144
|
+
if(j==2){I[i]=I[i]*n;}
|
|
145
|
+
if(e)
|
|
146
|
+
{
|
|
147
|
+
if(l)
|
|
148
|
+
{
|
|
149
|
+
J=I;
|
|
150
|
+
p=I[i];
|
|
151
|
+
J[i]=0;
|
|
152
|
+
J=simplify(J,2);
|
|
153
|
+
attrib(J,"isSB",1);
|
|
154
|
+
pr=splitS(std(J,p),s,re);
|
|
155
|
+
re=pr[1];
|
|
156
|
+
qr=insResult(qr,pr[2]);
|
|
157
|
+
}
|
|
158
|
+
else
|
|
159
|
+
{
|
|
160
|
+
J=interred(I);
|
|
161
|
+
pr=splitS(timeStd(J,s),s,re);
|
|
162
|
+
re=pr[1];
|
|
163
|
+
qr=insResult(qr,pr[2]);
|
|
164
|
+
}
|
|
165
|
+
}
|
|
166
|
+
}
|
|
167
|
+
return(list(re,qr));
|
|
168
|
+
}
|
|
169
|
+
J=timeStd(I,s); //J=std(I) in splitS
|
|
170
|
+
attrib(I,"isSB",1);
|
|
171
|
+
if(size(reduce(J,I,5))==0){return(list(re+list(I),qr));}
|
|
172
|
+
pr=splitS(J,s,re);
|
|
173
|
+
return(list(re+pr[1],pr[2]));
|
|
174
|
+
}
|
|
175
|
+
example
|
|
176
|
+
{ "EXAMPLE:"; echo = 2;
|
|
177
|
+
ring r=0,(b,s,t,u,v,w,x,y,z),dp;
|
|
178
|
+
ideal i=
|
|
179
|
+
bv+su,
|
|
180
|
+
bw+tu,
|
|
181
|
+
sw+tv,
|
|
182
|
+
by+sx,
|
|
183
|
+
bz+tx,
|
|
184
|
+
sz+ty,
|
|
185
|
+
uy+vx,
|
|
186
|
+
uz+wx,
|
|
187
|
+
vz+wy,
|
|
188
|
+
bvz;
|
|
189
|
+
splitS1(i,5);
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
193
|
+
static proc splitS(ideal I,int s,list #)
|
|
194
|
+
"USAGE: splitS(I,s[,l]) I ideal, s integer, l list of ideals
|
|
195
|
+
COMPUTE: Factorizes the generators of I. If for one generator f=f1*f2 and
|
|
196
|
+
fi=ni*gi^ri, ni an integer and gi a polynomial, then
|
|
197
|
+
compute a standardbasis of I1=I,g1 and I2=I,g2, if this can be
|
|
198
|
+
done in < s seconds. Then apply splitS to I1 and I2 and continue
|
|
199
|
+
in the same way. The procedure stops if no generator can be
|
|
200
|
+
factorized.
|
|
201
|
+
RETURN: A list L of ideals and prime numbers
|
|
202
|
+
L[1]: A list of ideals such that the radical of the intersection
|
|
203
|
+
of these ideals coincides with the radical of I
|
|
204
|
+
If the optional list l of the input is not empty then
|
|
205
|
+
the ideals of L[1] which contain an ideal of l are canceled.
|
|
206
|
+
L[2]: A list of prime numbers appearing as factors of the ni.
|
|
207
|
+
NOTE: The computation avoids division by integers (by using
|
|
208
|
+
option(contentSB)) hence the result is correct modulo any prime
|
|
209
|
+
number which does not appear in the list L[2].
|
|
210
|
+
EXAMPLE: example splitS; shows an example
|
|
211
|
+
"
|
|
212
|
+
{
|
|
213
|
+
option(redSB);
|
|
214
|
+
option(contentSB);
|
|
215
|
+
int j,k,e;
|
|
216
|
+
int i=1;
|
|
217
|
+
int l=attrib(I,"isSB");
|
|
218
|
+
ideal J;
|
|
219
|
+
list re,fac,te,pr,qr,w;
|
|
220
|
+
number n;
|
|
221
|
+
poly p;
|
|
222
|
+
re=#;
|
|
223
|
+
|
|
224
|
+
if(deg(I[1])==0){return(list(re+list(std(I)),qr));}
|
|
225
|
+
|
|
226
|
+
fac=factorize(I[1]);
|
|
227
|
+
|
|
228
|
+
while((size(fac[1])==2)&&(i<size(I)))
|
|
229
|
+
{
|
|
230
|
+
i++;
|
|
231
|
+
fac=factorize(I[i]);
|
|
232
|
+
}
|
|
233
|
+
if(size(fac[1])>2)
|
|
234
|
+
{
|
|
235
|
+
w=squarefreeP(number(fac[1][1]));
|
|
236
|
+
n=w[1];
|
|
237
|
+
qr=insResult(qr,w[2]);
|
|
238
|
+
for(j=2;j<=size(fac[1]);j++)
|
|
239
|
+
{
|
|
240
|
+
I[i]=fac[1][j];
|
|
241
|
+
attrib(I,"isSB",1);
|
|
242
|
+
e=1;
|
|
243
|
+
k=0;
|
|
244
|
+
while(k<size(re))
|
|
245
|
+
{
|
|
246
|
+
k++;
|
|
247
|
+
if(size(reduce(re[k],I,5))==0){e=0;break;}
|
|
248
|
+
attrib(re[k],"isSB",1);
|
|
249
|
+
if(size(reduce(I,re[k],5))==0){re=delete(re,k);k--;}
|
|
250
|
+
}
|
|
251
|
+
if(j==2){I[i]=I[i]*n;}
|
|
252
|
+
if(e)
|
|
253
|
+
{
|
|
254
|
+
if(l)
|
|
255
|
+
{
|
|
256
|
+
J=I;
|
|
257
|
+
p=I[i];
|
|
258
|
+
J[i]=0;
|
|
259
|
+
J=simplify(J,2);
|
|
260
|
+
attrib(J,"isSB",1);
|
|
261
|
+
pr=splitS(std(J,p),s,re);
|
|
262
|
+
re=pr[1];
|
|
263
|
+
qr=insResult(qr,pr[2]);
|
|
264
|
+
}
|
|
265
|
+
else
|
|
266
|
+
{
|
|
267
|
+
J=interred(I);
|
|
268
|
+
pr=splitS(timeStd(J,s),s,re);
|
|
269
|
+
re=pr[1];
|
|
270
|
+
qr=insResult(qr,pr[2]);
|
|
271
|
+
}
|
|
272
|
+
}
|
|
273
|
+
}
|
|
274
|
+
return(list(re,qr));
|
|
275
|
+
}
|
|
276
|
+
J=std(I);
|
|
277
|
+
attrib(I,"isSB",1);
|
|
278
|
+
if(size(reduce(J,I,5))==0){return(list(re+list(I),qr));}
|
|
279
|
+
pr=splitS(J,s,re);
|
|
280
|
+
return(list(re+pr[1],pr[2]));
|
|
281
|
+
}
|
|
282
|
+
example
|
|
283
|
+
{ "EXAMPLE:"; echo = 2;
|
|
284
|
+
ring r=0,(b,s,t,u,v,w,x,y,z),dp;
|
|
285
|
+
ideal i=
|
|
286
|
+
bv+su,
|
|
287
|
+
bw+tu,
|
|
288
|
+
sw+tv,
|
|
289
|
+
by+sx,
|
|
290
|
+
bz+tx,
|
|
291
|
+
sz+ty,
|
|
292
|
+
uy+vx,
|
|
293
|
+
uz+wx,
|
|
294
|
+
vz+wy,
|
|
295
|
+
bvz;
|
|
296
|
+
splitS(i,5);
|
|
297
|
+
}
|
|
298
|
+
|
|
299
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
300
|
+
static proc finalSplit(list I,list qr)
|
|
301
|
+
"USAGE: finalSplit(I,qr) I list of ideals, qr list of primes
|
|
302
|
+
RETURN: list l of primes <=32003 such that 1 is in I[j]Z/p[x1..xn]
|
|
303
|
+
for p not in l and all j or an ERROR if this is wrong or
|
|
304
|
+
not decided.
|
|
305
|
+
EXAMPLE: example finalSplit; shows an example
|
|
306
|
+
"
|
|
307
|
+
{
|
|
308
|
+
option(redThrough);
|
|
309
|
+
option(contentSB);
|
|
310
|
+
ideal J,K;
|
|
311
|
+
int i,j,k,n;
|
|
312
|
+
int count=1;
|
|
313
|
+
list q,pr,l;
|
|
314
|
+
|
|
315
|
+
"trivial splitting";
|
|
316
|
+
pr=trivialSplit(I,4);
|
|
317
|
+
l=pr[1];
|
|
318
|
+
qr=insResult(qr,pr[2]);
|
|
319
|
+
while(count)
|
|
320
|
+
{
|
|
321
|
+
k++;
|
|
322
|
+
"loop";k;size(l);"======";
|
|
323
|
+
count=0;list p;
|
|
324
|
+
for(i=1;i<=size(l);i++)
|
|
325
|
+
{
|
|
326
|
+
i;
|
|
327
|
+
K=changeOrdTest(l[i]);
|
|
328
|
+
if(deg(K[1])!=0)
|
|
329
|
+
{
|
|
330
|
+
"split";
|
|
331
|
+
pr=splitS1(shortid_L(K,3),2);
|
|
332
|
+
q=pr[1];
|
|
333
|
+
qr=insResult(qr,pr[2]);
|
|
334
|
+
size(q);"out";
|
|
335
|
+
for(j=1;j<=size(q);j++)
|
|
336
|
+
{
|
|
337
|
+
if(deg(q[j][1])==0)
|
|
338
|
+
{
|
|
339
|
+
pr=contentS(q[j]);
|
|
340
|
+
q[j]=pr[1];
|
|
341
|
+
qr=insResult(qr,pr[2]);
|
|
342
|
+
}
|
|
343
|
+
else
|
|
344
|
+
{
|
|
345
|
+
pr=simpliFy(q[j]+K);
|
|
346
|
+
q[j]=pr[1];
|
|
347
|
+
qr=insResult(qr,pr[2]);
|
|
348
|
+
pr=contentS(q[j]);
|
|
349
|
+
q[j]=pr[1];
|
|
350
|
+
qr=insResult(qr,pr[2]);
|
|
351
|
+
}
|
|
352
|
+
}
|
|
353
|
+
if((size(q)==1)&&(deg(q[1][1])>0))
|
|
354
|
+
{
|
|
355
|
+
"split again";
|
|
356
|
+
K=sort(q[1])[1];
|
|
357
|
+
J=K[1..20+4*k];
|
|
358
|
+
pr=splitS(J,5);
|
|
359
|
+
q=pr[1];
|
|
360
|
+
qr=insResult(qr,pr[2]);
|
|
361
|
+
size(q);"out";
|
|
362
|
+
for(j=1;j<=size(q);j++)
|
|
363
|
+
{
|
|
364
|
+
if(deg(q[j][1])==0)
|
|
365
|
+
{
|
|
366
|
+
pr=contentS(q[j]);
|
|
367
|
+
q[j]=pr[1];
|
|
368
|
+
qr=insResult(qr,pr[2]);
|
|
369
|
+
}
|
|
370
|
+
else
|
|
371
|
+
{
|
|
372
|
+
pr=simpliFy(q[j]+K);
|
|
373
|
+
q[j]=pr[1];
|
|
374
|
+
qr=insResult(qr,pr[2]);
|
|
375
|
+
pr=contentS(q[j]);
|
|
376
|
+
q[j]=pr[1];
|
|
377
|
+
qr=insResult(qr,pr[2]);
|
|
378
|
+
}
|
|
379
|
+
}
|
|
380
|
+
|
|
381
|
+
}
|
|
382
|
+
if((size(q)==1)&&(deg(q[1][1])>0))
|
|
383
|
+
{
|
|
384
|
+
n++;
|
|
385
|
+
"split again";
|
|
386
|
+
K=q[1];
|
|
387
|
+
J=shortid_L(K,3+n);
|
|
388
|
+
pr=splitS1(J,5);
|
|
389
|
+
if(size(pr[1])>1)
|
|
390
|
+
{
|
|
391
|
+
q=pr[1];
|
|
392
|
+
qr=insResult(qr,pr[2]);
|
|
393
|
+
size(q);"out";
|
|
394
|
+
for(j=1;j<=size(q);j++)
|
|
395
|
+
{
|
|
396
|
+
if(deg(q[j][1])==0)
|
|
397
|
+
{
|
|
398
|
+
pr=contentS(q[j]);
|
|
399
|
+
q[j]=pr[1];
|
|
400
|
+
qr=insResult(qr,pr[2]);
|
|
401
|
+
}
|
|
402
|
+
else
|
|
403
|
+
{
|
|
404
|
+
pr=simpliFy(q[j]+K);
|
|
405
|
+
q[j]=pr[1];
|
|
406
|
+
qr=insResult(qr,pr[2]);
|
|
407
|
+
pr=contentS(q[j]);
|
|
408
|
+
q[j]=pr[1];
|
|
409
|
+
qr=insResult(qr,pr[2]);
|
|
410
|
+
}
|
|
411
|
+
}
|
|
412
|
+
}
|
|
413
|
+
}
|
|
414
|
+
if(size(q)>1)
|
|
415
|
+
{
|
|
416
|
+
count++;
|
|
417
|
+
}
|
|
418
|
+
else
|
|
419
|
+
{
|
|
420
|
+
if(deg(q[1][1])>0)
|
|
421
|
+
{
|
|
422
|
+
q[1]=changeOrdTest(q[1]);
|
|
423
|
+
}
|
|
424
|
+
}
|
|
425
|
+
p=p+q;
|
|
426
|
+
}
|
|
427
|
+
else
|
|
428
|
+
{
|
|
429
|
+
pr=primefactors(number(K[1]));
|
|
430
|
+
qr=insResult(qr,pr[1]);
|
|
431
|
+
}
|
|
432
|
+
}
|
|
433
|
+
l=p;
|
|
434
|
+
kill p;
|
|
435
|
+
}
|
|
436
|
+
l;
|
|
437
|
+
for(i=1;i<=size(l);i++)
|
|
438
|
+
{
|
|
439
|
+
|
|
440
|
+
if(deg(l[i][1])>0){l;ERROR("not ready");}
|
|
441
|
+
pr=primefactors(number(l[i][1]));
|
|
442
|
+
if(pr[3]!=1){pr;ERROR("not ready");}
|
|
443
|
+
qr=insResult(qr,pr[1]);
|
|
444
|
+
}
|
|
445
|
+
return(qr);
|
|
446
|
+
}
|
|
447
|
+
example
|
|
448
|
+
{ "EXAMPLE:"; echo = 2;
|
|
449
|
+
ring r=0,x,dp;
|
|
450
|
+
list qr=2,5,7;
|
|
451
|
+
ideal i=181x-181,11x+11;
|
|
452
|
+
list pr=i;
|
|
453
|
+
finalSplit(pr,qr);
|
|
454
|
+
}
|
|
455
|
+
|
|
456
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
457
|
+
proc noSolution(ideal I)
|
|
458
|
+
"USAGE: noSolution(I) I ideal
|
|
459
|
+
RETURN: list l of primes <=32003 such that 1 is in IZ/p[x1..xn]
|
|
460
|
+
for p not in l or an ERROR if this is wrong or not decided.
|
|
461
|
+
EXAMPLE: example noSolution; shows an example
|
|
462
|
+
"
|
|
463
|
+
{
|
|
464
|
+
int s=1;
|
|
465
|
+
int t=30;
|
|
466
|
+
option(redThrough);
|
|
467
|
+
option(contentSB);
|
|
468
|
+
ideal J=shortid_L(I,3);
|
|
469
|
+
ideal K;
|
|
470
|
+
number n;
|
|
471
|
+
|
|
472
|
+
"first splitting";
|
|
473
|
+
int i,j,k;
|
|
474
|
+
list l,p,q,re,pr,qr;
|
|
475
|
+
pr=splitS(J,s);
|
|
476
|
+
l=pr[1];
|
|
477
|
+
qr=pr[2];
|
|
478
|
+
size(l);
|
|
479
|
+
|
|
480
|
+
for(i=1;i<=size(l);i++)
|
|
481
|
+
{
|
|
482
|
+
if(deg(l[i][1])==0)
|
|
483
|
+
{
|
|
484
|
+
K=l[i][1];
|
|
485
|
+
}
|
|
486
|
+
else
|
|
487
|
+
{
|
|
488
|
+
pr=simpliFy(I+l[i]);
|
|
489
|
+
J=pr[1];
|
|
490
|
+
qr=insResult(qr,pr[2]);
|
|
491
|
+
pr=contentS(J);
|
|
492
|
+
J=pr[1];
|
|
493
|
+
qr=insResult(qr,pr[2]);
|
|
494
|
+
K=timeStd(J,1);
|
|
495
|
+
}
|
|
496
|
+
if(deg(K[1])==0)
|
|
497
|
+
{
|
|
498
|
+
n=number(K[1]);
|
|
499
|
+
pr=primefactors(n);
|
|
500
|
+
if(pr[3]!=1)
|
|
501
|
+
{
|
|
502
|
+
J=changeOrdTest(J);
|
|
503
|
+
p=p+list(J);
|
|
504
|
+
}
|
|
505
|
+
else
|
|
506
|
+
{
|
|
507
|
+
qr=insResult(qr,pr[1]);
|
|
508
|
+
}
|
|
509
|
+
}
|
|
510
|
+
else
|
|
511
|
+
{
|
|
512
|
+
pr=contentS(K);
|
|
513
|
+
p=p+list(pr[1]);
|
|
514
|
+
qr=insResult(qr,pr[2]);
|
|
515
|
+
}
|
|
516
|
+
}
|
|
517
|
+
"trivial splitting 1";
|
|
518
|
+
pr=trivialSplit(p,3);
|
|
519
|
+
p=pr[1];
|
|
520
|
+
qr=insResult(qr,pr[2]);
|
|
521
|
+
size(p);
|
|
522
|
+
"second splitting";
|
|
523
|
+
|
|
524
|
+
for(i=1;i<=size(p);i++)
|
|
525
|
+
{
|
|
526
|
+
i;
|
|
527
|
+
if(size(p[i])<t)
|
|
528
|
+
{
|
|
529
|
+
K=timeStd(p[i],10);
|
|
530
|
+
if(deg(K[1])==0)
|
|
531
|
+
{
|
|
532
|
+
n=number(K[1]);
|
|
533
|
+
pr=primefactors(n);
|
|
534
|
+
if(pr[3]!=1)
|
|
535
|
+
{
|
|
536
|
+
p[i]=changeOrdTest(p[i]);
|
|
537
|
+
re=re+list(p[i]);
|
|
538
|
+
}
|
|
539
|
+
else
|
|
540
|
+
{
|
|
541
|
+
qr=insResult(qr,pr[1]);
|
|
542
|
+
}
|
|
543
|
+
}
|
|
544
|
+
else
|
|
545
|
+
{
|
|
546
|
+
pr=contentS(K);
|
|
547
|
+
re=re+list(pr[1]);
|
|
548
|
+
qr=insResult(qr,pr[2]);
|
|
549
|
+
}
|
|
550
|
+
}
|
|
551
|
+
else
|
|
552
|
+
{
|
|
553
|
+
J=p[i];
|
|
554
|
+
J=J[1..t];
|
|
555
|
+
"in splitting";
|
|
556
|
+
pr=splitS(J,s);
|
|
557
|
+
l=pr[1];
|
|
558
|
+
qr=insResult(qr,pr[2]);
|
|
559
|
+
size(l);
|
|
560
|
+
"out";
|
|
561
|
+
for(k=1;k<=size(l);k++)
|
|
562
|
+
{
|
|
563
|
+
pr=contentS(l[k]);
|
|
564
|
+
l[k]= pr[1];
|
|
565
|
+
qr=insResult(qr,pr[2]);
|
|
566
|
+
pr=simpliFy(l[k]+p[i]);
|
|
567
|
+
J=pr[1];
|
|
568
|
+
qr=insResult(qr,pr[2]);
|
|
569
|
+
K=timeStd(J,10);
|
|
570
|
+
if(deg(K[1])==0)
|
|
571
|
+
{
|
|
572
|
+
n=number(K[1]);
|
|
573
|
+
pr=primefactors(n);
|
|
574
|
+
if(pr[3]!=1)
|
|
575
|
+
{
|
|
576
|
+
pr=contentS(J);
|
|
577
|
+
qr=insResult(qr,pr[2]);
|
|
578
|
+
J=pr[1];
|
|
579
|
+
J=changeOrdTest(J);
|
|
580
|
+
re=re+list(J);
|
|
581
|
+
}
|
|
582
|
+
else
|
|
583
|
+
{
|
|
584
|
+
qr=insResult(qr,pr[1]);
|
|
585
|
+
}
|
|
586
|
+
}
|
|
587
|
+
else
|
|
588
|
+
{
|
|
589
|
+
pr=contentS(K);
|
|
590
|
+
qr=insResult(qr,pr[2]);
|
|
591
|
+
re=re+list(pr[1]);
|
|
592
|
+
}
|
|
593
|
+
}
|
|
594
|
+
}
|
|
595
|
+
}
|
|
596
|
+
"trivial splitting 2";
|
|
597
|
+
size(re);
|
|
598
|
+
pr=trivialSplit(re,2);
|
|
599
|
+
re=pr[1];
|
|
600
|
+
qr=insResult(qr,pr[2]);
|
|
601
|
+
"third splitting";
|
|
602
|
+
size(re);
|
|
603
|
+
for(i=1;i<=size(re);i++)
|
|
604
|
+
{
|
|
605
|
+
if(deg(re[i][1])>0)
|
|
606
|
+
{
|
|
607
|
+
i;
|
|
608
|
+
pr=simpliFy(re[i]);
|
|
609
|
+
J=pr[1];
|
|
610
|
+
qr=insResult(qr,pr[2]);
|
|
611
|
+
"in splitting";
|
|
612
|
+
J=shortid_L(J,3);
|
|
613
|
+
pr=splitS(J,s);
|
|
614
|
+
l=pr[1];
|
|
615
|
+
if(size(l)==1)
|
|
616
|
+
{
|
|
617
|
+
"split again";
|
|
618
|
+
pr=simpliFy(re[i]);
|
|
619
|
+
J=pr[1];
|
|
620
|
+
qr=insResult(qr,pr[2]);
|
|
621
|
+
J=J[1..t];
|
|
622
|
+
pr=splitS(J,s);
|
|
623
|
+
l=pr[1];
|
|
624
|
+
qr=insResult(qr,pr[2]);
|
|
625
|
+
}
|
|
626
|
+
else
|
|
627
|
+
{
|
|
628
|
+
qr=insResult(qr,pr[2]);
|
|
629
|
+
}
|
|
630
|
+
size(l);
|
|
631
|
+
"out";
|
|
632
|
+
for(j=1;j<=size(l);j++)
|
|
633
|
+
{
|
|
634
|
+
pr=contentS(l[j]);
|
|
635
|
+
l[j]=pr[1];
|
|
636
|
+
qr=insResult(qr,pr[2]);
|
|
637
|
+
pr=simpliFy(re[i]+l[j]);
|
|
638
|
+
J=pr[1];
|
|
639
|
+
qr=insResult(qr,pr[2]);
|
|
640
|
+
K=timeStd(J,10);
|
|
641
|
+
if(deg(K[1])==0)
|
|
642
|
+
{
|
|
643
|
+
n=number(K[1]);
|
|
644
|
+
pr=primefactors(n);
|
|
645
|
+
if(pr[3]!=1)
|
|
646
|
+
{
|
|
647
|
+
pr=contentS(J);
|
|
648
|
+
J=pr[1];
|
|
649
|
+
qr=insResult(qr,pr[2]);
|
|
650
|
+
J=changeOrdTest(J);
|
|
651
|
+
q=q+list(J);
|
|
652
|
+
}
|
|
653
|
+
else
|
|
654
|
+
{
|
|
655
|
+
qr=insResult(qr,pr[1]);
|
|
656
|
+
}
|
|
657
|
+
}
|
|
658
|
+
else
|
|
659
|
+
{
|
|
660
|
+
pr=contentS(K);
|
|
661
|
+
qr=insResult(qr,pr[2]);
|
|
662
|
+
q=q+list(pr[1]);
|
|
663
|
+
}
|
|
664
|
+
}
|
|
665
|
+
}
|
|
666
|
+
else
|
|
667
|
+
{
|
|
668
|
+
i;
|
|
669
|
+
pr=primefactors(number(re[i][1]));
|
|
670
|
+
qr=insResult(qr,pr[1]);
|
|
671
|
+
}
|
|
672
|
+
}
|
|
673
|
+
"jetzt geht es los";
|
|
674
|
+
return(finalSplit(q,qr));
|
|
675
|
+
}
|
|
676
|
+
example
|
|
677
|
+
{ "EXAMPLE:"; echo = 2;
|
|
678
|
+
ring r=0,x,dp;
|
|
679
|
+
ideal i=181x-181,11x+11;
|
|
680
|
+
noSolution(i);
|
|
681
|
+
}
|
|
682
|
+
|
|
683
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
684
|
+
|
|
685
|
+
static proc changeOrdTest(ideal I)
|
|
686
|
+
{
|
|
687
|
+
def R=basering;
|
|
688
|
+
if(deg(I[1])==0){return(I);}
|
|
689
|
+
def RR=changeord(list(list("dp",1:nvars(basering))));
|
|
690
|
+
setring RR;
|
|
691
|
+
ideal I=imap(R,I);
|
|
692
|
+
ideal K=timeStd(I,5);
|
|
693
|
+
if(deg(K[1])==0)
|
|
694
|
+
{
|
|
695
|
+
number n=number(K[1]);
|
|
696
|
+
if(primefactors(n)[3]==1)
|
|
697
|
+
{
|
|
698
|
+
I=K;
|
|
699
|
+
}
|
|
700
|
+
}
|
|
701
|
+
setring R;
|
|
702
|
+
I=imap(RR,I);
|
|
703
|
+
kill RR;
|
|
704
|
+
return(I);
|
|
705
|
+
}
|
|
706
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
707
|
+
|
|
708
|
+
static proc trivialSplit(list p,int depth, list #)
|
|
709
|
+
"USAGE: trivialSplit(p,s) p list of ideals, s integer the number of iterations
|
|
710
|
+
COMPUTE: Factorizes the monomials among the generators of I.
|
|
711
|
+
If one monomial contains the variables x1,..xr, then
|
|
712
|
+
I1=I(x1=0),...,Ir=I(xr=0) is considered. Then apply
|
|
713
|
+
trivialSplit to I1 ...Ir and continue in the same way s times.
|
|
714
|
+
RETURN: A list L of ideals and prime numbers
|
|
715
|
+
L[1]: A list of ideals such that the radical of the intersection
|
|
716
|
+
of these ideals at x1=...=xr=0 coincides with the radical of
|
|
717
|
+
I at x1=...=xr=0.
|
|
718
|
+
L[2]: A list of prime numbers appearing as factors of the monomials.
|
|
719
|
+
NOTE: The computation avoids division by integers hence the result
|
|
720
|
+
is correct modulo any prime
|
|
721
|
+
number which does not appear in the list L[2].
|
|
722
|
+
EXAMPLE: example trivialSplit; shows an example
|
|
723
|
+
"
|
|
724
|
+
{
|
|
725
|
+
list re,l,pr,qr;
|
|
726
|
+
int i,k;
|
|
727
|
+
ideal J,K,T,Ke;
|
|
728
|
+
number n;
|
|
729
|
+
|
|
730
|
+
if(size(p)==0){return(list(p,qr));}
|
|
731
|
+
if(depth<=0){return(list(p,qr));}
|
|
732
|
+
if(size(#)>0)
|
|
733
|
+
{
|
|
734
|
+
T=#[1];
|
|
735
|
+
}
|
|
736
|
+
else
|
|
737
|
+
{
|
|
738
|
+
T=1;
|
|
739
|
+
}
|
|
740
|
+
for(k=1;k<=size(p);k++)
|
|
741
|
+
{
|
|
742
|
+
pr=simpliFy(p[k]);
|
|
743
|
+
p[k]=pr[1];
|
|
744
|
+
qr=insResult(qr,pr[2]);
|
|
745
|
+
J=shortid_L(p[k],1);
|
|
746
|
+
if((size(J)>0)&&(deg(J[1])>=1))
|
|
747
|
+
{
|
|
748
|
+
pr=splitS1(J,10);
|
|
749
|
+
l=pr[1];
|
|
750
|
+
qr=insResult(qr,pr[2]);
|
|
751
|
+
for(i=1;i<=size(l);i++)
|
|
752
|
+
{
|
|
753
|
+
Ke=l[i];
|
|
754
|
+
l[i]=trivialSimplify(p[k],l[i]);
|
|
755
|
+
pr=simpliFy(l[i]);
|
|
756
|
+
l[i]=pr[1];
|
|
757
|
+
qr=insResult(qr,pr[2]);
|
|
758
|
+
K=timeStd(l[i],1);
|
|
759
|
+
attrib(K,"isSB",1);
|
|
760
|
+
if(deg(K[1])==0)
|
|
761
|
+
{
|
|
762
|
+
n=number(K[1]);
|
|
763
|
+
if(primefactors(n)[3]!=1)
|
|
764
|
+
{
|
|
765
|
+
l[i]=changeOrdTest(l[i]);
|
|
766
|
+
pr=trivialSplit(l[i],depth-1,T);
|
|
767
|
+
re=re+pr[1];
|
|
768
|
+
qr=insResult(qr,pr[2]);
|
|
769
|
+
}
|
|
770
|
+
else
|
|
771
|
+
{
|
|
772
|
+
l[i]=K; //neu
|
|
773
|
+
}
|
|
774
|
+
}
|
|
775
|
+
else
|
|
776
|
+
{
|
|
777
|
+
if(size(reduce(trivialSimplify(T,Ke),K,5))!=0)
|
|
778
|
+
{
|
|
779
|
+
pr=trivialSplit(K,depth-1,trivialSimplify(T,Ke));
|
|
780
|
+
re=re+pr[1];
|
|
781
|
+
qr=insResult(qr,pr[2]);
|
|
782
|
+
}
|
|
783
|
+
}
|
|
784
|
+
T=intersect(T,Ke);
|
|
785
|
+
}
|
|
786
|
+
}
|
|
787
|
+
else
|
|
788
|
+
{
|
|
789
|
+
J=timeStd(p[k],5);
|
|
790
|
+
if(deg(J[1])==0)
|
|
791
|
+
{
|
|
792
|
+
n=number(J[1]);
|
|
793
|
+
if(primefactors(n)[3]!=1)
|
|
794
|
+
{
|
|
795
|
+
p[k]=changeOrdTest(p[k]);
|
|
796
|
+
re=re+list(p[k]);
|
|
797
|
+
}
|
|
798
|
+
else
|
|
799
|
+
{
|
|
800
|
+
re=re+list(J);
|
|
801
|
+
}
|
|
802
|
+
}
|
|
803
|
+
else
|
|
804
|
+
{
|
|
805
|
+
re=re+list(J);
|
|
806
|
+
}
|
|
807
|
+
}
|
|
808
|
+
}
|
|
809
|
+
return(list(re,qr));
|
|
810
|
+
}
|
|
811
|
+
example
|
|
812
|
+
{ "EXAMPLE:"; echo = 2;
|
|
813
|
+
ring r=0,(b,s,t,u,v,w,x,y,z),dp;
|
|
814
|
+
ideal i=
|
|
815
|
+
bv+su,
|
|
816
|
+
bw+tu,
|
|
817
|
+
sw+tv,
|
|
818
|
+
by+sx,
|
|
819
|
+
bz+tx,
|
|
820
|
+
sz+ty,
|
|
821
|
+
uy+vx,
|
|
822
|
+
uz+wx,
|
|
823
|
+
vz+wy,
|
|
824
|
+
bvz;
|
|
825
|
+
trivialSplit(i,2);
|
|
826
|
+
}
|
|
827
|
+
|
|
828
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
829
|
+
|
|
830
|
+
static proc trivialSimplify(ideal I, ideal J)
|
|
831
|
+
"USAGE: trivialSimplify(I,J); I,J ideals, J generated by variables
|
|
832
|
+
RETURN: ideal K = eliminate(I,m) m the product of variables of J
|
|
833
|
+
EXAMPLE: example trivialSimplify; shows an example
|
|
834
|
+
"
|
|
835
|
+
{
|
|
836
|
+
int i;
|
|
837
|
+
for(i=1;i<=size(J);i++){I=subst(I,J[i],0);}
|
|
838
|
+
return(simplify(I,2));
|
|
839
|
+
}
|
|
840
|
+
example
|
|
841
|
+
{ "EXAMPLE:"; echo = 2;
|
|
842
|
+
ring r=0,(x,y,z,w,t,u),dp;
|
|
843
|
+
ideal i=
|
|
844
|
+
t,u,
|
|
845
|
+
x3+y2+2z,
|
|
846
|
+
x2+3y,
|
|
847
|
+
x2+y2+z2,
|
|
848
|
+
w2+z+u;
|
|
849
|
+
ideal j=t,u;
|
|
850
|
+
trivialSimplify(i,j);
|
|
851
|
+
}
|
|
852
|
+
|
|
853
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
854
|
+
|
|
855
|
+
static proc simpliFy(ideal J,list #)
|
|
856
|
+
"USAGE: simpliFy(id); id ideal
|
|
857
|
+
RETURN: ideal I = eliminate(Id,m) m is a product of variables
|
|
858
|
+
which are in linear equations involved in the generators of id
|
|
859
|
+
EXAMPLE: example simpliFy; shows an example
|
|
860
|
+
"
|
|
861
|
+
{
|
|
862
|
+
ideal I=J;
|
|
863
|
+
if(size(#)!=0){I=#[1];}
|
|
864
|
+
def R=basering;
|
|
865
|
+
matrix M=jacob(I);
|
|
866
|
+
ideal ma=maxideal(1);
|
|
867
|
+
int i,j,k;
|
|
868
|
+
map phi;
|
|
869
|
+
list pr,re;
|
|
870
|
+
|
|
871
|
+
for(i=1;i<=nrows(M);i++)
|
|
872
|
+
{
|
|
873
|
+
for(j=1;j<=ncols(M);j++)
|
|
874
|
+
{
|
|
875
|
+
if((deg(M[i,j])==0)&&(deg(I[i])==1))
|
|
876
|
+
{
|
|
877
|
+
ma[j]=(-1/M[i,j])*(I[i]-M[i,j]*var(j));
|
|
878
|
+
pr=primefactors(number(M[i,j]));
|
|
879
|
+
if(pr[3]>1){pr[3];ERROR("number too big in simpliFy");}
|
|
880
|
+
re=insResult(re,pr[1]);
|
|
881
|
+
phi=R,ma;
|
|
882
|
+
I=phi(I);
|
|
883
|
+
J=phi(J);
|
|
884
|
+
for(k=1;k<=ncols(I);k++)
|
|
885
|
+
{
|
|
886
|
+
I[k]=cleardenom(I[k]);
|
|
887
|
+
}
|
|
888
|
+
M=jacob(I);
|
|
889
|
+
}
|
|
890
|
+
}
|
|
891
|
+
}
|
|
892
|
+
J=simplify(J,2);
|
|
893
|
+
for(i=1;i<=size(J);i++)
|
|
894
|
+
{
|
|
895
|
+
if(deg(J[i])==0){J=std(J);break;}
|
|
896
|
+
J[i]=cleardenom(J[i]);
|
|
897
|
+
}
|
|
898
|
+
return(list(J,re));
|
|
899
|
+
}
|
|
900
|
+
example
|
|
901
|
+
{ "EXAMPLE:"; echo = 2;
|
|
902
|
+
ring r=0,(x,y,z,w),dp;
|
|
903
|
+
ideal i=
|
|
904
|
+
x3+y2+2z,
|
|
905
|
+
x2+3y,
|
|
906
|
+
x2+y2+z2,
|
|
907
|
+
w2+z;
|
|
908
|
+
simpliFy(i);
|
|
909
|
+
}
|
|
910
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
911
|
+
|
|
912
|
+
static proc squarefreeP(number n)
|
|
913
|
+
"USAGE: squarefreeP(n); n number
|
|
914
|
+
RETURN: list l of numbers. l[2] contains all prime factors of n less
|
|
915
|
+
then 32003, l[1] is the part of m which has prime factors greater
|
|
916
|
+
then 32003
|
|
917
|
+
EXAMPLE: example squarefreeP; shows an example
|
|
918
|
+
"
|
|
919
|
+
{
|
|
920
|
+
list re;
|
|
921
|
+
if(n<0){n=-n;}
|
|
922
|
+
if(n==1){return(list(n,re));}
|
|
923
|
+
list pr=primefactors(n);
|
|
924
|
+
int i;
|
|
925
|
+
number m=number(pr[3][1]);
|
|
926
|
+
re=insResult(re,pr[1]);
|
|
927
|
+
return(list(m,re));
|
|
928
|
+
}
|
|
929
|
+
example
|
|
930
|
+
{ "EXAMPLE:"; echo = 2;
|
|
931
|
+
ring r = 0,x,dp;
|
|
932
|
+
squarefreeP(123456789100);
|
|
933
|
+
}
|
|
934
|
+
|
|
935
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
936
|
+
|
|
937
|
+
static proc contentS(ideal I)
|
|
938
|
+
"USAGE: contentS(I); I ideal
|
|
939
|
+
RETURN: list l
|
|
940
|
+
l[1] the ideal I. Te generators of I are the generators of the
|
|
941
|
+
input ideal divided by the part of the content which have
|
|
942
|
+
prime factors less then 32003.
|
|
943
|
+
l[2] contains the prime numbers which occurred in the division
|
|
944
|
+
EXAMPLE: example contentS; shows an example
|
|
945
|
+
"
|
|
946
|
+
|
|
947
|
+
{
|
|
948
|
+
option(contentSB);
|
|
949
|
+
int i,k;
|
|
950
|
+
number n,m;
|
|
951
|
+
list pr,re;
|
|
952
|
+
for(i=1;i<=size(I);i++)
|
|
953
|
+
{
|
|
954
|
+
n=leadcoef(I[i]);
|
|
955
|
+
if(n<0){n=-n;}
|
|
956
|
+
if(n>1)
|
|
957
|
+
{
|
|
958
|
+
pr=primefactors(n);
|
|
959
|
+
if(n<=32003)
|
|
960
|
+
{
|
|
961
|
+
m=n;
|
|
962
|
+
}
|
|
963
|
+
else
|
|
964
|
+
{
|
|
965
|
+
m=number(pr[1][1])^pr[2][1];
|
|
966
|
+
for(k=2;k<=size(pr[1]);k++)
|
|
967
|
+
{
|
|
968
|
+
m=m*number(pr[1][k])^pr[2][k];
|
|
969
|
+
}
|
|
970
|
+
}
|
|
971
|
+
I[i]=cleardenom(I[i]/m);
|
|
972
|
+
re=insResult(re,pr[1]);
|
|
973
|
+
}
|
|
974
|
+
}
|
|
975
|
+
return(list(I,re));
|
|
976
|
+
}
|
|
977
|
+
example
|
|
978
|
+
{ "EXAMPLE:"; echo = 2;
|
|
979
|
+
ring r = 0,(x,y),dp;
|
|
980
|
+
ideal I=2x+2,3y+3x,1234567891x+1234567891;
|
|
981
|
+
contentS(I);
|
|
982
|
+
}
|
|
983
|
+
|
|
984
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
985
|
+
|
|
986
|
+
static proc insResult(list r,#)
|
|
987
|
+
{
|
|
988
|
+
if(size(#)==0){return(r);}
|
|
989
|
+
if(size(r)==0){r[1]=1;}
|
|
990
|
+
int i,j;
|
|
991
|
+
for(i=1;i<=size(#);i++)
|
|
992
|
+
{
|
|
993
|
+
j=1;
|
|
994
|
+
while((#[i]>r[j])&&(j<size(r))){j++;}
|
|
995
|
+
if(#[i]>r[j]){r=insert(r,#[i],j);}
|
|
996
|
+
if(#[i]<r[j]){r=insert(r,#[i],j-1);}
|
|
997
|
+
}
|
|
998
|
+
return(r);
|
|
999
|
+
}
|
|
1000
|
+
example
|
|
1001
|
+
{ "EXAMPLE:"; echo = 2;
|
|
1002
|
+
list r=list(3,7,13);
|
|
1003
|
+
intvec v=2,3,5,11,17;
|
|
1004
|
+
insResult(r,v);
|
|
1005
|
+
}
|
|
1006
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1007
|
+
|
|
1008
|
+
static proc shortid_L (ideal id,int n)
|
|
1009
|
+
{
|
|
1010
|
+
ideal Lc;
|
|
1011
|
+
intvec v;
|
|
1012
|
+
int ii;
|
|
1013
|
+
for(ii= 1; ii<=ncols(id); ii++)
|
|
1014
|
+
{
|
|
1015
|
+
if (size(id[ii])<=n and id[ii]!=0)
|
|
1016
|
+
{
|
|
1017
|
+
Lc = Lc,id[ii];
|
|
1018
|
+
v=v,ii;
|
|
1019
|
+
}
|
|
1020
|
+
}
|
|
1021
|
+
Lc = simplify(Lc,2);
|
|
1022
|
+
list L = Lc,v;
|
|
1023
|
+
return(Lc);
|
|
1024
|
+
}
|
|
1025
|
+
|
|
1026
|
+
|
|
1027
|
+
/*
|
|
1028
|
+
//-------------- the solution of the problem -----------------
|
|
1029
|
+
ring r = 0,(b,c,t),dp; //global (affine) ring
|
|
1030
|
+
matrix X[2][2] = 0, -1,
|
|
1031
|
+
1, t;
|
|
1032
|
+
matrix Y[2][2] = 1, b,
|
|
1033
|
+
c, 1+bc;
|
|
1034
|
+
;
|
|
1035
|
+
|
|
1036
|
+
//------------ create word W1 and ideal I of U1-U2 ------------
|
|
1037
|
+
matrix iX = inverse(X);
|
|
1038
|
+
matrix iY = inverse(Y);
|
|
1039
|
+
matrix U1 = iX*Y*X*iY*X; //the word w1
|
|
1040
|
+
//matrix U1=iX*iX*iY*X; //das neue Wort
|
|
1041
|
+
matrix N = X*U1*iX;
|
|
1042
|
+
matrix M = Y*U1*iY;
|
|
1043
|
+
matrix iN = inverse(N);
|
|
1044
|
+
matrix iM = inverse(M);
|
|
1045
|
+
matrix U2 = N*M*iN*iM;
|
|
1046
|
+
ideal I = ideal(U1-U2);
|
|
1047
|
+
|
|
1048
|
+
//list qr=primdecGTZ(I);
|
|
1049
|
+
//I=qr[1][2];
|
|
1050
|
+
|
|
1051
|
+
ring rh = 0,(b,c,t,h),dp;
|
|
1052
|
+
ideal I = imap(r,I);
|
|
1053
|
+
ideal sI = groebner(I);
|
|
1054
|
+
ideal hI = homog(sI,h);
|
|
1055
|
+
ideal shI =std(hI);
|
|
1056
|
+
ideal J = eliminate(shI,c); //eliminate c
|
|
1057
|
+
poly f = J[1];
|
|
1058
|
+
|
|
1059
|
+
ring r1 = 0,(b,t,h),dp;
|
|
1060
|
+
poly hf=b6t6-2b5t7+b4t8+b8t3h-4b7t4h+7b6t5h-6b5t6h+2b4t7h-7b6t4h2+12b5t5h2+b4t6h2-6b3t7h2-3b8th3+12b7t2h3-16b6t3h3+19b4t5h3-12b3t6h3-2b8h4+8b7th4-3b6t2h4+2b5t3h4-45b4t4h4+32b3t5h4+12b2t6h4-12b6th5+50b5t2h5-64b4t3h5+4b3t4h5+26b2t5h5-12b6h6+24b5th6+22b4t2h6+12b3t3h6-73b2t4h6-10bt5h6-8b5h7-6b4th7+88b3t2h7-68b2t3h7-26bt4h7-29b4h8+16b3th8+42b2t2h8+54bt3h8+3t4h8-28b3h9-12b2th9+88bt2h9+10t3h9-38b2h10-8bth10-11t2h10-28bh11-34th11-17h12;
|
|
1061
|
+
//poly hf=b3t4-b2t5+b4t2h-2b3t3h+2b2t4h-bt5h-2b3t2h2+4bt4h2+b2t2h3-bt3h3+t4h3
|
|
1062
|
+
//+2b2th4-6bt2h4-4t3h4+b2h5-2bth5+2t2h5+4th6+h7;
|
|
1063
|
+
|
|
1064
|
+
int n,m,sA,sB;
|
|
1065
|
+
n=6;
|
|
1066
|
+
//n=3;
|
|
1067
|
+
//m=7-n;
|
|
1068
|
+
|
|
1069
|
+
m = 12-n;
|
|
1070
|
+
ideal A = maxideal(n); ideal B = maxideal(m);
|
|
1071
|
+
sA =size(A);
|
|
1072
|
+
sB = size(B);
|
|
1073
|
+
|
|
1074
|
+
ring R = 0,(b(1..sB),a(1..sA),b,t,h),dp;
|
|
1075
|
+
poly hf = imap(r1,hf);
|
|
1076
|
+
ideal A = imap(r1,A);
|
|
1077
|
+
ideal B = imap(r1,B);
|
|
1078
|
+
matrix aa[sA][1]= a(1..sA);
|
|
1079
|
+
matrix bb[sB][1] = b(1..sB);
|
|
1080
|
+
poly f1= (matrix(A)*aa)[1,1]; //Ansatz for degree n
|
|
1081
|
+
poly f2= (matrix(B)*bb)[1,1]; //Ansatz for degree m=12-n
|
|
1082
|
+
poly g = f1*f2-hf; //assume hf factors
|
|
1083
|
+
matrix C = coef(g,bth);
|
|
1084
|
+
ideal co = submat(C,2,1..ncols(C));//condition for decomposition, size 91
|
|
1085
|
+
|
|
1086
|
+
ring R1 = 0,(b(1..sB),a(1..sA)),lp;
|
|
1087
|
+
ideal co = imap(R,co);
|
|
1088
|
+
co=subst(co,a(1),1); //OE a1=1
|
|
1089
|
+
co = subst(co,b(1),-17); //co1[91]=b(1)+17
|
|
1090
|
+
//co = subst(co,b(1),1);
|
|
1091
|
+
|
|
1092
|
+
int aa=timer;
|
|
1093
|
+
list pr=noSolution(co);
|
|
1094
|
+
timer-aa;
|
|
1095
|
+
|
|
1096
|
+
|
|
1097
|
+
//n=1 0 sec
|
|
1098
|
+
// keine Primzahl
|
|
1099
|
+
//n=2 628 sec
|
|
1100
|
+
// 2,3,5,7,11,13,17,19,23,29,31,37,43,47,61,89,293,347,367,487,491,3463,7498
|
|
1101
|
+
//n=3 1604 sec
|
|
1102
|
+
// 2,3,5,7,11,13,17,19,23,29,31,59,71,79,101,163,197,211,269,281,541,647,863,
|
|
1103
|
+
// 7129,9041,10343,18413,20857
|
|
1104
|
+
//n=4 8296 sec
|
|
1105
|
+
// 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,61,67,71,73,83,89,101,109,127,
|
|
1106
|
+
131,149,151,157,163,167,173,179,193,199,211,223,229,251,263,283,307,313,331,
|
|
1107
|
+
347,373,401,601,607,631,643,701,719,727,829,857,887,971,1279,1361,1453,1721,
|
|
1108
|
+
1847,2003,2069,2213,2671,2693,3299,3373,3391,3517,3593,3701,3779,4111,4409,
|
|
1109
|
+
4423,4561,4657,4793,5273,5399,5659,5987,6949,7487,8011,8243,8887,9769,10159,
|
|
1110
|
+
10177,12007,26347
|
|
1111
|
+
//n=5 4715 sec
|
|
1112
|
+
// 2,3,5,7,11,13,17,19,23,31,41,43,61,283,421,631,1609
|
|
1113
|
+
//n=6 18317 sec
|
|
1114
|
+
// 2,3,5,7,11,13,17,19,29,31,37,41,47,61,71,73,79,89,97,127,131,173,181,223,
|
|
1115
|
+
// 269,953,1039,6151,6343,7823
|
|
1116
|
+
|
|
1117
|
+
|
|
1118
|
+
//fuer das andere Wort
|
|
1119
|
+
//n=1 keine Primzahl
|
|
1120
|
+
//n=2 2,3,7,109
|
|
1121
|
+
//n=3 2,3,5,7,11,13,19,29,31,41,43,47,89,139,149,167,173,991,1381,1637,27367
|
|
1122
|
+
|
|
1123
|
+
*/
|