passagemath-singular 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-gnu.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +491 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-20aec911.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-21acf0c6.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-fcee31da.4.1.so +0 -0
- passagemath_singular.libs/libflint-66e12231.so.21.0.0 +0 -0
- passagemath_singular.libs/libgf2x-a4cdec90.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-6e109695.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-82690d50.so.6.2.1 +0 -0
- passagemath_singular.libs/libntl-e6f0d543.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-5c9e866e.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-5c0a87e0.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-ea270e21.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-a1aafc6d.4.1.so +0 -0
- passagemath_singular.libs/libtinfo-ceb117d9.so.6.3 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1000 @@
|
|
|
1
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version nfmodstd.lib 4.4.0.6 Oct_2024 "; // $Id: afbfa7db6535520f7a9b9fbb1bae94194bfcf565 $
|
|
3
|
+
category="Commutative Algebra";
|
|
4
|
+
info="
|
|
5
|
+
|
|
6
|
+
LIBRARY: nfmodstd.lib Groebner bases of ideals in polynomial rings
|
|
7
|
+
over algebraic number fields
|
|
8
|
+
AUTHORS: D.K. Boku boku@mathematik.uni-kl.de
|
|
9
|
+
@* W. Decker decker@mathematik.uni-kl.de
|
|
10
|
+
@* C. Fieker fieker@mathematik.uni-kl.de
|
|
11
|
+
|
|
12
|
+
OVERVIEW:
|
|
13
|
+
A library for computing the Groebner basis of an ideal in the polynomial
|
|
14
|
+
ring over an algebraic number field Q(t) using the modular methods, where t is
|
|
15
|
+
algebraic over the field of rational numbers Q. For the case Q(t) = Q, the
|
|
16
|
+
procedure is inspired by Arnold [1]. This idea is then extended to the case
|
|
17
|
+
t not in Q using factorization as follows:
|
|
18
|
+
Let f be the minimal polynomial of t.
|
|
19
|
+
For I, I' ideals in Q(t)[X], Q[X,t]/<f> respectively, we map I to I' via the
|
|
20
|
+
map sending t to t + <f>. We first choose a prime p such that f has at least
|
|
21
|
+
two factors in characteristic p and add each factor f_i to I' to obtain the
|
|
22
|
+
ideal J'_i = I' + <f_i>. We then compute a standard basis G'_i of J'_i for each
|
|
23
|
+
i and combine the G'_i to G_p (a standard basis of I'_p) using chinese remaindering
|
|
24
|
+
for polynomials. The procedure is repeated for many primes p, where we compute the
|
|
25
|
+
G_p in parallel until the number of primes is sufficiently large to recover the
|
|
26
|
+
correct standard basis G' of I'. Finally, by mapping G' back to Q(t)[X], a standard
|
|
27
|
+
basis G of I is obtained.
|
|
28
|
+
@*The procedure also works if the input is a module. For this, we consider the
|
|
29
|
+
rings A = Q(t)[X] and A' = (Q[t]/<f>)[X]. For submodules I, I' in A^m, A'^m,
|
|
30
|
+
respectively, we map I to I' via the map sending t to t + <f>. As above, we first
|
|
31
|
+
choose a prime p such that f has at least two factors in characteristic p. For each
|
|
32
|
+
factor f_{i,p} of f_p := (f mod p), we set I'_{i,p} := (I'_p mod f_{i,p}). We then
|
|
33
|
+
compute a standard basis G'_i of I'_{i,p} over F_p[t]/<f_{i,p}> for each i and
|
|
34
|
+
combine the G'_i to G_p (a standard basis of I'_p) using chinese remaindering for
|
|
35
|
+
polynomials. The procedure is repeated for many primes p as described above and we
|
|
36
|
+
finally obtain a standard basis of I.
|
|
37
|
+
|
|
38
|
+
REFERENCES:
|
|
39
|
+
[1] E. A. Arnold: Modular algorithms for computing Groebner bases.
|
|
40
|
+
J. Symb. Comp. 35, 403-419 (2003).
|
|
41
|
+
|
|
42
|
+
PROCEDURES:
|
|
43
|
+
chinrempoly(l,m); chinese remaindering for polynomials
|
|
44
|
+
nfmodStd(I); standard basis of I over algebraic number field using modular
|
|
45
|
+
methods
|
|
46
|
+
";
|
|
47
|
+
|
|
48
|
+
LIB "modstd.lib";
|
|
49
|
+
|
|
50
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
51
|
+
|
|
52
|
+
static proc testPrime(int p, list L)
|
|
53
|
+
{
|
|
54
|
+
/*
|
|
55
|
+
* test whether a prime p divides the denominator(s)
|
|
56
|
+
* and leading coefficients of generating set of ideal
|
|
57
|
+
*/
|
|
58
|
+
int i,j,k, tmp;
|
|
59
|
+
def f;
|
|
60
|
+
def I = L[1]; // list L = def I
|
|
61
|
+
number num;
|
|
62
|
+
bigint d1,d2,d3;
|
|
63
|
+
if(typeof(I)=="ideal")
|
|
64
|
+
{
|
|
65
|
+
tmp=1;
|
|
66
|
+
}
|
|
67
|
+
for(i = 1; i <= ncols(I); i++)
|
|
68
|
+
{
|
|
69
|
+
f = cleardenom(I[i]);
|
|
70
|
+
if(f == 0)
|
|
71
|
+
{
|
|
72
|
+
return(0);
|
|
73
|
+
}
|
|
74
|
+
num = leadcoef(I[i])/leadcoef(f);
|
|
75
|
+
d1 = bigint(numerator(num));
|
|
76
|
+
d2 = bigint(denominator(num));
|
|
77
|
+
if( (d1 mod p) == 0)
|
|
78
|
+
{
|
|
79
|
+
return(0);
|
|
80
|
+
}
|
|
81
|
+
if((d2 mod p) == 0)
|
|
82
|
+
{
|
|
83
|
+
return(0);
|
|
84
|
+
}
|
|
85
|
+
if(tmp)
|
|
86
|
+
{
|
|
87
|
+
for(j = size(f); j > 0; j--)
|
|
88
|
+
{
|
|
89
|
+
d3 = bigint(leadcoef(f[j]));
|
|
90
|
+
if( (d3 mod p) == 0)
|
|
91
|
+
{
|
|
92
|
+
return(0);
|
|
93
|
+
}
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
else
|
|
97
|
+
{
|
|
98
|
+
for(j = nrows(f); j > 0; j--)
|
|
99
|
+
{
|
|
100
|
+
for(k=1;k<=size(f[j]);k++)
|
|
101
|
+
{
|
|
102
|
+
d3 = bigint(leadcoef(f[j][k]));
|
|
103
|
+
if((d3 mod p) == 0)
|
|
104
|
+
{
|
|
105
|
+
return(0);
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
}
|
|
112
|
+
return(1);
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
116
|
+
/* return 1 if the number of factors are in the required bound , 0 else */
|
|
117
|
+
|
|
118
|
+
static proc minpolyTask(poly f,int p)
|
|
119
|
+
{
|
|
120
|
+
/*
|
|
121
|
+
* bound for irreducible factor(s) of (f mod p)
|
|
122
|
+
* see testfact()
|
|
123
|
+
*/
|
|
124
|
+
int nr,k,ur;
|
|
125
|
+
ur=deg(f);
|
|
126
|
+
list L=factmodp(f,p);
|
|
127
|
+
if(degtest(L[2])==1)
|
|
128
|
+
{
|
|
129
|
+
// now each factor is squarefree
|
|
130
|
+
if(ur<=3)
|
|
131
|
+
{
|
|
132
|
+
return(1);
|
|
133
|
+
}
|
|
134
|
+
else
|
|
135
|
+
{
|
|
136
|
+
nr = testfact(ur);
|
|
137
|
+
k=ncols(L[1]);
|
|
138
|
+
if(nr < k && k < (ur-nr))// set a bound for k
|
|
139
|
+
{
|
|
140
|
+
return(1);
|
|
141
|
+
}
|
|
142
|
+
}
|
|
143
|
+
}
|
|
144
|
+
return(0);
|
|
145
|
+
}
|
|
146
|
+
|
|
147
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
148
|
+
/* return 1 if both testPrime(p,J) and minpolyTask(f,p) is true, 0 else */
|
|
149
|
+
|
|
150
|
+
static proc PrimeTestTask(int p, list L)
|
|
151
|
+
{
|
|
152
|
+
/* L=list(I), I=J,f; J ideal , f minpoly */
|
|
153
|
+
int sz,nr;
|
|
154
|
+
def J=L[1];
|
|
155
|
+
sz=ncols(J);
|
|
156
|
+
def f=J[sz];
|
|
157
|
+
poly g;
|
|
158
|
+
if(typeof(f)=="vector")
|
|
159
|
+
{
|
|
160
|
+
g = f[1];
|
|
161
|
+
}
|
|
162
|
+
else
|
|
163
|
+
{
|
|
164
|
+
g = f;
|
|
165
|
+
}
|
|
166
|
+
if(!testPrime(p,list(J)) or !minpolyTask(g,p))
|
|
167
|
+
{
|
|
168
|
+
return(0);
|
|
169
|
+
}
|
|
170
|
+
return(1);
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
174
|
+
/* compute factors of f mod p with multiplicity */
|
|
175
|
+
|
|
176
|
+
static proc factmodp(poly f, int p)
|
|
177
|
+
{
|
|
178
|
+
def R=basering;
|
|
179
|
+
list l=ringlist(R);
|
|
180
|
+
l[1]=p;
|
|
181
|
+
def S=ring(l);
|
|
182
|
+
setring S;
|
|
183
|
+
list L=factorize(imap(R,f),2);
|
|
184
|
+
ideal J=L[1];
|
|
185
|
+
intvec v=L[2];
|
|
186
|
+
list scx=J,v;
|
|
187
|
+
setring R;
|
|
188
|
+
return(imap(S,scx));
|
|
189
|
+
kill S;
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
193
|
+
/* set a bound for number of factors w.r.t degree nr*/
|
|
194
|
+
|
|
195
|
+
static proc testfact(int nr)
|
|
196
|
+
{
|
|
197
|
+
// nr must be greater than 3
|
|
198
|
+
int i;
|
|
199
|
+
if(nr>3 and nr<=5)
|
|
200
|
+
{
|
|
201
|
+
i=1;
|
|
202
|
+
}
|
|
203
|
+
if(nr>5 and nr<=10)
|
|
204
|
+
{
|
|
205
|
+
i=2;
|
|
206
|
+
}
|
|
207
|
+
if(nr>10 and nr<=15)
|
|
208
|
+
{
|
|
209
|
+
i=3;
|
|
210
|
+
}
|
|
211
|
+
if(nr>15 and nr<=20)
|
|
212
|
+
{
|
|
213
|
+
i=4;
|
|
214
|
+
}
|
|
215
|
+
if(nr>20 and nr<=25)
|
|
216
|
+
{
|
|
217
|
+
i=5;
|
|
218
|
+
}
|
|
219
|
+
if(nr>25 and nr<=30)
|
|
220
|
+
{
|
|
221
|
+
i=6;
|
|
222
|
+
}
|
|
223
|
+
if(nr>30)
|
|
224
|
+
{
|
|
225
|
+
i=10;
|
|
226
|
+
}
|
|
227
|
+
return(i);
|
|
228
|
+
}
|
|
229
|
+
|
|
230
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
231
|
+
// return 1 if v[i]>1 , 0 else
|
|
232
|
+
|
|
233
|
+
static proc degtest(intvec v)
|
|
234
|
+
{
|
|
235
|
+
for(int j=1;j<=nrows(v);j++)
|
|
236
|
+
{
|
|
237
|
+
if(v[j]>1)
|
|
238
|
+
{
|
|
239
|
+
return(0);
|
|
240
|
+
}
|
|
241
|
+
}
|
|
242
|
+
return(1);
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
246
|
+
|
|
247
|
+
static proc chinRm(list m, list ll, list lk,list l1,int uz)
|
|
248
|
+
{
|
|
249
|
+
if(typeof(l1[1])=="ideal" or typeof(l1[1])=="poly")
|
|
250
|
+
{
|
|
251
|
+
poly ff,c;
|
|
252
|
+
for(int i=1;i<=uz;i++)
|
|
253
|
+
{
|
|
254
|
+
c = division(l1[i]*ll[i],m[i])[2][1];
|
|
255
|
+
ff = ff + c*lk[i];
|
|
256
|
+
}
|
|
257
|
+
return(ff);
|
|
258
|
+
}
|
|
259
|
+
else
|
|
260
|
+
{
|
|
261
|
+
vector ff,c;
|
|
262
|
+
for(int i=1;i<=uz;i++)
|
|
263
|
+
{
|
|
264
|
+
c = vector(m[i]);
|
|
265
|
+
attrib(c,"isSB",1);
|
|
266
|
+
ff = ff + (reduce(l1[i]*ll[i],c))*lk[i];
|
|
267
|
+
}
|
|
268
|
+
return(ff);
|
|
269
|
+
}
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
273
|
+
|
|
274
|
+
proc chinrempoly(list l,list m)
|
|
275
|
+
"USAGE: chinrempoly(l, m); l list, m list
|
|
276
|
+
RETURN: a polynomial (resp. ideal/module) which is congruent to l[i] modulo m[i]
|
|
277
|
+
for all i
|
|
278
|
+
NOTE: The procedure applies chinese remaindering to the first argument w.r.t. the
|
|
279
|
+
moduli given in the second. The elements in the first list must be of the same
|
|
280
|
+
type which can be polynomial, ideal, or module. The moduli must be of type
|
|
281
|
+
polynomial. The elements in the second list must be distinct and co-prime.
|
|
282
|
+
SEE ALSO: chinrem
|
|
283
|
+
EXAMPLE: example chinrempoly; shows an example
|
|
284
|
+
"
|
|
285
|
+
{
|
|
286
|
+
int i,j,sz,uz, tmp;
|
|
287
|
+
uz = size(l);
|
|
288
|
+
if(typeof(l[1])=="ideal" or typeof(l[1])=="poly")
|
|
289
|
+
{
|
|
290
|
+
sz = ncols(ideal(l[1]));
|
|
291
|
+
tmp = 1;
|
|
292
|
+
}
|
|
293
|
+
else
|
|
294
|
+
{
|
|
295
|
+
sz = ncols(module(l[1]));
|
|
296
|
+
}
|
|
297
|
+
poly f=1;
|
|
298
|
+
for(i=1;i<=uz;i++)
|
|
299
|
+
{
|
|
300
|
+
f=f*m[i];
|
|
301
|
+
}
|
|
302
|
+
|
|
303
|
+
list l1,ll,lk,l2;
|
|
304
|
+
poly c,ff;
|
|
305
|
+
for(j=1;j<=uz;j++)
|
|
306
|
+
{
|
|
307
|
+
lk[j]=f/m[j];
|
|
308
|
+
ll[j]=extgcd(lk[j],m[j])[2];
|
|
309
|
+
}
|
|
310
|
+
|
|
311
|
+
if(tmp)
|
|
312
|
+
{
|
|
313
|
+
ideal I,J;
|
|
314
|
+
for(i=1;i<=sz;i++)
|
|
315
|
+
{
|
|
316
|
+
for(j=1;j<=uz;j++)
|
|
317
|
+
{
|
|
318
|
+
I = l[j];
|
|
319
|
+
l1[j] = I[i];
|
|
320
|
+
}
|
|
321
|
+
J[i] = chinRm(m,ll,lk,l1,uz);
|
|
322
|
+
}
|
|
323
|
+
return(J);
|
|
324
|
+
}
|
|
325
|
+
else
|
|
326
|
+
{
|
|
327
|
+
module I,J;
|
|
328
|
+
for(i=1;i<=sz;i++)
|
|
329
|
+
{
|
|
330
|
+
for(j=1;j<=uz;j++)
|
|
331
|
+
{
|
|
332
|
+
I = l[j];
|
|
333
|
+
l1[j] = I[i];
|
|
334
|
+
}
|
|
335
|
+
J[i] = chinRm(m,ll,lk,l1,uz);
|
|
336
|
+
}
|
|
337
|
+
return(J);
|
|
338
|
+
}
|
|
339
|
+
}
|
|
340
|
+
example
|
|
341
|
+
{ "EXAMPLE:"; echo = 2;
|
|
342
|
+
ring rr=97,x,dp;
|
|
343
|
+
poly f=x^7-7*x + 3;
|
|
344
|
+
ideal J=factorize(f,1);
|
|
345
|
+
J;
|
|
346
|
+
list m=J[1..ncols(J)];
|
|
347
|
+
list l= x^2+2*x+3, x^2+5, x^2+7;
|
|
348
|
+
ideal I=chinrempoly(l,m);
|
|
349
|
+
I;
|
|
350
|
+
ring s=0,x,dp;
|
|
351
|
+
list m= x^2+2*x+3, x^3+5, x^4+x^3+7;
|
|
352
|
+
list l=x^3 + 2, x^4 + 7, x^5 + 11;
|
|
353
|
+
ideal I=chinrempoly(l,m);
|
|
354
|
+
I;
|
|
355
|
+
int p=prime(536546513);
|
|
356
|
+
ring r = p, (x,y,a), (dp(2),dp(1));
|
|
357
|
+
poly minpolynomial = a^2+1;
|
|
358
|
+
ideal kf=factorize(minpolynomial,1); //return factors without multiplicity
|
|
359
|
+
kf;
|
|
360
|
+
ideal k=(a+1)*x2+y, 3x-ay+ a+2;
|
|
361
|
+
option(redSB);
|
|
362
|
+
ideal k1=k,kf[1];
|
|
363
|
+
ideal k2 =k,kf[2];
|
|
364
|
+
k1=std(k1);
|
|
365
|
+
k2=std(k2);
|
|
366
|
+
list l=k1,k2;
|
|
367
|
+
list m=kf[1..ncols(kf)];
|
|
368
|
+
ideal I=chinrempoly(l,m);
|
|
369
|
+
I=simplify(I,2);
|
|
370
|
+
I;
|
|
371
|
+
l = module(k1[2..ncols(k1)]), module(k2[2..ncols(k2)]);
|
|
372
|
+
module M = chinrempoly(l,m);
|
|
373
|
+
M;
|
|
374
|
+
}
|
|
375
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
376
|
+
|
|
377
|
+
static proc check_leadmonom_and_size(list L)
|
|
378
|
+
{
|
|
379
|
+
/*
|
|
380
|
+
* compare the size of ideals in the list and
|
|
381
|
+
* check the corresponding leading monomials
|
|
382
|
+
* size(L)>=2
|
|
383
|
+
*/
|
|
384
|
+
def J=L[1];
|
|
385
|
+
int i=size(L);
|
|
386
|
+
int sc=ncols(J);
|
|
387
|
+
int j,k;
|
|
388
|
+
def g=leadmonom(J[1]);
|
|
389
|
+
for(j=1;j<=i;j++)
|
|
390
|
+
{
|
|
391
|
+
if(ncols(L[j])!=sc)
|
|
392
|
+
{
|
|
393
|
+
return(0);
|
|
394
|
+
}
|
|
395
|
+
}
|
|
396
|
+
for(k=2;k<=i;k++)
|
|
397
|
+
{
|
|
398
|
+
for(j=1;j<=sc;j++)
|
|
399
|
+
{
|
|
400
|
+
if(leadmonom(J[j])!=leadmonom(L[k][j]))
|
|
401
|
+
{
|
|
402
|
+
return(0);
|
|
403
|
+
}
|
|
404
|
+
}
|
|
405
|
+
}
|
|
406
|
+
return(1);
|
|
407
|
+
}
|
|
408
|
+
|
|
409
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
410
|
+
|
|
411
|
+
static proc LiftPolyCRT(def I)
|
|
412
|
+
{
|
|
413
|
+
/*
|
|
414
|
+
* compute std for each factor and combine this result
|
|
415
|
+
* to modulo minpoly via CRT for poly over char p>0
|
|
416
|
+
*/
|
|
417
|
+
def sl;
|
|
418
|
+
int u,in,j;
|
|
419
|
+
list LL,Lk,T2;
|
|
420
|
+
if(typeof(I)=="ideal")
|
|
421
|
+
{
|
|
422
|
+
|
|
423
|
+
ideal J,K,II;
|
|
424
|
+
poly f;
|
|
425
|
+
u=ncols(I);
|
|
426
|
+
J=I[1..u-1];
|
|
427
|
+
f=I[u];
|
|
428
|
+
K=factorize(f,1);
|
|
429
|
+
in=ncols(K);
|
|
430
|
+
for(j=1;j<=in;j++)
|
|
431
|
+
{
|
|
432
|
+
LL[j]=K[j];
|
|
433
|
+
ideal I(j)=J,K[j];
|
|
434
|
+
I(j)=std(I(j));
|
|
435
|
+
if(size(I(j))==1)
|
|
436
|
+
{
|
|
437
|
+
Lk[j]=I(j);
|
|
438
|
+
}
|
|
439
|
+
else
|
|
440
|
+
{
|
|
441
|
+
I(j)[1]=0;
|
|
442
|
+
I(j)=simplify(I(j), 2);
|
|
443
|
+
Lk[j]=I(j);
|
|
444
|
+
}
|
|
445
|
+
}
|
|
446
|
+
if(check_leadmonom_and_size(Lk))
|
|
447
|
+
{
|
|
448
|
+
// apply CRT for polynomials
|
|
449
|
+
II =chinrempoly(Lk,LL),f;
|
|
450
|
+
}
|
|
451
|
+
else
|
|
452
|
+
{
|
|
453
|
+
II=0;
|
|
454
|
+
}
|
|
455
|
+
return(II);
|
|
456
|
+
}
|
|
457
|
+
else
|
|
458
|
+
{
|
|
459
|
+
module J,II;
|
|
460
|
+
vector f;
|
|
461
|
+
u=ncols(I);
|
|
462
|
+
J=I[1..u-1];
|
|
463
|
+
f=I[u];
|
|
464
|
+
poly ff = f[1];
|
|
465
|
+
ideal K=factorize(ff,1);
|
|
466
|
+
in=ncols(K);
|
|
467
|
+
def Ls = basering;
|
|
468
|
+
list l = ringlist(Ls);
|
|
469
|
+
if(l[3][1][1]=="c")
|
|
470
|
+
{
|
|
471
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
472
|
+
list(list(l[3][size(l[3])]))+list(ideal(0));
|
|
473
|
+
l[2] = delete(l[2],size(l[2]));
|
|
474
|
+
l[3] = delete(l[3],size(l[3]));
|
|
475
|
+
}
|
|
476
|
+
else
|
|
477
|
+
{
|
|
478
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
479
|
+
list(list(l[3][size(l[3])-1]))+list(ideal(0));
|
|
480
|
+
l[2] = delete(l[2],size(l[2]));
|
|
481
|
+
l[3] = delete(l[3],size(l[3])-1);
|
|
482
|
+
}
|
|
483
|
+
|
|
484
|
+
def S1 = ring(l);
|
|
485
|
+
setring S1;
|
|
486
|
+
number Num= number(imap(Ls,ff));
|
|
487
|
+
list l = ringlist(S1);
|
|
488
|
+
l[1][4][1] = Num;
|
|
489
|
+
S1 = ring(l);
|
|
490
|
+
setring S1;
|
|
491
|
+
ideal K = imap(Ls,K);
|
|
492
|
+
def S2;
|
|
493
|
+
module II;
|
|
494
|
+
number Num;
|
|
495
|
+
/* ++++++ if minpoly is irreducible then K will be the zero ideal +++ */
|
|
496
|
+
if(size(K)==0)
|
|
497
|
+
{
|
|
498
|
+
module M = std(imap(Ls,J));
|
|
499
|
+
if(size(M)==1 && M[1]==[1])
|
|
500
|
+
{
|
|
501
|
+
setring Ls;
|
|
502
|
+
return(module([1]));
|
|
503
|
+
}
|
|
504
|
+
II = normalize(M);
|
|
505
|
+
}
|
|
506
|
+
else
|
|
507
|
+
{
|
|
508
|
+
for(j=1;j<=in;j++)
|
|
509
|
+
{
|
|
510
|
+
LL[j]=K[j];
|
|
511
|
+
Num = number(K[j]);
|
|
512
|
+
T2 = ringlist(S1);
|
|
513
|
+
T2[1][4][1] = Num;
|
|
514
|
+
S2 = ring(T2);
|
|
515
|
+
setring S2;
|
|
516
|
+
module M = std(imap(Ls,J));
|
|
517
|
+
if(size(M)== 1 && M[1]==[1])
|
|
518
|
+
{
|
|
519
|
+
setring Ls;
|
|
520
|
+
return(module([1]));
|
|
521
|
+
}
|
|
522
|
+
setring S1;
|
|
523
|
+
Lk[j]= imap(S2,M);
|
|
524
|
+
}
|
|
525
|
+
|
|
526
|
+
if(check_leadmonom_and_size(Lk))
|
|
527
|
+
{
|
|
528
|
+
// apply CRT for polynomials
|
|
529
|
+
setring Ls;
|
|
530
|
+
II =chinrempoly(imap(S1,Lk),imap(S1,LL));
|
|
531
|
+
setring S1;
|
|
532
|
+
II = normalize(imap(Ls,II));
|
|
533
|
+
}
|
|
534
|
+
else
|
|
535
|
+
{
|
|
536
|
+
setring S1;
|
|
537
|
+
II=[0];
|
|
538
|
+
}
|
|
539
|
+
}
|
|
540
|
+
setring Ls;
|
|
541
|
+
return(imap(S1,II));
|
|
542
|
+
}
|
|
543
|
+
}
|
|
544
|
+
|
|
545
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
546
|
+
|
|
547
|
+
/* test if 'result' is a GB of the input ideal */
|
|
548
|
+
static proc final_Test_minpolyzero(string command, alias list args, module result)
|
|
549
|
+
{
|
|
550
|
+
int i;
|
|
551
|
+
list arg = args;
|
|
552
|
+
attrib(result, "isSB", 1);
|
|
553
|
+
for (i = ncols(args[1]); i > 0; i--)
|
|
554
|
+
{
|
|
555
|
+
if (reduce(args[1][i], result, 5) != 0)
|
|
556
|
+
{
|
|
557
|
+
return(0);
|
|
558
|
+
}
|
|
559
|
+
}
|
|
560
|
+
/* test if result is a GB */
|
|
561
|
+
module G = std(result);
|
|
562
|
+
if (size(reduce(G, result,5))!=0) //Modstd::reduce_parallel(G, result)
|
|
563
|
+
{
|
|
564
|
+
return(0);
|
|
565
|
+
}
|
|
566
|
+
return(1);
|
|
567
|
+
}
|
|
568
|
+
|
|
569
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
570
|
+
|
|
571
|
+
/* test if 'result' is a GB of the input ideal */
|
|
572
|
+
static proc final_Test(string command, alias list args, def result)
|
|
573
|
+
{
|
|
574
|
+
int i;
|
|
575
|
+
list arg = args;
|
|
576
|
+
// modified for module case
|
|
577
|
+
if(typeof(args[1])=="ideal")
|
|
578
|
+
{
|
|
579
|
+
/* test if args[1] is in result */
|
|
580
|
+
attrib(result, "isSB", 1);
|
|
581
|
+
for (i = ncols(args[1]); i > 0; i--)
|
|
582
|
+
{
|
|
583
|
+
if (reduce(args[1][i], result, 5) != 0)
|
|
584
|
+
{
|
|
585
|
+
return(0);
|
|
586
|
+
}
|
|
587
|
+
}
|
|
588
|
+
|
|
589
|
+
/* test if result is a GB */
|
|
590
|
+
ideal G = std(result);
|
|
591
|
+
if (size(reduce(G, result,5))!=0) //Modstd::reduce_parallel(G, result)
|
|
592
|
+
{
|
|
593
|
+
return(0);
|
|
594
|
+
}
|
|
595
|
+
return(1);
|
|
596
|
+
}
|
|
597
|
+
else
|
|
598
|
+
{
|
|
599
|
+
/* test if args[1] is in result */
|
|
600
|
+
def Ls = basering;
|
|
601
|
+
list l = ringlist(Ls);
|
|
602
|
+
if(l[3][1][1]=="c")
|
|
603
|
+
{
|
|
604
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
605
|
+
list(list(l[3][size(l[3])]))+list(ideal(0));
|
|
606
|
+
l[2] = delete(l[2],size(l[2]));
|
|
607
|
+
l[3] = delete(l[3],size(l[3]));
|
|
608
|
+
}
|
|
609
|
+
else
|
|
610
|
+
{
|
|
611
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
612
|
+
list(list(l[3][size(l[3])-1]))+list(ideal(0));
|
|
613
|
+
l[2] = delete(l[2],size(l[2]));
|
|
614
|
+
l[3] = delete(l[3],size(l[3])-1);
|
|
615
|
+
}
|
|
616
|
+
def sL = ring(l);
|
|
617
|
+
kill l;
|
|
618
|
+
setring sL;
|
|
619
|
+
list arg = imap(Ls,arg);
|
|
620
|
+
module arg_s =arg[1];
|
|
621
|
+
list l = ringlist(sL);
|
|
622
|
+
l[1][4][1] = arg_s[ncols(arg_s)][1];
|
|
623
|
+
arg_s = arg_s[1..ncols(arg_s)-1];
|
|
624
|
+
def cL = ring(l);
|
|
625
|
+
setring cL;
|
|
626
|
+
module ar_gs = imap(sL,arg_s);
|
|
627
|
+
def Result = imap(Ls,result);
|
|
628
|
+
attrib(Result, "isSB", 1);
|
|
629
|
+
for (i = ncols(ar_gs); i > 0; i--)
|
|
630
|
+
{
|
|
631
|
+
if (reduce(ar_gs[i], Result, 5) != 0)
|
|
632
|
+
{
|
|
633
|
+
setring Ls;
|
|
634
|
+
return(0);
|
|
635
|
+
}
|
|
636
|
+
}
|
|
637
|
+
// test if result is a GB
|
|
638
|
+
module G = std(Result);
|
|
639
|
+
if (size(reduce(G,Result,5))!=0) //Modstd::reduce_parallel(G, Result)
|
|
640
|
+
{
|
|
641
|
+
setring Ls;
|
|
642
|
+
return(0);
|
|
643
|
+
}
|
|
644
|
+
setring Ls;
|
|
645
|
+
return(1);
|
|
646
|
+
}
|
|
647
|
+
}
|
|
648
|
+
|
|
649
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
650
|
+
|
|
651
|
+
static proc PtestStd_minpolyzero(string command, list args, module result, int p)
|
|
652
|
+
{
|
|
653
|
+
/*
|
|
654
|
+
* let G be std of I which is not yet known whether it is the correct
|
|
655
|
+
* standard basis. So this procedure does the first test
|
|
656
|
+
*/
|
|
657
|
+
def br = basering;
|
|
658
|
+
list lbr = ringlist(br);
|
|
659
|
+
if (typeof(lbr[1]) == "int")
|
|
660
|
+
{
|
|
661
|
+
lbr[1] = p;
|
|
662
|
+
}
|
|
663
|
+
else
|
|
664
|
+
{
|
|
665
|
+
lbr[1][1] = p;
|
|
666
|
+
}
|
|
667
|
+
def rp = ring(lbr);
|
|
668
|
+
setring(rp);
|
|
669
|
+
module Ip = imap(br, args)[1];
|
|
670
|
+
int i;
|
|
671
|
+
module Gp = imap(br, result);
|
|
672
|
+
attrib(Gp, "isSB", 1);
|
|
673
|
+
for (i = ncols(Ip); i > 0; i--)
|
|
674
|
+
{
|
|
675
|
+
if (reduce(Ip[i], Gp, 5) != 0)
|
|
676
|
+
{
|
|
677
|
+
setring(br);
|
|
678
|
+
return(0);
|
|
679
|
+
}
|
|
680
|
+
}
|
|
681
|
+
Ip = std(Ip);
|
|
682
|
+
attrib(Ip,"isSB",1);
|
|
683
|
+
for (i = ncols(Gp); i > 0; i--)
|
|
684
|
+
{
|
|
685
|
+
if (reduce(Gp[i], Ip, 5) != 0)
|
|
686
|
+
{
|
|
687
|
+
setring(br);
|
|
688
|
+
return(0);
|
|
689
|
+
}
|
|
690
|
+
}
|
|
691
|
+
setring(br);
|
|
692
|
+
return(1);
|
|
693
|
+
}
|
|
694
|
+
|
|
695
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
696
|
+
|
|
697
|
+
static proc PtestStd(string command, list args, def result, int p)
|
|
698
|
+
{
|
|
699
|
+
/*
|
|
700
|
+
* let G be std of I which is not yet known whether it is the correct
|
|
701
|
+
* standard basis. So this procedure does the first test
|
|
702
|
+
*/
|
|
703
|
+
def br = basering;
|
|
704
|
+
|
|
705
|
+
list lbr = ringlist(br);
|
|
706
|
+
if (typeof(lbr[1]) == "int")
|
|
707
|
+
{
|
|
708
|
+
lbr[1] = p;
|
|
709
|
+
}
|
|
710
|
+
else
|
|
711
|
+
{
|
|
712
|
+
lbr[1][1] = p;
|
|
713
|
+
}
|
|
714
|
+
def rp = ring(lbr);
|
|
715
|
+
setring(rp);
|
|
716
|
+
def Ip = imap(br, args)[1];
|
|
717
|
+
|
|
718
|
+
int u,in,j,i;
|
|
719
|
+
list LL,Lk,T2;
|
|
720
|
+
if(typeof(Ip)!="ideal")
|
|
721
|
+
{
|
|
722
|
+
module J,II;
|
|
723
|
+
vector f;
|
|
724
|
+
u=ncols(Ip);
|
|
725
|
+
J=Ip[1..u-1];
|
|
726
|
+
f=Ip[u];
|
|
727
|
+
poly ff = f[1];
|
|
728
|
+
ideal K=factorize(ff,1);
|
|
729
|
+
in=ncols(K);
|
|
730
|
+
def Ls = basering;
|
|
731
|
+
list l = ringlist(Ls);
|
|
732
|
+
if(l[3][1][1]=="c")
|
|
733
|
+
{
|
|
734
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
735
|
+
list(list(l[3][size(l[3])]))+list(ideal(0));
|
|
736
|
+
l[2] = delete(l[2],size(l[2]));
|
|
737
|
+
l[3] = delete(l[3],size(l[3]));
|
|
738
|
+
}
|
|
739
|
+
else
|
|
740
|
+
{
|
|
741
|
+
l[1] = list(l[1]) + list(list(l[2][size(l[2])])) +
|
|
742
|
+
list(list(l[3][size(l[3])-1]))+list(ideal(0));
|
|
743
|
+
l[2] = delete(l[2],size(l[2]));
|
|
744
|
+
l[3] = delete(l[3],size(l[3])-1);
|
|
745
|
+
}
|
|
746
|
+
def S1 = ring(l);
|
|
747
|
+
setring S1;
|
|
748
|
+
number Num= number(imap(Ls,ff));
|
|
749
|
+
list l = ringlist(S1);
|
|
750
|
+
l[1][4][1] = Num;
|
|
751
|
+
S1 = ring(l);
|
|
752
|
+
setring S1;
|
|
753
|
+
ideal K = imap(Ls,K);
|
|
754
|
+
module Jp = imap(Ls,J);
|
|
755
|
+
def S2;
|
|
756
|
+
module Ip;
|
|
757
|
+
number Num;
|
|
758
|
+
/* ++++++ if the minpoly is irreducible then K = ideal(0) +++ */
|
|
759
|
+
if(size(K)==0)
|
|
760
|
+
{
|
|
761
|
+
module M = std(Jp);
|
|
762
|
+
Ip = normalize(M);
|
|
763
|
+
}
|
|
764
|
+
else
|
|
765
|
+
{
|
|
766
|
+
for(j=1;j<=ncols(K);j++)
|
|
767
|
+
{
|
|
768
|
+
LL[j]=K[j];
|
|
769
|
+
Num = number(K[j]);
|
|
770
|
+
T2 = ringlist(S1);
|
|
771
|
+
T2[1][4][1] = Num;
|
|
772
|
+
S2 = ring(T2);
|
|
773
|
+
setring S2;
|
|
774
|
+
module M = std(imap(Ls,J));
|
|
775
|
+
setring S1;
|
|
776
|
+
Lk[j]= imap(S2,M);
|
|
777
|
+
}
|
|
778
|
+
if(check_leadmonom_and_size(Lk))
|
|
779
|
+
{
|
|
780
|
+
// apply CRT for polynomials
|
|
781
|
+
setring Ls;
|
|
782
|
+
II =chinrempoly(imap(S1,Lk),imap(S1,LL));
|
|
783
|
+
setring S1;
|
|
784
|
+
Ip = normalize(imap(Ls,II));
|
|
785
|
+
}
|
|
786
|
+
else
|
|
787
|
+
{
|
|
788
|
+
setring S1;
|
|
789
|
+
Ip=[0];
|
|
790
|
+
}
|
|
791
|
+
}
|
|
792
|
+
setring S1;
|
|
793
|
+
module Gp = imap(br, result);
|
|
794
|
+
attrib(Gp, "isSB", 1);
|
|
795
|
+
for (i = ncols(Jp); i > 0; i--)
|
|
796
|
+
{
|
|
797
|
+
if (reduce(Jp[i], Gp, 5) != 0)
|
|
798
|
+
{
|
|
799
|
+
setring(br);
|
|
800
|
+
return(0);
|
|
801
|
+
}
|
|
802
|
+
}
|
|
803
|
+
|
|
804
|
+
attrib(Ip,"isSB",1);
|
|
805
|
+
for (i = ncols(Gp); i > 0; i--)
|
|
806
|
+
{
|
|
807
|
+
if (reduce(Gp[i], Ip, 5) != 0)
|
|
808
|
+
{
|
|
809
|
+
setring(br);
|
|
810
|
+
return(0);
|
|
811
|
+
}
|
|
812
|
+
}
|
|
813
|
+
setring(br);
|
|
814
|
+
return(1);
|
|
815
|
+
}
|
|
816
|
+
else
|
|
817
|
+
{
|
|
818
|
+
ideal Gp = imap(br, result);
|
|
819
|
+
attrib(Gp, "isSB", 1);
|
|
820
|
+
for (i = ncols(Ip); i > 0; i--)
|
|
821
|
+
{
|
|
822
|
+
if (reduce(Ip[i], Gp, 5) != 0)
|
|
823
|
+
{
|
|
824
|
+
setring(br);
|
|
825
|
+
return(0);
|
|
826
|
+
}
|
|
827
|
+
}
|
|
828
|
+
Ip = LiftPolyCRT(Ip);
|
|
829
|
+
attrib(Ip,"isSB",1);
|
|
830
|
+
for (i = ncols(Gp); i > 0; i--)
|
|
831
|
+
{
|
|
832
|
+
if (reduce(Gp[i], Ip, 5) != 0)
|
|
833
|
+
{
|
|
834
|
+
setring(br);
|
|
835
|
+
return(0);
|
|
836
|
+
}
|
|
837
|
+
}
|
|
838
|
+
setring(br);
|
|
839
|
+
return(1);
|
|
840
|
+
}
|
|
841
|
+
}
|
|
842
|
+
|
|
843
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
844
|
+
|
|
845
|
+
static proc cleardenomIdeal(def I)
|
|
846
|
+
{
|
|
847
|
+
int t=ncols(I);
|
|
848
|
+
if(size(I)==0)
|
|
849
|
+
{
|
|
850
|
+
return(I);
|
|
851
|
+
}
|
|
852
|
+
else
|
|
853
|
+
{
|
|
854
|
+
for(int i=1;i<=t;i++)
|
|
855
|
+
{
|
|
856
|
+
I[i]=cleardenom(I[i]);
|
|
857
|
+
}
|
|
858
|
+
}
|
|
859
|
+
return(I);
|
|
860
|
+
}
|
|
861
|
+
|
|
862
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
863
|
+
|
|
864
|
+
static proc modStdparallelized(def I, list #)
|
|
865
|
+
{
|
|
866
|
+
// apply modular.lib
|
|
867
|
+
/* save options */
|
|
868
|
+
intvec opt = option(get);
|
|
869
|
+
option(redSB);
|
|
870
|
+
if(size(#)>0)
|
|
871
|
+
{
|
|
872
|
+
I = modular("std", list(I), testPrime, Modstd::deleteUnluckyPrimes_std,
|
|
873
|
+
PtestStd_minpolyzero, final_Test_minpolyzero,536870909);
|
|
874
|
+
}
|
|
875
|
+
else
|
|
876
|
+
{
|
|
877
|
+
I = modular("Nfmodstd::LiftPolyCRT", list(I), PrimeTestTask,
|
|
878
|
+
Modstd::deleteUnluckyPrimes_std,PtestStd, final_Test,536870909);
|
|
879
|
+
}
|
|
880
|
+
attrib(I, "isSB", 1);
|
|
881
|
+
option(set,opt);
|
|
882
|
+
return(I);
|
|
883
|
+
}
|
|
884
|
+
|
|
885
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
886
|
+
/* main procedure */
|
|
887
|
+
proc nfmodStd(def I, list #)
|
|
888
|
+
"USAGE: nfmodStd(I, #); I ideal or module, # optional parameters
|
|
889
|
+
RETURN: standard basis of I over algebraic number field
|
|
890
|
+
NOTE: The procedure passes to @ref{modStd} if the ground field has no
|
|
891
|
+
parameter. In this case, the optional parameters # (if given)
|
|
892
|
+
are directly passed to @ref{modStd}.
|
|
893
|
+
SEE ALSO: modStd
|
|
894
|
+
EXAMPLE: example nfmodStd; shows an example
|
|
895
|
+
"
|
|
896
|
+
{
|
|
897
|
+
intvec save_opt=option(get);option(pure_gb);
|
|
898
|
+
list L=#;
|
|
899
|
+
def Rbs=basering;
|
|
900
|
+
poly f;
|
|
901
|
+
int tmp=1;
|
|
902
|
+
if(typeof(I)!="ideal")
|
|
903
|
+
{
|
|
904
|
+
tmp =0;
|
|
905
|
+
}
|
|
906
|
+
int n=nvars(Rbs);
|
|
907
|
+
if(size(I)==0)
|
|
908
|
+
{
|
|
909
|
+
if(!tmp)
|
|
910
|
+
{
|
|
911
|
+
return(module([0]));
|
|
912
|
+
}
|
|
913
|
+
return(ideal(0));
|
|
914
|
+
}
|
|
915
|
+
if(npars(Rbs)==0)
|
|
916
|
+
{
|
|
917
|
+
//if algebraic number is in Q
|
|
918
|
+
if(typeof(I)=="module")
|
|
919
|
+
{
|
|
920
|
+
def J = modStdparallelized(I,1);
|
|
921
|
+
option(set,save_opt);
|
|
922
|
+
return(J);
|
|
923
|
+
}
|
|
924
|
+
else
|
|
925
|
+
{
|
|
926
|
+
def J=modStd(I,L);
|
|
927
|
+
option(set,save_opt);
|
|
928
|
+
return(J);
|
|
929
|
+
}
|
|
930
|
+
}
|
|
931
|
+
def S;
|
|
932
|
+
list rl=ringlist(Rbs);
|
|
933
|
+
f=rl[1][4][1];
|
|
934
|
+
if(tmp)
|
|
935
|
+
{
|
|
936
|
+
rl[2][n+1]=rl[1][2][1];
|
|
937
|
+
rl[1]=rl[1][1];
|
|
938
|
+
rl[3][size(rl[3])+1]=rl[3][size(rl[3])];
|
|
939
|
+
rl[3][size(rl[3])-1]=list("dp",1);
|
|
940
|
+
}
|
|
941
|
+
else
|
|
942
|
+
{
|
|
943
|
+
if(rl[3][1][1]!="c")
|
|
944
|
+
{
|
|
945
|
+
rl[2] = rl[2] + rl[1][2];
|
|
946
|
+
rl[3] = insert(rl[3], rl[1][3][1],1);
|
|
947
|
+
rl[1] = rl[1][1];
|
|
948
|
+
}
|
|
949
|
+
else
|
|
950
|
+
{
|
|
951
|
+
rl[2] = rl[2] + rl[1][2];
|
|
952
|
+
rl[3][size(rl[3])+1] = rl[1][3][1];
|
|
953
|
+
rl[1] = rl[1][1];
|
|
954
|
+
}
|
|
955
|
+
}
|
|
956
|
+
S = ring(rl);
|
|
957
|
+
setring S;
|
|
958
|
+
poly f=imap(Rbs,f);
|
|
959
|
+
def I=imap(Rbs,I);
|
|
960
|
+
I = simplify(I,2); // eraze the zero generatos
|
|
961
|
+
if(f==0)
|
|
962
|
+
{
|
|
963
|
+
ERROR("minpoly must be non-zero");
|
|
964
|
+
}
|
|
965
|
+
I=I,f;
|
|
966
|
+
def J_I=modStdparallelized(I);
|
|
967
|
+
setring Rbs;
|
|
968
|
+
def J=imap(S,J_I);
|
|
969
|
+
J=simplify(J,2);
|
|
970
|
+
option(set,save_opt);
|
|
971
|
+
return(J);
|
|
972
|
+
}
|
|
973
|
+
example
|
|
974
|
+
{ "EXAMPLE:"; echo = 2;
|
|
975
|
+
ring r1 = (0,a),(x,y),dp;
|
|
976
|
+
minpoly = a^2+1;
|
|
977
|
+
ideal k = (a/2+1)*x^2+2/3y, 3*x-a*y+ a/7+2;
|
|
978
|
+
ideal I = nfmodStd(k);
|
|
979
|
+
I;
|
|
980
|
+
ring rm = (0,a),(x,y),(c,dp);
|
|
981
|
+
minpoly = a^3+2a+7;
|
|
982
|
+
module M = [(a/2+1)*x^2+2/3y, 3*x-a*y+ a/7+2], [ax, y];
|
|
983
|
+
M = nfmodStd(M);
|
|
984
|
+
M;
|
|
985
|
+
ring r2 = (0,a),(x,y,z),dp;
|
|
986
|
+
minpoly = a^3 +2;
|
|
987
|
+
ideal k = (a^2+a/2)*x^2+(a^2 -2/3*a)*yz, (3*a^2+1)*zx-(a+4/7)*y+ a+2/5;
|
|
988
|
+
ideal IJ = nfmodStd(k);
|
|
989
|
+
IJ;
|
|
990
|
+
ring r3 = 0, (x,y), dp; // ring without parameter
|
|
991
|
+
ideal I = x2 + y, xy - 7y + 2x;
|
|
992
|
+
ideal J1 = nfmodStd(I);
|
|
993
|
+
J1;
|
|
994
|
+
module J2 = nfmodStd(module(I));
|
|
995
|
+
J2;
|
|
996
|
+
ring r4 = 0, (x,y), (c,dp);
|
|
997
|
+
module I = [x2, x-y], [xy,0], [0,-7y + 2x];
|
|
998
|
+
I=nfmodStd(I);
|
|
999
|
+
I;
|
|
1000
|
+
}
|