numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1067 @@
1
+ import functools
2
+ import math
3
+ import sys
4
+ import warnings
5
+
6
+ import numpy as np
7
+ import numpy._core.numeric as _nx
8
+ import numpy.matrixlib as matrixlib
9
+ from numpy._core import linspace, overrides
10
+ from numpy._core.multiarray import ravel_multi_index, unravel_index
11
+ from numpy._core.numeric import ScalarType, array
12
+ from numpy._core.numerictypes import issubdtype
13
+ from numpy._utils import set_module
14
+ from numpy.lib._function_base_impl import diff
15
+ from numpy.lib.stride_tricks import as_strided
16
+
17
+ array_function_dispatch = functools.partial(
18
+ overrides.array_function_dispatch, module='numpy')
19
+
20
+
21
+ __all__ = [
22
+ 'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
23
+ 's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
24
+ 'diag_indices', 'diag_indices_from'
25
+ ]
26
+
27
+
28
+ def _ix__dispatcher(*args):
29
+ return args
30
+
31
+
32
+ @array_function_dispatch(_ix__dispatcher)
33
+ def ix_(*args):
34
+ """
35
+ Construct an open mesh from multiple sequences.
36
+
37
+ This function takes N 1-D sequences and returns N outputs with N
38
+ dimensions each, such that the shape is 1 in all but one dimension
39
+ and the dimension with the non-unit shape value cycles through all
40
+ N dimensions.
41
+
42
+ Using `ix_` one can quickly construct index arrays that will index
43
+ the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
44
+ ``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
45
+
46
+ Parameters
47
+ ----------
48
+ args : 1-D sequences
49
+ Each sequence should be of integer or boolean type.
50
+ Boolean sequences will be interpreted as boolean masks for the
51
+ corresponding dimension (equivalent to passing in
52
+ ``np.nonzero(boolean_sequence)``).
53
+
54
+ Returns
55
+ -------
56
+ out : tuple of ndarrays
57
+ N arrays with N dimensions each, with N the number of input
58
+ sequences. Together these arrays form an open mesh.
59
+
60
+ See Also
61
+ --------
62
+ ogrid, mgrid, meshgrid
63
+
64
+ Examples
65
+ --------
66
+ >>> import numpy as np
67
+ >>> a = np.arange(10).reshape(2, 5)
68
+ >>> a
69
+ array([[0, 1, 2, 3, 4],
70
+ [5, 6, 7, 8, 9]])
71
+ >>> ixgrid = np.ix_([0, 1], [2, 4])
72
+ >>> ixgrid
73
+ (array([[0],
74
+ [1]]), array([[2, 4]]))
75
+ >>> ixgrid[0].shape, ixgrid[1].shape
76
+ ((2, 1), (1, 2))
77
+ >>> a[ixgrid]
78
+ array([[2, 4],
79
+ [7, 9]])
80
+
81
+ >>> ixgrid = np.ix_([True, True], [2, 4])
82
+ >>> a[ixgrid]
83
+ array([[2, 4],
84
+ [7, 9]])
85
+ >>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
86
+ >>> a[ixgrid]
87
+ array([[2, 4],
88
+ [7, 9]])
89
+
90
+ """
91
+ out = []
92
+ nd = len(args)
93
+ for k, new in enumerate(args):
94
+ if not isinstance(new, _nx.ndarray):
95
+ new = np.asarray(new)
96
+ if new.size == 0:
97
+ # Explicitly type empty arrays to avoid float default
98
+ new = new.astype(_nx.intp)
99
+ if new.ndim != 1:
100
+ raise ValueError("Cross index must be 1 dimensional")
101
+ if issubdtype(new.dtype, _nx.bool):
102
+ new, = new.nonzero()
103
+ new = new.reshape((1,) * k + (new.size,) + (1,) * (nd - k - 1))
104
+ out.append(new)
105
+ return tuple(out)
106
+
107
+
108
+ class nd_grid:
109
+ """
110
+ Construct a multi-dimensional "meshgrid".
111
+
112
+ ``grid = nd_grid()`` creates an instance which will return a mesh-grid
113
+ when indexed. The dimension and number of the output arrays are equal
114
+ to the number of indexing dimensions. If the step length is not a
115
+ complex number, then the stop is not inclusive.
116
+
117
+ However, if the step length is a **complex number** (e.g. 5j), then the
118
+ integer part of its magnitude is interpreted as specifying the
119
+ number of points to create between the start and stop values, where
120
+ the stop value **is inclusive**.
121
+
122
+ If instantiated with an argument of ``sparse=True``, the mesh-grid is
123
+ open (or not fleshed out) so that only one-dimension of each returned
124
+ argument is greater than 1.
125
+
126
+ Parameters
127
+ ----------
128
+ sparse : bool, optional
129
+ Whether the grid is sparse or not. Default is False.
130
+
131
+ Notes
132
+ -----
133
+ Two instances of `nd_grid` are made available in the NumPy namespace,
134
+ `mgrid` and `ogrid`, approximately defined as::
135
+
136
+ mgrid = nd_grid(sparse=False)
137
+ ogrid = nd_grid(sparse=True)
138
+
139
+ Users should use these pre-defined instances instead of using `nd_grid`
140
+ directly.
141
+ """
142
+ __slots__ = ('sparse',)
143
+
144
+ def __init__(self, sparse=False):
145
+ self.sparse = sparse
146
+
147
+ def __getitem__(self, key):
148
+ try:
149
+ size = []
150
+ # Mimic the behavior of `np.arange` and use a data type
151
+ # which is at least as large as `np.int_`
152
+ num_list = [0]
153
+ for k in range(len(key)):
154
+ step = key[k].step
155
+ start = key[k].start
156
+ stop = key[k].stop
157
+ if start is None:
158
+ start = 0
159
+ if step is None:
160
+ step = 1
161
+ if isinstance(step, (_nx.complexfloating, complex)):
162
+ step = abs(step)
163
+ size.append(int(step))
164
+ else:
165
+ size.append(
166
+ math.ceil((stop - start) / step))
167
+ num_list += [start, stop, step]
168
+ typ = _nx.result_type(*num_list)
169
+ if self.sparse:
170
+ nn = [_nx.arange(_x, dtype=_t)
171
+ for _x, _t in zip(size, (typ,) * len(size))]
172
+ else:
173
+ nn = _nx.indices(size, typ)
174
+ for k, kk in enumerate(key):
175
+ step = kk.step
176
+ start = kk.start
177
+ if start is None:
178
+ start = 0
179
+ if step is None:
180
+ step = 1
181
+ if isinstance(step, (_nx.complexfloating, complex)):
182
+ step = int(abs(step))
183
+ if step != 1:
184
+ step = (kk.stop - start) / float(step - 1)
185
+ nn[k] = (nn[k] * step + start)
186
+ if self.sparse:
187
+ slobj = [_nx.newaxis] * len(size)
188
+ for k in range(len(size)):
189
+ slobj[k] = slice(None, None)
190
+ nn[k] = nn[k][tuple(slobj)]
191
+ slobj[k] = _nx.newaxis
192
+ return tuple(nn) # ogrid -> tuple of arrays
193
+ return nn # mgrid -> ndarray
194
+ except (IndexError, TypeError):
195
+ step = key.step
196
+ stop = key.stop
197
+ start = key.start
198
+ if start is None:
199
+ start = 0
200
+ if isinstance(step, (_nx.complexfloating, complex)):
201
+ # Prevent the (potential) creation of integer arrays
202
+ step_float = abs(step)
203
+ step = length = int(step_float)
204
+ if step != 1:
205
+ step = (key.stop - start) / float(step - 1)
206
+ typ = _nx.result_type(start, stop, step_float)
207
+ return _nx.arange(0, length, 1, dtype=typ) * step + start
208
+ else:
209
+ return _nx.arange(start, stop, step)
210
+
211
+
212
+ class MGridClass(nd_grid):
213
+ """
214
+ An instance which returns a dense multi-dimensional "meshgrid".
215
+
216
+ An instance which returns a dense (or fleshed out) mesh-grid
217
+ when indexed, so that each returned argument has the same shape.
218
+ The dimensions and number of the output arrays are equal to the
219
+ number of indexing dimensions. If the step length is not a complex
220
+ number, then the stop is not inclusive.
221
+
222
+ However, if the step length is a **complex number** (e.g. 5j), then
223
+ the integer part of its magnitude is interpreted as specifying the
224
+ number of points to create between the start and stop values, where
225
+ the stop value **is inclusive**.
226
+
227
+ Returns
228
+ -------
229
+ mesh-grid : ndarray
230
+ A single array, containing a set of `ndarray`\\ s all of the same
231
+ dimensions. stacked along the first axis.
232
+
233
+ See Also
234
+ --------
235
+ ogrid : like `mgrid` but returns open (not fleshed out) mesh grids
236
+ meshgrid: return coordinate matrices from coordinate vectors
237
+ r_ : array concatenator
238
+ :ref:`how-to-partition`
239
+
240
+ Examples
241
+ --------
242
+ >>> import numpy as np
243
+ >>> np.mgrid[0:5, 0:5]
244
+ array([[[0, 0, 0, 0, 0],
245
+ [1, 1, 1, 1, 1],
246
+ [2, 2, 2, 2, 2],
247
+ [3, 3, 3, 3, 3],
248
+ [4, 4, 4, 4, 4]],
249
+ [[0, 1, 2, 3, 4],
250
+ [0, 1, 2, 3, 4],
251
+ [0, 1, 2, 3, 4],
252
+ [0, 1, 2, 3, 4],
253
+ [0, 1, 2, 3, 4]]])
254
+ >>> np.mgrid[-1:1:5j]
255
+ array([-1. , -0.5, 0. , 0.5, 1. ])
256
+
257
+ >>> np.mgrid[0:4].shape
258
+ (4,)
259
+ >>> np.mgrid[0:4, 0:5].shape
260
+ (2, 4, 5)
261
+ >>> np.mgrid[0:4, 0:5, 0:6].shape
262
+ (3, 4, 5, 6)
263
+
264
+ """
265
+ __slots__ = ()
266
+
267
+ def __init__(self):
268
+ super().__init__(sparse=False)
269
+
270
+
271
+ mgrid = MGridClass()
272
+
273
+
274
+ class OGridClass(nd_grid):
275
+ """
276
+ An instance which returns an open multi-dimensional "meshgrid".
277
+
278
+ An instance which returns an open (i.e. not fleshed out) mesh-grid
279
+ when indexed, so that only one dimension of each returned array is
280
+ greater than 1. The dimension and number of the output arrays are
281
+ equal to the number of indexing dimensions. If the step length is
282
+ not a complex number, then the stop is not inclusive.
283
+
284
+ However, if the step length is a **complex number** (e.g. 5j), then
285
+ the integer part of its magnitude is interpreted as specifying the
286
+ number of points to create between the start and stop values, where
287
+ the stop value **is inclusive**.
288
+
289
+ Returns
290
+ -------
291
+ mesh-grid : ndarray or tuple of ndarrays
292
+ If the input is a single slice, returns an array.
293
+ If the input is multiple slices, returns a tuple of arrays, with
294
+ only one dimension not equal to 1.
295
+
296
+ See Also
297
+ --------
298
+ mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
299
+ meshgrid: return coordinate matrices from coordinate vectors
300
+ r_ : array concatenator
301
+ :ref:`how-to-partition`
302
+
303
+ Examples
304
+ --------
305
+ >>> from numpy import ogrid
306
+ >>> ogrid[-1:1:5j]
307
+ array([-1. , -0.5, 0. , 0.5, 1. ])
308
+ >>> ogrid[0:5, 0:5]
309
+ (array([[0],
310
+ [1],
311
+ [2],
312
+ [3],
313
+ [4]]),
314
+ array([[0, 1, 2, 3, 4]]))
315
+
316
+ """
317
+ __slots__ = ()
318
+
319
+ def __init__(self):
320
+ super().__init__(sparse=True)
321
+
322
+
323
+ ogrid = OGridClass()
324
+
325
+
326
+ class AxisConcatenator:
327
+ """
328
+ Translates slice objects to concatenation along an axis.
329
+
330
+ For detailed documentation on usage, see `r_`.
331
+ """
332
+ __slots__ = ('axis', 'matrix', 'ndmin', 'trans1d')
333
+
334
+ # allow ma.mr_ to override this
335
+ concatenate = staticmethod(_nx.concatenate)
336
+ makemat = staticmethod(matrixlib.matrix)
337
+
338
+ def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
339
+ self.axis = axis
340
+ self.matrix = matrix
341
+ self.trans1d = trans1d
342
+ self.ndmin = ndmin
343
+
344
+ def __getitem__(self, key):
345
+ # handle matrix builder syntax
346
+ if isinstance(key, str):
347
+ frame = sys._getframe().f_back
348
+ mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
349
+ return mymat
350
+
351
+ if not isinstance(key, tuple):
352
+ key = (key,)
353
+
354
+ # copy attributes, since they can be overridden in the first argument
355
+ trans1d = self.trans1d
356
+ ndmin = self.ndmin
357
+ matrix = self.matrix
358
+ axis = self.axis
359
+
360
+ objs = []
361
+ # dtypes or scalars for weak scalar handling in result_type
362
+ result_type_objs = []
363
+
364
+ for k, item in enumerate(key):
365
+ scalar = False
366
+ if isinstance(item, slice):
367
+ step = item.step
368
+ start = item.start
369
+ stop = item.stop
370
+ if start is None:
371
+ start = 0
372
+ if step is None:
373
+ step = 1
374
+ if isinstance(step, (_nx.complexfloating, complex)):
375
+ size = int(abs(step))
376
+ newobj = linspace(start, stop, num=size)
377
+ else:
378
+ newobj = _nx.arange(start, stop, step)
379
+ if ndmin > 1:
380
+ newobj = array(newobj, copy=None, ndmin=ndmin)
381
+ if trans1d != -1:
382
+ newobj = newobj.swapaxes(-1, trans1d)
383
+ elif isinstance(item, str):
384
+ if k != 0:
385
+ raise ValueError("special directives must be the "
386
+ "first entry.")
387
+ if item in ('r', 'c'):
388
+ matrix = True
389
+ col = (item == 'c')
390
+ continue
391
+ if ',' in item:
392
+ vec = item.split(',')
393
+ try:
394
+ axis, ndmin = [int(x) for x in vec[:2]]
395
+ if len(vec) == 3:
396
+ trans1d = int(vec[2])
397
+ continue
398
+ except Exception as e:
399
+ raise ValueError(
400
+ f"unknown special directive {item!r}"
401
+ ) from e
402
+ try:
403
+ axis = int(item)
404
+ continue
405
+ except (ValueError, TypeError) as e:
406
+ raise ValueError("unknown special directive") from e
407
+ elif type(item) in ScalarType:
408
+ scalar = True
409
+ newobj = item
410
+ else:
411
+ item_ndim = np.ndim(item)
412
+ newobj = array(item, copy=None, subok=True, ndmin=ndmin)
413
+ if trans1d != -1 and item_ndim < ndmin:
414
+ k2 = ndmin - item_ndim
415
+ k1 = trans1d
416
+ if k1 < 0:
417
+ k1 += k2 + 1
418
+ defaxes = list(range(ndmin))
419
+ axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
420
+ newobj = newobj.transpose(axes)
421
+
422
+ objs.append(newobj)
423
+ if scalar:
424
+ result_type_objs.append(item)
425
+ else:
426
+ result_type_objs.append(newobj.dtype)
427
+
428
+ # Ensure that scalars won't up-cast unless warranted, for 0, drops
429
+ # through to error in concatenate.
430
+ if len(result_type_objs) != 0:
431
+ final_dtype = _nx.result_type(*result_type_objs)
432
+ # concatenate could do cast, but that can be overridden:
433
+ objs = [array(obj, copy=None, subok=True,
434
+ ndmin=ndmin, dtype=final_dtype) for obj in objs]
435
+
436
+ res = self.concatenate(tuple(objs), axis=axis)
437
+
438
+ if matrix:
439
+ oldndim = res.ndim
440
+ res = self.makemat(res)
441
+ if oldndim == 1 and col:
442
+ res = res.T
443
+ return res
444
+
445
+ def __len__(self):
446
+ return 0
447
+
448
+ # separate classes are used here instead of just making r_ = concatenator(0),
449
+ # etc. because otherwise we couldn't get the doc string to come out right
450
+ # in help(r_)
451
+
452
+
453
+ class RClass(AxisConcatenator):
454
+ """
455
+ Translates slice objects to concatenation along the first axis.
456
+
457
+ This is a simple way to build up arrays quickly. There are two use cases.
458
+
459
+ 1. If the index expression contains comma separated arrays, then stack
460
+ them along their first axis.
461
+ 2. If the index expression contains slice notation or scalars then create
462
+ a 1-D array with a range indicated by the slice notation.
463
+
464
+ If slice notation is used, the syntax ``start:stop:step`` is equivalent
465
+ to ``np.arange(start, stop, step)`` inside of the brackets. However, if
466
+ ``step`` is an imaginary number (i.e. 100j) then its integer portion is
467
+ interpreted as a number-of-points desired and the start and stop are
468
+ inclusive. In other words ``start:stop:stepj`` is interpreted as
469
+ ``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
470
+ After expansion of slice notation, all comma separated sequences are
471
+ concatenated together.
472
+
473
+ Optional character strings placed as the first element of the index
474
+ expression can be used to change the output. The strings 'r' or 'c' result
475
+ in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
476
+ matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1
477
+ (column) matrix is produced. If the result is 2-D then both provide the
478
+ same matrix result.
479
+
480
+ A string integer specifies which axis to stack multiple comma separated
481
+ arrays along. A string of two comma-separated integers allows indication
482
+ of the minimum number of dimensions to force each entry into as the
483
+ second integer (the axis to concatenate along is still the first integer).
484
+
485
+ A string with three comma-separated integers allows specification of the
486
+ axis to concatenate along, the minimum number of dimensions to force the
487
+ entries to, and which axis should contain the start of the arrays which
488
+ are less than the specified number of dimensions. In other words the third
489
+ integer allows you to specify where the 1's should be placed in the shape
490
+ of the arrays that have their shapes upgraded. By default, they are placed
491
+ in the front of the shape tuple. The third argument allows you to specify
492
+ where the start of the array should be instead. Thus, a third argument of
493
+ '0' would place the 1's at the end of the array shape. Negative integers
494
+ specify where in the new shape tuple the last dimension of upgraded arrays
495
+ should be placed, so the default is '-1'.
496
+
497
+ Parameters
498
+ ----------
499
+ Not a function, so takes no parameters
500
+
501
+
502
+ Returns
503
+ -------
504
+ A concatenated ndarray or matrix.
505
+
506
+ See Also
507
+ --------
508
+ concatenate : Join a sequence of arrays along an existing axis.
509
+ c_ : Translates slice objects to concatenation along the second axis.
510
+
511
+ Examples
512
+ --------
513
+ >>> import numpy as np
514
+ >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
515
+ array([1, 2, 3, ..., 4, 5, 6])
516
+ >>> np.r_[-1:1:6j, [0]*3, 5, 6]
517
+ array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
518
+
519
+ String integers specify the axis to concatenate along or the minimum
520
+ number of dimensions to force entries into.
521
+
522
+ >>> a = np.array([[0, 1, 2], [3, 4, 5]])
523
+ >>> np.r_['-1', a, a] # concatenate along last axis
524
+ array([[0, 1, 2, 0, 1, 2],
525
+ [3, 4, 5, 3, 4, 5]])
526
+ >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
527
+ array([[1, 2, 3],
528
+ [4, 5, 6]])
529
+
530
+ >>> np.r_['0,2,0', [1,2,3], [4,5,6]]
531
+ array([[1],
532
+ [2],
533
+ [3],
534
+ [4],
535
+ [5],
536
+ [6]])
537
+ >>> np.r_['1,2,0', [1,2,3], [4,5,6]]
538
+ array([[1, 4],
539
+ [2, 5],
540
+ [3, 6]])
541
+
542
+ Using 'r' or 'c' as a first string argument creates a matrix.
543
+
544
+ >>> np.r_['r',[1,2,3], [4,5,6]]
545
+ matrix([[1, 2, 3, 4, 5, 6]])
546
+
547
+ """
548
+ __slots__ = ()
549
+
550
+ def __init__(self):
551
+ AxisConcatenator.__init__(self, 0)
552
+
553
+
554
+ r_ = RClass()
555
+
556
+
557
+ class CClass(AxisConcatenator):
558
+ """
559
+ Translates slice objects to concatenation along the second axis.
560
+
561
+ This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
562
+ useful because of its common occurrence. In particular, arrays will be
563
+ stacked along their last axis after being upgraded to at least 2-D with
564
+ 1's post-pended to the shape (column vectors made out of 1-D arrays).
565
+
566
+ See Also
567
+ --------
568
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
569
+ r_ : For more detailed documentation.
570
+
571
+ Examples
572
+ --------
573
+ >>> import numpy as np
574
+ >>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
575
+ array([[1, 4],
576
+ [2, 5],
577
+ [3, 6]])
578
+ >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
579
+ array([[1, 2, 3, ..., 4, 5, 6]])
580
+
581
+ """
582
+ __slots__ = ()
583
+
584
+ def __init__(self):
585
+ AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
586
+
587
+
588
+ c_ = CClass()
589
+
590
+
591
+ @set_module('numpy')
592
+ class ndenumerate:
593
+ """
594
+ Multidimensional index iterator.
595
+
596
+ Return an iterator yielding pairs of array coordinates and values.
597
+
598
+ Parameters
599
+ ----------
600
+ arr : ndarray
601
+ Input array.
602
+
603
+ See Also
604
+ --------
605
+ ndindex, flatiter
606
+
607
+ Examples
608
+ --------
609
+ >>> import numpy as np
610
+ >>> a = np.array([[1, 2], [3, 4]])
611
+ >>> for index, x in np.ndenumerate(a):
612
+ ... print(index, x)
613
+ (0, 0) 1
614
+ (0, 1) 2
615
+ (1, 0) 3
616
+ (1, 1) 4
617
+
618
+ """
619
+
620
+ def __init__(self, arr):
621
+ self.iter = np.asarray(arr).flat
622
+
623
+ def __next__(self):
624
+ """
625
+ Standard iterator method, returns the index tuple and array value.
626
+
627
+ Returns
628
+ -------
629
+ coords : tuple of ints
630
+ The indices of the current iteration.
631
+ val : scalar
632
+ The array element of the current iteration.
633
+
634
+ """
635
+ return self.iter.coords, next(self.iter)
636
+
637
+ def __iter__(self):
638
+ return self
639
+
640
+
641
+ @set_module('numpy')
642
+ class ndindex:
643
+ """
644
+ An N-dimensional iterator object to index arrays.
645
+
646
+ Given the shape of an array, an `ndindex` instance iterates over
647
+ the N-dimensional index of the array. At each iteration a tuple
648
+ of indices is returned, the last dimension is iterated over first.
649
+
650
+ Parameters
651
+ ----------
652
+ shape : ints, or a single tuple of ints
653
+ The size of each dimension of the array can be passed as
654
+ individual parameters or as the elements of a tuple.
655
+
656
+ See Also
657
+ --------
658
+ ndenumerate, flatiter
659
+
660
+ Examples
661
+ --------
662
+ >>> import numpy as np
663
+
664
+ Dimensions as individual arguments
665
+
666
+ >>> for index in np.ndindex(3, 2, 1):
667
+ ... print(index)
668
+ (0, 0, 0)
669
+ (0, 1, 0)
670
+ (1, 0, 0)
671
+ (1, 1, 0)
672
+ (2, 0, 0)
673
+ (2, 1, 0)
674
+
675
+ Same dimensions - but in a tuple ``(3, 2, 1)``
676
+
677
+ >>> for index in np.ndindex((3, 2, 1)):
678
+ ... print(index)
679
+ (0, 0, 0)
680
+ (0, 1, 0)
681
+ (1, 0, 0)
682
+ (1, 1, 0)
683
+ (2, 0, 0)
684
+ (2, 1, 0)
685
+
686
+ """
687
+
688
+ def __init__(self, *shape):
689
+ if len(shape) == 1 and isinstance(shape[0], tuple):
690
+ shape = shape[0]
691
+ x = as_strided(_nx.zeros(1), shape=shape,
692
+ strides=_nx.zeros_like(shape))
693
+ self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
694
+ order='C')
695
+
696
+ def __iter__(self):
697
+ return self
698
+
699
+ def ndincr(self):
700
+ """
701
+ Increment the multi-dimensional index by one.
702
+
703
+ This method is for backward compatibility only: do not use.
704
+
705
+ .. deprecated:: 1.20.0
706
+ This method has been advised against since numpy 1.8.0, but only
707
+ started emitting DeprecationWarning as of this version.
708
+ """
709
+ # NumPy 1.20.0, 2020-09-08
710
+ warnings.warn(
711
+ "`ndindex.ndincr()` is deprecated, use `next(ndindex)` instead",
712
+ DeprecationWarning, stacklevel=2)
713
+ next(self)
714
+
715
+ def __next__(self):
716
+ """
717
+ Standard iterator method, updates the index and returns the index
718
+ tuple.
719
+
720
+ Returns
721
+ -------
722
+ val : tuple of ints
723
+ Returns a tuple containing the indices of the current
724
+ iteration.
725
+
726
+ """
727
+ next(self._it)
728
+ return self._it.multi_index
729
+
730
+
731
+ # You can do all this with slice() plus a few special objects,
732
+ # but there's a lot to remember. This version is simpler because
733
+ # it uses the standard array indexing syntax.
734
+ #
735
+ # Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
736
+ # last revision: 1999-7-23
737
+ #
738
+ # Cosmetic changes by T. Oliphant 2001
739
+ #
740
+ #
741
+
742
+ class IndexExpression:
743
+ """
744
+ A nicer way to build up index tuples for arrays.
745
+
746
+ .. note::
747
+ Use one of the two predefined instances ``index_exp`` or `s_`
748
+ rather than directly using `IndexExpression`.
749
+
750
+ For any index combination, including slicing and axis insertion,
751
+ ``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
752
+ array `a`. However, ``np.index_exp[indices]`` can be used anywhere
753
+ in Python code and returns a tuple of slice objects that can be
754
+ used in the construction of complex index expressions.
755
+
756
+ Parameters
757
+ ----------
758
+ maketuple : bool
759
+ If True, always returns a tuple.
760
+
761
+ See Also
762
+ --------
763
+ s_ : Predefined instance without tuple conversion:
764
+ `s_ = IndexExpression(maketuple=False)`.
765
+ The ``index_exp`` is another predefined instance that
766
+ always returns a tuple:
767
+ `index_exp = IndexExpression(maketuple=True)`.
768
+
769
+ Notes
770
+ -----
771
+ You can do all this with :class:`slice` plus a few special objects,
772
+ but there's a lot to remember and this version is simpler because
773
+ it uses the standard array indexing syntax.
774
+
775
+ Examples
776
+ --------
777
+ >>> import numpy as np
778
+ >>> np.s_[2::2]
779
+ slice(2, None, 2)
780
+ >>> np.index_exp[2::2]
781
+ (slice(2, None, 2),)
782
+
783
+ >>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
784
+ array([2, 4])
785
+
786
+ """
787
+ __slots__ = ('maketuple',)
788
+
789
+ def __init__(self, maketuple):
790
+ self.maketuple = maketuple
791
+
792
+ def __getitem__(self, item):
793
+ if self.maketuple and not isinstance(item, tuple):
794
+ return (item,)
795
+ else:
796
+ return item
797
+
798
+
799
+ index_exp = IndexExpression(maketuple=True)
800
+ s_ = IndexExpression(maketuple=False)
801
+
802
+ # End contribution from Konrad.
803
+
804
+
805
+ # The following functions complement those in twodim_base, but are
806
+ # applicable to N-dimensions.
807
+
808
+
809
+ def _fill_diagonal_dispatcher(a, val, wrap=None):
810
+ return (a,)
811
+
812
+
813
+ @array_function_dispatch(_fill_diagonal_dispatcher)
814
+ def fill_diagonal(a, val, wrap=False):
815
+ """Fill the main diagonal of the given array of any dimensionality.
816
+
817
+ For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
818
+ values ``a[i, ..., i]`` with indices ``i`` all identical. This function
819
+ modifies the input array in-place without returning a value.
820
+
821
+ Parameters
822
+ ----------
823
+ a : array, at least 2-D.
824
+ Array whose diagonal is to be filled in-place.
825
+ val : scalar or array_like
826
+ Value(s) to write on the diagonal. If `val` is scalar, the value is
827
+ written along the diagonal. If array-like, the flattened `val` is
828
+ written along the diagonal, repeating if necessary to fill all
829
+ diagonal entries.
830
+
831
+ wrap : bool
832
+ For tall matrices in NumPy version up to 1.6.2, the
833
+ diagonal "wrapped" after N columns. You can have this behavior
834
+ with this option. This affects only tall matrices.
835
+
836
+ See also
837
+ --------
838
+ diag_indices, diag_indices_from
839
+
840
+ Notes
841
+ -----
842
+ This functionality can be obtained via `diag_indices`, but internally
843
+ this version uses a much faster implementation that never constructs the
844
+ indices and uses simple slicing.
845
+
846
+ Examples
847
+ --------
848
+ >>> import numpy as np
849
+ >>> a = np.zeros((3, 3), int)
850
+ >>> np.fill_diagonal(a, 5)
851
+ >>> a
852
+ array([[5, 0, 0],
853
+ [0, 5, 0],
854
+ [0, 0, 5]])
855
+
856
+ The same function can operate on a 4-D array:
857
+
858
+ >>> a = np.zeros((3, 3, 3, 3), int)
859
+ >>> np.fill_diagonal(a, 4)
860
+
861
+ We only show a few blocks for clarity:
862
+
863
+ >>> a[0, 0]
864
+ array([[4, 0, 0],
865
+ [0, 0, 0],
866
+ [0, 0, 0]])
867
+ >>> a[1, 1]
868
+ array([[0, 0, 0],
869
+ [0, 4, 0],
870
+ [0, 0, 0]])
871
+ >>> a[2, 2]
872
+ array([[0, 0, 0],
873
+ [0, 0, 0],
874
+ [0, 0, 4]])
875
+
876
+ The wrap option affects only tall matrices:
877
+
878
+ >>> # tall matrices no wrap
879
+ >>> a = np.zeros((5, 3), int)
880
+ >>> np.fill_diagonal(a, 4)
881
+ >>> a
882
+ array([[4, 0, 0],
883
+ [0, 4, 0],
884
+ [0, 0, 4],
885
+ [0, 0, 0],
886
+ [0, 0, 0]])
887
+
888
+ >>> # tall matrices wrap
889
+ >>> a = np.zeros((5, 3), int)
890
+ >>> np.fill_diagonal(a, 4, wrap=True)
891
+ >>> a
892
+ array([[4, 0, 0],
893
+ [0, 4, 0],
894
+ [0, 0, 4],
895
+ [0, 0, 0],
896
+ [4, 0, 0]])
897
+
898
+ >>> # wide matrices
899
+ >>> a = np.zeros((3, 5), int)
900
+ >>> np.fill_diagonal(a, 4, wrap=True)
901
+ >>> a
902
+ array([[4, 0, 0, 0, 0],
903
+ [0, 4, 0, 0, 0],
904
+ [0, 0, 4, 0, 0]])
905
+
906
+ The anti-diagonal can be filled by reversing the order of elements
907
+ using either `numpy.flipud` or `numpy.fliplr`.
908
+
909
+ >>> a = np.zeros((3, 3), int);
910
+ >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
911
+ >>> a
912
+ array([[0, 0, 1],
913
+ [0, 2, 0],
914
+ [3, 0, 0]])
915
+ >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
916
+ >>> a
917
+ array([[0, 0, 3],
918
+ [0, 2, 0],
919
+ [1, 0, 0]])
920
+
921
+ Note that the order in which the diagonal is filled varies depending
922
+ on the flip function.
923
+ """
924
+ if a.ndim < 2:
925
+ raise ValueError("array must be at least 2-d")
926
+ end = None
927
+ if a.ndim == 2:
928
+ # Explicit, fast formula for the common case. For 2-d arrays, we
929
+ # accept rectangular ones.
930
+ step = a.shape[1] + 1
931
+ # This is needed to don't have tall matrix have the diagonal wrap.
932
+ if not wrap:
933
+ end = a.shape[1] * a.shape[1]
934
+ else:
935
+ # For more than d=2, the strided formula is only valid for arrays with
936
+ # all dimensions equal, so we check first.
937
+ if not np.all(diff(a.shape) == 0):
938
+ raise ValueError("All dimensions of input must be of equal length")
939
+ step = 1 + (np.cumprod(a.shape[:-1])).sum()
940
+
941
+ # Write the value out into the diagonal.
942
+ a.flat[:end:step] = val
943
+
944
+
945
+ @set_module('numpy')
946
+ def diag_indices(n, ndim=2):
947
+ """
948
+ Return the indices to access the main diagonal of an array.
949
+
950
+ This returns a tuple of indices that can be used to access the main
951
+ diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
952
+ (n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
953
+ ``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
954
+ for ``i = [0..n-1]``.
955
+
956
+ Parameters
957
+ ----------
958
+ n : int
959
+ The size, along each dimension, of the arrays for which the returned
960
+ indices can be used.
961
+
962
+ ndim : int, optional
963
+ The number of dimensions.
964
+
965
+ See Also
966
+ --------
967
+ diag_indices_from
968
+
969
+ Examples
970
+ --------
971
+ >>> import numpy as np
972
+
973
+ Create a set of indices to access the diagonal of a (4, 4) array:
974
+
975
+ >>> di = np.diag_indices(4)
976
+ >>> di
977
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
978
+ >>> a = np.arange(16).reshape(4, 4)
979
+ >>> a
980
+ array([[ 0, 1, 2, 3],
981
+ [ 4, 5, 6, 7],
982
+ [ 8, 9, 10, 11],
983
+ [12, 13, 14, 15]])
984
+ >>> a[di] = 100
985
+ >>> a
986
+ array([[100, 1, 2, 3],
987
+ [ 4, 100, 6, 7],
988
+ [ 8, 9, 100, 11],
989
+ [ 12, 13, 14, 100]])
990
+
991
+ Now, we create indices to manipulate a 3-D array:
992
+
993
+ >>> d3 = np.diag_indices(2, 3)
994
+ >>> d3
995
+ (array([0, 1]), array([0, 1]), array([0, 1]))
996
+
997
+ And use it to set the diagonal of an array of zeros to 1:
998
+
999
+ >>> a = np.zeros((2, 2, 2), dtype=int)
1000
+ >>> a[d3] = 1
1001
+ >>> a
1002
+ array([[[1, 0],
1003
+ [0, 0]],
1004
+ [[0, 0],
1005
+ [0, 1]]])
1006
+
1007
+ """
1008
+ idx = np.arange(n)
1009
+ return (idx,) * ndim
1010
+
1011
+
1012
+ def _diag_indices_from(arr):
1013
+ return (arr,)
1014
+
1015
+
1016
+ @array_function_dispatch(_diag_indices_from)
1017
+ def diag_indices_from(arr):
1018
+ """
1019
+ Return the indices to access the main diagonal of an n-dimensional array.
1020
+
1021
+ See `diag_indices` for full details.
1022
+
1023
+ Parameters
1024
+ ----------
1025
+ arr : array, at least 2-D
1026
+
1027
+ See Also
1028
+ --------
1029
+ diag_indices
1030
+
1031
+ Examples
1032
+ --------
1033
+ >>> import numpy as np
1034
+
1035
+ Create a 4 by 4 array.
1036
+
1037
+ >>> a = np.arange(16).reshape(4, 4)
1038
+ >>> a
1039
+ array([[ 0, 1, 2, 3],
1040
+ [ 4, 5, 6, 7],
1041
+ [ 8, 9, 10, 11],
1042
+ [12, 13, 14, 15]])
1043
+
1044
+ Get the indices of the diagonal elements.
1045
+
1046
+ >>> di = np.diag_indices_from(a)
1047
+ >>> di
1048
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
1049
+
1050
+ >>> a[di]
1051
+ array([ 0, 5, 10, 15])
1052
+
1053
+ This is simply syntactic sugar for diag_indices.
1054
+
1055
+ >>> np.diag_indices(a.shape[0])
1056
+ (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
1057
+
1058
+ """
1059
+
1060
+ if not arr.ndim >= 2:
1061
+ raise ValueError("input array must be at least 2-d")
1062
+ # For more than d=2, the strided formula is only valid for arrays with
1063
+ # all dimensions equal, so we check first.
1064
+ if not np.all(diff(arr.shape) == 0):
1065
+ raise ValueError("All dimensions of input must be of equal length")
1066
+
1067
+ return diag_indices(arr.shape[0], arr.ndim)