numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,2130 @@
1
+ import hashlib
2
+ import pickle
3
+ import sys
4
+ import warnings
5
+
6
+ import pytest
7
+
8
+ import numpy as np
9
+ from numpy import random
10
+ from numpy.random import MT19937, PCG64
11
+ from numpy.testing import (
12
+ IS_WASM,
13
+ assert_,
14
+ assert_array_almost_equal,
15
+ assert_array_equal,
16
+ assert_equal,
17
+ assert_no_warnings,
18
+ assert_raises,
19
+ assert_warns,
20
+ suppress_warnings,
21
+ )
22
+
23
+ INT_FUNCS = {'binomial': (100.0, 0.6),
24
+ 'geometric': (.5,),
25
+ 'hypergeometric': (20, 20, 10),
26
+ 'logseries': (.5,),
27
+ 'multinomial': (20, np.ones(6) / 6.0),
28
+ 'negative_binomial': (100, .5),
29
+ 'poisson': (10.0,),
30
+ 'zipf': (2,),
31
+ }
32
+
33
+ if np.iinfo(np.long).max < 2**32:
34
+ # Windows and some 32-bit platforms, e.g., ARM
35
+ INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263', # noqa: E501
36
+ 'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb', # noqa: E501
37
+ 'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf', # noqa: E501
38
+ 'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67', # noqa: E501
39
+ 'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3', # noqa: E501
40
+ 'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824', # noqa: E501
41
+ 'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7', # noqa: E501
42
+ 'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f', # noqa: E501
43
+ }
44
+ else:
45
+ INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112', # noqa: E501
46
+ 'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9', # noqa: E501
47
+ 'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657', # noqa: E501
48
+ 'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db', # noqa: E501
49
+ 'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605', # noqa: E501
50
+ 'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61', # noqa: E501
51
+ 'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4', # noqa: E501
52
+ 'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45', # noqa: E501
53
+ }
54
+
55
+
56
+ @pytest.fixture(scope='module', params=INT_FUNCS)
57
+ def int_func(request):
58
+ return (request.param, INT_FUNCS[request.param],
59
+ INT_FUNC_HASHES[request.param])
60
+
61
+
62
+ @pytest.fixture
63
+ def restore_singleton_bitgen():
64
+ """Ensures that the singleton bitgen is restored after a test"""
65
+ orig_bitgen = np.random.get_bit_generator()
66
+ yield
67
+ np.random.set_bit_generator(orig_bitgen)
68
+
69
+
70
+ def assert_mt19937_state_equal(a, b):
71
+ assert_equal(a['bit_generator'], b['bit_generator'])
72
+ assert_array_equal(a['state']['key'], b['state']['key'])
73
+ assert_array_equal(a['state']['pos'], b['state']['pos'])
74
+ assert_equal(a['has_gauss'], b['has_gauss'])
75
+ assert_equal(a['gauss'], b['gauss'])
76
+
77
+
78
+ class TestSeed:
79
+ def test_scalar(self):
80
+ s = random.RandomState(0)
81
+ assert_equal(s.randint(1000), 684)
82
+ s = random.RandomState(4294967295)
83
+ assert_equal(s.randint(1000), 419)
84
+
85
+ def test_array(self):
86
+ s = random.RandomState(range(10))
87
+ assert_equal(s.randint(1000), 468)
88
+ s = random.RandomState(np.arange(10))
89
+ assert_equal(s.randint(1000), 468)
90
+ s = random.RandomState([0])
91
+ assert_equal(s.randint(1000), 973)
92
+ s = random.RandomState([4294967295])
93
+ assert_equal(s.randint(1000), 265)
94
+
95
+ def test_invalid_scalar(self):
96
+ # seed must be an unsigned 32 bit integer
97
+ assert_raises(TypeError, random.RandomState, -0.5)
98
+ assert_raises(ValueError, random.RandomState, -1)
99
+
100
+ def test_invalid_array(self):
101
+ # seed must be an unsigned 32 bit integer
102
+ assert_raises(TypeError, random.RandomState, [-0.5])
103
+ assert_raises(ValueError, random.RandomState, [-1])
104
+ assert_raises(ValueError, random.RandomState, [4294967296])
105
+ assert_raises(ValueError, random.RandomState, [1, 2, 4294967296])
106
+ assert_raises(ValueError, random.RandomState, [1, -2, 4294967296])
107
+
108
+ def test_invalid_array_shape(self):
109
+ # gh-9832
110
+ assert_raises(ValueError, random.RandomState, np.array([],
111
+ dtype=np.int64))
112
+ assert_raises(ValueError, random.RandomState, [[1, 2, 3]])
113
+ assert_raises(ValueError, random.RandomState, [[1, 2, 3],
114
+ [4, 5, 6]])
115
+
116
+ def test_cannot_seed(self):
117
+ rs = random.RandomState(PCG64(0))
118
+ with assert_raises(TypeError):
119
+ rs.seed(1234)
120
+
121
+ def test_invalid_initialization(self):
122
+ assert_raises(ValueError, random.RandomState, MT19937)
123
+
124
+
125
+ class TestBinomial:
126
+ def test_n_zero(self):
127
+ # Tests the corner case of n == 0 for the binomial distribution.
128
+ # binomial(0, p) should be zero for any p in [0, 1].
129
+ # This test addresses issue #3480.
130
+ zeros = np.zeros(2, dtype='int')
131
+ for p in [0, .5, 1]:
132
+ assert_(random.binomial(0, p) == 0)
133
+ assert_array_equal(random.binomial(zeros, p), zeros)
134
+
135
+ def test_p_is_nan(self):
136
+ # Issue #4571.
137
+ assert_raises(ValueError, random.binomial, 1, np.nan)
138
+
139
+
140
+ class TestMultinomial:
141
+ def test_basic(self):
142
+ random.multinomial(100, [0.2, 0.8])
143
+
144
+ def test_zero_probability(self):
145
+ random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
146
+
147
+ def test_int_negative_interval(self):
148
+ assert_(-5 <= random.randint(-5, -1) < -1)
149
+ x = random.randint(-5, -1, 5)
150
+ assert_(np.all(-5 <= x))
151
+ assert_(np.all(x < -1))
152
+
153
+ def test_size(self):
154
+ # gh-3173
155
+ p = [0.5, 0.5]
156
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
157
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
158
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
159
+ assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
160
+ assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
161
+ assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
162
+ (2, 2, 2))
163
+
164
+ assert_raises(TypeError, random.multinomial, 1, p,
165
+ float(1))
166
+
167
+ def test_invalid_prob(self):
168
+ assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
169
+ assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
170
+
171
+ def test_invalid_n(self):
172
+ assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
173
+
174
+ def test_p_non_contiguous(self):
175
+ p = np.arange(15.)
176
+ p /= np.sum(p[1::3])
177
+ pvals = p[1::3]
178
+ random.seed(1432985819)
179
+ non_contig = random.multinomial(100, pvals=pvals)
180
+ random.seed(1432985819)
181
+ contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
182
+ assert_array_equal(non_contig, contig)
183
+
184
+ def test_multinomial_pvals_float32(self):
185
+ x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
186
+ 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
187
+ pvals = x / x.sum()
188
+ match = r"[\w\s]*pvals array is cast to 64-bit floating"
189
+ with pytest.raises(ValueError, match=match):
190
+ random.multinomial(1, pvals)
191
+
192
+ def test_multinomial_n_float(self):
193
+ # Non-index integer types should gracefully truncate floats
194
+ random.multinomial(100.5, [0.2, 0.8])
195
+
196
+ class TestSetState:
197
+ def setup_method(self):
198
+ self.seed = 1234567890
199
+ self.random_state = random.RandomState(self.seed)
200
+ self.state = self.random_state.get_state()
201
+
202
+ def test_basic(self):
203
+ old = self.random_state.tomaxint(16)
204
+ self.random_state.set_state(self.state)
205
+ new = self.random_state.tomaxint(16)
206
+ assert_(np.all(old == new))
207
+
208
+ def test_gaussian_reset(self):
209
+ # Make sure the cached every-other-Gaussian is reset.
210
+ old = self.random_state.standard_normal(size=3)
211
+ self.random_state.set_state(self.state)
212
+ new = self.random_state.standard_normal(size=3)
213
+ assert_(np.all(old == new))
214
+
215
+ def test_gaussian_reset_in_media_res(self):
216
+ # When the state is saved with a cached Gaussian, make sure the
217
+ # cached Gaussian is restored.
218
+
219
+ self.random_state.standard_normal()
220
+ state = self.random_state.get_state()
221
+ old = self.random_state.standard_normal(size=3)
222
+ self.random_state.set_state(state)
223
+ new = self.random_state.standard_normal(size=3)
224
+ assert_(np.all(old == new))
225
+
226
+ def test_backwards_compatibility(self):
227
+ # Make sure we can accept old state tuples that do not have the
228
+ # cached Gaussian value.
229
+ old_state = self.state[:-2]
230
+ x1 = self.random_state.standard_normal(size=16)
231
+ self.random_state.set_state(old_state)
232
+ x2 = self.random_state.standard_normal(size=16)
233
+ self.random_state.set_state(self.state)
234
+ x3 = self.random_state.standard_normal(size=16)
235
+ assert_(np.all(x1 == x2))
236
+ assert_(np.all(x1 == x3))
237
+
238
+ def test_negative_binomial(self):
239
+ # Ensure that the negative binomial results take floating point
240
+ # arguments without truncation.
241
+ self.random_state.negative_binomial(0.5, 0.5)
242
+
243
+ def test_get_state_warning(self):
244
+ rs = random.RandomState(PCG64())
245
+ with suppress_warnings() as sup:
246
+ w = sup.record(RuntimeWarning)
247
+ state = rs.get_state()
248
+ assert_(len(w) == 1)
249
+ assert isinstance(state, dict)
250
+ assert state['bit_generator'] == 'PCG64'
251
+
252
+ def test_invalid_legacy_state_setting(self):
253
+ state = self.random_state.get_state()
254
+ new_state = ('Unknown', ) + state[1:]
255
+ assert_raises(ValueError, self.random_state.set_state, new_state)
256
+ assert_raises(TypeError, self.random_state.set_state,
257
+ np.array(new_state, dtype=object))
258
+ state = self.random_state.get_state(legacy=False)
259
+ del state['bit_generator']
260
+ assert_raises(ValueError, self.random_state.set_state, state)
261
+
262
+ def test_pickle(self):
263
+ self.random_state.seed(0)
264
+ self.random_state.random_sample(100)
265
+ self.random_state.standard_normal()
266
+ pickled = self.random_state.get_state(legacy=False)
267
+ assert_equal(pickled['has_gauss'], 1)
268
+ rs_unpick = pickle.loads(pickle.dumps(self.random_state))
269
+ unpickled = rs_unpick.get_state(legacy=False)
270
+ assert_mt19937_state_equal(pickled, unpickled)
271
+
272
+ def test_state_setting(self):
273
+ attr_state = self.random_state.__getstate__()
274
+ self.random_state.standard_normal()
275
+ self.random_state.__setstate__(attr_state)
276
+ state = self.random_state.get_state(legacy=False)
277
+ assert_mt19937_state_equal(attr_state, state)
278
+
279
+ def test_repr(self):
280
+ assert repr(self.random_state).startswith('RandomState(MT19937)')
281
+
282
+
283
+ class TestRandint:
284
+
285
+ rfunc = random.randint
286
+
287
+ # valid integer/boolean types
288
+ itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
289
+ np.int32, np.uint32, np.int64, np.uint64]
290
+
291
+ def test_unsupported_type(self):
292
+ assert_raises(TypeError, self.rfunc, 1, dtype=float)
293
+
294
+ def test_bounds_checking(self):
295
+ for dt in self.itype:
296
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
297
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
298
+ assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
299
+ assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
300
+ assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
301
+ assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
302
+
303
+ def test_rng_zero_and_extremes(self):
304
+ for dt in self.itype:
305
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
306
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
307
+
308
+ tgt = ubnd - 1
309
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
310
+
311
+ tgt = lbnd
312
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
313
+
314
+ tgt = (lbnd + ubnd) // 2
315
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
316
+
317
+ def test_full_range(self):
318
+ # Test for ticket #1690
319
+
320
+ for dt in self.itype:
321
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
322
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
323
+
324
+ try:
325
+ self.rfunc(lbnd, ubnd, dtype=dt)
326
+ except Exception as e:
327
+ raise AssertionError("No error should have been raised, "
328
+ "but one was with the following "
329
+ "message:\n\n%s" % str(e))
330
+
331
+ def test_in_bounds_fuzz(self):
332
+ # Don't use fixed seed
333
+ random.seed()
334
+
335
+ for dt in self.itype[1:]:
336
+ for ubnd in [4, 8, 16]:
337
+ vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
338
+ assert_(vals.max() < ubnd)
339
+ assert_(vals.min() >= 2)
340
+
341
+ vals = self.rfunc(0, 2, size=2**16, dtype=np.bool)
342
+
343
+ assert_(vals.max() < 2)
344
+ assert_(vals.min() >= 0)
345
+
346
+ def test_repeatability(self):
347
+ # We use a sha256 hash of generated sequences of 1000 samples
348
+ # in the range [0, 6) for all but bool, where the range
349
+ # is [0, 2). Hashes are for little endian numbers.
350
+ tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', # noqa: E501
351
+ 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
352
+ 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
353
+ 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
354
+ 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', # noqa: E501
355
+ 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
356
+ 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
357
+ 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
358
+ 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} # noqa: E501
359
+
360
+ for dt in self.itype[1:]:
361
+ random.seed(1234)
362
+
363
+ # view as little endian for hash
364
+ if sys.byteorder == 'little':
365
+ val = self.rfunc(0, 6, size=1000, dtype=dt)
366
+ else:
367
+ val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
368
+
369
+ res = hashlib.sha256(val.view(np.int8)).hexdigest()
370
+ assert_(tgt[np.dtype(dt).name] == res)
371
+
372
+ # bools do not depend on endianness
373
+ random.seed(1234)
374
+ val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
375
+ res = hashlib.sha256(val).hexdigest()
376
+ assert_(tgt[np.dtype(bool).name] == res)
377
+
378
+ @pytest.mark.skipif(np.iinfo('l').max < 2**32,
379
+ reason='Cannot test with 32-bit C long')
380
+ def test_repeatability_32bit_boundary_broadcasting(self):
381
+ desired = np.array([[[3992670689, 2438360420, 2557845020],
382
+ [4107320065, 4142558326, 3216529513],
383
+ [1605979228, 2807061240, 665605495]],
384
+ [[3211410639, 4128781000, 457175120],
385
+ [1712592594, 1282922662, 3081439808],
386
+ [3997822960, 2008322436, 1563495165]],
387
+ [[1398375547, 4269260146, 115316740],
388
+ [3414372578, 3437564012, 2112038651],
389
+ [3572980305, 2260248732, 3908238631]],
390
+ [[2561372503, 223155946, 3127879445],
391
+ [ 441282060, 3514786552, 2148440361],
392
+ [1629275283, 3479737011, 3003195987]],
393
+ [[ 412181688, 940383289, 3047321305],
394
+ [2978368172, 764731833, 2282559898],
395
+ [ 105711276, 720447391, 3596512484]]])
396
+ for size in [None, (5, 3, 3)]:
397
+ random.seed(12345)
398
+ x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1],
399
+ size=size)
400
+ assert_array_equal(x, desired if size is not None else desired[0])
401
+
402
+ def test_int64_uint64_corner_case(self):
403
+ # When stored in Numpy arrays, `lbnd` is casted
404
+ # as np.int64, and `ubnd` is casted as np.uint64.
405
+ # Checking whether `lbnd` >= `ubnd` used to be
406
+ # done solely via direct comparison, which is incorrect
407
+ # because when Numpy tries to compare both numbers,
408
+ # it casts both to np.float64 because there is
409
+ # no integer superset of np.int64 and np.uint64. However,
410
+ # `ubnd` is too large to be represented in np.float64,
411
+ # causing it be round down to np.iinfo(np.int64).max,
412
+ # leading to a ValueError because `lbnd` now equals
413
+ # the new `ubnd`.
414
+
415
+ dt = np.int64
416
+ tgt = np.iinfo(np.int64).max
417
+ lbnd = np.int64(np.iinfo(np.int64).max)
418
+ ubnd = np.uint64(np.iinfo(np.int64).max + 1)
419
+
420
+ # None of these function calls should
421
+ # generate a ValueError now.
422
+ actual = random.randint(lbnd, ubnd, dtype=dt)
423
+ assert_equal(actual, tgt)
424
+
425
+ def test_respect_dtype_singleton(self):
426
+ # See gh-7203
427
+ for dt in self.itype:
428
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
429
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
430
+
431
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
432
+ assert_equal(sample.dtype, np.dtype(dt))
433
+
434
+ for dt in (bool, int):
435
+ # The legacy random generation forces the use of "long" on this
436
+ # branch even when the input is `int` and the default dtype
437
+ # for int changed (dtype=int is also the functions default)
438
+ op_dtype = "long" if dt is int else "bool"
439
+ lbnd = 0 if dt is bool else np.iinfo(op_dtype).min
440
+ ubnd = 2 if dt is bool else np.iinfo(op_dtype).max + 1
441
+
442
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
443
+ assert_(not hasattr(sample, 'dtype'))
444
+ assert_equal(type(sample), dt)
445
+
446
+
447
+ class TestRandomDist:
448
+ # Make sure the random distribution returns the correct value for a
449
+ # given seed
450
+
451
+ def setup_method(self):
452
+ self.seed = 1234567890
453
+
454
+ def test_rand(self):
455
+ random.seed(self.seed)
456
+ actual = random.rand(3, 2)
457
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
458
+ [0.88868358904449662, 0.89165480011560816],
459
+ [0.4575674820298663, 0.7781880808593471]])
460
+ assert_array_almost_equal(actual, desired, decimal=15)
461
+
462
+ def test_rand_singleton(self):
463
+ random.seed(self.seed)
464
+ actual = random.rand()
465
+ desired = 0.61879477158567997
466
+ assert_array_almost_equal(actual, desired, decimal=15)
467
+
468
+ def test_randn(self):
469
+ random.seed(self.seed)
470
+ actual = random.randn(3, 2)
471
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
472
+ [1.498988344300628, -0.2286433324536169],
473
+ [2.031033998682787, 2.17032494605655257]])
474
+ assert_array_almost_equal(actual, desired, decimal=15)
475
+
476
+ random.seed(self.seed)
477
+ actual = random.randn()
478
+ assert_array_almost_equal(actual, desired[0, 0], decimal=15)
479
+
480
+ def test_randint(self):
481
+ random.seed(self.seed)
482
+ actual = random.randint(-99, 99, size=(3, 2))
483
+ desired = np.array([[31, 3],
484
+ [-52, 41],
485
+ [-48, -66]])
486
+ assert_array_equal(actual, desired)
487
+
488
+ def test_random_integers(self):
489
+ random.seed(self.seed)
490
+ with suppress_warnings() as sup:
491
+ w = sup.record(DeprecationWarning)
492
+ actual = random.random_integers(-99, 99, size=(3, 2))
493
+ assert_(len(w) == 1)
494
+ desired = np.array([[31, 3],
495
+ [-52, 41],
496
+ [-48, -66]])
497
+ assert_array_equal(actual, desired)
498
+
499
+ random.seed(self.seed)
500
+ with suppress_warnings() as sup:
501
+ w = sup.record(DeprecationWarning)
502
+ actual = random.random_integers(198, size=(3, 2))
503
+ assert_(len(w) == 1)
504
+ assert_array_equal(actual, desired + 100)
505
+
506
+ def test_tomaxint(self):
507
+ random.seed(self.seed)
508
+ rs = random.RandomState(self.seed)
509
+ actual = rs.tomaxint(size=(3, 2))
510
+ if np.iinfo(np.long).max == 2147483647:
511
+ desired = np.array([[1328851649, 731237375],
512
+ [1270502067, 320041495],
513
+ [1908433478, 499156889]], dtype=np.int64)
514
+ else:
515
+ desired = np.array([[5707374374421908479, 5456764827585442327],
516
+ [8196659375100692377, 8224063923314595285],
517
+ [4220315081820346526, 7177518203184491332]],
518
+ dtype=np.int64)
519
+
520
+ assert_equal(actual, desired)
521
+
522
+ rs.seed(self.seed)
523
+ actual = rs.tomaxint()
524
+ assert_equal(actual, desired[0, 0])
525
+
526
+ def test_random_integers_max_int(self):
527
+ # Tests whether random_integers can generate the
528
+ # maximum allowed Python int that can be converted
529
+ # into a C long. Previous implementations of this
530
+ # method have thrown an OverflowError when attempting
531
+ # to generate this integer.
532
+ with suppress_warnings() as sup:
533
+ w = sup.record(DeprecationWarning)
534
+ actual = random.random_integers(np.iinfo('l').max,
535
+ np.iinfo('l').max)
536
+ assert_(len(w) == 1)
537
+
538
+ desired = np.iinfo('l').max
539
+ assert_equal(actual, desired)
540
+ with suppress_warnings() as sup:
541
+ w = sup.record(DeprecationWarning)
542
+ typer = np.dtype('l').type
543
+ actual = random.random_integers(typer(np.iinfo('l').max),
544
+ typer(np.iinfo('l').max))
545
+ assert_(len(w) == 1)
546
+ assert_equal(actual, desired)
547
+
548
+ def test_random_integers_deprecated(self):
549
+ with warnings.catch_warnings():
550
+ warnings.simplefilter("error", DeprecationWarning)
551
+
552
+ # DeprecationWarning raised with high == None
553
+ assert_raises(DeprecationWarning,
554
+ random.random_integers,
555
+ np.iinfo('l').max)
556
+
557
+ # DeprecationWarning raised with high != None
558
+ assert_raises(DeprecationWarning,
559
+ random.random_integers,
560
+ np.iinfo('l').max, np.iinfo('l').max)
561
+
562
+ def test_random_sample(self):
563
+ random.seed(self.seed)
564
+ actual = random.random_sample((3, 2))
565
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
566
+ [0.88868358904449662, 0.89165480011560816],
567
+ [0.4575674820298663, 0.7781880808593471]])
568
+ assert_array_almost_equal(actual, desired, decimal=15)
569
+
570
+ random.seed(self.seed)
571
+ actual = random.random_sample()
572
+ assert_array_almost_equal(actual, desired[0, 0], decimal=15)
573
+
574
+ def test_choice_uniform_replace(self):
575
+ random.seed(self.seed)
576
+ actual = random.choice(4, 4)
577
+ desired = np.array([2, 3, 2, 3])
578
+ assert_array_equal(actual, desired)
579
+
580
+ def test_choice_nonuniform_replace(self):
581
+ random.seed(self.seed)
582
+ actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
583
+ desired = np.array([1, 1, 2, 2])
584
+ assert_array_equal(actual, desired)
585
+
586
+ def test_choice_uniform_noreplace(self):
587
+ random.seed(self.seed)
588
+ actual = random.choice(4, 3, replace=False)
589
+ desired = np.array([0, 1, 3])
590
+ assert_array_equal(actual, desired)
591
+
592
+ def test_choice_nonuniform_noreplace(self):
593
+ random.seed(self.seed)
594
+ actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
595
+ desired = np.array([2, 3, 1])
596
+ assert_array_equal(actual, desired)
597
+
598
+ def test_choice_noninteger(self):
599
+ random.seed(self.seed)
600
+ actual = random.choice(['a', 'b', 'c', 'd'], 4)
601
+ desired = np.array(['c', 'd', 'c', 'd'])
602
+ assert_array_equal(actual, desired)
603
+
604
+ def test_choice_exceptions(self):
605
+ sample = random.choice
606
+ assert_raises(ValueError, sample, -1, 3)
607
+ assert_raises(ValueError, sample, 3., 3)
608
+ assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
609
+ assert_raises(ValueError, sample, [], 3)
610
+ assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
611
+ p=[[0.25, 0.25], [0.25, 0.25]])
612
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
613
+ assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
614
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
615
+ assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
616
+ # gh-13087
617
+ assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
618
+ assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
619
+ assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
620
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
621
+ replace=False, p=[1, 0, 0])
622
+
623
+ def test_choice_return_shape(self):
624
+ p = [0.1, 0.9]
625
+ # Check scalar
626
+ assert_(np.isscalar(random.choice(2, replace=True)))
627
+ assert_(np.isscalar(random.choice(2, replace=False)))
628
+ assert_(np.isscalar(random.choice(2, replace=True, p=p)))
629
+ assert_(np.isscalar(random.choice(2, replace=False, p=p)))
630
+ assert_(np.isscalar(random.choice([1, 2], replace=True)))
631
+ assert_(random.choice([None], replace=True) is None)
632
+ a = np.array([1, 2])
633
+ arr = np.empty(1, dtype=object)
634
+ arr[0] = a
635
+ assert_(random.choice(arr, replace=True) is a)
636
+
637
+ # Check 0-d array
638
+ s = ()
639
+ assert_(not np.isscalar(random.choice(2, s, replace=True)))
640
+ assert_(not np.isscalar(random.choice(2, s, replace=False)))
641
+ assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
642
+ assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
643
+ assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
644
+ assert_(random.choice([None], s, replace=True).ndim == 0)
645
+ a = np.array([1, 2])
646
+ arr = np.empty(1, dtype=object)
647
+ arr[0] = a
648
+ assert_(random.choice(arr, s, replace=True).item() is a)
649
+
650
+ # Check multi dimensional array
651
+ s = (2, 3)
652
+ p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
653
+ assert_equal(random.choice(6, s, replace=True).shape, s)
654
+ assert_equal(random.choice(6, s, replace=False).shape, s)
655
+ assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
656
+ assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
657
+ assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
658
+
659
+ # Check zero-size
660
+ assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
661
+ assert_equal(random.randint(0, -10, size=0).shape, (0,))
662
+ assert_equal(random.randint(10, 10, size=0).shape, (0,))
663
+ assert_equal(random.choice(0, size=0).shape, (0,))
664
+ assert_equal(random.choice([], size=(0,)).shape, (0,))
665
+ assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
666
+ (3, 0, 4))
667
+ assert_raises(ValueError, random.choice, [], 10)
668
+
669
+ def test_choice_nan_probabilities(self):
670
+ a = np.array([42, 1, 2])
671
+ p = [None, None, None]
672
+ assert_raises(ValueError, random.choice, a, p=p)
673
+
674
+ def test_choice_p_non_contiguous(self):
675
+ p = np.ones(10) / 5
676
+ p[1::2] = 3.0
677
+ random.seed(self.seed)
678
+ non_contig = random.choice(5, 3, p=p[::2])
679
+ random.seed(self.seed)
680
+ contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
681
+ assert_array_equal(non_contig, contig)
682
+
683
+ def test_bytes(self):
684
+ random.seed(self.seed)
685
+ actual = random.bytes(10)
686
+ desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
687
+ assert_equal(actual, desired)
688
+
689
+ def test_shuffle(self):
690
+ # Test lists, arrays (of various dtypes), and multidimensional versions
691
+ # of both, c-contiguous or not:
692
+ for conv in [lambda x: np.array([]),
693
+ lambda x: x,
694
+ lambda x: np.asarray(x).astype(np.int8),
695
+ lambda x: np.asarray(x).astype(np.float32),
696
+ lambda x: np.asarray(x).astype(np.complex64),
697
+ lambda x: np.asarray(x).astype(object),
698
+ lambda x: [(i, i) for i in x],
699
+ lambda x: np.asarray([[i, i] for i in x]),
700
+ lambda x: np.vstack([x, x]).T,
701
+ # gh-11442
702
+ lambda x: (np.asarray([(i, i) for i in x],
703
+ [("a", int), ("b", int)])
704
+ .view(np.recarray)),
705
+ # gh-4270
706
+ lambda x: np.asarray([(i, i) for i in x],
707
+ [("a", object, (1,)),
708
+ ("b", np.int32, (1,))])]:
709
+ random.seed(self.seed)
710
+ alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
711
+ random.shuffle(alist)
712
+ actual = alist
713
+ desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
714
+ assert_array_equal(actual, desired)
715
+
716
+ def test_shuffle_masked(self):
717
+ # gh-3263
718
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
719
+ b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
720
+ a_orig = a.copy()
721
+ b_orig = b.copy()
722
+ for i in range(50):
723
+ random.shuffle(a)
724
+ assert_equal(
725
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
726
+ random.shuffle(b)
727
+ assert_equal(
728
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
729
+
730
+ def test_shuffle_invalid_objects(self):
731
+ x = np.array(3)
732
+ assert_raises(TypeError, random.shuffle, x)
733
+
734
+ def test_permutation(self):
735
+ random.seed(self.seed)
736
+ alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
737
+ actual = random.permutation(alist)
738
+ desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]
739
+ assert_array_equal(actual, desired)
740
+
741
+ random.seed(self.seed)
742
+ arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
743
+ actual = random.permutation(arr_2d)
744
+ assert_array_equal(actual, np.atleast_2d(desired).T)
745
+
746
+ random.seed(self.seed)
747
+ bad_x_str = "abcd"
748
+ assert_raises(IndexError, random.permutation, bad_x_str)
749
+
750
+ random.seed(self.seed)
751
+ bad_x_float = 1.2
752
+ assert_raises(IndexError, random.permutation, bad_x_float)
753
+
754
+ integer_val = 10
755
+ desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2]
756
+
757
+ random.seed(self.seed)
758
+ actual = random.permutation(integer_val)
759
+ assert_array_equal(actual, desired)
760
+
761
+ def test_beta(self):
762
+ random.seed(self.seed)
763
+ actual = random.beta(.1, .9, size=(3, 2))
764
+ desired = np.array(
765
+ [[1.45341850513746058e-02, 5.31297615662868145e-04],
766
+ [1.85366619058432324e-06, 4.19214516800110563e-03],
767
+ [1.58405155108498093e-04, 1.26252891949397652e-04]])
768
+ assert_array_almost_equal(actual, desired, decimal=15)
769
+
770
+ def test_binomial(self):
771
+ random.seed(self.seed)
772
+ actual = random.binomial(100.123, .456, size=(3, 2))
773
+ desired = np.array([[37, 43],
774
+ [42, 48],
775
+ [46, 45]])
776
+ assert_array_equal(actual, desired)
777
+
778
+ random.seed(self.seed)
779
+ actual = random.binomial(100.123, .456)
780
+ desired = 37
781
+ assert_array_equal(actual, desired)
782
+
783
+ def test_chisquare(self):
784
+ random.seed(self.seed)
785
+ actual = random.chisquare(50, size=(3, 2))
786
+ desired = np.array([[63.87858175501090585, 68.68407748911370447],
787
+ [65.77116116901505904, 47.09686762438974483],
788
+ [72.3828403199695174, 74.18408615260374006]])
789
+ assert_array_almost_equal(actual, desired, decimal=13)
790
+
791
+ def test_dirichlet(self):
792
+ random.seed(self.seed)
793
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
794
+ actual = random.dirichlet(alpha, size=(3, 2))
795
+ desired = np.array([[[0.54539444573611562, 0.45460555426388438],
796
+ [0.62345816822039413, 0.37654183177960598]],
797
+ [[0.55206000085785778, 0.44793999914214233],
798
+ [0.58964023305154301, 0.41035976694845688]],
799
+ [[0.59266909280647828, 0.40733090719352177],
800
+ [0.56974431743975207, 0.43025568256024799]]])
801
+ assert_array_almost_equal(actual, desired, decimal=15)
802
+ bad_alpha = np.array([5.4e-01, -1.0e-16])
803
+ assert_raises(ValueError, random.dirichlet, bad_alpha)
804
+
805
+ random.seed(self.seed)
806
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
807
+ actual = random.dirichlet(alpha)
808
+ assert_array_almost_equal(actual, desired[0, 0], decimal=15)
809
+
810
+ def test_dirichlet_size(self):
811
+ # gh-3173
812
+ p = np.array([51.72840233779265162, 39.74494232180943953])
813
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
814
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
815
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
816
+ assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
817
+ assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
818
+ assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
819
+
820
+ assert_raises(TypeError, random.dirichlet, p, float(1))
821
+
822
+ def test_dirichlet_bad_alpha(self):
823
+ # gh-2089
824
+ alpha = np.array([5.4e-01, -1.0e-16])
825
+ assert_raises(ValueError, random.dirichlet, alpha)
826
+
827
+ def test_dirichlet_alpha_non_contiguous(self):
828
+ a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
829
+ alpha = a[::2]
830
+ random.seed(self.seed)
831
+ non_contig = random.dirichlet(alpha, size=(3, 2))
832
+ random.seed(self.seed)
833
+ contig = random.dirichlet(np.ascontiguousarray(alpha),
834
+ size=(3, 2))
835
+ assert_array_almost_equal(non_contig, contig)
836
+
837
+ def test_exponential(self):
838
+ random.seed(self.seed)
839
+ actual = random.exponential(1.1234, size=(3, 2))
840
+ desired = np.array([[1.08342649775011624, 1.00607889924557314],
841
+ [2.46628830085216721, 2.49668106809923884],
842
+ [0.68717433461363442, 1.69175666993575979]])
843
+ assert_array_almost_equal(actual, desired, decimal=15)
844
+
845
+ def test_exponential_0(self):
846
+ assert_equal(random.exponential(scale=0), 0)
847
+ assert_raises(ValueError, random.exponential, scale=-0.)
848
+
849
+ def test_f(self):
850
+ random.seed(self.seed)
851
+ actual = random.f(12, 77, size=(3, 2))
852
+ desired = np.array([[1.21975394418575878, 1.75135759791559775],
853
+ [1.44803115017146489, 1.22108959480396262],
854
+ [1.02176975757740629, 1.34431827623300415]])
855
+ assert_array_almost_equal(actual, desired, decimal=15)
856
+
857
+ def test_gamma(self):
858
+ random.seed(self.seed)
859
+ actual = random.gamma(5, 3, size=(3, 2))
860
+ desired = np.array([[24.60509188649287182, 28.54993563207210627],
861
+ [26.13476110204064184, 12.56988482927716078],
862
+ [31.71863275789960568, 33.30143302795922011]])
863
+ assert_array_almost_equal(actual, desired, decimal=14)
864
+
865
+ def test_gamma_0(self):
866
+ assert_equal(random.gamma(shape=0, scale=0), 0)
867
+ assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
868
+
869
+ def test_geometric(self):
870
+ random.seed(self.seed)
871
+ actual = random.geometric(.123456789, size=(3, 2))
872
+ desired = np.array([[8, 7],
873
+ [17, 17],
874
+ [5, 12]])
875
+ assert_array_equal(actual, desired)
876
+
877
+ def test_geometric_exceptions(self):
878
+ assert_raises(ValueError, random.geometric, 1.1)
879
+ assert_raises(ValueError, random.geometric, [1.1] * 10)
880
+ assert_raises(ValueError, random.geometric, -0.1)
881
+ assert_raises(ValueError, random.geometric, [-0.1] * 10)
882
+ with suppress_warnings() as sup:
883
+ sup.record(RuntimeWarning)
884
+ assert_raises(ValueError, random.geometric, np.nan)
885
+ assert_raises(ValueError, random.geometric, [np.nan] * 10)
886
+
887
+ def test_gumbel(self):
888
+ random.seed(self.seed)
889
+ actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
890
+ desired = np.array([[0.19591898743416816, 0.34405539668096674],
891
+ [-1.4492522252274278, -1.47374816298446865],
892
+ [1.10651090478803416, -0.69535848626236174]])
893
+ assert_array_almost_equal(actual, desired, decimal=15)
894
+
895
+ def test_gumbel_0(self):
896
+ assert_equal(random.gumbel(scale=0), 0)
897
+ assert_raises(ValueError, random.gumbel, scale=-0.)
898
+
899
+ def test_hypergeometric(self):
900
+ random.seed(self.seed)
901
+ actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
902
+ desired = np.array([[10, 10],
903
+ [10, 10],
904
+ [9, 9]])
905
+ assert_array_equal(actual, desired)
906
+
907
+ # Test nbad = 0
908
+ actual = random.hypergeometric(5, 0, 3, size=4)
909
+ desired = np.array([3, 3, 3, 3])
910
+ assert_array_equal(actual, desired)
911
+
912
+ actual = random.hypergeometric(15, 0, 12, size=4)
913
+ desired = np.array([12, 12, 12, 12])
914
+ assert_array_equal(actual, desired)
915
+
916
+ # Test ngood = 0
917
+ actual = random.hypergeometric(0, 5, 3, size=4)
918
+ desired = np.array([0, 0, 0, 0])
919
+ assert_array_equal(actual, desired)
920
+
921
+ actual = random.hypergeometric(0, 15, 12, size=4)
922
+ desired = np.array([0, 0, 0, 0])
923
+ assert_array_equal(actual, desired)
924
+
925
+ def test_laplace(self):
926
+ random.seed(self.seed)
927
+ actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
928
+ desired = np.array([[0.66599721112760157, 0.52829452552221945],
929
+ [3.12791959514407125, 3.18202813572992005],
930
+ [-0.05391065675859356, 1.74901336242837324]])
931
+ assert_array_almost_equal(actual, desired, decimal=15)
932
+
933
+ def test_laplace_0(self):
934
+ assert_equal(random.laplace(scale=0), 0)
935
+ assert_raises(ValueError, random.laplace, scale=-0.)
936
+
937
+ def test_logistic(self):
938
+ random.seed(self.seed)
939
+ actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
940
+ desired = np.array([[1.09232835305011444, 0.8648196662399954],
941
+ [4.27818590694950185, 4.33897006346929714],
942
+ [-0.21682183359214885, 2.63373365386060332]])
943
+ assert_array_almost_equal(actual, desired, decimal=15)
944
+
945
+ def test_lognormal(self):
946
+ random.seed(self.seed)
947
+ actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
948
+ desired = np.array([[16.50698631688883822, 36.54846706092654784],
949
+ [22.67886599981281748, 0.71617561058995771],
950
+ [65.72798501792723869, 86.84341601437161273]])
951
+ assert_array_almost_equal(actual, desired, decimal=13)
952
+
953
+ def test_lognormal_0(self):
954
+ assert_equal(random.lognormal(sigma=0), 1)
955
+ assert_raises(ValueError, random.lognormal, sigma=-0.)
956
+
957
+ def test_logseries(self):
958
+ random.seed(self.seed)
959
+ actual = random.logseries(p=.923456789, size=(3, 2))
960
+ desired = np.array([[2, 2],
961
+ [6, 17],
962
+ [3, 6]])
963
+ assert_array_equal(actual, desired)
964
+
965
+ def test_logseries_zero(self):
966
+ assert random.logseries(0) == 1
967
+
968
+ @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.])
969
+ def test_logseries_exceptions(self, value):
970
+ with np.errstate(invalid="ignore"):
971
+ with pytest.raises(ValueError):
972
+ random.logseries(value)
973
+ with pytest.raises(ValueError):
974
+ # contiguous path:
975
+ random.logseries(np.array([value] * 10))
976
+ with pytest.raises(ValueError):
977
+ # non-contiguous path:
978
+ random.logseries(np.array([value] * 10)[::2])
979
+
980
+ def test_multinomial(self):
981
+ random.seed(self.seed)
982
+ actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
983
+ desired = np.array([[[4, 3, 5, 4, 2, 2],
984
+ [5, 2, 8, 2, 2, 1]],
985
+ [[3, 4, 3, 6, 0, 4],
986
+ [2, 1, 4, 3, 6, 4]],
987
+ [[4, 4, 2, 5, 2, 3],
988
+ [4, 3, 4, 2, 3, 4]]])
989
+ assert_array_equal(actual, desired)
990
+
991
+ def test_multivariate_normal(self):
992
+ random.seed(self.seed)
993
+ mean = (.123456789, 10)
994
+ cov = [[1, 0], [0, 1]]
995
+ size = (3, 2)
996
+ actual = random.multivariate_normal(mean, cov, size)
997
+ desired = np.array([[[1.463620246718631, 11.73759122771936],
998
+ [1.622445133300628, 9.771356667546383]],
999
+ [[2.154490787682787, 12.170324946056553],
1000
+ [1.719909438201865, 9.230548443648306]],
1001
+ [[0.689515026297799, 9.880729819607714],
1002
+ [-0.023054015651998, 9.201096623542879]]])
1003
+
1004
+ assert_array_almost_equal(actual, desired, decimal=15)
1005
+
1006
+ # Check for default size, was raising deprecation warning
1007
+ actual = random.multivariate_normal(mean, cov)
1008
+ desired = np.array([0.895289569463708, 9.17180864067987])
1009
+ assert_array_almost_equal(actual, desired, decimal=15)
1010
+
1011
+ # Check that non positive-semidefinite covariance warns with
1012
+ # RuntimeWarning
1013
+ mean = [0, 0]
1014
+ cov = [[1, 2], [2, 1]]
1015
+ assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
1016
+
1017
+ # and that it doesn't warn with RuntimeWarning check_valid='ignore'
1018
+ assert_no_warnings(random.multivariate_normal, mean, cov,
1019
+ check_valid='ignore')
1020
+
1021
+ # and that it raises with RuntimeWarning check_valid='raises'
1022
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1023
+ check_valid='raise')
1024
+
1025
+ cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
1026
+ with suppress_warnings() as sup:
1027
+ random.multivariate_normal(mean, cov)
1028
+ w = sup.record(RuntimeWarning)
1029
+ assert len(w) == 0
1030
+
1031
+ mu = np.zeros(2)
1032
+ cov = np.eye(2)
1033
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1034
+ check_valid='other')
1035
+ assert_raises(ValueError, random.multivariate_normal,
1036
+ np.zeros((2, 1, 1)), cov)
1037
+ assert_raises(ValueError, random.multivariate_normal,
1038
+ mu, np.empty((3, 2)))
1039
+ assert_raises(ValueError, random.multivariate_normal,
1040
+ mu, np.eye(3))
1041
+
1042
+ def test_negative_binomial(self):
1043
+ random.seed(self.seed)
1044
+ actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
1045
+ desired = np.array([[848, 841],
1046
+ [892, 611],
1047
+ [779, 647]])
1048
+ assert_array_equal(actual, desired)
1049
+
1050
+ def test_negative_binomial_exceptions(self):
1051
+ with suppress_warnings() as sup:
1052
+ sup.record(RuntimeWarning)
1053
+ assert_raises(ValueError, random.negative_binomial, 100, np.nan)
1054
+ assert_raises(ValueError, random.negative_binomial, 100,
1055
+ [np.nan] * 10)
1056
+
1057
+ def test_noncentral_chisquare(self):
1058
+ random.seed(self.seed)
1059
+ actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
1060
+ desired = np.array([[23.91905354498517511, 13.35324692733826346],
1061
+ [31.22452661329736401, 16.60047399466177254],
1062
+ [5.03461598262724586, 17.94973089023519464]])
1063
+ assert_array_almost_equal(actual, desired, decimal=14)
1064
+
1065
+ actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
1066
+ desired = np.array([[1.47145377828516666, 0.15052899268012659],
1067
+ [0.00943803056963588, 1.02647251615666169],
1068
+ [0.332334982684171, 0.15451287602753125]])
1069
+ assert_array_almost_equal(actual, desired, decimal=14)
1070
+
1071
+ random.seed(self.seed)
1072
+ actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
1073
+ desired = np.array([[9.597154162763948, 11.725484450296079],
1074
+ [10.413711048138335, 3.694475922923986],
1075
+ [13.484222138963087, 14.377255424602957]])
1076
+ assert_array_almost_equal(actual, desired, decimal=14)
1077
+
1078
+ def test_noncentral_f(self):
1079
+ random.seed(self.seed)
1080
+ actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
1081
+ size=(3, 2))
1082
+ desired = np.array([[1.40598099674926669, 0.34207973179285761],
1083
+ [3.57715069265772545, 7.92632662577829805],
1084
+ [0.43741599463544162, 1.1774208752428319]])
1085
+ assert_array_almost_equal(actual, desired, decimal=14)
1086
+
1087
+ def test_noncentral_f_nan(self):
1088
+ random.seed(self.seed)
1089
+ actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
1090
+ assert np.isnan(actual)
1091
+
1092
+ def test_normal(self):
1093
+ random.seed(self.seed)
1094
+ actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
1095
+ desired = np.array([[2.80378370443726244, 3.59863924443872163],
1096
+ [3.121433477601256, -0.33382987590723379],
1097
+ [4.18552478636557357, 4.46410668111310471]])
1098
+ assert_array_almost_equal(actual, desired, decimal=15)
1099
+
1100
+ def test_normal_0(self):
1101
+ assert_equal(random.normal(scale=0), 0)
1102
+ assert_raises(ValueError, random.normal, scale=-0.)
1103
+
1104
+ def test_pareto(self):
1105
+ random.seed(self.seed)
1106
+ actual = random.pareto(a=.123456789, size=(3, 2))
1107
+ desired = np.array(
1108
+ [[2.46852460439034849e+03, 1.41286880810518346e+03],
1109
+ [5.28287797029485181e+07, 6.57720981047328785e+07],
1110
+ [1.40840323350391515e+02, 1.98390255135251704e+05]])
1111
+ # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
1112
+ # matrix differs by 24 nulps. Discussion:
1113
+ # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
1114
+ # Consensus is that this is probably some gcc quirk that affects
1115
+ # rounding but not in any important way, so we just use a looser
1116
+ # tolerance on this test:
1117
+ np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
1118
+
1119
+ def test_poisson(self):
1120
+ random.seed(self.seed)
1121
+ actual = random.poisson(lam=.123456789, size=(3, 2))
1122
+ desired = np.array([[0, 0],
1123
+ [1, 0],
1124
+ [0, 0]])
1125
+ assert_array_equal(actual, desired)
1126
+
1127
+ def test_poisson_exceptions(self):
1128
+ lambig = np.iinfo('l').max
1129
+ lamneg = -1
1130
+ assert_raises(ValueError, random.poisson, lamneg)
1131
+ assert_raises(ValueError, random.poisson, [lamneg] * 10)
1132
+ assert_raises(ValueError, random.poisson, lambig)
1133
+ assert_raises(ValueError, random.poisson, [lambig] * 10)
1134
+ with suppress_warnings() as sup:
1135
+ sup.record(RuntimeWarning)
1136
+ assert_raises(ValueError, random.poisson, np.nan)
1137
+ assert_raises(ValueError, random.poisson, [np.nan] * 10)
1138
+
1139
+ def test_power(self):
1140
+ random.seed(self.seed)
1141
+ actual = random.power(a=.123456789, size=(3, 2))
1142
+ desired = np.array([[0.02048932883240791, 0.01424192241128213],
1143
+ [0.38446073748535298, 0.39499689943484395],
1144
+ [0.00177699707563439, 0.13115505880863756]])
1145
+ assert_array_almost_equal(actual, desired, decimal=15)
1146
+
1147
+ def test_rayleigh(self):
1148
+ random.seed(self.seed)
1149
+ actual = random.rayleigh(scale=10, size=(3, 2))
1150
+ desired = np.array([[13.8882496494248393, 13.383318339044731],
1151
+ [20.95413364294492098, 21.08285015800712614],
1152
+ [11.06066537006854311, 17.35468505778271009]])
1153
+ assert_array_almost_equal(actual, desired, decimal=14)
1154
+
1155
+ def test_rayleigh_0(self):
1156
+ assert_equal(random.rayleigh(scale=0), 0)
1157
+ assert_raises(ValueError, random.rayleigh, scale=-0.)
1158
+
1159
+ def test_standard_cauchy(self):
1160
+ random.seed(self.seed)
1161
+ actual = random.standard_cauchy(size=(3, 2))
1162
+ desired = np.array([[0.77127660196445336, -6.55601161955910605],
1163
+ [0.93582023391158309, -2.07479293013759447],
1164
+ [-4.74601644297011926, 0.18338989290760804]])
1165
+ assert_array_almost_equal(actual, desired, decimal=15)
1166
+
1167
+ def test_standard_exponential(self):
1168
+ random.seed(self.seed)
1169
+ actual = random.standard_exponential(size=(3, 2))
1170
+ desired = np.array([[0.96441739162374596, 0.89556604882105506],
1171
+ [2.1953785836319808, 2.22243285392490542],
1172
+ [0.6116915921431676, 1.50592546727413201]])
1173
+ assert_array_almost_equal(actual, desired, decimal=15)
1174
+
1175
+ def test_standard_gamma(self):
1176
+ random.seed(self.seed)
1177
+ actual = random.standard_gamma(shape=3, size=(3, 2))
1178
+ desired = np.array([[5.50841531318455058, 6.62953470301903103],
1179
+ [5.93988484943779227, 2.31044849402133989],
1180
+ [7.54838614231317084, 8.012756093271868]])
1181
+ assert_array_almost_equal(actual, desired, decimal=14)
1182
+
1183
+ def test_standard_gamma_0(self):
1184
+ assert_equal(random.standard_gamma(shape=0), 0)
1185
+ assert_raises(ValueError, random.standard_gamma, shape=-0.)
1186
+
1187
+ def test_standard_normal(self):
1188
+ random.seed(self.seed)
1189
+ actual = random.standard_normal(size=(3, 2))
1190
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
1191
+ [1.498988344300628, -0.2286433324536169],
1192
+ [2.031033998682787, 2.17032494605655257]])
1193
+ assert_array_almost_equal(actual, desired, decimal=15)
1194
+
1195
+ def test_randn_singleton(self):
1196
+ random.seed(self.seed)
1197
+ actual = random.randn()
1198
+ desired = np.array(1.34016345771863121)
1199
+ assert_array_almost_equal(actual, desired, decimal=15)
1200
+
1201
+ def test_standard_t(self):
1202
+ random.seed(self.seed)
1203
+ actual = random.standard_t(df=10, size=(3, 2))
1204
+ desired = np.array([[0.97140611862659965, -0.08830486548450577],
1205
+ [1.36311143689505321, -0.55317463909867071],
1206
+ [-0.18473749069684214, 0.61181537341755321]])
1207
+ assert_array_almost_equal(actual, desired, decimal=15)
1208
+
1209
+ def test_triangular(self):
1210
+ random.seed(self.seed)
1211
+ actual = random.triangular(left=5.12, mode=10.23, right=20.34,
1212
+ size=(3, 2))
1213
+ desired = np.array([[12.68117178949215784, 12.4129206149193152],
1214
+ [16.20131377335158263, 16.25692138747600524],
1215
+ [11.20400690911820263, 14.4978144835829923]])
1216
+ assert_array_almost_equal(actual, desired, decimal=14)
1217
+
1218
+ def test_uniform(self):
1219
+ random.seed(self.seed)
1220
+ actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
1221
+ desired = np.array([[6.99097932346268003, 6.73801597444323974],
1222
+ [9.50364421400426274, 9.53130618907631089],
1223
+ [5.48995325769805476, 8.47493103280052118]])
1224
+ assert_array_almost_equal(actual, desired, decimal=15)
1225
+
1226
+ def test_uniform_range_bounds(self):
1227
+ fmin = np.finfo('float').min
1228
+ fmax = np.finfo('float').max
1229
+
1230
+ func = random.uniform
1231
+ assert_raises(OverflowError, func, -np.inf, 0)
1232
+ assert_raises(OverflowError, func, 0, np.inf)
1233
+ assert_raises(OverflowError, func, fmin, fmax)
1234
+ assert_raises(OverflowError, func, [-np.inf], [0])
1235
+ assert_raises(OverflowError, func, [0], [np.inf])
1236
+
1237
+ # (fmax / 1e17) - fmin is within range, so this should not throw
1238
+ # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
1239
+ # DBL_MAX by increasing fmin a bit
1240
+ random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
1241
+
1242
+ def test_scalar_exception_propagation(self):
1243
+ # Tests that exceptions are correctly propagated in distributions
1244
+ # when called with objects that throw exceptions when converted to
1245
+ # scalars.
1246
+ #
1247
+ # Regression test for gh: 8865
1248
+
1249
+ class ThrowingFloat(np.ndarray):
1250
+ def __float__(self):
1251
+ raise TypeError
1252
+
1253
+ throwing_float = np.array(1.0).view(ThrowingFloat)
1254
+ assert_raises(TypeError, random.uniform, throwing_float,
1255
+ throwing_float)
1256
+
1257
+ class ThrowingInteger(np.ndarray):
1258
+ def __int__(self):
1259
+ raise TypeError
1260
+
1261
+ throwing_int = np.array(1).view(ThrowingInteger)
1262
+ assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
1263
+
1264
+ def test_vonmises(self):
1265
+ random.seed(self.seed)
1266
+ actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
1267
+ desired = np.array([[2.28567572673902042, 2.89163838442285037],
1268
+ [0.38198375564286025, 2.57638023113890746],
1269
+ [1.19153771588353052, 1.83509849681825354]])
1270
+ assert_array_almost_equal(actual, desired, decimal=15)
1271
+
1272
+ def test_vonmises_small(self):
1273
+ # check infinite loop, gh-4720
1274
+ random.seed(self.seed)
1275
+ r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
1276
+ assert_(np.isfinite(r).all())
1277
+
1278
+ def test_vonmises_large(self):
1279
+ # guard against changes in RandomState when Generator is fixed
1280
+ random.seed(self.seed)
1281
+ actual = random.vonmises(mu=0., kappa=1e7, size=3)
1282
+ desired = np.array([4.634253748521111e-04,
1283
+ 3.558873596114509e-04,
1284
+ -2.337119622577433e-04])
1285
+ assert_array_almost_equal(actual, desired, decimal=8)
1286
+
1287
+ def test_vonmises_nan(self):
1288
+ random.seed(self.seed)
1289
+ r = random.vonmises(mu=0., kappa=np.nan)
1290
+ assert_(np.isnan(r))
1291
+
1292
+ def test_wald(self):
1293
+ random.seed(self.seed)
1294
+ actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
1295
+ desired = np.array([[3.82935265715889983, 5.13125249184285526],
1296
+ [0.35045403618358717, 1.50832396872003538],
1297
+ [0.24124319895843183, 0.22031101461955038]])
1298
+ assert_array_almost_equal(actual, desired, decimal=14)
1299
+
1300
+ def test_weibull(self):
1301
+ random.seed(self.seed)
1302
+ actual = random.weibull(a=1.23, size=(3, 2))
1303
+ desired = np.array([[0.97097342648766727, 0.91422896443565516],
1304
+ [1.89517770034962929, 1.91414357960479564],
1305
+ [0.67057783752390987, 1.39494046635066793]])
1306
+ assert_array_almost_equal(actual, desired, decimal=15)
1307
+
1308
+ def test_weibull_0(self):
1309
+ random.seed(self.seed)
1310
+ assert_equal(random.weibull(a=0, size=12), np.zeros(12))
1311
+ assert_raises(ValueError, random.weibull, a=-0.)
1312
+
1313
+ def test_zipf(self):
1314
+ random.seed(self.seed)
1315
+ actual = random.zipf(a=1.23, size=(3, 2))
1316
+ desired = np.array([[66, 29],
1317
+ [1, 1],
1318
+ [3, 13]])
1319
+ assert_array_equal(actual, desired)
1320
+
1321
+
1322
+ class TestBroadcast:
1323
+ # tests that functions that broadcast behave
1324
+ # correctly when presented with non-scalar arguments
1325
+ def setup_method(self):
1326
+ self.seed = 123456789
1327
+
1328
+ def set_seed(self):
1329
+ random.seed(self.seed)
1330
+
1331
+ def test_uniform(self):
1332
+ low = [0]
1333
+ high = [1]
1334
+ uniform = random.uniform
1335
+ desired = np.array([0.53283302478975902,
1336
+ 0.53413660089041659,
1337
+ 0.50955303552646702])
1338
+
1339
+ self.set_seed()
1340
+ actual = uniform(low * 3, high)
1341
+ assert_array_almost_equal(actual, desired, decimal=14)
1342
+
1343
+ self.set_seed()
1344
+ actual = uniform(low, high * 3)
1345
+ assert_array_almost_equal(actual, desired, decimal=14)
1346
+
1347
+ def test_normal(self):
1348
+ loc = [0]
1349
+ scale = [1]
1350
+ bad_scale = [-1]
1351
+ normal = random.normal
1352
+ desired = np.array([2.2129019979039612,
1353
+ 2.1283977976520019,
1354
+ 1.8417114045748335])
1355
+
1356
+ self.set_seed()
1357
+ actual = normal(loc * 3, scale)
1358
+ assert_array_almost_equal(actual, desired, decimal=14)
1359
+ assert_raises(ValueError, normal, loc * 3, bad_scale)
1360
+
1361
+ self.set_seed()
1362
+ actual = normal(loc, scale * 3)
1363
+ assert_array_almost_equal(actual, desired, decimal=14)
1364
+ assert_raises(ValueError, normal, loc, bad_scale * 3)
1365
+
1366
+ def test_beta(self):
1367
+ a = [1]
1368
+ b = [2]
1369
+ bad_a = [-1]
1370
+ bad_b = [-2]
1371
+ beta = random.beta
1372
+ desired = np.array([0.19843558305989056,
1373
+ 0.075230336409423643,
1374
+ 0.24976865978980844])
1375
+
1376
+ self.set_seed()
1377
+ actual = beta(a * 3, b)
1378
+ assert_array_almost_equal(actual, desired, decimal=14)
1379
+ assert_raises(ValueError, beta, bad_a * 3, b)
1380
+ assert_raises(ValueError, beta, a * 3, bad_b)
1381
+
1382
+ self.set_seed()
1383
+ actual = beta(a, b * 3)
1384
+ assert_array_almost_equal(actual, desired, decimal=14)
1385
+ assert_raises(ValueError, beta, bad_a, b * 3)
1386
+ assert_raises(ValueError, beta, a, bad_b * 3)
1387
+
1388
+ def test_exponential(self):
1389
+ scale = [1]
1390
+ bad_scale = [-1]
1391
+ exponential = random.exponential
1392
+ desired = np.array([0.76106853658845242,
1393
+ 0.76386282278691653,
1394
+ 0.71243813125891797])
1395
+
1396
+ self.set_seed()
1397
+ actual = exponential(scale * 3)
1398
+ assert_array_almost_equal(actual, desired, decimal=14)
1399
+ assert_raises(ValueError, exponential, bad_scale * 3)
1400
+
1401
+ def test_standard_gamma(self):
1402
+ shape = [1]
1403
+ bad_shape = [-1]
1404
+ std_gamma = random.standard_gamma
1405
+ desired = np.array([0.76106853658845242,
1406
+ 0.76386282278691653,
1407
+ 0.71243813125891797])
1408
+
1409
+ self.set_seed()
1410
+ actual = std_gamma(shape * 3)
1411
+ assert_array_almost_equal(actual, desired, decimal=14)
1412
+ assert_raises(ValueError, std_gamma, bad_shape * 3)
1413
+
1414
+ def test_gamma(self):
1415
+ shape = [1]
1416
+ scale = [2]
1417
+ bad_shape = [-1]
1418
+ bad_scale = [-2]
1419
+ gamma = random.gamma
1420
+ desired = np.array([1.5221370731769048,
1421
+ 1.5277256455738331,
1422
+ 1.4248762625178359])
1423
+
1424
+ self.set_seed()
1425
+ actual = gamma(shape * 3, scale)
1426
+ assert_array_almost_equal(actual, desired, decimal=14)
1427
+ assert_raises(ValueError, gamma, bad_shape * 3, scale)
1428
+ assert_raises(ValueError, gamma, shape * 3, bad_scale)
1429
+
1430
+ self.set_seed()
1431
+ actual = gamma(shape, scale * 3)
1432
+ assert_array_almost_equal(actual, desired, decimal=14)
1433
+ assert_raises(ValueError, gamma, bad_shape, scale * 3)
1434
+ assert_raises(ValueError, gamma, shape, bad_scale * 3)
1435
+
1436
+ def test_f(self):
1437
+ dfnum = [1]
1438
+ dfden = [2]
1439
+ bad_dfnum = [-1]
1440
+ bad_dfden = [-2]
1441
+ f = random.f
1442
+ desired = np.array([0.80038951638264799,
1443
+ 0.86768719635363512,
1444
+ 2.7251095168386801])
1445
+
1446
+ self.set_seed()
1447
+ actual = f(dfnum * 3, dfden)
1448
+ assert_array_almost_equal(actual, desired, decimal=14)
1449
+ assert_raises(ValueError, f, bad_dfnum * 3, dfden)
1450
+ assert_raises(ValueError, f, dfnum * 3, bad_dfden)
1451
+
1452
+ self.set_seed()
1453
+ actual = f(dfnum, dfden * 3)
1454
+ assert_array_almost_equal(actual, desired, decimal=14)
1455
+ assert_raises(ValueError, f, bad_dfnum, dfden * 3)
1456
+ assert_raises(ValueError, f, dfnum, bad_dfden * 3)
1457
+
1458
+ def test_noncentral_f(self):
1459
+ dfnum = [2]
1460
+ dfden = [3]
1461
+ nonc = [4]
1462
+ bad_dfnum = [0]
1463
+ bad_dfden = [-1]
1464
+ bad_nonc = [-2]
1465
+ nonc_f = random.noncentral_f
1466
+ desired = np.array([9.1393943263705211,
1467
+ 13.025456344595602,
1468
+ 8.8018098359100545])
1469
+
1470
+ self.set_seed()
1471
+ actual = nonc_f(dfnum * 3, dfden, nonc)
1472
+ assert_array_almost_equal(actual, desired, decimal=14)
1473
+ assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
1474
+
1475
+ assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
1476
+ assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
1477
+ assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
1478
+
1479
+ self.set_seed()
1480
+ actual = nonc_f(dfnum, dfden * 3, nonc)
1481
+ assert_array_almost_equal(actual, desired, decimal=14)
1482
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
1483
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
1484
+ assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
1485
+
1486
+ self.set_seed()
1487
+ actual = nonc_f(dfnum, dfden, nonc * 3)
1488
+ assert_array_almost_equal(actual, desired, decimal=14)
1489
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
1490
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
1491
+ assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
1492
+
1493
+ def test_noncentral_f_small_df(self):
1494
+ self.set_seed()
1495
+ desired = np.array([6.869638627492048, 0.785880199263955])
1496
+ actual = random.noncentral_f(0.9, 0.9, 2, size=2)
1497
+ assert_array_almost_equal(actual, desired, decimal=14)
1498
+
1499
+ def test_chisquare(self):
1500
+ df = [1]
1501
+ bad_df = [-1]
1502
+ chisquare = random.chisquare
1503
+ desired = np.array([0.57022801133088286,
1504
+ 0.51947702108840776,
1505
+ 0.1320969254923558])
1506
+
1507
+ self.set_seed()
1508
+ actual = chisquare(df * 3)
1509
+ assert_array_almost_equal(actual, desired, decimal=14)
1510
+ assert_raises(ValueError, chisquare, bad_df * 3)
1511
+
1512
+ def test_noncentral_chisquare(self):
1513
+ df = [1]
1514
+ nonc = [2]
1515
+ bad_df = [-1]
1516
+ bad_nonc = [-2]
1517
+ nonc_chi = random.noncentral_chisquare
1518
+ desired = np.array([9.0015599467913763,
1519
+ 4.5804135049718742,
1520
+ 6.0872302432834564])
1521
+
1522
+ self.set_seed()
1523
+ actual = nonc_chi(df * 3, nonc)
1524
+ assert_array_almost_equal(actual, desired, decimal=14)
1525
+ assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
1526
+ assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
1527
+
1528
+ self.set_seed()
1529
+ actual = nonc_chi(df, nonc * 3)
1530
+ assert_array_almost_equal(actual, desired, decimal=14)
1531
+ assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
1532
+ assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
1533
+
1534
+ def test_standard_t(self):
1535
+ df = [1]
1536
+ bad_df = [-1]
1537
+ t = random.standard_t
1538
+ desired = np.array([3.0702872575217643,
1539
+ 5.8560725167361607,
1540
+ 1.0274791436474273])
1541
+
1542
+ self.set_seed()
1543
+ actual = t(df * 3)
1544
+ assert_array_almost_equal(actual, desired, decimal=14)
1545
+ assert_raises(ValueError, t, bad_df * 3)
1546
+ assert_raises(ValueError, random.standard_t, bad_df * 3)
1547
+
1548
+ def test_vonmises(self):
1549
+ mu = [2]
1550
+ kappa = [1]
1551
+ bad_kappa = [-1]
1552
+ vonmises = random.vonmises
1553
+ desired = np.array([2.9883443664201312,
1554
+ -2.7064099483995943,
1555
+ -1.8672476700665914])
1556
+
1557
+ self.set_seed()
1558
+ actual = vonmises(mu * 3, kappa)
1559
+ assert_array_almost_equal(actual, desired, decimal=14)
1560
+ assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
1561
+
1562
+ self.set_seed()
1563
+ actual = vonmises(mu, kappa * 3)
1564
+ assert_array_almost_equal(actual, desired, decimal=14)
1565
+ assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
1566
+
1567
+ def test_pareto(self):
1568
+ a = [1]
1569
+ bad_a = [-1]
1570
+ pareto = random.pareto
1571
+ desired = np.array([1.1405622680198362,
1572
+ 1.1465519762044529,
1573
+ 1.0389564467453547])
1574
+
1575
+ self.set_seed()
1576
+ actual = pareto(a * 3)
1577
+ assert_array_almost_equal(actual, desired, decimal=14)
1578
+ assert_raises(ValueError, pareto, bad_a * 3)
1579
+ assert_raises(ValueError, random.pareto, bad_a * 3)
1580
+
1581
+ def test_weibull(self):
1582
+ a = [1]
1583
+ bad_a = [-1]
1584
+ weibull = random.weibull
1585
+ desired = np.array([0.76106853658845242,
1586
+ 0.76386282278691653,
1587
+ 0.71243813125891797])
1588
+
1589
+ self.set_seed()
1590
+ actual = weibull(a * 3)
1591
+ assert_array_almost_equal(actual, desired, decimal=14)
1592
+ assert_raises(ValueError, weibull, bad_a * 3)
1593
+ assert_raises(ValueError, random.weibull, bad_a * 3)
1594
+
1595
+ def test_power(self):
1596
+ a = [1]
1597
+ bad_a = [-1]
1598
+ power = random.power
1599
+ desired = np.array([0.53283302478975902,
1600
+ 0.53413660089041659,
1601
+ 0.50955303552646702])
1602
+
1603
+ self.set_seed()
1604
+ actual = power(a * 3)
1605
+ assert_array_almost_equal(actual, desired, decimal=14)
1606
+ assert_raises(ValueError, power, bad_a * 3)
1607
+ assert_raises(ValueError, random.power, bad_a * 3)
1608
+
1609
+ def test_laplace(self):
1610
+ loc = [0]
1611
+ scale = [1]
1612
+ bad_scale = [-1]
1613
+ laplace = random.laplace
1614
+ desired = np.array([0.067921356028507157,
1615
+ 0.070715642226971326,
1616
+ 0.019290950698972624])
1617
+
1618
+ self.set_seed()
1619
+ actual = laplace(loc * 3, scale)
1620
+ assert_array_almost_equal(actual, desired, decimal=14)
1621
+ assert_raises(ValueError, laplace, loc * 3, bad_scale)
1622
+
1623
+ self.set_seed()
1624
+ actual = laplace(loc, scale * 3)
1625
+ assert_array_almost_equal(actual, desired, decimal=14)
1626
+ assert_raises(ValueError, laplace, loc, bad_scale * 3)
1627
+
1628
+ def test_gumbel(self):
1629
+ loc = [0]
1630
+ scale = [1]
1631
+ bad_scale = [-1]
1632
+ gumbel = random.gumbel
1633
+ desired = np.array([0.2730318639556768,
1634
+ 0.26936705726291116,
1635
+ 0.33906220393037939])
1636
+
1637
+ self.set_seed()
1638
+ actual = gumbel(loc * 3, scale)
1639
+ assert_array_almost_equal(actual, desired, decimal=14)
1640
+ assert_raises(ValueError, gumbel, loc * 3, bad_scale)
1641
+
1642
+ self.set_seed()
1643
+ actual = gumbel(loc, scale * 3)
1644
+ assert_array_almost_equal(actual, desired, decimal=14)
1645
+ assert_raises(ValueError, gumbel, loc, bad_scale * 3)
1646
+
1647
+ def test_logistic(self):
1648
+ loc = [0]
1649
+ scale = [1]
1650
+ bad_scale = [-1]
1651
+ logistic = random.logistic
1652
+ desired = np.array([0.13152135837586171,
1653
+ 0.13675915696285773,
1654
+ 0.038216792802833396])
1655
+
1656
+ self.set_seed()
1657
+ actual = logistic(loc * 3, scale)
1658
+ assert_array_almost_equal(actual, desired, decimal=14)
1659
+ assert_raises(ValueError, logistic, loc * 3, bad_scale)
1660
+
1661
+ self.set_seed()
1662
+ actual = logistic(loc, scale * 3)
1663
+ assert_array_almost_equal(actual, desired, decimal=14)
1664
+ assert_raises(ValueError, logistic, loc, bad_scale * 3)
1665
+ assert_equal(random.logistic(1.0, 0.0), 1.0)
1666
+
1667
+ def test_lognormal(self):
1668
+ mean = [0]
1669
+ sigma = [1]
1670
+ bad_sigma = [-1]
1671
+ lognormal = random.lognormal
1672
+ desired = np.array([9.1422086044848427,
1673
+ 8.4013952870126261,
1674
+ 6.3073234116578671])
1675
+
1676
+ self.set_seed()
1677
+ actual = lognormal(mean * 3, sigma)
1678
+ assert_array_almost_equal(actual, desired, decimal=14)
1679
+ assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
1680
+ assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma)
1681
+
1682
+ self.set_seed()
1683
+ actual = lognormal(mean, sigma * 3)
1684
+ assert_array_almost_equal(actual, desired, decimal=14)
1685
+ assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
1686
+ assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
1687
+
1688
+ def test_rayleigh(self):
1689
+ scale = [1]
1690
+ bad_scale = [-1]
1691
+ rayleigh = random.rayleigh
1692
+ desired = np.array([1.2337491937897689,
1693
+ 1.2360119924878694,
1694
+ 1.1936818095781789])
1695
+
1696
+ self.set_seed()
1697
+ actual = rayleigh(scale * 3)
1698
+ assert_array_almost_equal(actual, desired, decimal=14)
1699
+ assert_raises(ValueError, rayleigh, bad_scale * 3)
1700
+
1701
+ def test_wald(self):
1702
+ mean = [0.5]
1703
+ scale = [1]
1704
+ bad_mean = [0]
1705
+ bad_scale = [-2]
1706
+ wald = random.wald
1707
+ desired = np.array([0.11873681120271318,
1708
+ 0.12450084820795027,
1709
+ 0.9096122728408238])
1710
+
1711
+ self.set_seed()
1712
+ actual = wald(mean * 3, scale)
1713
+ assert_array_almost_equal(actual, desired, decimal=14)
1714
+ assert_raises(ValueError, wald, bad_mean * 3, scale)
1715
+ assert_raises(ValueError, wald, mean * 3, bad_scale)
1716
+ assert_raises(ValueError, random.wald, bad_mean * 3, scale)
1717
+ assert_raises(ValueError, random.wald, mean * 3, bad_scale)
1718
+
1719
+ self.set_seed()
1720
+ actual = wald(mean, scale * 3)
1721
+ assert_array_almost_equal(actual, desired, decimal=14)
1722
+ assert_raises(ValueError, wald, bad_mean, scale * 3)
1723
+ assert_raises(ValueError, wald, mean, bad_scale * 3)
1724
+ assert_raises(ValueError, wald, 0.0, 1)
1725
+ assert_raises(ValueError, wald, 0.5, 0.0)
1726
+
1727
+ def test_triangular(self):
1728
+ left = [1]
1729
+ right = [3]
1730
+ mode = [2]
1731
+ bad_left_one = [3]
1732
+ bad_mode_one = [4]
1733
+ bad_left_two, bad_mode_two = right * 2
1734
+ triangular = random.triangular
1735
+ desired = np.array([2.03339048710429,
1736
+ 2.0347400359389356,
1737
+ 2.0095991069536208])
1738
+
1739
+ self.set_seed()
1740
+ actual = triangular(left * 3, mode, right)
1741
+ assert_array_almost_equal(actual, desired, decimal=14)
1742
+ assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
1743
+ assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
1744
+ assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
1745
+ right)
1746
+
1747
+ self.set_seed()
1748
+ actual = triangular(left, mode * 3, right)
1749
+ assert_array_almost_equal(actual, desired, decimal=14)
1750
+ assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
1751
+ assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
1752
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
1753
+ right)
1754
+
1755
+ self.set_seed()
1756
+ actual = triangular(left, mode, right * 3)
1757
+ assert_array_almost_equal(actual, desired, decimal=14)
1758
+ assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
1759
+ assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
1760
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
1761
+ right * 3)
1762
+
1763
+ assert_raises(ValueError, triangular, 10., 0., 20.)
1764
+ assert_raises(ValueError, triangular, 10., 25., 20.)
1765
+ assert_raises(ValueError, triangular, 10., 10., 10.)
1766
+
1767
+ def test_binomial(self):
1768
+ n = [1]
1769
+ p = [0.5]
1770
+ bad_n = [-1]
1771
+ bad_p_one = [-1]
1772
+ bad_p_two = [1.5]
1773
+ binom = random.binomial
1774
+ desired = np.array([1, 1, 1])
1775
+
1776
+ self.set_seed()
1777
+ actual = binom(n * 3, p)
1778
+ assert_array_equal(actual, desired)
1779
+ assert_raises(ValueError, binom, bad_n * 3, p)
1780
+ assert_raises(ValueError, binom, n * 3, bad_p_one)
1781
+ assert_raises(ValueError, binom, n * 3, bad_p_two)
1782
+
1783
+ self.set_seed()
1784
+ actual = binom(n, p * 3)
1785
+ assert_array_equal(actual, desired)
1786
+ assert_raises(ValueError, binom, bad_n, p * 3)
1787
+ assert_raises(ValueError, binom, n, bad_p_one * 3)
1788
+ assert_raises(ValueError, binom, n, bad_p_two * 3)
1789
+
1790
+ def test_negative_binomial(self):
1791
+ n = [1]
1792
+ p = [0.5]
1793
+ bad_n = [-1]
1794
+ bad_p_one = [-1]
1795
+ bad_p_two = [1.5]
1796
+ neg_binom = random.negative_binomial
1797
+ desired = np.array([1, 0, 1])
1798
+
1799
+ self.set_seed()
1800
+ actual = neg_binom(n * 3, p)
1801
+ assert_array_equal(actual, desired)
1802
+ assert_raises(ValueError, neg_binom, bad_n * 3, p)
1803
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
1804
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
1805
+
1806
+ self.set_seed()
1807
+ actual = neg_binom(n, p * 3)
1808
+ assert_array_equal(actual, desired)
1809
+ assert_raises(ValueError, neg_binom, bad_n, p * 3)
1810
+ assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
1811
+ assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
1812
+
1813
+ def test_poisson(self):
1814
+ max_lam = random.RandomState()._poisson_lam_max
1815
+
1816
+ lam = [1]
1817
+ bad_lam_one = [-1]
1818
+ bad_lam_two = [max_lam * 2]
1819
+ poisson = random.poisson
1820
+ desired = np.array([1, 1, 0])
1821
+
1822
+ self.set_seed()
1823
+ actual = poisson(lam * 3)
1824
+ assert_array_equal(actual, desired)
1825
+ assert_raises(ValueError, poisson, bad_lam_one * 3)
1826
+ assert_raises(ValueError, poisson, bad_lam_two * 3)
1827
+
1828
+ def test_zipf(self):
1829
+ a = [2]
1830
+ bad_a = [0]
1831
+ zipf = random.zipf
1832
+ desired = np.array([2, 2, 1])
1833
+
1834
+ self.set_seed()
1835
+ actual = zipf(a * 3)
1836
+ assert_array_equal(actual, desired)
1837
+ assert_raises(ValueError, zipf, bad_a * 3)
1838
+ with np.errstate(invalid='ignore'):
1839
+ assert_raises(ValueError, zipf, np.nan)
1840
+ assert_raises(ValueError, zipf, [0, 0, np.nan])
1841
+
1842
+ def test_geometric(self):
1843
+ p = [0.5]
1844
+ bad_p_one = [-1]
1845
+ bad_p_two = [1.5]
1846
+ geom = random.geometric
1847
+ desired = np.array([2, 2, 2])
1848
+
1849
+ self.set_seed()
1850
+ actual = geom(p * 3)
1851
+ assert_array_equal(actual, desired)
1852
+ assert_raises(ValueError, geom, bad_p_one * 3)
1853
+ assert_raises(ValueError, geom, bad_p_two * 3)
1854
+
1855
+ def test_hypergeometric(self):
1856
+ ngood = [1]
1857
+ nbad = [2]
1858
+ nsample = [2]
1859
+ bad_ngood = [-1]
1860
+ bad_nbad = [-2]
1861
+ bad_nsample_one = [0]
1862
+ bad_nsample_two = [4]
1863
+ hypergeom = random.hypergeometric
1864
+ desired = np.array([1, 1, 1])
1865
+
1866
+ self.set_seed()
1867
+ actual = hypergeom(ngood * 3, nbad, nsample)
1868
+ assert_array_equal(actual, desired)
1869
+ assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
1870
+ assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
1871
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
1872
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
1873
+
1874
+ self.set_seed()
1875
+ actual = hypergeom(ngood, nbad * 3, nsample)
1876
+ assert_array_equal(actual, desired)
1877
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
1878
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
1879
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
1880
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
1881
+
1882
+ self.set_seed()
1883
+ actual = hypergeom(ngood, nbad, nsample * 3)
1884
+ assert_array_equal(actual, desired)
1885
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
1886
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
1887
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
1888
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
1889
+
1890
+ assert_raises(ValueError, hypergeom, -1, 10, 20)
1891
+ assert_raises(ValueError, hypergeom, 10, -1, 20)
1892
+ assert_raises(ValueError, hypergeom, 10, 10, 0)
1893
+ assert_raises(ValueError, hypergeom, 10, 10, 25)
1894
+
1895
+ def test_logseries(self):
1896
+ p = [0.5]
1897
+ bad_p_one = [2]
1898
+ bad_p_two = [-1]
1899
+ logseries = random.logseries
1900
+ desired = np.array([1, 1, 1])
1901
+
1902
+ self.set_seed()
1903
+ actual = logseries(p * 3)
1904
+ assert_array_equal(actual, desired)
1905
+ assert_raises(ValueError, logseries, bad_p_one * 3)
1906
+ assert_raises(ValueError, logseries, bad_p_two * 3)
1907
+
1908
+
1909
+ @pytest.mark.skipif(IS_WASM, reason="can't start thread")
1910
+ class TestThread:
1911
+ # make sure each state produces the same sequence even in threads
1912
+ def setup_method(self):
1913
+ self.seeds = range(4)
1914
+
1915
+ def check_function(self, function, sz):
1916
+ from threading import Thread
1917
+
1918
+ out1 = np.empty((len(self.seeds),) + sz)
1919
+ out2 = np.empty((len(self.seeds),) + sz)
1920
+
1921
+ # threaded generation
1922
+ t = [Thread(target=function, args=(random.RandomState(s), o))
1923
+ for s, o in zip(self.seeds, out1)]
1924
+ [x.start() for x in t]
1925
+ [x.join() for x in t]
1926
+
1927
+ # the same serial
1928
+ for s, o in zip(self.seeds, out2):
1929
+ function(random.RandomState(s), o)
1930
+
1931
+ # these platforms change x87 fpu precision mode in threads
1932
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
1933
+ assert_array_almost_equal(out1, out2)
1934
+ else:
1935
+ assert_array_equal(out1, out2)
1936
+
1937
+ def test_normal(self):
1938
+ def gen_random(state, out):
1939
+ out[...] = state.normal(size=10000)
1940
+
1941
+ self.check_function(gen_random, sz=(10000,))
1942
+
1943
+ def test_exp(self):
1944
+ def gen_random(state, out):
1945
+ out[...] = state.exponential(scale=np.ones((100, 1000)))
1946
+
1947
+ self.check_function(gen_random, sz=(100, 1000))
1948
+
1949
+ def test_multinomial(self):
1950
+ def gen_random(state, out):
1951
+ out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
1952
+
1953
+ self.check_function(gen_random, sz=(10000, 6))
1954
+
1955
+
1956
+ # See Issue #4263
1957
+ class TestSingleEltArrayInput:
1958
+ def setup_method(self):
1959
+ self.argOne = np.array([2])
1960
+ self.argTwo = np.array([3])
1961
+ self.argThree = np.array([4])
1962
+ self.tgtShape = (1,)
1963
+
1964
+ def test_one_arg_funcs(self):
1965
+ funcs = (random.exponential, random.standard_gamma,
1966
+ random.chisquare, random.standard_t,
1967
+ random.pareto, random.weibull,
1968
+ random.power, random.rayleigh,
1969
+ random.poisson, random.zipf,
1970
+ random.geometric, random.logseries)
1971
+
1972
+ probfuncs = (random.geometric, random.logseries)
1973
+
1974
+ for func in funcs:
1975
+ if func in probfuncs: # p < 1.0
1976
+ out = func(np.array([0.5]))
1977
+
1978
+ else:
1979
+ out = func(self.argOne)
1980
+
1981
+ assert_equal(out.shape, self.tgtShape)
1982
+
1983
+ def test_two_arg_funcs(self):
1984
+ funcs = (random.uniform, random.normal,
1985
+ random.beta, random.gamma,
1986
+ random.f, random.noncentral_chisquare,
1987
+ random.vonmises, random.laplace,
1988
+ random.gumbel, random.logistic,
1989
+ random.lognormal, random.wald,
1990
+ random.binomial, random.negative_binomial)
1991
+
1992
+ probfuncs = (random.binomial, random.negative_binomial)
1993
+
1994
+ for func in funcs:
1995
+ if func in probfuncs: # p <= 1
1996
+ argTwo = np.array([0.5])
1997
+
1998
+ else:
1999
+ argTwo = self.argTwo
2000
+
2001
+ out = func(self.argOne, argTwo)
2002
+ assert_equal(out.shape, self.tgtShape)
2003
+
2004
+ out = func(self.argOne[0], argTwo)
2005
+ assert_equal(out.shape, self.tgtShape)
2006
+
2007
+ out = func(self.argOne, argTwo[0])
2008
+ assert_equal(out.shape, self.tgtShape)
2009
+
2010
+ def test_three_arg_funcs(self):
2011
+ funcs = [random.noncentral_f, random.triangular,
2012
+ random.hypergeometric]
2013
+
2014
+ for func in funcs:
2015
+ out = func(self.argOne, self.argTwo, self.argThree)
2016
+ assert_equal(out.shape, self.tgtShape)
2017
+
2018
+ out = func(self.argOne[0], self.argTwo, self.argThree)
2019
+ assert_equal(out.shape, self.tgtShape)
2020
+
2021
+ out = func(self.argOne, self.argTwo[0], self.argThree)
2022
+ assert_equal(out.shape, self.tgtShape)
2023
+
2024
+
2025
+ # Ensure returned array dtype is correct for platform
2026
+ def test_integer_dtype(int_func):
2027
+ random.seed(123456789)
2028
+ fname, args, sha256 = int_func
2029
+ f = getattr(random, fname)
2030
+ actual = f(*args, size=2)
2031
+ assert_(actual.dtype == np.dtype('l'))
2032
+
2033
+
2034
+ def test_integer_repeat(int_func):
2035
+ random.seed(123456789)
2036
+ fname, args, sha256 = int_func
2037
+ f = getattr(random, fname)
2038
+ val = f(*args, size=1000000)
2039
+ if sys.byteorder != 'little':
2040
+ val = val.byteswap()
2041
+ res = hashlib.sha256(val.view(np.int8)).hexdigest()
2042
+ assert_(res == sha256)
2043
+
2044
+
2045
+ def test_broadcast_size_error():
2046
+ # GH-16833
2047
+ with pytest.raises(ValueError):
2048
+ random.binomial(1, [0.3, 0.7], size=(2, 1))
2049
+ with pytest.raises(ValueError):
2050
+ random.binomial([1, 2], 0.3, size=(2, 1))
2051
+ with pytest.raises(ValueError):
2052
+ random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
2053
+
2054
+
2055
+ def test_randomstate_ctor_old_style_pickle():
2056
+ rs = np.random.RandomState(MT19937(0))
2057
+ rs.standard_normal(1)
2058
+ # Directly call reduce which is used in pickling
2059
+ ctor, args, state_a = rs.__reduce__()
2060
+ # Simulate unpickling an old pickle that only has the name
2061
+ assert args[0].__class__.__name__ == "MT19937"
2062
+ b = ctor(*("MT19937",))
2063
+ b.set_state(state_a)
2064
+ state_b = b.get_state(legacy=False)
2065
+
2066
+ assert_equal(state_a['bit_generator'], state_b['bit_generator'])
2067
+ assert_array_equal(state_a['state']['key'], state_b['state']['key'])
2068
+ assert_array_equal(state_a['state']['pos'], state_b['state']['pos'])
2069
+ assert_equal(state_a['has_gauss'], state_b['has_gauss'])
2070
+ assert_equal(state_a['gauss'], state_b['gauss'])
2071
+
2072
+
2073
+ def test_hot_swap(restore_singleton_bitgen):
2074
+ # GH 21808
2075
+ def_bg = np.random.default_rng(0)
2076
+ bg = def_bg.bit_generator
2077
+ np.random.set_bit_generator(bg)
2078
+ assert isinstance(np.random.mtrand._rand._bit_generator, type(bg))
2079
+
2080
+ second_bg = np.random.get_bit_generator()
2081
+ assert bg is second_bg
2082
+
2083
+
2084
+ def test_seed_alt_bit_gen(restore_singleton_bitgen):
2085
+ # GH 21808
2086
+ bg = PCG64(0)
2087
+ np.random.set_bit_generator(bg)
2088
+ state = np.random.get_state(legacy=False)
2089
+ np.random.seed(1)
2090
+ new_state = np.random.get_state(legacy=False)
2091
+ print(state)
2092
+ print(new_state)
2093
+ assert state["bit_generator"] == "PCG64"
2094
+ assert state["state"]["state"] != new_state["state"]["state"]
2095
+ assert state["state"]["inc"] != new_state["state"]["inc"]
2096
+
2097
+
2098
+ def test_state_error_alt_bit_gen(restore_singleton_bitgen):
2099
+ # GH 21808
2100
+ state = np.random.get_state()
2101
+ bg = PCG64(0)
2102
+ np.random.set_bit_generator(bg)
2103
+ with pytest.raises(ValueError, match="state must be for a PCG64"):
2104
+ np.random.set_state(state)
2105
+
2106
+
2107
+ def test_swap_worked(restore_singleton_bitgen):
2108
+ # GH 21808
2109
+ np.random.seed(98765)
2110
+ vals = np.random.randint(0, 2 ** 30, 10)
2111
+ bg = PCG64(0)
2112
+ state = bg.state
2113
+ np.random.set_bit_generator(bg)
2114
+ state_direct = np.random.get_state(legacy=False)
2115
+ for field in state:
2116
+ assert state[field] == state_direct[field]
2117
+ np.random.seed(98765)
2118
+ pcg_vals = np.random.randint(0, 2 ** 30, 10)
2119
+ assert not np.all(vals == pcg_vals)
2120
+ new_state = bg.state
2121
+ assert new_state["state"]["state"] != state["state"]["state"]
2122
+ assert new_state["state"]["inc"] == new_state["state"]["inc"]
2123
+
2124
+
2125
+ def test_swapped_singleton_against_direct(restore_singleton_bitgen):
2126
+ np.random.set_bit_generator(PCG64(98765))
2127
+ singleton_vals = np.random.randint(0, 2 ** 30, 10)
2128
+ rg = np.random.RandomState(PCG64(98765))
2129
+ non_singleton_vals = rg.randint(0, 2 ** 30, 10)
2130
+ assert_equal(non_singleton_vals, singleton_vals)