numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,998 @@
1
+ __all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack',
2
+ 'stack', 'unstack', 'vstack']
3
+
4
+ import functools
5
+ import itertools
6
+ import operator
7
+
8
+ from . import fromnumeric as _from_nx
9
+ from . import numeric as _nx
10
+ from . import overrides
11
+ from .multiarray import array, asanyarray, normalize_axis_index
12
+
13
+ array_function_dispatch = functools.partial(
14
+ overrides.array_function_dispatch, module='numpy')
15
+
16
+
17
+ def _atleast_1d_dispatcher(*arys):
18
+ return arys
19
+
20
+
21
+ @array_function_dispatch(_atleast_1d_dispatcher)
22
+ def atleast_1d(*arys):
23
+ """
24
+ Convert inputs to arrays with at least one dimension.
25
+
26
+ Scalar inputs are converted to 1-dimensional arrays, whilst
27
+ higher-dimensional inputs are preserved.
28
+
29
+ Parameters
30
+ ----------
31
+ arys1, arys2, ... : array_like
32
+ One or more input arrays.
33
+
34
+ Returns
35
+ -------
36
+ ret : ndarray
37
+ An array, or tuple of arrays, each with ``a.ndim >= 1``.
38
+ Copies are made only if necessary.
39
+
40
+ See Also
41
+ --------
42
+ atleast_2d, atleast_3d
43
+
44
+ Examples
45
+ --------
46
+ >>> import numpy as np
47
+ >>> np.atleast_1d(1.0)
48
+ array([1.])
49
+
50
+ >>> x = np.arange(9.0).reshape(3,3)
51
+ >>> np.atleast_1d(x)
52
+ array([[0., 1., 2.],
53
+ [3., 4., 5.],
54
+ [6., 7., 8.]])
55
+ >>> np.atleast_1d(x) is x
56
+ True
57
+
58
+ >>> np.atleast_1d(1, [3, 4])
59
+ (array([1]), array([3, 4]))
60
+
61
+ """
62
+ if len(arys) == 1:
63
+ result = asanyarray(arys[0])
64
+ if result.ndim == 0:
65
+ result = result.reshape(1)
66
+ return result
67
+ res = []
68
+ for ary in arys:
69
+ result = asanyarray(ary)
70
+ if result.ndim == 0:
71
+ result = result.reshape(1)
72
+ res.append(result)
73
+ return tuple(res)
74
+
75
+
76
+ def _atleast_2d_dispatcher(*arys):
77
+ return arys
78
+
79
+
80
+ @array_function_dispatch(_atleast_2d_dispatcher)
81
+ def atleast_2d(*arys):
82
+ """
83
+ View inputs as arrays with at least two dimensions.
84
+
85
+ Parameters
86
+ ----------
87
+ arys1, arys2, ... : array_like
88
+ One or more array-like sequences. Non-array inputs are converted
89
+ to arrays. Arrays that already have two or more dimensions are
90
+ preserved.
91
+
92
+ Returns
93
+ -------
94
+ res, res2, ... : ndarray
95
+ An array, or tuple of arrays, each with ``a.ndim >= 2``.
96
+ Copies are avoided where possible, and views with two or more
97
+ dimensions are returned.
98
+
99
+ See Also
100
+ --------
101
+ atleast_1d, atleast_3d
102
+
103
+ Examples
104
+ --------
105
+ >>> import numpy as np
106
+ >>> np.atleast_2d(3.0)
107
+ array([[3.]])
108
+
109
+ >>> x = np.arange(3.0)
110
+ >>> np.atleast_2d(x)
111
+ array([[0., 1., 2.]])
112
+ >>> np.atleast_2d(x).base is x
113
+ True
114
+
115
+ >>> np.atleast_2d(1, [1, 2], [[1, 2]])
116
+ (array([[1]]), array([[1, 2]]), array([[1, 2]]))
117
+
118
+ """
119
+ res = []
120
+ for ary in arys:
121
+ ary = asanyarray(ary)
122
+ if ary.ndim == 0:
123
+ result = ary.reshape(1, 1)
124
+ elif ary.ndim == 1:
125
+ result = ary[_nx.newaxis, :]
126
+ else:
127
+ result = ary
128
+ res.append(result)
129
+ if len(res) == 1:
130
+ return res[0]
131
+ else:
132
+ return tuple(res)
133
+
134
+
135
+ def _atleast_3d_dispatcher(*arys):
136
+ return arys
137
+
138
+
139
+ @array_function_dispatch(_atleast_3d_dispatcher)
140
+ def atleast_3d(*arys):
141
+ """
142
+ View inputs as arrays with at least three dimensions.
143
+
144
+ Parameters
145
+ ----------
146
+ arys1, arys2, ... : array_like
147
+ One or more array-like sequences. Non-array inputs are converted to
148
+ arrays. Arrays that already have three or more dimensions are
149
+ preserved.
150
+
151
+ Returns
152
+ -------
153
+ res1, res2, ... : ndarray
154
+ An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are
155
+ avoided where possible, and views with three or more dimensions are
156
+ returned. For example, a 1-D array of shape ``(N,)`` becomes a view
157
+ of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
158
+ view of shape ``(M, N, 1)``.
159
+
160
+ See Also
161
+ --------
162
+ atleast_1d, atleast_2d
163
+
164
+ Examples
165
+ --------
166
+ >>> import numpy as np
167
+ >>> np.atleast_3d(3.0)
168
+ array([[[3.]]])
169
+
170
+ >>> x = np.arange(3.0)
171
+ >>> np.atleast_3d(x).shape
172
+ (1, 3, 1)
173
+
174
+ >>> x = np.arange(12.0).reshape(4,3)
175
+ >>> np.atleast_3d(x).shape
176
+ (4, 3, 1)
177
+ >>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
178
+ True
179
+
180
+ >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
181
+ ... print(arr, arr.shape) # doctest: +SKIP
182
+ ...
183
+ [[[1]
184
+ [2]]] (1, 2, 1)
185
+ [[[1]
186
+ [2]]] (1, 2, 1)
187
+ [[[1 2]]] (1, 1, 2)
188
+
189
+ """
190
+ res = []
191
+ for ary in arys:
192
+ ary = asanyarray(ary)
193
+ if ary.ndim == 0:
194
+ result = ary.reshape(1, 1, 1)
195
+ elif ary.ndim == 1:
196
+ result = ary[_nx.newaxis, :, _nx.newaxis]
197
+ elif ary.ndim == 2:
198
+ result = ary[:, :, _nx.newaxis]
199
+ else:
200
+ result = ary
201
+ res.append(result)
202
+ if len(res) == 1:
203
+ return res[0]
204
+ else:
205
+ return tuple(res)
206
+
207
+
208
+ def _arrays_for_stack_dispatcher(arrays):
209
+ if not hasattr(arrays, "__getitem__"):
210
+ raise TypeError('arrays to stack must be passed as a "sequence" type '
211
+ 'such as list or tuple.')
212
+
213
+ return tuple(arrays)
214
+
215
+
216
+ def _vhstack_dispatcher(tup, *, dtype=None, casting=None):
217
+ return _arrays_for_stack_dispatcher(tup)
218
+
219
+
220
+ @array_function_dispatch(_vhstack_dispatcher)
221
+ def vstack(tup, *, dtype=None, casting="same_kind"):
222
+ """
223
+ Stack arrays in sequence vertically (row wise).
224
+
225
+ This is equivalent to concatenation along the first axis after 1-D arrays
226
+ of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by
227
+ `vsplit`.
228
+
229
+ This function makes most sense for arrays with up to 3 dimensions. For
230
+ instance, for pixel-data with a height (first axis), width (second axis),
231
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
232
+ `block` provide more general stacking and concatenation operations.
233
+
234
+ Parameters
235
+ ----------
236
+ tup : sequence of ndarrays
237
+ The arrays must have the same shape along all but the first axis.
238
+ 1-D arrays must have the same length. In the case of a single
239
+ array_like input, it will be treated as a sequence of arrays; i.e.,
240
+ each element along the zeroth axis is treated as a separate array.
241
+
242
+ dtype : str or dtype
243
+ If provided, the destination array will have this dtype. Cannot be
244
+ provided together with `out`.
245
+
246
+ .. versionadded:: 1.24
247
+
248
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
249
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
250
+
251
+ .. versionadded:: 1.24
252
+
253
+ Returns
254
+ -------
255
+ stacked : ndarray
256
+ The array formed by stacking the given arrays, will be at least 2-D.
257
+
258
+ See Also
259
+ --------
260
+ concatenate : Join a sequence of arrays along an existing axis.
261
+ stack : Join a sequence of arrays along a new axis.
262
+ block : Assemble an nd-array from nested lists of blocks.
263
+ hstack : Stack arrays in sequence horizontally (column wise).
264
+ dstack : Stack arrays in sequence depth wise (along third axis).
265
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
266
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
267
+ unstack : Split an array into a tuple of sub-arrays along an axis.
268
+
269
+ Examples
270
+ --------
271
+ >>> import numpy as np
272
+ >>> a = np.array([1, 2, 3])
273
+ >>> b = np.array([4, 5, 6])
274
+ >>> np.vstack((a,b))
275
+ array([[1, 2, 3],
276
+ [4, 5, 6]])
277
+
278
+ >>> a = np.array([[1], [2], [3]])
279
+ >>> b = np.array([[4], [5], [6]])
280
+ >>> np.vstack((a,b))
281
+ array([[1],
282
+ [2],
283
+ [3],
284
+ [4],
285
+ [5],
286
+ [6]])
287
+
288
+ """
289
+ arrs = atleast_2d(*tup)
290
+ if not isinstance(arrs, tuple):
291
+ arrs = (arrs,)
292
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
293
+
294
+
295
+ @array_function_dispatch(_vhstack_dispatcher)
296
+ def hstack(tup, *, dtype=None, casting="same_kind"):
297
+ """
298
+ Stack arrays in sequence horizontally (column wise).
299
+
300
+ This is equivalent to concatenation along the second axis, except for 1-D
301
+ arrays where it concatenates along the first axis. Rebuilds arrays divided
302
+ by `hsplit`.
303
+
304
+ This function makes most sense for arrays with up to 3 dimensions. For
305
+ instance, for pixel-data with a height (first axis), width (second axis),
306
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
307
+ `block` provide more general stacking and concatenation operations.
308
+
309
+ Parameters
310
+ ----------
311
+ tup : sequence of ndarrays
312
+ The arrays must have the same shape along all but the second axis,
313
+ except 1-D arrays which can be any length. In the case of a single
314
+ array_like input, it will be treated as a sequence of arrays; i.e.,
315
+ each element along the zeroth axis is treated as a separate array.
316
+
317
+ dtype : str or dtype
318
+ If provided, the destination array will have this dtype. Cannot be
319
+ provided together with `out`.
320
+
321
+ .. versionadded:: 1.24
322
+
323
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
324
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
325
+
326
+ .. versionadded:: 1.24
327
+
328
+ Returns
329
+ -------
330
+ stacked : ndarray
331
+ The array formed by stacking the given arrays.
332
+
333
+ See Also
334
+ --------
335
+ concatenate : Join a sequence of arrays along an existing axis.
336
+ stack : Join a sequence of arrays along a new axis.
337
+ block : Assemble an nd-array from nested lists of blocks.
338
+ vstack : Stack arrays in sequence vertically (row wise).
339
+ dstack : Stack arrays in sequence depth wise (along third axis).
340
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
341
+ hsplit : Split an array into multiple sub-arrays
342
+ horizontally (column-wise).
343
+ unstack : Split an array into a tuple of sub-arrays along an axis.
344
+
345
+ Examples
346
+ --------
347
+ >>> import numpy as np
348
+ >>> a = np.array((1,2,3))
349
+ >>> b = np.array((4,5,6))
350
+ >>> np.hstack((a,b))
351
+ array([1, 2, 3, 4, 5, 6])
352
+ >>> a = np.array([[1],[2],[3]])
353
+ >>> b = np.array([[4],[5],[6]])
354
+ >>> np.hstack((a,b))
355
+ array([[1, 4],
356
+ [2, 5],
357
+ [3, 6]])
358
+
359
+ """
360
+ arrs = atleast_1d(*tup)
361
+ if not isinstance(arrs, tuple):
362
+ arrs = (arrs,)
363
+ # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
364
+ if arrs and arrs[0].ndim == 1:
365
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
366
+ else:
367
+ return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting)
368
+
369
+
370
+ def _stack_dispatcher(arrays, axis=None, out=None, *,
371
+ dtype=None, casting=None):
372
+ arrays = _arrays_for_stack_dispatcher(arrays)
373
+ if out is not None:
374
+ # optimize for the typical case where only arrays is provided
375
+ arrays = list(arrays)
376
+ arrays.append(out)
377
+ return arrays
378
+
379
+
380
+ @array_function_dispatch(_stack_dispatcher)
381
+ def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"):
382
+ """
383
+ Join a sequence of arrays along a new axis.
384
+
385
+ The ``axis`` parameter specifies the index of the new axis in the
386
+ dimensions of the result. For example, if ``axis=0`` it will be the first
387
+ dimension and if ``axis=-1`` it will be the last dimension.
388
+
389
+ Parameters
390
+ ----------
391
+ arrays : sequence of ndarrays
392
+ Each array must have the same shape. In the case of a single ndarray
393
+ array_like input, it will be treated as a sequence of arrays; i.e.,
394
+ each element along the zeroth axis is treated as a separate array.
395
+
396
+ axis : int, optional
397
+ The axis in the result array along which the input arrays are stacked.
398
+
399
+ out : ndarray, optional
400
+ If provided, the destination to place the result. The shape must be
401
+ correct, matching that of what stack would have returned if no
402
+ out argument were specified.
403
+
404
+ dtype : str or dtype
405
+ If provided, the destination array will have this dtype. Cannot be
406
+ provided together with `out`.
407
+
408
+ .. versionadded:: 1.24
409
+
410
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
411
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
412
+
413
+ .. versionadded:: 1.24
414
+
415
+
416
+ Returns
417
+ -------
418
+ stacked : ndarray
419
+ The stacked array has one more dimension than the input arrays.
420
+
421
+ See Also
422
+ --------
423
+ concatenate : Join a sequence of arrays along an existing axis.
424
+ block : Assemble an nd-array from nested lists of blocks.
425
+ split : Split array into a list of multiple sub-arrays of equal size.
426
+ unstack : Split an array into a tuple of sub-arrays along an axis.
427
+
428
+ Examples
429
+ --------
430
+ >>> import numpy as np
431
+ >>> rng = np.random.default_rng()
432
+ >>> arrays = [rng.normal(size=(3,4)) for _ in range(10)]
433
+ >>> np.stack(arrays, axis=0).shape
434
+ (10, 3, 4)
435
+
436
+ >>> np.stack(arrays, axis=1).shape
437
+ (3, 10, 4)
438
+
439
+ >>> np.stack(arrays, axis=2).shape
440
+ (3, 4, 10)
441
+
442
+ >>> a = np.array([1, 2, 3])
443
+ >>> b = np.array([4, 5, 6])
444
+ >>> np.stack((a, b))
445
+ array([[1, 2, 3],
446
+ [4, 5, 6]])
447
+
448
+ >>> np.stack((a, b), axis=-1)
449
+ array([[1, 4],
450
+ [2, 5],
451
+ [3, 6]])
452
+
453
+ """
454
+ arrays = [asanyarray(arr) for arr in arrays]
455
+ if not arrays:
456
+ raise ValueError('need at least one array to stack')
457
+
458
+ shapes = {arr.shape for arr in arrays}
459
+ if len(shapes) != 1:
460
+ raise ValueError('all input arrays must have the same shape')
461
+
462
+ result_ndim = arrays[0].ndim + 1
463
+ axis = normalize_axis_index(axis, result_ndim)
464
+
465
+ sl = (slice(None),) * axis + (_nx.newaxis,)
466
+ expanded_arrays = [arr[sl] for arr in arrays]
467
+ return _nx.concatenate(expanded_arrays, axis=axis, out=out,
468
+ dtype=dtype, casting=casting)
469
+
470
+ def _unstack_dispatcher(x, /, *, axis=None):
471
+ return (x,)
472
+
473
+ @array_function_dispatch(_unstack_dispatcher)
474
+ def unstack(x, /, *, axis=0):
475
+ """
476
+ Split an array into a sequence of arrays along the given axis.
477
+
478
+ The ``axis`` parameter specifies the dimension along which the array will
479
+ be split. For example, if ``axis=0`` (the default) it will be the first
480
+ dimension and if ``axis=-1`` it will be the last dimension.
481
+
482
+ The result is a tuple of arrays split along ``axis``.
483
+
484
+ .. versionadded:: 2.1.0
485
+
486
+ Parameters
487
+ ----------
488
+ x : ndarray
489
+ The array to be unstacked.
490
+ axis : int, optional
491
+ Axis along which the array will be split. Default: ``0``.
492
+
493
+ Returns
494
+ -------
495
+ unstacked : tuple of ndarrays
496
+ The unstacked arrays.
497
+
498
+ See Also
499
+ --------
500
+ stack : Join a sequence of arrays along a new axis.
501
+ concatenate : Join a sequence of arrays along an existing axis.
502
+ block : Assemble an nd-array from nested lists of blocks.
503
+ split : Split array into a list of multiple sub-arrays of equal size.
504
+
505
+ Notes
506
+ -----
507
+ ``unstack`` serves as the reverse operation of :py:func:`stack`, i.e.,
508
+ ``stack(unstack(x, axis=axis), axis=axis) == x``.
509
+
510
+ This function is equivalent to ``tuple(np.moveaxis(x, axis, 0))``, since
511
+ iterating on an array iterates along the first axis.
512
+
513
+ Examples
514
+ --------
515
+ >>> arr = np.arange(24).reshape((2, 3, 4))
516
+ >>> np.unstack(arr)
517
+ (array([[ 0, 1, 2, 3],
518
+ [ 4, 5, 6, 7],
519
+ [ 8, 9, 10, 11]]),
520
+ array([[12, 13, 14, 15],
521
+ [16, 17, 18, 19],
522
+ [20, 21, 22, 23]]))
523
+ >>> np.unstack(arr, axis=1)
524
+ (array([[ 0, 1, 2, 3],
525
+ [12, 13, 14, 15]]),
526
+ array([[ 4, 5, 6, 7],
527
+ [16, 17, 18, 19]]),
528
+ array([[ 8, 9, 10, 11],
529
+ [20, 21, 22, 23]]))
530
+ >>> arr2 = np.stack(np.unstack(arr, axis=1), axis=1)
531
+ >>> arr2.shape
532
+ (2, 3, 4)
533
+ >>> np.all(arr == arr2)
534
+ np.True_
535
+
536
+ """
537
+ if x.ndim == 0:
538
+ raise ValueError("Input array must be at least 1-d.")
539
+ return tuple(_nx.moveaxis(x, axis, 0))
540
+
541
+
542
+ # Internal functions to eliminate the overhead of repeated dispatch in one of
543
+ # the two possible paths inside np.block.
544
+ # Use getattr to protect against __array_function__ being disabled.
545
+ _size = getattr(_from_nx.size, '__wrapped__', _from_nx.size)
546
+ _ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim)
547
+ _concatenate = getattr(_from_nx.concatenate,
548
+ '__wrapped__', _from_nx.concatenate)
549
+
550
+
551
+ def _block_format_index(index):
552
+ """
553
+ Convert a list of indices ``[0, 1, 2]`` into ``"arrays[0][1][2]"``.
554
+ """
555
+ idx_str = ''.join(f'[{i}]' for i in index if i is not None)
556
+ return 'arrays' + idx_str
557
+
558
+
559
+ def _block_check_depths_match(arrays, parent_index=[]):
560
+ """
561
+ Recursive function checking that the depths of nested lists in `arrays`
562
+ all match. Mismatch raises a ValueError as described in the block
563
+ docstring below.
564
+
565
+ The entire index (rather than just the depth) needs to be calculated
566
+ for each innermost list, in case an error needs to be raised, so that
567
+ the index of the offending list can be printed as part of the error.
568
+
569
+ Parameters
570
+ ----------
571
+ arrays : nested list of arrays
572
+ The arrays to check
573
+ parent_index : list of int
574
+ The full index of `arrays` within the nested lists passed to
575
+ `_block_check_depths_match` at the top of the recursion.
576
+
577
+ Returns
578
+ -------
579
+ first_index : list of int
580
+ The full index of an element from the bottom of the nesting in
581
+ `arrays`. If any element at the bottom is an empty list, this will
582
+ refer to it, and the last index along the empty axis will be None.
583
+ max_arr_ndim : int
584
+ The maximum of the ndims of the arrays nested in `arrays`.
585
+ final_size: int
586
+ The number of elements in the final array. This is used the motivate
587
+ the choice of algorithm used using benchmarking wisdom.
588
+
589
+ """
590
+ if isinstance(arrays, tuple):
591
+ # not strictly necessary, but saves us from:
592
+ # - more than one way to do things - no point treating tuples like
593
+ # lists
594
+ # - horribly confusing behaviour that results when tuples are
595
+ # treated like ndarray
596
+ raise TypeError(
597
+ f'{_block_format_index(parent_index)} is a tuple. '
598
+ 'Only lists can be used to arrange blocks, and np.block does '
599
+ 'not allow implicit conversion from tuple to ndarray.'
600
+ )
601
+ elif isinstance(arrays, list) and len(arrays) > 0:
602
+ idxs_ndims = (_block_check_depths_match(arr, parent_index + [i])
603
+ for i, arr in enumerate(arrays))
604
+
605
+ first_index, max_arr_ndim, final_size = next(idxs_ndims)
606
+ for index, ndim, size in idxs_ndims:
607
+ final_size += size
608
+ if ndim > max_arr_ndim:
609
+ max_arr_ndim = ndim
610
+ if len(index) != len(first_index):
611
+ raise ValueError(
612
+ "List depths are mismatched. First element was at "
613
+ f"depth {len(first_index)}, but there is an element at "
614
+ f"depth {len(index)} ({_block_format_index(index)})"
615
+ )
616
+ # propagate our flag that indicates an empty list at the bottom
617
+ if index[-1] is None:
618
+ first_index = index
619
+
620
+ return first_index, max_arr_ndim, final_size
621
+ elif isinstance(arrays, list) and len(arrays) == 0:
622
+ # We've 'bottomed out' on an empty list
623
+ return parent_index + [None], 0, 0
624
+ else:
625
+ # We've 'bottomed out' - arrays is either a scalar or an array
626
+ size = _size(arrays)
627
+ return parent_index, _ndim(arrays), size
628
+
629
+
630
+ def _atleast_nd(a, ndim):
631
+ # Ensures `a` has at least `ndim` dimensions by prepending
632
+ # ones to `a.shape` as necessary
633
+ return array(a, ndmin=ndim, copy=None, subok=True)
634
+
635
+
636
+ def _accumulate(values):
637
+ return list(itertools.accumulate(values))
638
+
639
+
640
+ def _concatenate_shapes(shapes, axis):
641
+ """Given array shapes, return the resulting shape and slices prefixes.
642
+
643
+ These help in nested concatenation.
644
+
645
+ Returns
646
+ -------
647
+ shape: tuple of int
648
+ This tuple satisfies::
649
+
650
+ shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis)
651
+ shape == concatenate(arrs, axis).shape
652
+
653
+ slice_prefixes: tuple of (slice(start, end), )
654
+ For a list of arrays being concatenated, this returns the slice
655
+ in the larger array at axis that needs to be sliced into.
656
+
657
+ For example, the following holds::
658
+
659
+ ret = concatenate([a, b, c], axis)
660
+ _, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis)
661
+
662
+ ret[(slice(None),) * axis + sl_a] == a
663
+ ret[(slice(None),) * axis + sl_b] == b
664
+ ret[(slice(None),) * axis + sl_c] == c
665
+
666
+ These are called slice prefixes since they are used in the recursive
667
+ blocking algorithm to compute the left-most slices during the
668
+ recursion. Therefore, they must be prepended to rest of the slice
669
+ that was computed deeper in the recursion.
670
+
671
+ These are returned as tuples to ensure that they can quickly be added
672
+ to existing slice tuple without creating a new tuple every time.
673
+
674
+ """
675
+ # Cache a result that will be reused.
676
+ shape_at_axis = [shape[axis] for shape in shapes]
677
+
678
+ # Take a shape, any shape
679
+ first_shape = shapes[0]
680
+ first_shape_pre = first_shape[:axis]
681
+ first_shape_post = first_shape[axis + 1:]
682
+
683
+ if any(shape[:axis] != first_shape_pre or
684
+ shape[axis + 1:] != first_shape_post for shape in shapes):
685
+ raise ValueError(
686
+ f'Mismatched array shapes in block along axis {axis}.')
687
+
688
+ shape = (first_shape_pre + (sum(shape_at_axis),) + first_shape[axis + 1:])
689
+
690
+ offsets_at_axis = _accumulate(shape_at_axis)
691
+ slice_prefixes = [(slice(start, end),)
692
+ for start, end in zip([0] + offsets_at_axis,
693
+ offsets_at_axis)]
694
+ return shape, slice_prefixes
695
+
696
+
697
+ def _block_info_recursion(arrays, max_depth, result_ndim, depth=0):
698
+ """
699
+ Returns the shape of the final array, along with a list
700
+ of slices and a list of arrays that can be used for assignment inside the
701
+ new array
702
+
703
+ Parameters
704
+ ----------
705
+ arrays : nested list of arrays
706
+ The arrays to check
707
+ max_depth : list of int
708
+ The number of nested lists
709
+ result_ndim : int
710
+ The number of dimensions in thefinal array.
711
+
712
+ Returns
713
+ -------
714
+ shape : tuple of int
715
+ The shape that the final array will take on.
716
+ slices: list of tuple of slices
717
+ The slices into the full array required for assignment. These are
718
+ required to be prepended with ``(Ellipsis, )`` to obtain to correct
719
+ final index.
720
+ arrays: list of ndarray
721
+ The data to assign to each slice of the full array
722
+
723
+ """
724
+ if depth < max_depth:
725
+ shapes, slices, arrays = zip(
726
+ *[_block_info_recursion(arr, max_depth, result_ndim, depth + 1)
727
+ for arr in arrays])
728
+
729
+ axis = result_ndim - max_depth + depth
730
+ shape, slice_prefixes = _concatenate_shapes(shapes, axis)
731
+
732
+ # Prepend the slice prefix and flatten the slices
733
+ slices = [slice_prefix + the_slice
734
+ for slice_prefix, inner_slices in zip(slice_prefixes, slices)
735
+ for the_slice in inner_slices]
736
+
737
+ # Flatten the array list
738
+ arrays = functools.reduce(operator.add, arrays)
739
+
740
+ return shape, slices, arrays
741
+ else:
742
+ # We've 'bottomed out' - arrays is either a scalar or an array
743
+ # type(arrays) is not list
744
+ # Return the slice and the array inside a list to be consistent with
745
+ # the recursive case.
746
+ arr = _atleast_nd(arrays, result_ndim)
747
+ return arr.shape, [()], [arr]
748
+
749
+
750
+ def _block(arrays, max_depth, result_ndim, depth=0):
751
+ """
752
+ Internal implementation of block based on repeated concatenation.
753
+ `arrays` is the argument passed to
754
+ block. `max_depth` is the depth of nested lists within `arrays` and
755
+ `result_ndim` is the greatest of the dimensions of the arrays in
756
+ `arrays` and the depth of the lists in `arrays` (see block docstring
757
+ for details).
758
+ """
759
+ if depth < max_depth:
760
+ arrs = [_block(arr, max_depth, result_ndim, depth + 1)
761
+ for arr in arrays]
762
+ return _concatenate(arrs, axis=-(max_depth - depth))
763
+ else:
764
+ # We've 'bottomed out' - arrays is either a scalar or an array
765
+ # type(arrays) is not list
766
+ return _atleast_nd(arrays, result_ndim)
767
+
768
+
769
+ def _block_dispatcher(arrays):
770
+ # Use type(...) is list to match the behavior of np.block(), which special
771
+ # cases list specifically rather than allowing for generic iterables or
772
+ # tuple. Also, we know that list.__array_function__ will never exist.
773
+ if isinstance(arrays, list):
774
+ for subarrays in arrays:
775
+ yield from _block_dispatcher(subarrays)
776
+ else:
777
+ yield arrays
778
+
779
+
780
+ @array_function_dispatch(_block_dispatcher)
781
+ def block(arrays):
782
+ """
783
+ Assemble an nd-array from nested lists of blocks.
784
+
785
+ Blocks in the innermost lists are concatenated (see `concatenate`) along
786
+ the last dimension (-1), then these are concatenated along the
787
+ second-last dimension (-2), and so on until the outermost list is reached.
788
+
789
+ Blocks can be of any dimension, but will not be broadcasted using
790
+ the normal rules. Instead, leading axes of size 1 are inserted,
791
+ to make ``block.ndim`` the same for all blocks. This is primarily useful
792
+ for working with scalars, and means that code like ``np.block([v, 1])``
793
+ is valid, where ``v.ndim == 1``.
794
+
795
+ When the nested list is two levels deep, this allows block matrices to be
796
+ constructed from their components.
797
+
798
+ Parameters
799
+ ----------
800
+ arrays : nested list of array_like or scalars (but not tuples)
801
+ If passed a single ndarray or scalar (a nested list of depth 0), this
802
+ is returned unmodified (and not copied).
803
+
804
+ Elements shapes must match along the appropriate axes (without
805
+ broadcasting), but leading 1s will be prepended to the shape as
806
+ necessary to make the dimensions match.
807
+
808
+ Returns
809
+ -------
810
+ block_array : ndarray
811
+ The array assembled from the given blocks.
812
+
813
+ The dimensionality of the output is equal to the greatest of:
814
+
815
+ * the dimensionality of all the inputs
816
+ * the depth to which the input list is nested
817
+
818
+ Raises
819
+ ------
820
+ ValueError
821
+ * If list depths are mismatched - for instance, ``[[a, b], c]`` is
822
+ illegal, and should be spelt ``[[a, b], [c]]``
823
+ * If lists are empty - for instance, ``[[a, b], []]``
824
+
825
+ See Also
826
+ --------
827
+ concatenate : Join a sequence of arrays along an existing axis.
828
+ stack : Join a sequence of arrays along a new axis.
829
+ vstack : Stack arrays in sequence vertically (row wise).
830
+ hstack : Stack arrays in sequence horizontally (column wise).
831
+ dstack : Stack arrays in sequence depth wise (along third axis).
832
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
833
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
834
+ unstack : Split an array into a tuple of sub-arrays along an axis.
835
+
836
+ Notes
837
+ -----
838
+ When called with only scalars, ``np.block`` is equivalent to an ndarray
839
+ call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to
840
+ ``np.array([[1, 2], [3, 4]])``.
841
+
842
+ This function does not enforce that the blocks lie on a fixed grid.
843
+ ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form::
844
+
845
+ AAAbb
846
+ AAAbb
847
+ cccDD
848
+
849
+ But is also allowed to produce, for some ``a, b, c, d``::
850
+
851
+ AAAbb
852
+ AAAbb
853
+ cDDDD
854
+
855
+ Since concatenation happens along the last axis first, `block` is *not*
856
+ capable of producing the following directly::
857
+
858
+ AAAbb
859
+ cccbb
860
+ cccDD
861
+
862
+ Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is
863
+ equivalent to ``np.block([[A, B, ...], [p, q, ...]])``.
864
+
865
+ Examples
866
+ --------
867
+ The most common use of this function is to build a block matrix:
868
+
869
+ >>> import numpy as np
870
+ >>> A = np.eye(2) * 2
871
+ >>> B = np.eye(3) * 3
872
+ >>> np.block([
873
+ ... [A, np.zeros((2, 3))],
874
+ ... [np.ones((3, 2)), B ]
875
+ ... ])
876
+ array([[2., 0., 0., 0., 0.],
877
+ [0., 2., 0., 0., 0.],
878
+ [1., 1., 3., 0., 0.],
879
+ [1., 1., 0., 3., 0.],
880
+ [1., 1., 0., 0., 3.]])
881
+
882
+ With a list of depth 1, `block` can be used as `hstack`:
883
+
884
+ >>> np.block([1, 2, 3]) # hstack([1, 2, 3])
885
+ array([1, 2, 3])
886
+
887
+ >>> a = np.array([1, 2, 3])
888
+ >>> b = np.array([4, 5, 6])
889
+ >>> np.block([a, b, 10]) # hstack([a, b, 10])
890
+ array([ 1, 2, 3, 4, 5, 6, 10])
891
+
892
+ >>> A = np.ones((2, 2), int)
893
+ >>> B = 2 * A
894
+ >>> np.block([A, B]) # hstack([A, B])
895
+ array([[1, 1, 2, 2],
896
+ [1, 1, 2, 2]])
897
+
898
+ With a list of depth 2, `block` can be used in place of `vstack`:
899
+
900
+ >>> a = np.array([1, 2, 3])
901
+ >>> b = np.array([4, 5, 6])
902
+ >>> np.block([[a], [b]]) # vstack([a, b])
903
+ array([[1, 2, 3],
904
+ [4, 5, 6]])
905
+
906
+ >>> A = np.ones((2, 2), int)
907
+ >>> B = 2 * A
908
+ >>> np.block([[A], [B]]) # vstack([A, B])
909
+ array([[1, 1],
910
+ [1, 1],
911
+ [2, 2],
912
+ [2, 2]])
913
+
914
+ It can also be used in place of `atleast_1d` and `atleast_2d`:
915
+
916
+ >>> a = np.array(0)
917
+ >>> b = np.array([1])
918
+ >>> np.block([a]) # atleast_1d(a)
919
+ array([0])
920
+ >>> np.block([b]) # atleast_1d(b)
921
+ array([1])
922
+
923
+ >>> np.block([[a]]) # atleast_2d(a)
924
+ array([[0]])
925
+ >>> np.block([[b]]) # atleast_2d(b)
926
+ array([[1]])
927
+
928
+
929
+ """
930
+ arrays, list_ndim, result_ndim, final_size = _block_setup(arrays)
931
+
932
+ # It was found through benchmarking that making an array of final size
933
+ # around 256x256 was faster by straight concatenation on a
934
+ # i7-7700HQ processor and dual channel ram 2400MHz.
935
+ # It didn't seem to matter heavily on the dtype used.
936
+ #
937
+ # A 2D array using repeated concatenation requires 2 copies of the array.
938
+ #
939
+ # The fastest algorithm will depend on the ratio of CPU power to memory
940
+ # speed.
941
+ # One can monitor the results of the benchmark
942
+ # https://pv.github.io/numpy-bench/#bench_shape_base.Block2D.time_block2d
943
+ # to tune this parameter until a C version of the `_block_info_recursion`
944
+ # algorithm is implemented which would likely be faster than the python
945
+ # version.
946
+ if list_ndim * final_size > (2 * 512 * 512):
947
+ return _block_slicing(arrays, list_ndim, result_ndim)
948
+ else:
949
+ return _block_concatenate(arrays, list_ndim, result_ndim)
950
+
951
+
952
+ # These helper functions are mostly used for testing.
953
+ # They allow us to write tests that directly call `_block_slicing`
954
+ # or `_block_concatenate` without blocking large arrays to force the wisdom
955
+ # to trigger the desired path.
956
+ def _block_setup(arrays):
957
+ """
958
+ Returns
959
+ (`arrays`, list_ndim, result_ndim, final_size)
960
+ """
961
+ bottom_index, arr_ndim, final_size = _block_check_depths_match(arrays)
962
+ list_ndim = len(bottom_index)
963
+ if bottom_index and bottom_index[-1] is None:
964
+ raise ValueError(
965
+ f'List at {_block_format_index(bottom_index)} cannot be empty'
966
+ )
967
+ result_ndim = max(arr_ndim, list_ndim)
968
+ return arrays, list_ndim, result_ndim, final_size
969
+
970
+
971
+ def _block_slicing(arrays, list_ndim, result_ndim):
972
+ shape, slices, arrays = _block_info_recursion(
973
+ arrays, list_ndim, result_ndim)
974
+ dtype = _nx.result_type(*[arr.dtype for arr in arrays])
975
+
976
+ # Test preferring F only in the case that all input arrays are F
977
+ F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays)
978
+ C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays)
979
+ order = 'F' if F_order and not C_order else 'C'
980
+ result = _nx.empty(shape=shape, dtype=dtype, order=order)
981
+ # Note: In a c implementation, the function
982
+ # PyArray_CreateMultiSortedStridePerm could be used for more advanced
983
+ # guessing of the desired order.
984
+
985
+ for the_slice, arr in zip(slices, arrays):
986
+ result[(Ellipsis,) + the_slice] = arr
987
+ return result
988
+
989
+
990
+ def _block_concatenate(arrays, list_ndim, result_ndim):
991
+ result = _block(arrays, list_ndim, result_ndim)
992
+ if list_ndim == 0:
993
+ # Catch an edge case where _block returns a view because
994
+ # `arrays` is a single numpy array and not a list of numpy arrays.
995
+ # This might copy scalars or lists twice, but this isn't a likely
996
+ # usecase for those interested in performance
997
+ result = result.copy()
998
+ return result