numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1762 @@
1
+ """
2
+ Create the numpy._core.multiarray namespace for backward compatibility.
3
+ In v1.16 the multiarray and umath c-extension modules were merged into
4
+ a single _multiarray_umath extension module. So we replicate the old
5
+ namespace by importing from the extension module.
6
+
7
+ """
8
+
9
+ import functools
10
+
11
+ from . import _multiarray_umath, overrides
12
+ from ._multiarray_umath import * # noqa: F403
13
+
14
+ # These imports are needed for backward compatibility,
15
+ # do not change them. issue gh-15518
16
+ # _get_ndarray_c_version is semi-public, on purpose not added to __all__
17
+ from ._multiarray_umath import ( # noqa: F401
18
+ _ARRAY_API,
19
+ _flagdict,
20
+ _get_madvise_hugepage,
21
+ _get_ndarray_c_version,
22
+ _monotonicity,
23
+ _place,
24
+ _reconstruct,
25
+ _set_madvise_hugepage,
26
+ _vec_string,
27
+ from_dlpack,
28
+ )
29
+
30
+ __all__ = [
31
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
32
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
33
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
34
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
35
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
36
+ '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
37
+ 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
38
+ 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
39
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
40
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
41
+ 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
42
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
43
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring',
44
+ 'get_handler_name', 'get_handler_version', 'inner', 'interp',
45
+ 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'vecdot',
46
+ 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters',
47
+ 'normalize_axis_index', 'packbits', 'promote_types', 'putmask',
48
+ 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function',
49
+ 'set_typeDict', 'shares_memory', 'typeinfo',
50
+ 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros']
51
+
52
+ # For backward compatibility, make sure pickle imports
53
+ # these functions from here
54
+ _reconstruct.__module__ = 'numpy._core.multiarray'
55
+ scalar.__module__ = 'numpy._core.multiarray'
56
+
57
+
58
+ from_dlpack.__module__ = 'numpy'
59
+ arange.__module__ = 'numpy'
60
+ array.__module__ = 'numpy'
61
+ asarray.__module__ = 'numpy'
62
+ asanyarray.__module__ = 'numpy'
63
+ ascontiguousarray.__module__ = 'numpy'
64
+ asfortranarray.__module__ = 'numpy'
65
+ datetime_data.__module__ = 'numpy'
66
+ empty.__module__ = 'numpy'
67
+ frombuffer.__module__ = 'numpy'
68
+ fromfile.__module__ = 'numpy'
69
+ fromiter.__module__ = 'numpy'
70
+ frompyfunc.__module__ = 'numpy'
71
+ fromstring.__module__ = 'numpy'
72
+ may_share_memory.__module__ = 'numpy'
73
+ nested_iters.__module__ = 'numpy'
74
+ promote_types.__module__ = 'numpy'
75
+ zeros.__module__ = 'numpy'
76
+ normalize_axis_index.__module__ = 'numpy.lib.array_utils'
77
+ add_docstring.__module__ = 'numpy.lib'
78
+ compare_chararrays.__module__ = 'numpy.char'
79
+
80
+
81
+ def _override___module__():
82
+ namespace_names = globals()
83
+ for ufunc_name in [
84
+ 'absolute', 'arccos', 'arccosh', 'add', 'arcsin', 'arcsinh', 'arctan',
85
+ 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_count', 'invert',
86
+ 'left_shift', 'bitwise_or', 'right_shift', 'bitwise_xor', 'cbrt',
87
+ 'ceil', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees',
88
+ 'divide', 'divmod', 'equal', 'exp', 'exp2', 'expm1', 'fabs',
89
+ 'float_power', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod',
90
+ 'frexp', 'gcd', 'greater', 'greater_equal', 'heaviside', 'hypot',
91
+ 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', 'less',
92
+ 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp',
93
+ 'logaddexp2', 'logical_and', 'logical_not', 'logical_or',
94
+ 'logical_xor', 'matmul', 'matvec', 'maximum', 'minimum', 'remainder',
95
+ 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'positive',
96
+ 'power', 'rad2deg', 'radians', 'reciprocal', 'rint', 'sign', 'signbit',
97
+ 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh',
98
+ 'trunc', 'vecdot', 'vecmat',
99
+ ]:
100
+ ufunc = namespace_names[ufunc_name]
101
+ ufunc.__module__ = "numpy"
102
+ ufunc.__qualname__ = ufunc_name
103
+
104
+
105
+ _override___module__()
106
+
107
+
108
+ # We can't verify dispatcher signatures because NumPy's C functions don't
109
+ # support introspection.
110
+ array_function_from_c_func_and_dispatcher = functools.partial(
111
+ overrides.array_function_from_dispatcher,
112
+ module='numpy', docs_from_dispatcher=True, verify=False)
113
+
114
+
115
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
116
+ def empty_like(
117
+ prototype, dtype=None, order=None, subok=None, shape=None, *, device=None
118
+ ):
119
+ """
120
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None, *,
121
+ device=None)
122
+
123
+ Return a new array with the same shape and type as a given array.
124
+
125
+ Parameters
126
+ ----------
127
+ prototype : array_like
128
+ The shape and data-type of `prototype` define these same attributes
129
+ of the returned array.
130
+ dtype : data-type, optional
131
+ Overrides the data type of the result.
132
+ order : {'C', 'F', 'A', or 'K'}, optional
133
+ Overrides the memory layout of the result. 'C' means C-order,
134
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
135
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
136
+ as closely as possible.
137
+ subok : bool, optional.
138
+ If True, then the newly created array will use the sub-class
139
+ type of `prototype`, otherwise it will be a base-class array. Defaults
140
+ to True.
141
+ shape : int or sequence of ints, optional.
142
+ Overrides the shape of the result. If order='K' and the number of
143
+ dimensions is unchanged, will try to keep order, otherwise,
144
+ order='C' is implied.
145
+ device : str, optional
146
+ The device on which to place the created array. Default: None.
147
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
148
+
149
+ .. versionadded:: 2.0.0
150
+
151
+ Returns
152
+ -------
153
+ out : ndarray
154
+ Array of uninitialized (arbitrary) data with the same
155
+ shape and type as `prototype`.
156
+
157
+ See Also
158
+ --------
159
+ ones_like : Return an array of ones with shape and type of input.
160
+ zeros_like : Return an array of zeros with shape and type of input.
161
+ full_like : Return a new array with shape of input filled with value.
162
+ empty : Return a new uninitialized array.
163
+
164
+ Notes
165
+ -----
166
+ Unlike other array creation functions (e.g. `zeros_like`, `ones_like`,
167
+ `full_like`), `empty_like` does not initialize the values of the array,
168
+ and may therefore be marginally faster. However, the values stored in the
169
+ newly allocated array are arbitrary. For reproducible behavior, be sure
170
+ to set each element of the array before reading.
171
+
172
+ Examples
173
+ --------
174
+ >>> import numpy as np
175
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
176
+ >>> np.empty_like(a)
177
+ array([[-1073741821, -1073741821, 3], # uninitialized
178
+ [ 0, 0, -1073741821]])
179
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
180
+ >>> np.empty_like(a)
181
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
182
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
183
+
184
+ """
185
+ return (prototype,)
186
+
187
+
188
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
189
+ def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None):
190
+ """
191
+ concatenate(
192
+ (a1, a2, ...),
193
+ axis=0,
194
+ out=None,
195
+ dtype=None,
196
+ casting="same_kind"
197
+ )
198
+
199
+ Join a sequence of arrays along an existing axis.
200
+
201
+ Parameters
202
+ ----------
203
+ a1, a2, ... : sequence of array_like
204
+ The arrays must have the same shape, except in the dimension
205
+ corresponding to `axis` (the first, by default).
206
+ axis : int, optional
207
+ The axis along which the arrays will be joined. If axis is None,
208
+ arrays are flattened before use. Default is 0.
209
+ out : ndarray, optional
210
+ If provided, the destination to place the result. The shape must be
211
+ correct, matching that of what concatenate would have returned if no
212
+ out argument were specified.
213
+ dtype : str or dtype
214
+ If provided, the destination array will have this dtype. Cannot be
215
+ provided together with `out`.
216
+
217
+ .. versionadded:: 1.20.0
218
+
219
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
220
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
221
+ For a description of the options, please see :term:`casting`.
222
+
223
+ .. versionadded:: 1.20.0
224
+
225
+ Returns
226
+ -------
227
+ res : ndarray
228
+ The concatenated array.
229
+
230
+ See Also
231
+ --------
232
+ ma.concatenate : Concatenate function that preserves input masks.
233
+ array_split : Split an array into multiple sub-arrays of equal or
234
+ near-equal size.
235
+ split : Split array into a list of multiple sub-arrays of equal size.
236
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
237
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
238
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
239
+ stack : Stack a sequence of arrays along a new axis.
240
+ block : Assemble arrays from blocks.
241
+ hstack : Stack arrays in sequence horizontally (column wise).
242
+ vstack : Stack arrays in sequence vertically (row wise).
243
+ dstack : Stack arrays in sequence depth wise (along third dimension).
244
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
245
+
246
+ Notes
247
+ -----
248
+ When one or more of the arrays to be concatenated is a MaskedArray,
249
+ this function will return a MaskedArray object instead of an ndarray,
250
+ but the input masks are *not* preserved. In cases where a MaskedArray
251
+ is expected as input, use the ma.concatenate function from the masked
252
+ array module instead.
253
+
254
+ Examples
255
+ --------
256
+ >>> import numpy as np
257
+ >>> a = np.array([[1, 2], [3, 4]])
258
+ >>> b = np.array([[5, 6]])
259
+ >>> np.concatenate((a, b), axis=0)
260
+ array([[1, 2],
261
+ [3, 4],
262
+ [5, 6]])
263
+ >>> np.concatenate((a, b.T), axis=1)
264
+ array([[1, 2, 5],
265
+ [3, 4, 6]])
266
+ >>> np.concatenate((a, b), axis=None)
267
+ array([1, 2, 3, 4, 5, 6])
268
+
269
+ This function will not preserve masking of MaskedArray inputs.
270
+
271
+ >>> a = np.ma.arange(3)
272
+ >>> a[1] = np.ma.masked
273
+ >>> b = np.arange(2, 5)
274
+ >>> a
275
+ masked_array(data=[0, --, 2],
276
+ mask=[False, True, False],
277
+ fill_value=999999)
278
+ >>> b
279
+ array([2, 3, 4])
280
+ >>> np.concatenate([a, b])
281
+ masked_array(data=[0, 1, 2, 2, 3, 4],
282
+ mask=False,
283
+ fill_value=999999)
284
+ >>> np.ma.concatenate([a, b])
285
+ masked_array(data=[0, --, 2, 2, 3, 4],
286
+ mask=[False, True, False, False, False, False],
287
+ fill_value=999999)
288
+
289
+ """
290
+ if out is not None:
291
+ # optimize for the typical case where only arrays is provided
292
+ arrays = list(arrays)
293
+ arrays.append(out)
294
+ return arrays
295
+
296
+
297
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
298
+ def inner(a, b):
299
+ """
300
+ inner(a, b, /)
301
+
302
+ Inner product of two arrays.
303
+
304
+ Ordinary inner product of vectors for 1-D arrays (without complex
305
+ conjugation), in higher dimensions a sum product over the last axes.
306
+
307
+ Parameters
308
+ ----------
309
+ a, b : array_like
310
+ If `a` and `b` are nonscalar, their last dimensions must match.
311
+
312
+ Returns
313
+ -------
314
+ out : ndarray
315
+ If `a` and `b` are both
316
+ scalars or both 1-D arrays then a scalar is returned; otherwise
317
+ an array is returned.
318
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
319
+
320
+ Raises
321
+ ------
322
+ ValueError
323
+ If both `a` and `b` are nonscalar and their last dimensions have
324
+ different sizes.
325
+
326
+ See Also
327
+ --------
328
+ tensordot : Sum products over arbitrary axes.
329
+ dot : Generalised matrix product, using second last dimension of `b`.
330
+ vecdot : Vector dot product of two arrays.
331
+ einsum : Einstein summation convention.
332
+
333
+ Notes
334
+ -----
335
+ For vectors (1-D arrays) it computes the ordinary inner-product::
336
+
337
+ np.inner(a, b) = sum(a[:]*b[:])
338
+
339
+ More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::
340
+
341
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
342
+
343
+ or explicitly::
344
+
345
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
346
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
347
+
348
+ In addition `a` or `b` may be scalars, in which case::
349
+
350
+ np.inner(a,b) = a*b
351
+
352
+ Examples
353
+ --------
354
+ Ordinary inner product for vectors:
355
+
356
+ >>> import numpy as np
357
+ >>> a = np.array([1,2,3])
358
+ >>> b = np.array([0,1,0])
359
+ >>> np.inner(a, b)
360
+ 2
361
+
362
+ Some multidimensional examples:
363
+
364
+ >>> a = np.arange(24).reshape((2,3,4))
365
+ >>> b = np.arange(4)
366
+ >>> c = np.inner(a, b)
367
+ >>> c.shape
368
+ (2, 3)
369
+ >>> c
370
+ array([[ 14, 38, 62],
371
+ [ 86, 110, 134]])
372
+
373
+ >>> a = np.arange(2).reshape((1,1,2))
374
+ >>> b = np.arange(6).reshape((3,2))
375
+ >>> c = np.inner(a, b)
376
+ >>> c.shape
377
+ (1, 1, 3)
378
+ >>> c
379
+ array([[[1, 3, 5]]])
380
+
381
+ An example where `b` is a scalar:
382
+
383
+ >>> np.inner(np.eye(2), 7)
384
+ array([[7., 0.],
385
+ [0., 7.]])
386
+
387
+ """
388
+ return (a, b)
389
+
390
+
391
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
392
+ def where(condition, x=None, y=None):
393
+ """
394
+ where(condition, [x, y], /)
395
+
396
+ Return elements chosen from `x` or `y` depending on `condition`.
397
+
398
+ .. note::
399
+ When only `condition` is provided, this function is a shorthand for
400
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
401
+ preferred, as it behaves correctly for subclasses. The rest of this
402
+ documentation covers only the case where all three arguments are
403
+ provided.
404
+
405
+ Parameters
406
+ ----------
407
+ condition : array_like, bool
408
+ Where True, yield `x`, otherwise yield `y`.
409
+ x, y : array_like
410
+ Values from which to choose. `x`, `y` and `condition` need to be
411
+ broadcastable to some shape.
412
+
413
+ Returns
414
+ -------
415
+ out : ndarray
416
+ An array with elements from `x` where `condition` is True, and elements
417
+ from `y` elsewhere.
418
+
419
+ See Also
420
+ --------
421
+ choose
422
+ nonzero : The function that is called when x and y are omitted
423
+
424
+ Notes
425
+ -----
426
+ If all the arrays are 1-D, `where` is equivalent to::
427
+
428
+ [xv if c else yv
429
+ for c, xv, yv in zip(condition, x, y)]
430
+
431
+ Examples
432
+ --------
433
+ >>> import numpy as np
434
+ >>> a = np.arange(10)
435
+ >>> a
436
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
437
+ >>> np.where(a < 5, a, 10*a)
438
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
439
+
440
+ This can be used on multidimensional arrays too:
441
+
442
+ >>> np.where([[True, False], [True, True]],
443
+ ... [[1, 2], [3, 4]],
444
+ ... [[9, 8], [7, 6]])
445
+ array([[1, 8],
446
+ [3, 4]])
447
+
448
+ The shapes of x, y, and the condition are broadcast together:
449
+
450
+ >>> x, y = np.ogrid[:3, :4]
451
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
452
+ array([[10, 0, 0, 0],
453
+ [10, 11, 1, 1],
454
+ [10, 11, 12, 2]])
455
+
456
+ >>> a = np.array([[0, 1, 2],
457
+ ... [0, 2, 4],
458
+ ... [0, 3, 6]])
459
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
460
+ array([[ 0, 1, 2],
461
+ [ 0, 2, -1],
462
+ [ 0, 3, -1]])
463
+ """
464
+ return (condition, x, y)
465
+
466
+
467
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
468
+ def lexsort(keys, axis=None):
469
+ """
470
+ lexsort(keys, axis=-1)
471
+
472
+ Perform an indirect stable sort using a sequence of keys.
473
+
474
+ Given multiple sorting keys, lexsort returns an array of integer indices
475
+ that describes the sort order by multiple keys. The last key in the
476
+ sequence is used for the primary sort order, ties are broken by the
477
+ second-to-last key, and so on.
478
+
479
+ Parameters
480
+ ----------
481
+ keys : (k, m, n, ...) array-like
482
+ The `k` keys to be sorted. The *last* key (e.g, the last
483
+ row if `keys` is a 2D array) is the primary sort key.
484
+ Each element of `keys` along the zeroth axis must be
485
+ an array-like object of the same shape.
486
+ axis : int, optional
487
+ Axis to be indirectly sorted. By default, sort over the last axis
488
+ of each sequence. Separate slices along `axis` sorted over
489
+ independently; see last example.
490
+
491
+ Returns
492
+ -------
493
+ indices : (m, n, ...) ndarray of ints
494
+ Array of indices that sort the keys along the specified axis.
495
+
496
+ See Also
497
+ --------
498
+ argsort : Indirect sort.
499
+ ndarray.sort : In-place sort.
500
+ sort : Return a sorted copy of an array.
501
+
502
+ Examples
503
+ --------
504
+ Sort names: first by surname, then by name.
505
+
506
+ >>> import numpy as np
507
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
508
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
509
+ >>> ind = np.lexsort((first_names, surnames))
510
+ >>> ind
511
+ array([1, 2, 0])
512
+
513
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
514
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
515
+
516
+ Sort according to two numerical keys, first by elements
517
+ of ``a``, then breaking ties according to elements of ``b``:
518
+
519
+ >>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence
520
+ >>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence
521
+ >>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b`
522
+ >>> ind
523
+ array([2, 0, 4, 6, 5, 3, 1])
524
+ >>> [(a[i], b[i]) for i in ind]
525
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
526
+
527
+ Compare against `argsort`, which would sort each key independently.
528
+
529
+ >>> np.argsort((b, a), kind='stable')
530
+ array([[2, 4, 6, 5, 1, 3, 0],
531
+ [0, 2, 4, 3, 5, 6, 1]])
532
+
533
+ To sort lexicographically with `argsort`, we would need to provide a
534
+ structured array.
535
+
536
+ >>> x = np.array([(ai, bi) for ai, bi in zip(a, b)],
537
+ ... dtype = np.dtype([('x', int), ('y', int)]))
538
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
539
+ array([2, 0, 4, 6, 5, 3, 1])
540
+
541
+ The zeroth axis of `keys` always corresponds with the sequence of keys,
542
+ so 2D arrays are treated just like other sequences of keys.
543
+
544
+ >>> arr = np.asarray([b, a])
545
+ >>> ind2 = np.lexsort(arr)
546
+ >>> np.testing.assert_equal(ind2, ind)
547
+
548
+ Accordingly, the `axis` parameter refers to an axis of *each* key, not of
549
+ the `keys` argument itself. For instance, the array ``arr`` is treated as
550
+ a sequence of two 1-D keys, so specifying ``axis=0`` is equivalent to
551
+ using the default axis, ``axis=-1``.
552
+
553
+ >>> np.testing.assert_equal(np.lexsort(arr, axis=0),
554
+ ... np.lexsort(arr, axis=-1))
555
+
556
+ For higher-dimensional arrays, the axis parameter begins to matter. The
557
+ resulting array has the same shape as each key, and the values are what
558
+ we would expect if `lexsort` were performed on corresponding slices
559
+ of the keys independently. For instance,
560
+
561
+ >>> x = [[1, 2, 3, 4],
562
+ ... [4, 3, 2, 1],
563
+ ... [2, 1, 4, 3]]
564
+ >>> y = [[2, 2, 1, 1],
565
+ ... [1, 2, 1, 2],
566
+ ... [1, 1, 2, 1]]
567
+ >>> np.lexsort((x, y), axis=1)
568
+ array([[2, 3, 0, 1],
569
+ [2, 0, 3, 1],
570
+ [1, 0, 3, 2]])
571
+
572
+ Each row of the result is what we would expect if we were to perform
573
+ `lexsort` on the corresponding row of the keys:
574
+
575
+ >>> for i in range(3):
576
+ ... print(np.lexsort((x[i], y[i])))
577
+ [2 3 0 1]
578
+ [2 0 3 1]
579
+ [1 0 3 2]
580
+
581
+ """
582
+ if isinstance(keys, tuple):
583
+ return keys
584
+ else:
585
+ return (keys,)
586
+
587
+
588
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
589
+ def can_cast(from_, to, casting=None):
590
+ """
591
+ can_cast(from_, to, casting='safe')
592
+
593
+ Returns True if cast between data types can occur according to the
594
+ casting rule.
595
+
596
+ Parameters
597
+ ----------
598
+ from_ : dtype, dtype specifier, NumPy scalar, or array
599
+ Data type, NumPy scalar, or array to cast from.
600
+ to : dtype or dtype specifier
601
+ Data type to cast to.
602
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
603
+ Controls what kind of data casting may occur.
604
+
605
+ * 'no' means the data types should not be cast at all.
606
+ * 'equiv' means only byte-order changes are allowed.
607
+ * 'safe' means only casts which can preserve values are allowed.
608
+ * 'same_kind' means only safe casts or casts within a kind,
609
+ like float64 to float32, are allowed.
610
+ * 'unsafe' means any data conversions may be done.
611
+
612
+ Returns
613
+ -------
614
+ out : bool
615
+ True if cast can occur according to the casting rule.
616
+
617
+ Notes
618
+ -----
619
+ .. versionchanged:: 2.0
620
+ This function does not support Python scalars anymore and does not
621
+ apply any value-based logic for 0-D arrays and NumPy scalars.
622
+
623
+ See also
624
+ --------
625
+ dtype, result_type
626
+
627
+ Examples
628
+ --------
629
+ Basic examples
630
+
631
+ >>> import numpy as np
632
+ >>> np.can_cast(np.int32, np.int64)
633
+ True
634
+ >>> np.can_cast(np.float64, complex)
635
+ True
636
+ >>> np.can_cast(complex, float)
637
+ False
638
+
639
+ >>> np.can_cast('i8', 'f8')
640
+ True
641
+ >>> np.can_cast('i8', 'f4')
642
+ False
643
+ >>> np.can_cast('i4', 'S4')
644
+ False
645
+
646
+ """
647
+ return (from_,)
648
+
649
+
650
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
651
+ def min_scalar_type(a):
652
+ """
653
+ min_scalar_type(a, /)
654
+
655
+ For scalar ``a``, returns the data type with the smallest size
656
+ and smallest scalar kind which can hold its value. For non-scalar
657
+ array ``a``, returns the vector's dtype unmodified.
658
+
659
+ Floating point values are not demoted to integers,
660
+ and complex values are not demoted to floats.
661
+
662
+ Parameters
663
+ ----------
664
+ a : scalar or array_like
665
+ The value whose minimal data type is to be found.
666
+
667
+ Returns
668
+ -------
669
+ out : dtype
670
+ The minimal data type.
671
+
672
+ See Also
673
+ --------
674
+ result_type, promote_types, dtype, can_cast
675
+
676
+ Examples
677
+ --------
678
+ >>> import numpy as np
679
+ >>> np.min_scalar_type(10)
680
+ dtype('uint8')
681
+
682
+ >>> np.min_scalar_type(-260)
683
+ dtype('int16')
684
+
685
+ >>> np.min_scalar_type(3.1)
686
+ dtype('float16')
687
+
688
+ >>> np.min_scalar_type(1e50)
689
+ dtype('float64')
690
+
691
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
692
+ dtype('float64')
693
+
694
+ """
695
+ return (a,)
696
+
697
+
698
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
699
+ def result_type(*arrays_and_dtypes):
700
+ """
701
+ result_type(*arrays_and_dtypes)
702
+
703
+ Returns the type that results from applying the NumPy
704
+ type promotion rules to the arguments.
705
+
706
+ Type promotion in NumPy works similarly to the rules in languages
707
+ like C++, with some slight differences. When both scalars and
708
+ arrays are used, the array's type takes precedence and the actual value
709
+ of the scalar is taken into account.
710
+
711
+ For example, calculating 3*a, where a is an array of 32-bit floats,
712
+ intuitively should result in a 32-bit float output. If the 3 is a
713
+ 32-bit integer, the NumPy rules indicate it can't convert losslessly
714
+ into a 32-bit float, so a 64-bit float should be the result type.
715
+ By examining the value of the constant, '3', we see that it fits in
716
+ an 8-bit integer, which can be cast losslessly into the 32-bit float.
717
+
718
+ Parameters
719
+ ----------
720
+ arrays_and_dtypes : list of arrays and dtypes
721
+ The operands of some operation whose result type is needed.
722
+
723
+ Returns
724
+ -------
725
+ out : dtype
726
+ The result type.
727
+
728
+ See also
729
+ --------
730
+ dtype, promote_types, min_scalar_type, can_cast
731
+
732
+ Notes
733
+ -----
734
+ The specific algorithm used is as follows.
735
+
736
+ Categories are determined by first checking which of boolean,
737
+ integer (int/uint), or floating point (float/complex) the maximum
738
+ kind of all the arrays and the scalars are.
739
+
740
+ If there are only scalars or the maximum category of the scalars
741
+ is higher than the maximum category of the arrays,
742
+ the data types are combined with :func:`promote_types`
743
+ to produce the return value.
744
+
745
+ Otherwise, `min_scalar_type` is called on each scalar, and
746
+ the resulting data types are all combined with :func:`promote_types`
747
+ to produce the return value.
748
+
749
+ The set of int values is not a subset of the uint values for types
750
+ with the same number of bits, something not reflected in
751
+ :func:`min_scalar_type`, but handled as a special case in `result_type`.
752
+
753
+ Examples
754
+ --------
755
+ >>> import numpy as np
756
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
757
+ dtype('int8')
758
+
759
+ >>> np.result_type('i4', 'c8')
760
+ dtype('complex128')
761
+
762
+ >>> np.result_type(3.0, -2)
763
+ dtype('float64')
764
+
765
+ """
766
+ return arrays_and_dtypes
767
+
768
+
769
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
770
+ def dot(a, b, out=None):
771
+ """
772
+ dot(a, b, out=None)
773
+
774
+ Dot product of two arrays. Specifically,
775
+
776
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
777
+ (without complex conjugation).
778
+
779
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
780
+ but using :func:`matmul` or ``a @ b`` is preferred.
781
+
782
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to
783
+ :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is
784
+ preferred.
785
+
786
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
787
+ the last axis of `a` and `b`.
788
+
789
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
790
+ sum product over the last axis of `a` and the second-to-last axis of
791
+ `b`::
792
+
793
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
794
+
795
+ It uses an optimized BLAS library when possible (see `numpy.linalg`).
796
+
797
+ Parameters
798
+ ----------
799
+ a : array_like
800
+ First argument.
801
+ b : array_like
802
+ Second argument.
803
+ out : ndarray, optional
804
+ Output argument. This must have the exact kind that would be returned
805
+ if it was not used. In particular, it must have the right type, must be
806
+ C-contiguous, and its dtype must be the dtype that would be returned
807
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
808
+ conditions are not met, an exception is raised, instead of attempting
809
+ to be flexible.
810
+
811
+ Returns
812
+ -------
813
+ output : ndarray
814
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
815
+ scalars or both 1-D arrays then a scalar is returned; otherwise
816
+ an array is returned.
817
+ If `out` is given, then it is returned.
818
+
819
+ Raises
820
+ ------
821
+ ValueError
822
+ If the last dimension of `a` is not the same size as
823
+ the second-to-last dimension of `b`.
824
+
825
+ See Also
826
+ --------
827
+ vdot : Complex-conjugating dot product.
828
+ vecdot : Vector dot product of two arrays.
829
+ tensordot : Sum products over arbitrary axes.
830
+ einsum : Einstein summation convention.
831
+ matmul : '@' operator as method with out parameter.
832
+ linalg.multi_dot : Chained dot product.
833
+
834
+ Examples
835
+ --------
836
+ >>> import numpy as np
837
+ >>> np.dot(3, 4)
838
+ 12
839
+
840
+ Neither argument is complex-conjugated:
841
+
842
+ >>> np.dot([2j, 3j], [2j, 3j])
843
+ (-13+0j)
844
+
845
+ For 2-D arrays it is the matrix product:
846
+
847
+ >>> a = [[1, 0], [0, 1]]
848
+ >>> b = [[4, 1], [2, 2]]
849
+ >>> np.dot(a, b)
850
+ array([[4, 1],
851
+ [2, 2]])
852
+
853
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
854
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
855
+ >>> np.dot(a, b)[2,3,2,1,2,2]
856
+ 499128
857
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
858
+ 499128
859
+
860
+ """
861
+ return (a, b, out)
862
+
863
+
864
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
865
+ def vdot(a, b):
866
+ r"""
867
+ vdot(a, b, /)
868
+
869
+ Return the dot product of two vectors.
870
+
871
+ The `vdot` function handles complex numbers differently than `dot`:
872
+ if the first argument is complex, it is replaced by its complex conjugate
873
+ in the dot product calculation. `vdot` also handles multidimensional
874
+ arrays differently than `dot`: it does not perform a matrix product, but
875
+ flattens the arguments to 1-D arrays before taking a vector dot product.
876
+
877
+ Consequently, when the arguments are 2-D arrays of the same shape, this
878
+ function effectively returns their
879
+ `Frobenius inner product <https://en.wikipedia.org/wiki/Frobenius_inner_product>`_
880
+ (also known as the *trace inner product* or the *standard inner product*
881
+ on a vector space of matrices).
882
+
883
+ Parameters
884
+ ----------
885
+ a : array_like
886
+ If `a` is complex the complex conjugate is taken before calculation
887
+ of the dot product.
888
+ b : array_like
889
+ Second argument to the dot product.
890
+
891
+ Returns
892
+ -------
893
+ output : ndarray
894
+ Dot product of `a` and `b`. Can be an int, float, or
895
+ complex depending on the types of `a` and `b`.
896
+
897
+ See Also
898
+ --------
899
+ dot : Return the dot product without using the complex conjugate of the
900
+ first argument.
901
+
902
+ Examples
903
+ --------
904
+ >>> import numpy as np
905
+ >>> a = np.array([1+2j,3+4j])
906
+ >>> b = np.array([5+6j,7+8j])
907
+ >>> np.vdot(a, b)
908
+ (70-8j)
909
+ >>> np.vdot(b, a)
910
+ (70+8j)
911
+
912
+ Note that higher-dimensional arrays are flattened!
913
+
914
+ >>> a = np.array([[1, 4], [5, 6]])
915
+ >>> b = np.array([[4, 1], [2, 2]])
916
+ >>> np.vdot(a, b)
917
+ 30
918
+ >>> np.vdot(b, a)
919
+ 30
920
+ >>> 1*4 + 4*1 + 5*2 + 6*2
921
+ 30
922
+
923
+ """ # noqa: E501
924
+ return (a, b)
925
+
926
+
927
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
928
+ def bincount(x, weights=None, minlength=None):
929
+ """
930
+ bincount(x, /, weights=None, minlength=0)
931
+
932
+ Count number of occurrences of each value in array of non-negative ints.
933
+
934
+ The number of bins (of size 1) is one larger than the largest value in
935
+ `x`. If `minlength` is specified, there will be at least this number
936
+ of bins in the output array (though it will be longer if necessary,
937
+ depending on the contents of `x`).
938
+ Each bin gives the number of occurrences of its index value in `x`.
939
+ If `weights` is specified the input array is weighted by it, i.e. if a
940
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
941
+ of ``out[n] += 1``.
942
+
943
+ Parameters
944
+ ----------
945
+ x : array_like, 1 dimension, nonnegative ints
946
+ Input array.
947
+ weights : array_like, optional
948
+ Weights, array of the same shape as `x`.
949
+ minlength : int, optional
950
+ A minimum number of bins for the output array.
951
+
952
+ Returns
953
+ -------
954
+ out : ndarray of ints
955
+ The result of binning the input array.
956
+ The length of `out` is equal to ``np.amax(x)+1``.
957
+
958
+ Raises
959
+ ------
960
+ ValueError
961
+ If the input is not 1-dimensional, or contains elements with negative
962
+ values, or if `minlength` is negative.
963
+ TypeError
964
+ If the type of the input is float or complex.
965
+
966
+ See Also
967
+ --------
968
+ histogram, digitize, unique
969
+
970
+ Examples
971
+ --------
972
+ >>> import numpy as np
973
+ >>> np.bincount(np.arange(5))
974
+ array([1, 1, 1, 1, 1])
975
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
976
+ array([1, 3, 1, 1, 0, 0, 0, 1])
977
+
978
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
979
+ >>> np.bincount(x).size == np.amax(x)+1
980
+ True
981
+
982
+ The input array needs to be of integer dtype, otherwise a
983
+ TypeError is raised:
984
+
985
+ >>> np.bincount(np.arange(5, dtype=float))
986
+ Traceback (most recent call last):
987
+ ...
988
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
989
+ according to the rule 'safe'
990
+
991
+ A possible use of ``bincount`` is to perform sums over
992
+ variable-size chunks of an array, using the ``weights`` keyword.
993
+
994
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
995
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
996
+ >>> np.bincount(x, weights=w)
997
+ array([ 0.3, 0.7, 1.1])
998
+
999
+ """
1000
+ return (x, weights)
1001
+
1002
+
1003
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
1004
+ def ravel_multi_index(multi_index, dims, mode=None, order=None):
1005
+ """
1006
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
1007
+
1008
+ Converts a tuple of index arrays into an array of flat
1009
+ indices, applying boundary modes to the multi-index.
1010
+
1011
+ Parameters
1012
+ ----------
1013
+ multi_index : tuple of array_like
1014
+ A tuple of integer arrays, one array for each dimension.
1015
+ dims : tuple of ints
1016
+ The shape of array into which the indices from ``multi_index`` apply.
1017
+ mode : {'raise', 'wrap', 'clip'}, optional
1018
+ Specifies how out-of-bounds indices are handled. Can specify
1019
+ either one mode or a tuple of modes, one mode per index.
1020
+
1021
+ * 'raise' -- raise an error (default)
1022
+ * 'wrap' -- wrap around
1023
+ * 'clip' -- clip to the range
1024
+
1025
+ In 'clip' mode, a negative index which would normally
1026
+ wrap will clip to 0 instead.
1027
+ order : {'C', 'F'}, optional
1028
+ Determines whether the multi-index should be viewed as
1029
+ indexing in row-major (C-style) or column-major
1030
+ (Fortran-style) order.
1031
+
1032
+ Returns
1033
+ -------
1034
+ raveled_indices : ndarray
1035
+ An array of indices into the flattened version of an array
1036
+ of dimensions ``dims``.
1037
+
1038
+ See Also
1039
+ --------
1040
+ unravel_index
1041
+
1042
+ Examples
1043
+ --------
1044
+ >>> import numpy as np
1045
+ >>> arr = np.array([[3,6,6],[4,5,1]])
1046
+ >>> np.ravel_multi_index(arr, (7,6))
1047
+ array([22, 41, 37])
1048
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
1049
+ array([31, 41, 13])
1050
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
1051
+ array([22, 23, 19])
1052
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
1053
+ array([12, 13, 13])
1054
+
1055
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1056
+ 1621
1057
+ """
1058
+ return multi_index
1059
+
1060
+
1061
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
1062
+ def unravel_index(indices, shape=None, order=None):
1063
+ """
1064
+ unravel_index(indices, shape, order='C')
1065
+
1066
+ Converts a flat index or array of flat indices into a tuple
1067
+ of coordinate arrays.
1068
+
1069
+ Parameters
1070
+ ----------
1071
+ indices : array_like
1072
+ An integer array whose elements are indices into the flattened
1073
+ version of an array of dimensions ``shape``. Before version 1.6.0,
1074
+ this function accepted just one index value.
1075
+ shape : tuple of ints
1076
+ The shape of the array to use for unraveling ``indices``.
1077
+ order : {'C', 'F'}, optional
1078
+ Determines whether the indices should be viewed as indexing in
1079
+ row-major (C-style) or column-major (Fortran-style) order.
1080
+
1081
+ Returns
1082
+ -------
1083
+ unraveled_coords : tuple of ndarray
1084
+ Each array in the tuple has the same shape as the ``indices``
1085
+ array.
1086
+
1087
+ See Also
1088
+ --------
1089
+ ravel_multi_index
1090
+
1091
+ Examples
1092
+ --------
1093
+ >>> import numpy as np
1094
+ >>> np.unravel_index([22, 41, 37], (7,6))
1095
+ (array([3, 6, 6]), array([4, 5, 1]))
1096
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
1097
+ (array([3, 6, 6]), array([4, 5, 1]))
1098
+
1099
+ >>> np.unravel_index(1621, (6,7,8,9))
1100
+ (3, 1, 4, 1)
1101
+
1102
+ """
1103
+ return (indices,)
1104
+
1105
+
1106
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
1107
+ def copyto(dst, src, casting=None, where=None):
1108
+ """
1109
+ copyto(dst, src, casting='same_kind', where=True)
1110
+
1111
+ Copies values from one array to another, broadcasting as necessary.
1112
+
1113
+ Raises a TypeError if the `casting` rule is violated, and if
1114
+ `where` is provided, it selects which elements to copy.
1115
+
1116
+ Parameters
1117
+ ----------
1118
+ dst : ndarray
1119
+ The array into which values are copied.
1120
+ src : array_like
1121
+ The array from which values are copied.
1122
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
1123
+ Controls what kind of data casting may occur when copying.
1124
+
1125
+ * 'no' means the data types should not be cast at all.
1126
+ * 'equiv' means only byte-order changes are allowed.
1127
+ * 'safe' means only casts which can preserve values are allowed.
1128
+ * 'same_kind' means only safe casts or casts within a kind,
1129
+ like float64 to float32, are allowed.
1130
+ * 'unsafe' means any data conversions may be done.
1131
+ where : array_like of bool, optional
1132
+ A boolean array which is broadcasted to match the dimensions
1133
+ of `dst`, and selects elements to copy from `src` to `dst`
1134
+ wherever it contains the value True.
1135
+
1136
+ Examples
1137
+ --------
1138
+ >>> import numpy as np
1139
+ >>> A = np.array([4, 5, 6])
1140
+ >>> B = [1, 2, 3]
1141
+ >>> np.copyto(A, B)
1142
+ >>> A
1143
+ array([1, 2, 3])
1144
+
1145
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
1146
+ >>> B = [[4, 5, 6], [7, 8, 9]]
1147
+ >>> np.copyto(A, B)
1148
+ >>> A
1149
+ array([[4, 5, 6],
1150
+ [7, 8, 9]])
1151
+
1152
+ """
1153
+ return (dst, src, where)
1154
+
1155
+
1156
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
1157
+ def putmask(a, /, mask, values):
1158
+ """
1159
+ putmask(a, mask, values)
1160
+
1161
+ Changes elements of an array based on conditional and input values.
1162
+
1163
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
1164
+
1165
+ If `values` is not the same size as `a` and `mask` then it will repeat.
1166
+ This gives behavior different from ``a[mask] = values``.
1167
+
1168
+ Parameters
1169
+ ----------
1170
+ a : ndarray
1171
+ Target array.
1172
+ mask : array_like
1173
+ Boolean mask array. It has to be the same shape as `a`.
1174
+ values : array_like
1175
+ Values to put into `a` where `mask` is True. If `values` is smaller
1176
+ than `a` it will be repeated.
1177
+
1178
+ See Also
1179
+ --------
1180
+ place, put, take, copyto
1181
+
1182
+ Examples
1183
+ --------
1184
+ >>> import numpy as np
1185
+ >>> x = np.arange(6).reshape(2, 3)
1186
+ >>> np.putmask(x, x>2, x**2)
1187
+ >>> x
1188
+ array([[ 0, 1, 2],
1189
+ [ 9, 16, 25]])
1190
+
1191
+ If `values` is smaller than `a` it is repeated:
1192
+
1193
+ >>> x = np.arange(5)
1194
+ >>> np.putmask(x, x>1, [-33, -44])
1195
+ >>> x
1196
+ array([ 0, 1, -33, -44, -33])
1197
+
1198
+ """
1199
+ return (a, mask, values)
1200
+
1201
+
1202
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
1203
+ def packbits(a, axis=None, bitorder='big'):
1204
+ """
1205
+ packbits(a, /, axis=None, bitorder='big')
1206
+
1207
+ Packs the elements of a binary-valued array into bits in a uint8 array.
1208
+
1209
+ The result is padded to full bytes by inserting zero bits at the end.
1210
+
1211
+ Parameters
1212
+ ----------
1213
+ a : array_like
1214
+ An array of integers or booleans whose elements should be packed to
1215
+ bits.
1216
+ axis : int, optional
1217
+ The dimension over which bit-packing is done.
1218
+ ``None`` implies packing the flattened array.
1219
+ bitorder : {'big', 'little'}, optional
1220
+ The order of the input bits. 'big' will mimic bin(val),
1221
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
1222
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
1223
+ Defaults to 'big'.
1224
+
1225
+ Returns
1226
+ -------
1227
+ packed : ndarray
1228
+ Array of type uint8 whose elements represent bits corresponding to the
1229
+ logical (0 or nonzero) value of the input elements. The shape of
1230
+ `packed` has the same number of dimensions as the input (unless `axis`
1231
+ is None, in which case the output is 1-D).
1232
+
1233
+ See Also
1234
+ --------
1235
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
1236
+ array.
1237
+
1238
+ Examples
1239
+ --------
1240
+ >>> import numpy as np
1241
+ >>> a = np.array([[[1,0,1],
1242
+ ... [0,1,0]],
1243
+ ... [[1,1,0],
1244
+ ... [0,0,1]]])
1245
+ >>> b = np.packbits(a, axis=-1)
1246
+ >>> b
1247
+ array([[[160],
1248
+ [ 64]],
1249
+ [[192],
1250
+ [ 32]]], dtype=uint8)
1251
+
1252
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
1253
+ and 32 = 0010 0000.
1254
+
1255
+ """
1256
+ return (a,)
1257
+
1258
+
1259
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
1260
+ def unpackbits(a, axis=None, count=None, bitorder='big'):
1261
+ """
1262
+ unpackbits(a, /, axis=None, count=None, bitorder='big')
1263
+
1264
+ Unpacks elements of a uint8 array into a binary-valued output array.
1265
+
1266
+ Each element of `a` represents a bit-field that should be unpacked
1267
+ into a binary-valued output array. The shape of the output array is
1268
+ either 1-D (if `axis` is ``None``) or the same shape as the input
1269
+ array with unpacking done along the axis specified.
1270
+
1271
+ Parameters
1272
+ ----------
1273
+ a : ndarray, uint8 type
1274
+ Input array.
1275
+ axis : int, optional
1276
+ The dimension over which bit-unpacking is done.
1277
+ ``None`` implies unpacking the flattened array.
1278
+ count : int or None, optional
1279
+ The number of elements to unpack along `axis`, provided as a way
1280
+ of undoing the effect of packing a size that is not a multiple
1281
+ of eight. A non-negative number means to only unpack `count`
1282
+ bits. A negative number means to trim off that many bits from
1283
+ the end. ``None`` means to unpack the entire array (the
1284
+ default). Counts larger than the available number of bits will
1285
+ add zero padding to the output. Negative counts must not
1286
+ exceed the available number of bits.
1287
+ bitorder : {'big', 'little'}, optional
1288
+ The order of the returned bits. 'big' will mimic bin(val),
1289
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
1290
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
1291
+ Defaults to 'big'.
1292
+
1293
+ Returns
1294
+ -------
1295
+ unpacked : ndarray, uint8 type
1296
+ The elements are binary-valued (0 or 1).
1297
+
1298
+ See Also
1299
+ --------
1300
+ packbits : Packs the elements of a binary-valued array into bits in
1301
+ a uint8 array.
1302
+
1303
+ Examples
1304
+ --------
1305
+ >>> import numpy as np
1306
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
1307
+ >>> a
1308
+ array([[ 2],
1309
+ [ 7],
1310
+ [23]], dtype=uint8)
1311
+ >>> b = np.unpackbits(a, axis=1)
1312
+ >>> b
1313
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1314
+ [0, 0, 0, 0, 0, 1, 1, 1],
1315
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
1316
+ >>> c = np.unpackbits(a, axis=1, count=-3)
1317
+ >>> c
1318
+ array([[0, 0, 0, 0, 0],
1319
+ [0, 0, 0, 0, 0],
1320
+ [0, 0, 0, 1, 0]], dtype=uint8)
1321
+
1322
+ >>> p = np.packbits(b, axis=0)
1323
+ >>> np.unpackbits(p, axis=0)
1324
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
1325
+ [0, 0, 0, 0, 0, 1, 1, 1],
1326
+ [0, 0, 0, 1, 0, 1, 1, 1],
1327
+ [0, 0, 0, 0, 0, 0, 0, 0],
1328
+ [0, 0, 0, 0, 0, 0, 0, 0],
1329
+ [0, 0, 0, 0, 0, 0, 0, 0],
1330
+ [0, 0, 0, 0, 0, 0, 0, 0],
1331
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
1332
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
1333
+ True
1334
+
1335
+ """
1336
+ return (a,)
1337
+
1338
+
1339
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
1340
+ def shares_memory(a, b, max_work=None):
1341
+ """
1342
+ shares_memory(a, b, /, max_work=None)
1343
+
1344
+ Determine if two arrays share memory.
1345
+
1346
+ .. warning::
1347
+
1348
+ This function can be exponentially slow for some inputs, unless
1349
+ `max_work` is set to zero or a positive integer.
1350
+ If in doubt, use `numpy.may_share_memory` instead.
1351
+
1352
+ Parameters
1353
+ ----------
1354
+ a, b : ndarray
1355
+ Input arrays
1356
+ max_work : int, optional
1357
+ Effort to spend on solving the overlap problem (maximum number
1358
+ of candidate solutions to consider). The following special
1359
+ values are recognized:
1360
+
1361
+ max_work=-1 (default)
1362
+ The problem is solved exactly. In this case, the function returns
1363
+ True only if there is an element shared between the arrays. Finding
1364
+ the exact solution may take extremely long in some cases.
1365
+ max_work=0
1366
+ Only the memory bounds of a and b are checked.
1367
+ This is equivalent to using ``may_share_memory()``.
1368
+
1369
+ Raises
1370
+ ------
1371
+ numpy.exceptions.TooHardError
1372
+ Exceeded max_work.
1373
+
1374
+ Returns
1375
+ -------
1376
+ out : bool
1377
+
1378
+ See Also
1379
+ --------
1380
+ may_share_memory
1381
+
1382
+ Examples
1383
+ --------
1384
+ >>> import numpy as np
1385
+ >>> x = np.array([1, 2, 3, 4])
1386
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
1387
+ False
1388
+ >>> np.shares_memory(x[::2], x)
1389
+ True
1390
+ >>> np.shares_memory(x[::2], x[1::2])
1391
+ False
1392
+
1393
+ Checking whether two arrays share memory is NP-complete, and
1394
+ runtime may increase exponentially in the number of
1395
+ dimensions. Hence, `max_work` should generally be set to a finite
1396
+ number, as it is possible to construct examples that take
1397
+ extremely long to run:
1398
+
1399
+ >>> from numpy.lib.stride_tricks import as_strided
1400
+ >>> x = np.zeros([192163377], dtype=np.int8)
1401
+ >>> x1 = as_strided(
1402
+ ... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
1403
+ >>> x2 = as_strided(
1404
+ ... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
1405
+ >>> np.shares_memory(x1, x2, max_work=1000)
1406
+ Traceback (most recent call last):
1407
+ ...
1408
+ numpy.exceptions.TooHardError: Exceeded max_work
1409
+
1410
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
1411
+ around 1 minute for this case. It is possible to find problems
1412
+ that take still significantly longer.
1413
+
1414
+ """
1415
+ return (a, b)
1416
+
1417
+
1418
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
1419
+ def may_share_memory(a, b, max_work=None):
1420
+ """
1421
+ may_share_memory(a, b, /, max_work=None)
1422
+
1423
+ Determine if two arrays might share memory
1424
+
1425
+ A return of True does not necessarily mean that the two arrays
1426
+ share any element. It just means that they *might*.
1427
+
1428
+ Only the memory bounds of a and b are checked by default.
1429
+
1430
+ Parameters
1431
+ ----------
1432
+ a, b : ndarray
1433
+ Input arrays
1434
+ max_work : int, optional
1435
+ Effort to spend on solving the overlap problem. See
1436
+ `shares_memory` for details. Default for ``may_share_memory``
1437
+ is to do a bounds check.
1438
+
1439
+ Returns
1440
+ -------
1441
+ out : bool
1442
+
1443
+ See Also
1444
+ --------
1445
+ shares_memory
1446
+
1447
+ Examples
1448
+ --------
1449
+ >>> import numpy as np
1450
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
1451
+ False
1452
+ >>> x = np.zeros([3, 4])
1453
+ >>> np.may_share_memory(x[:,0], x[:,1])
1454
+ True
1455
+
1456
+ """
1457
+ return (a, b)
1458
+
1459
+
1460
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
1461
+ def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
1462
+ """
1463
+ is_busday(
1464
+ dates,
1465
+ weekmask='1111100',
1466
+ holidays=None,
1467
+ busdaycal=None,
1468
+ out=None
1469
+ )
1470
+
1471
+ Calculates which of the given dates are valid days, and which are not.
1472
+
1473
+ Parameters
1474
+ ----------
1475
+ dates : array_like of datetime64[D]
1476
+ The array of dates to process.
1477
+ weekmask : str or array_like of bool, optional
1478
+ A seven-element array indicating which of Monday through Sunday are
1479
+ valid days. May be specified as a length-seven list or array, like
1480
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1481
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1482
+ weekdays, optionally separated by white space. Valid abbreviations
1483
+ are: Mon Tue Wed Thu Fri Sat Sun
1484
+ holidays : array_like of datetime64[D], optional
1485
+ An array of dates to consider as invalid dates. They may be
1486
+ specified in any order, and NaT (not-a-time) dates are ignored.
1487
+ This list is saved in a normalized form that is suited for
1488
+ fast calculations of valid days.
1489
+ busdaycal : busdaycalendar, optional
1490
+ A `busdaycalendar` object which specifies the valid days. If this
1491
+ parameter is provided, neither weekmask nor holidays may be
1492
+ provided.
1493
+ out : array of bool, optional
1494
+ If provided, this array is filled with the result.
1495
+
1496
+ Returns
1497
+ -------
1498
+ out : array of bool
1499
+ An array with the same shape as ``dates``, containing True for
1500
+ each valid day, and False for each invalid day.
1501
+
1502
+ See Also
1503
+ --------
1504
+ busdaycalendar : An object that specifies a custom set of valid days.
1505
+ busday_offset : Applies an offset counted in valid days.
1506
+ busday_count : Counts how many valid days are in a half-open date range.
1507
+
1508
+ Examples
1509
+ --------
1510
+ >>> import numpy as np
1511
+ >>> # The weekdays are Friday, Saturday, and Monday
1512
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
1513
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
1514
+ array([False, False, True])
1515
+ """
1516
+ return (dates, weekmask, holidays, out)
1517
+
1518
+
1519
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
1520
+ def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
1521
+ busdaycal=None, out=None):
1522
+ """
1523
+ busday_offset(
1524
+ dates,
1525
+ offsets,
1526
+ roll='raise',
1527
+ weekmask='1111100',
1528
+ holidays=None,
1529
+ busdaycal=None,
1530
+ out=None
1531
+ )
1532
+
1533
+ First adjusts the date to fall on a valid day according to
1534
+ the ``roll`` rule, then applies offsets to the given dates
1535
+ counted in valid days.
1536
+
1537
+ Parameters
1538
+ ----------
1539
+ dates : array_like of datetime64[D]
1540
+ The array of dates to process.
1541
+ offsets : array_like of int
1542
+ The array of offsets, which is broadcast with ``dates``.
1543
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', \
1544
+ 'modifiedfollowing', 'modifiedpreceding'}, optional
1545
+ How to treat dates that do not fall on a valid day. The default
1546
+ is 'raise'.
1547
+
1548
+ * 'raise' means to raise an exception for an invalid day.
1549
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
1550
+ * 'forward' and 'following' mean to take the first valid day
1551
+ later in time.
1552
+ * 'backward' and 'preceding' mean to take the first valid day
1553
+ earlier in time.
1554
+ * 'modifiedfollowing' means to take the first valid day
1555
+ later in time unless it is across a Month boundary, in which
1556
+ case to take the first valid day earlier in time.
1557
+ * 'modifiedpreceding' means to take the first valid day
1558
+ earlier in time unless it is across a Month boundary, in which
1559
+ case to take the first valid day later in time.
1560
+ weekmask : str or array_like of bool, optional
1561
+ A seven-element array indicating which of Monday through Sunday are
1562
+ valid days. May be specified as a length-seven list or array, like
1563
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1564
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1565
+ weekdays, optionally separated by white space. Valid abbreviations
1566
+ are: Mon Tue Wed Thu Fri Sat Sun
1567
+ holidays : array_like of datetime64[D], optional
1568
+ An array of dates to consider as invalid dates. They may be
1569
+ specified in any order, and NaT (not-a-time) dates are ignored.
1570
+ This list is saved in a normalized form that is suited for
1571
+ fast calculations of valid days.
1572
+ busdaycal : busdaycalendar, optional
1573
+ A `busdaycalendar` object which specifies the valid days. If this
1574
+ parameter is provided, neither weekmask nor holidays may be
1575
+ provided.
1576
+ out : array of datetime64[D], optional
1577
+ If provided, this array is filled with the result.
1578
+
1579
+ Returns
1580
+ -------
1581
+ out : array of datetime64[D]
1582
+ An array with a shape from broadcasting ``dates`` and ``offsets``
1583
+ together, containing the dates with offsets applied.
1584
+
1585
+ See Also
1586
+ --------
1587
+ busdaycalendar : An object that specifies a custom set of valid days.
1588
+ is_busday : Returns a boolean array indicating valid days.
1589
+ busday_count : Counts how many valid days are in a half-open date range.
1590
+
1591
+ Examples
1592
+ --------
1593
+ >>> import numpy as np
1594
+ >>> # First business day in October 2011 (not accounting for holidays)
1595
+ ... np.busday_offset('2011-10', 0, roll='forward')
1596
+ np.datetime64('2011-10-03')
1597
+ >>> # Last business day in February 2012 (not accounting for holidays)
1598
+ ... np.busday_offset('2012-03', -1, roll='forward')
1599
+ np.datetime64('2012-02-29')
1600
+ >>> # Third Wednesday in January 2011
1601
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
1602
+ np.datetime64('2011-01-19')
1603
+ >>> # 2012 Mother's Day in Canada and the U.S.
1604
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
1605
+ np.datetime64('2012-05-13')
1606
+
1607
+ >>> # First business day on or after a date
1608
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
1609
+ np.datetime64('2011-03-21')
1610
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
1611
+ np.datetime64('2011-03-22')
1612
+ >>> # First business day after a date
1613
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
1614
+ np.datetime64('2011-03-21')
1615
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
1616
+ np.datetime64('2011-03-23')
1617
+ """
1618
+ return (dates, offsets, weekmask, holidays, out)
1619
+
1620
+
1621
+ @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
1622
+ def busday_count(begindates, enddates, weekmask=None, holidays=None,
1623
+ busdaycal=None, out=None):
1624
+ """
1625
+ busday_count(
1626
+ begindates,
1627
+ enddates,
1628
+ weekmask='1111100',
1629
+ holidays=[],
1630
+ busdaycal=None,
1631
+ out=None
1632
+ )
1633
+
1634
+ Counts the number of valid days between `begindates` and
1635
+ `enddates`, not including the day of `enddates`.
1636
+
1637
+ If ``enddates`` specifies a date value that is earlier than the
1638
+ corresponding ``begindates`` date value, the count will be negative.
1639
+
1640
+ Parameters
1641
+ ----------
1642
+ begindates : array_like of datetime64[D]
1643
+ The array of the first dates for counting.
1644
+ enddates : array_like of datetime64[D]
1645
+ The array of the end dates for counting, which are excluded
1646
+ from the count themselves.
1647
+ weekmask : str or array_like of bool, optional
1648
+ A seven-element array indicating which of Monday through Sunday are
1649
+ valid days. May be specified as a length-seven list or array, like
1650
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
1651
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
1652
+ weekdays, optionally separated by white space. Valid abbreviations
1653
+ are: Mon Tue Wed Thu Fri Sat Sun
1654
+ holidays : array_like of datetime64[D], optional
1655
+ An array of dates to consider as invalid dates. They may be
1656
+ specified in any order, and NaT (not-a-time) dates are ignored.
1657
+ This list is saved in a normalized form that is suited for
1658
+ fast calculations of valid days.
1659
+ busdaycal : busdaycalendar, optional
1660
+ A `busdaycalendar` object which specifies the valid days. If this
1661
+ parameter is provided, neither weekmask nor holidays may be
1662
+ provided.
1663
+ out : array of int, optional
1664
+ If provided, this array is filled with the result.
1665
+
1666
+ Returns
1667
+ -------
1668
+ out : array of int
1669
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
1670
+ together, containing the number of valid days between
1671
+ the begin and end dates.
1672
+
1673
+ See Also
1674
+ --------
1675
+ busdaycalendar : An object that specifies a custom set of valid days.
1676
+ is_busday : Returns a boolean array indicating valid days.
1677
+ busday_offset : Applies an offset counted in valid days.
1678
+
1679
+ Examples
1680
+ --------
1681
+ >>> import numpy as np
1682
+ >>> # Number of weekdays in January 2011
1683
+ ... np.busday_count('2011-01', '2011-02')
1684
+ 21
1685
+ >>> # Number of weekdays in 2011
1686
+ >>> np.busday_count('2011', '2012')
1687
+ 260
1688
+ >>> # Number of Saturdays in 2011
1689
+ ... np.busday_count('2011', '2012', weekmask='Sat')
1690
+ 53
1691
+ """
1692
+ return (begindates, enddates, weekmask, holidays, out)
1693
+
1694
+
1695
+ @array_function_from_c_func_and_dispatcher(
1696
+ _multiarray_umath.datetime_as_string)
1697
+ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
1698
+ """
1699
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
1700
+
1701
+ Convert an array of datetimes into an array of strings.
1702
+
1703
+ Parameters
1704
+ ----------
1705
+ arr : array_like of datetime64
1706
+ The array of UTC timestamps to format.
1707
+ unit : str
1708
+ One of None, 'auto', or
1709
+ a :ref:`datetime unit <arrays.dtypes.dateunits>`.
1710
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
1711
+ Timezone information to use when displaying the datetime. If 'UTC',
1712
+ end with a Z to indicate UTC time. If 'local', convert to the local
1713
+ timezone first, and suffix with a +-#### timezone offset. If a tzinfo
1714
+ object, then do as with 'local', but use the specified timezone.
1715
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
1716
+ Casting to allow when changing between datetime units.
1717
+
1718
+ Returns
1719
+ -------
1720
+ str_arr : ndarray
1721
+ An array of strings the same shape as `arr`.
1722
+
1723
+ Examples
1724
+ --------
1725
+ >>> import numpy as np
1726
+ >>> import pytz
1727
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
1728
+ >>> d
1729
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
1730
+ '2002-10-27T07:30'], dtype='datetime64[m]')
1731
+
1732
+ Setting the timezone to UTC shows the same information, but with a Z suffix
1733
+
1734
+ >>> np.datetime_as_string(d, timezone='UTC')
1735
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
1736
+ '2002-10-27T07:30Z'], dtype='<U35')
1737
+
1738
+ Note that we picked datetimes that cross a DST boundary. Passing in a
1739
+ ``pytz`` timezone object will print the appropriate offset
1740
+
1741
+ >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
1742
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
1743
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
1744
+
1745
+ Passing in a unit will change the precision
1746
+
1747
+ >>> np.datetime_as_string(d, unit='h')
1748
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
1749
+ dtype='<U32')
1750
+ >>> np.datetime_as_string(d, unit='s')
1751
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
1752
+ '2002-10-27T07:30:00'], dtype='<U38')
1753
+
1754
+ 'casting' can be used to specify whether precision can be changed
1755
+
1756
+ >>> np.datetime_as_string(d, unit='h', casting='safe')
1757
+ Traceback (most recent call last):
1758
+ ...
1759
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
1760
+ datetime with units 'm' according to the rule 'safe'
1761
+ """
1762
+ return (arr,)