numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1301 @@
1
+ import functools
2
+ import warnings
3
+
4
+ import numpy._core.numeric as _nx
5
+ from numpy._core import atleast_3d, overrides, vstack
6
+ from numpy._core._multiarray_umath import _array_converter
7
+ from numpy._core.fromnumeric import reshape, transpose
8
+ from numpy._core.multiarray import normalize_axis_index
9
+ from numpy._core.numeric import (
10
+ array,
11
+ asanyarray,
12
+ asarray,
13
+ normalize_axis_tuple,
14
+ zeros,
15
+ zeros_like,
16
+ )
17
+ from numpy._core.overrides import set_module
18
+ from numpy._core.shape_base import _arrays_for_stack_dispatcher
19
+ from numpy.lib._index_tricks_impl import ndindex
20
+ from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
21
+
22
+ __all__ = [
23
+ 'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
24
+ 'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
25
+ 'apply_along_axis', 'kron', 'tile', 'take_along_axis',
26
+ 'put_along_axis'
27
+ ]
28
+
29
+
30
+ array_function_dispatch = functools.partial(
31
+ overrides.array_function_dispatch, module='numpy')
32
+
33
+
34
+ def _make_along_axis_idx(arr_shape, indices, axis):
35
+ # compute dimensions to iterate over
36
+ if not _nx.issubdtype(indices.dtype, _nx.integer):
37
+ raise IndexError('`indices` must be an integer array')
38
+ if len(arr_shape) != indices.ndim:
39
+ raise ValueError(
40
+ "`indices` and `arr` must have the same number of dimensions")
41
+ shape_ones = (1,) * indices.ndim
42
+ dest_dims = list(range(axis)) + [None] + list(range(axis + 1, indices.ndim))
43
+
44
+ # build a fancy index, consisting of orthogonal aranges, with the
45
+ # requested index inserted at the right location
46
+ fancy_index = []
47
+ for dim, n in zip(dest_dims, arr_shape):
48
+ if dim is None:
49
+ fancy_index.append(indices)
50
+ else:
51
+ ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim + 1:]
52
+ fancy_index.append(_nx.arange(n).reshape(ind_shape))
53
+
54
+ return tuple(fancy_index)
55
+
56
+
57
+ def _take_along_axis_dispatcher(arr, indices, axis=None):
58
+ return (arr, indices)
59
+
60
+
61
+ @array_function_dispatch(_take_along_axis_dispatcher)
62
+ def take_along_axis(arr, indices, axis=-1):
63
+ """
64
+ Take values from the input array by matching 1d index and data slices.
65
+
66
+ This iterates over matching 1d slices oriented along the specified axis in
67
+ the index and data arrays, and uses the former to look up values in the
68
+ latter. These slices can be different lengths.
69
+
70
+ Functions returning an index along an axis, like `argsort` and
71
+ `argpartition`, produce suitable indices for this function.
72
+
73
+ Parameters
74
+ ----------
75
+ arr : ndarray (Ni..., M, Nk...)
76
+ Source array
77
+ indices : ndarray (Ni..., J, Nk...)
78
+ Indices to take along each 1d slice of ``arr``. This must match the
79
+ dimension of ``arr``, but dimensions Ni and Nj only need to broadcast
80
+ against ``arr``.
81
+ axis : int or None, optional
82
+ The axis to take 1d slices along. If axis is None, the input array is
83
+ treated as if it had first been flattened to 1d, for consistency with
84
+ `sort` and `argsort`.
85
+
86
+ .. versionchanged:: 2.3
87
+ The default value is now ``-1``.
88
+
89
+ Returns
90
+ -------
91
+ out: ndarray (Ni..., J, Nk...)
92
+ The indexed result.
93
+
94
+ Notes
95
+ -----
96
+ This is equivalent to (but faster than) the following use of `ndindex` and
97
+ `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
98
+
99
+ Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
100
+ J = indices.shape[axis] # Need not equal M
101
+ out = np.empty(Ni + (J,) + Nk)
102
+
103
+ for ii in ndindex(Ni):
104
+ for kk in ndindex(Nk):
105
+ a_1d = a [ii + s_[:,] + kk]
106
+ indices_1d = indices[ii + s_[:,] + kk]
107
+ out_1d = out [ii + s_[:,] + kk]
108
+ for j in range(J):
109
+ out_1d[j] = a_1d[indices_1d[j]]
110
+
111
+ Equivalently, eliminating the inner loop, the last two lines would be::
112
+
113
+ out_1d[:] = a_1d[indices_1d]
114
+
115
+ See Also
116
+ --------
117
+ take : Take along an axis, using the same indices for every 1d slice
118
+ put_along_axis :
119
+ Put values into the destination array by matching 1d index and data slices
120
+
121
+ Examples
122
+ --------
123
+ >>> import numpy as np
124
+
125
+ For this sample array
126
+
127
+ >>> a = np.array([[10, 30, 20], [60, 40, 50]])
128
+
129
+ We can sort either by using sort directly, or argsort and this function
130
+
131
+ >>> np.sort(a, axis=1)
132
+ array([[10, 20, 30],
133
+ [40, 50, 60]])
134
+ >>> ai = np.argsort(a, axis=1)
135
+ >>> ai
136
+ array([[0, 2, 1],
137
+ [1, 2, 0]])
138
+ >>> np.take_along_axis(a, ai, axis=1)
139
+ array([[10, 20, 30],
140
+ [40, 50, 60]])
141
+
142
+ The same works for max and min, if you maintain the trivial dimension
143
+ with ``keepdims``:
144
+
145
+ >>> np.max(a, axis=1, keepdims=True)
146
+ array([[30],
147
+ [60]])
148
+ >>> ai = np.argmax(a, axis=1, keepdims=True)
149
+ >>> ai
150
+ array([[1],
151
+ [0]])
152
+ >>> np.take_along_axis(a, ai, axis=1)
153
+ array([[30],
154
+ [60]])
155
+
156
+ If we want to get the max and min at the same time, we can stack the
157
+ indices first
158
+
159
+ >>> ai_min = np.argmin(a, axis=1, keepdims=True)
160
+ >>> ai_max = np.argmax(a, axis=1, keepdims=True)
161
+ >>> ai = np.concatenate([ai_min, ai_max], axis=1)
162
+ >>> ai
163
+ array([[0, 1],
164
+ [1, 0]])
165
+ >>> np.take_along_axis(a, ai, axis=1)
166
+ array([[10, 30],
167
+ [40, 60]])
168
+ """
169
+ # normalize inputs
170
+ if axis is None:
171
+ if indices.ndim != 1:
172
+ raise ValueError(
173
+ 'when axis=None, `indices` must have a single dimension.')
174
+ arr = arr.flat
175
+ arr_shape = (len(arr),) # flatiter has no .shape
176
+ axis = 0
177
+ else:
178
+ axis = normalize_axis_index(axis, arr.ndim)
179
+ arr_shape = arr.shape
180
+
181
+ # use the fancy index
182
+ return arr[_make_along_axis_idx(arr_shape, indices, axis)]
183
+
184
+
185
+ def _put_along_axis_dispatcher(arr, indices, values, axis):
186
+ return (arr, indices, values)
187
+
188
+
189
+ @array_function_dispatch(_put_along_axis_dispatcher)
190
+ def put_along_axis(arr, indices, values, axis):
191
+ """
192
+ Put values into the destination array by matching 1d index and data slices.
193
+
194
+ This iterates over matching 1d slices oriented along the specified axis in
195
+ the index and data arrays, and uses the former to place values into the
196
+ latter. These slices can be different lengths.
197
+
198
+ Functions returning an index along an axis, like `argsort` and
199
+ `argpartition`, produce suitable indices for this function.
200
+
201
+ Parameters
202
+ ----------
203
+ arr : ndarray (Ni..., M, Nk...)
204
+ Destination array.
205
+ indices : ndarray (Ni..., J, Nk...)
206
+ Indices to change along each 1d slice of `arr`. This must match the
207
+ dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
208
+ against `arr`.
209
+ values : array_like (Ni..., J, Nk...)
210
+ values to insert at those indices. Its shape and dimension are
211
+ broadcast to match that of `indices`.
212
+ axis : int
213
+ The axis to take 1d slices along. If axis is None, the destination
214
+ array is treated as if a flattened 1d view had been created of it.
215
+
216
+ Notes
217
+ -----
218
+ This is equivalent to (but faster than) the following use of `ndindex` and
219
+ `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
220
+
221
+ Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
222
+ J = indices.shape[axis] # Need not equal M
223
+
224
+ for ii in ndindex(Ni):
225
+ for kk in ndindex(Nk):
226
+ a_1d = a [ii + s_[:,] + kk]
227
+ indices_1d = indices[ii + s_[:,] + kk]
228
+ values_1d = values [ii + s_[:,] + kk]
229
+ for j in range(J):
230
+ a_1d[indices_1d[j]] = values_1d[j]
231
+
232
+ Equivalently, eliminating the inner loop, the last two lines would be::
233
+
234
+ a_1d[indices_1d] = values_1d
235
+
236
+ See Also
237
+ --------
238
+ take_along_axis :
239
+ Take values from the input array by matching 1d index and data slices
240
+
241
+ Examples
242
+ --------
243
+ >>> import numpy as np
244
+
245
+ For this sample array
246
+
247
+ >>> a = np.array([[10, 30, 20], [60, 40, 50]])
248
+
249
+ We can replace the maximum values with:
250
+
251
+ >>> ai = np.argmax(a, axis=1, keepdims=True)
252
+ >>> ai
253
+ array([[1],
254
+ [0]])
255
+ >>> np.put_along_axis(a, ai, 99, axis=1)
256
+ >>> a
257
+ array([[10, 99, 20],
258
+ [99, 40, 50]])
259
+
260
+ """
261
+ # normalize inputs
262
+ if axis is None:
263
+ if indices.ndim != 1:
264
+ raise ValueError(
265
+ 'when axis=None, `indices` must have a single dimension.')
266
+ arr = arr.flat
267
+ axis = 0
268
+ arr_shape = (len(arr),) # flatiter has no .shape
269
+ else:
270
+ axis = normalize_axis_index(axis, arr.ndim)
271
+ arr_shape = arr.shape
272
+
273
+ # use the fancy index
274
+ arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
275
+
276
+
277
+ def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
278
+ return (arr,)
279
+
280
+
281
+ @array_function_dispatch(_apply_along_axis_dispatcher)
282
+ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
283
+ """
284
+ Apply a function to 1-D slices along the given axis.
285
+
286
+ Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
287
+ and `a` is a 1-D slice of `arr` along `axis`.
288
+
289
+ This is equivalent to (but faster than) the following use of `ndindex` and
290
+ `s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
291
+
292
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
293
+ for ii in ndindex(Ni):
294
+ for kk in ndindex(Nk):
295
+ f = func1d(arr[ii + s_[:,] + kk])
296
+ Nj = f.shape
297
+ for jj in ndindex(Nj):
298
+ out[ii + jj + kk] = f[jj]
299
+
300
+ Equivalently, eliminating the inner loop, this can be expressed as::
301
+
302
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
303
+ for ii in ndindex(Ni):
304
+ for kk in ndindex(Nk):
305
+ out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
306
+
307
+ Parameters
308
+ ----------
309
+ func1d : function (M,) -> (Nj...)
310
+ This function should accept 1-D arrays. It is applied to 1-D
311
+ slices of `arr` along the specified axis.
312
+ axis : integer
313
+ Axis along which `arr` is sliced.
314
+ arr : ndarray (Ni..., M, Nk...)
315
+ Input array.
316
+ args : any
317
+ Additional arguments to `func1d`.
318
+ kwargs : any
319
+ Additional named arguments to `func1d`.
320
+
321
+ Returns
322
+ -------
323
+ out : ndarray (Ni..., Nj..., Nk...)
324
+ The output array. The shape of `out` is identical to the shape of
325
+ `arr`, except along the `axis` dimension. This axis is removed, and
326
+ replaced with new dimensions equal to the shape of the return value
327
+ of `func1d`. So if `func1d` returns a scalar `out` will have one
328
+ fewer dimensions than `arr`.
329
+
330
+ See Also
331
+ --------
332
+ apply_over_axes : Apply a function repeatedly over multiple axes.
333
+
334
+ Examples
335
+ --------
336
+ >>> import numpy as np
337
+ >>> def my_func(a):
338
+ ... \"\"\"Average first and last element of a 1-D array\"\"\"
339
+ ... return (a[0] + a[-1]) * 0.5
340
+ >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
341
+ >>> np.apply_along_axis(my_func, 0, b)
342
+ array([4., 5., 6.])
343
+ >>> np.apply_along_axis(my_func, 1, b)
344
+ array([2., 5., 8.])
345
+
346
+ For a function that returns a 1D array, the number of dimensions in
347
+ `outarr` is the same as `arr`.
348
+
349
+ >>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
350
+ >>> np.apply_along_axis(sorted, 1, b)
351
+ array([[1, 7, 8],
352
+ [3, 4, 9],
353
+ [2, 5, 6]])
354
+
355
+ For a function that returns a higher dimensional array, those dimensions
356
+ are inserted in place of the `axis` dimension.
357
+
358
+ >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
359
+ >>> np.apply_along_axis(np.diag, -1, b)
360
+ array([[[1, 0, 0],
361
+ [0, 2, 0],
362
+ [0, 0, 3]],
363
+ [[4, 0, 0],
364
+ [0, 5, 0],
365
+ [0, 0, 6]],
366
+ [[7, 0, 0],
367
+ [0, 8, 0],
368
+ [0, 0, 9]]])
369
+ """
370
+ # handle negative axes
371
+ conv = _array_converter(arr)
372
+ arr = conv[0]
373
+
374
+ nd = arr.ndim
375
+ axis = normalize_axis_index(axis, nd)
376
+
377
+ # arr, with the iteration axis at the end
378
+ in_dims = list(range(nd))
379
+ inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis + 1:] + [axis])
380
+
381
+ # compute indices for the iteration axes, and append a trailing ellipsis to
382
+ # prevent 0d arrays decaying to scalars, which fixes gh-8642
383
+ inds = ndindex(inarr_view.shape[:-1])
384
+ inds = (ind + (Ellipsis,) for ind in inds)
385
+
386
+ # invoke the function on the first item
387
+ try:
388
+ ind0 = next(inds)
389
+ except StopIteration:
390
+ raise ValueError(
391
+ 'Cannot apply_along_axis when any iteration dimensions are 0'
392
+ ) from None
393
+ res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
394
+
395
+ # build a buffer for storing evaluations of func1d.
396
+ # remove the requested axis, and add the new ones on the end.
397
+ # laid out so that each write is contiguous.
398
+ # for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
399
+ if not isinstance(res, matrix):
400
+ buff = zeros_like(res, shape=inarr_view.shape[:-1] + res.shape)
401
+ else:
402
+ # Matrices are nasty with reshaping, so do not preserve them here.
403
+ buff = zeros(inarr_view.shape[:-1] + res.shape, dtype=res.dtype)
404
+
405
+ # permutation of axes such that out = buff.transpose(buff_permute)
406
+ buff_dims = list(range(buff.ndim))
407
+ buff_permute = (
408
+ buff_dims[0 : axis] +
409
+ buff_dims[buff.ndim - res.ndim : buff.ndim] +
410
+ buff_dims[axis : buff.ndim - res.ndim]
411
+ )
412
+
413
+ # save the first result, then compute and save all remaining results
414
+ buff[ind0] = res
415
+ for ind in inds:
416
+ buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
417
+
418
+ res = transpose(buff, buff_permute)
419
+ return conv.wrap(res)
420
+
421
+
422
+ def _apply_over_axes_dispatcher(func, a, axes):
423
+ return (a,)
424
+
425
+
426
+ @array_function_dispatch(_apply_over_axes_dispatcher)
427
+ def apply_over_axes(func, a, axes):
428
+ """
429
+ Apply a function repeatedly over multiple axes.
430
+
431
+ `func` is called as `res = func(a, axis)`, where `axis` is the first
432
+ element of `axes`. The result `res` of the function call must have
433
+ either the same dimensions as `a` or one less dimension. If `res`
434
+ has one less dimension than `a`, a dimension is inserted before
435
+ `axis`. The call to `func` is then repeated for each axis in `axes`,
436
+ with `res` as the first argument.
437
+
438
+ Parameters
439
+ ----------
440
+ func : function
441
+ This function must take two arguments, `func(a, axis)`.
442
+ a : array_like
443
+ Input array.
444
+ axes : array_like
445
+ Axes over which `func` is applied; the elements must be integers.
446
+
447
+ Returns
448
+ -------
449
+ apply_over_axis : ndarray
450
+ The output array. The number of dimensions is the same as `a`,
451
+ but the shape can be different. This depends on whether `func`
452
+ changes the shape of its output with respect to its input.
453
+
454
+ See Also
455
+ --------
456
+ apply_along_axis :
457
+ Apply a function to 1-D slices of an array along the given axis.
458
+
459
+ Notes
460
+ -----
461
+ This function is equivalent to tuple axis arguments to reorderable ufuncs
462
+ with keepdims=True. Tuple axis arguments to ufuncs have been available since
463
+ version 1.7.0.
464
+
465
+ Examples
466
+ --------
467
+ >>> import numpy as np
468
+ >>> a = np.arange(24).reshape(2,3,4)
469
+ >>> a
470
+ array([[[ 0, 1, 2, 3],
471
+ [ 4, 5, 6, 7],
472
+ [ 8, 9, 10, 11]],
473
+ [[12, 13, 14, 15],
474
+ [16, 17, 18, 19],
475
+ [20, 21, 22, 23]]])
476
+
477
+ Sum over axes 0 and 2. The result has same number of dimensions
478
+ as the original array:
479
+
480
+ >>> np.apply_over_axes(np.sum, a, [0,2])
481
+ array([[[ 60],
482
+ [ 92],
483
+ [124]]])
484
+
485
+ Tuple axis arguments to ufuncs are equivalent:
486
+
487
+ >>> np.sum(a, axis=(0,2), keepdims=True)
488
+ array([[[ 60],
489
+ [ 92],
490
+ [124]]])
491
+
492
+ """
493
+ val = asarray(a)
494
+ N = a.ndim
495
+ if array(axes).ndim == 0:
496
+ axes = (axes,)
497
+ for axis in axes:
498
+ if axis < 0:
499
+ axis = N + axis
500
+ args = (val, axis)
501
+ res = func(*args)
502
+ if res.ndim == val.ndim:
503
+ val = res
504
+ else:
505
+ res = expand_dims(res, axis)
506
+ if res.ndim == val.ndim:
507
+ val = res
508
+ else:
509
+ raise ValueError("function is not returning "
510
+ "an array of the correct shape")
511
+ return val
512
+
513
+
514
+ def _expand_dims_dispatcher(a, axis):
515
+ return (a,)
516
+
517
+
518
+ @array_function_dispatch(_expand_dims_dispatcher)
519
+ def expand_dims(a, axis):
520
+ """
521
+ Expand the shape of an array.
522
+
523
+ Insert a new axis that will appear at the `axis` position in the expanded
524
+ array shape.
525
+
526
+ Parameters
527
+ ----------
528
+ a : array_like
529
+ Input array.
530
+ axis : int or tuple of ints
531
+ Position in the expanded axes where the new axis (or axes) is placed.
532
+
533
+ .. deprecated:: 1.13.0
534
+ Passing an axis where ``axis > a.ndim`` will be treated as
535
+ ``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
536
+ be treated as ``axis == 0``. This behavior is deprecated.
537
+
538
+ Returns
539
+ -------
540
+ result : ndarray
541
+ View of `a` with the number of dimensions increased.
542
+
543
+ See Also
544
+ --------
545
+ squeeze : The inverse operation, removing singleton dimensions
546
+ reshape : Insert, remove, and combine dimensions, and resize existing ones
547
+ atleast_1d, atleast_2d, atleast_3d
548
+
549
+ Examples
550
+ --------
551
+ >>> import numpy as np
552
+ >>> x = np.array([1, 2])
553
+ >>> x.shape
554
+ (2,)
555
+
556
+ The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
557
+
558
+ >>> y = np.expand_dims(x, axis=0)
559
+ >>> y
560
+ array([[1, 2]])
561
+ >>> y.shape
562
+ (1, 2)
563
+
564
+ The following is equivalent to ``x[:, np.newaxis]``:
565
+
566
+ >>> y = np.expand_dims(x, axis=1)
567
+ >>> y
568
+ array([[1],
569
+ [2]])
570
+ >>> y.shape
571
+ (2, 1)
572
+
573
+ ``axis`` may also be a tuple:
574
+
575
+ >>> y = np.expand_dims(x, axis=(0, 1))
576
+ >>> y
577
+ array([[[1, 2]]])
578
+
579
+ >>> y = np.expand_dims(x, axis=(2, 0))
580
+ >>> y
581
+ array([[[1],
582
+ [2]]])
583
+
584
+ Note that some examples may use ``None`` instead of ``np.newaxis``. These
585
+ are the same objects:
586
+
587
+ >>> np.newaxis is None
588
+ True
589
+
590
+ """
591
+ if isinstance(a, matrix):
592
+ a = asarray(a)
593
+ else:
594
+ a = asanyarray(a)
595
+
596
+ if not isinstance(axis, (tuple, list)):
597
+ axis = (axis,)
598
+
599
+ out_ndim = len(axis) + a.ndim
600
+ axis = normalize_axis_tuple(axis, out_ndim)
601
+
602
+ shape_it = iter(a.shape)
603
+ shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
604
+
605
+ return a.reshape(shape)
606
+
607
+
608
+ # NOTE: Remove once deprecation period passes
609
+ @set_module("numpy")
610
+ def row_stack(tup, *, dtype=None, casting="same_kind"):
611
+ # Deprecated in NumPy 2.0, 2023-08-18
612
+ warnings.warn(
613
+ "`row_stack` alias is deprecated. "
614
+ "Use `np.vstack` directly.",
615
+ DeprecationWarning,
616
+ stacklevel=2
617
+ )
618
+ return vstack(tup, dtype=dtype, casting=casting)
619
+
620
+
621
+ row_stack.__doc__ = vstack.__doc__
622
+
623
+
624
+ def _column_stack_dispatcher(tup):
625
+ return _arrays_for_stack_dispatcher(tup)
626
+
627
+
628
+ @array_function_dispatch(_column_stack_dispatcher)
629
+ def column_stack(tup):
630
+ """
631
+ Stack 1-D arrays as columns into a 2-D array.
632
+
633
+ Take a sequence of 1-D arrays and stack them as columns
634
+ to make a single 2-D array. 2-D arrays are stacked as-is,
635
+ just like with `hstack`. 1-D arrays are turned into 2-D columns
636
+ first.
637
+
638
+ Parameters
639
+ ----------
640
+ tup : sequence of 1-D or 2-D arrays.
641
+ Arrays to stack. All of them must have the same first dimension.
642
+
643
+ Returns
644
+ -------
645
+ stacked : 2-D array
646
+ The array formed by stacking the given arrays.
647
+
648
+ See Also
649
+ --------
650
+ stack, hstack, vstack, concatenate
651
+
652
+ Examples
653
+ --------
654
+ >>> import numpy as np
655
+ >>> a = np.array((1,2,3))
656
+ >>> b = np.array((2,3,4))
657
+ >>> np.column_stack((a,b))
658
+ array([[1, 2],
659
+ [2, 3],
660
+ [3, 4]])
661
+
662
+ """
663
+ arrays = []
664
+ for v in tup:
665
+ arr = asanyarray(v)
666
+ if arr.ndim < 2:
667
+ arr = array(arr, copy=None, subok=True, ndmin=2).T
668
+ arrays.append(arr)
669
+ return _nx.concatenate(arrays, 1)
670
+
671
+
672
+ def _dstack_dispatcher(tup):
673
+ return _arrays_for_stack_dispatcher(tup)
674
+
675
+
676
+ @array_function_dispatch(_dstack_dispatcher)
677
+ def dstack(tup):
678
+ """
679
+ Stack arrays in sequence depth wise (along third axis).
680
+
681
+ This is equivalent to concatenation along the third axis after 2-D arrays
682
+ of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
683
+ `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
684
+ `dsplit`.
685
+
686
+ This function makes most sense for arrays with up to 3 dimensions. For
687
+ instance, for pixel-data with a height (first axis), width (second axis),
688
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
689
+ `block` provide more general stacking and concatenation operations.
690
+
691
+ Parameters
692
+ ----------
693
+ tup : sequence of arrays
694
+ The arrays must have the same shape along all but the third axis.
695
+ 1-D or 2-D arrays must have the same shape.
696
+
697
+ Returns
698
+ -------
699
+ stacked : ndarray
700
+ The array formed by stacking the given arrays, will be at least 3-D.
701
+
702
+ See Also
703
+ --------
704
+ concatenate : Join a sequence of arrays along an existing axis.
705
+ stack : Join a sequence of arrays along a new axis.
706
+ block : Assemble an nd-array from nested lists of blocks.
707
+ vstack : Stack arrays in sequence vertically (row wise).
708
+ hstack : Stack arrays in sequence horizontally (column wise).
709
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
710
+ dsplit : Split array along third axis.
711
+
712
+ Examples
713
+ --------
714
+ >>> import numpy as np
715
+ >>> a = np.array((1,2,3))
716
+ >>> b = np.array((2,3,4))
717
+ >>> np.dstack((a,b))
718
+ array([[[1, 2],
719
+ [2, 3],
720
+ [3, 4]]])
721
+
722
+ >>> a = np.array([[1],[2],[3]])
723
+ >>> b = np.array([[2],[3],[4]])
724
+ >>> np.dstack((a,b))
725
+ array([[[1, 2]],
726
+ [[2, 3]],
727
+ [[3, 4]]])
728
+
729
+ """
730
+ arrs = atleast_3d(*tup)
731
+ if not isinstance(arrs, tuple):
732
+ arrs = (arrs,)
733
+ return _nx.concatenate(arrs, 2)
734
+
735
+
736
+ def _replace_zero_by_x_arrays(sub_arys):
737
+ for i in range(len(sub_arys)):
738
+ if _nx.ndim(sub_arys[i]) == 0:
739
+ sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
740
+ elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
741
+ sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
742
+ return sub_arys
743
+
744
+
745
+ def _array_split_dispatcher(ary, indices_or_sections, axis=None):
746
+ return (ary, indices_or_sections)
747
+
748
+
749
+ @array_function_dispatch(_array_split_dispatcher)
750
+ def array_split(ary, indices_or_sections, axis=0):
751
+ """
752
+ Split an array into multiple sub-arrays.
753
+
754
+ Please refer to the ``split`` documentation. The only difference
755
+ between these functions is that ``array_split`` allows
756
+ `indices_or_sections` to be an integer that does *not* equally
757
+ divide the axis. For an array of length l that should be split
758
+ into n sections, it returns l % n sub-arrays of size l//n + 1
759
+ and the rest of size l//n.
760
+
761
+ See Also
762
+ --------
763
+ split : Split array into multiple sub-arrays of equal size.
764
+
765
+ Examples
766
+ --------
767
+ >>> import numpy as np
768
+ >>> x = np.arange(8.0)
769
+ >>> np.array_split(x, 3)
770
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
771
+
772
+ >>> x = np.arange(9)
773
+ >>> np.array_split(x, 4)
774
+ [array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
775
+
776
+ """
777
+ try:
778
+ Ntotal = ary.shape[axis]
779
+ except AttributeError:
780
+ Ntotal = len(ary)
781
+ try:
782
+ # handle array case.
783
+ Nsections = len(indices_or_sections) + 1
784
+ div_points = [0] + list(indices_or_sections) + [Ntotal]
785
+ except TypeError:
786
+ # indices_or_sections is a scalar, not an array.
787
+ Nsections = int(indices_or_sections)
788
+ if Nsections <= 0:
789
+ raise ValueError('number sections must be larger than 0.') from None
790
+ Neach_section, extras = divmod(Ntotal, Nsections)
791
+ section_sizes = ([0] +
792
+ extras * [Neach_section + 1] +
793
+ (Nsections - extras) * [Neach_section])
794
+ div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
795
+
796
+ sub_arys = []
797
+ sary = _nx.swapaxes(ary, axis, 0)
798
+ for i in range(Nsections):
799
+ st = div_points[i]
800
+ end = div_points[i + 1]
801
+ sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
802
+
803
+ return sub_arys
804
+
805
+
806
+ def _split_dispatcher(ary, indices_or_sections, axis=None):
807
+ return (ary, indices_or_sections)
808
+
809
+
810
+ @array_function_dispatch(_split_dispatcher)
811
+ def split(ary, indices_or_sections, axis=0):
812
+ """
813
+ Split an array into multiple sub-arrays as views into `ary`.
814
+
815
+ Parameters
816
+ ----------
817
+ ary : ndarray
818
+ Array to be divided into sub-arrays.
819
+ indices_or_sections : int or 1-D array
820
+ If `indices_or_sections` is an integer, N, the array will be divided
821
+ into N equal arrays along `axis`. If such a split is not possible,
822
+ an error is raised.
823
+
824
+ If `indices_or_sections` is a 1-D array of sorted integers, the entries
825
+ indicate where along `axis` the array is split. For example,
826
+ ``[2, 3]`` would, for ``axis=0``, result in
827
+
828
+ - ary[:2]
829
+ - ary[2:3]
830
+ - ary[3:]
831
+
832
+ If an index exceeds the dimension of the array along `axis`,
833
+ an empty sub-array is returned correspondingly.
834
+ axis : int, optional
835
+ The axis along which to split, default is 0.
836
+
837
+ Returns
838
+ -------
839
+ sub-arrays : list of ndarrays
840
+ A list of sub-arrays as views into `ary`.
841
+
842
+ Raises
843
+ ------
844
+ ValueError
845
+ If `indices_or_sections` is given as an integer, but
846
+ a split does not result in equal division.
847
+
848
+ See Also
849
+ --------
850
+ array_split : Split an array into multiple sub-arrays of equal or
851
+ near-equal size. Does not raise an exception if
852
+ an equal division cannot be made.
853
+ hsplit : Split array into multiple sub-arrays horizontally (column-wise).
854
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
855
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
856
+ concatenate : Join a sequence of arrays along an existing axis.
857
+ stack : Join a sequence of arrays along a new axis.
858
+ hstack : Stack arrays in sequence horizontally (column wise).
859
+ vstack : Stack arrays in sequence vertically (row wise).
860
+ dstack : Stack arrays in sequence depth wise (along third dimension).
861
+
862
+ Examples
863
+ --------
864
+ >>> import numpy as np
865
+ >>> x = np.arange(9.0)
866
+ >>> np.split(x, 3)
867
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
868
+
869
+ >>> x = np.arange(8.0)
870
+ >>> np.split(x, [3, 5, 6, 10])
871
+ [array([0., 1., 2.]),
872
+ array([3., 4.]),
873
+ array([5.]),
874
+ array([6., 7.]),
875
+ array([], dtype=float64)]
876
+
877
+ """
878
+ try:
879
+ len(indices_or_sections)
880
+ except TypeError:
881
+ sections = indices_or_sections
882
+ N = ary.shape[axis]
883
+ if N % sections:
884
+ raise ValueError(
885
+ 'array split does not result in an equal division') from None
886
+ return array_split(ary, indices_or_sections, axis)
887
+
888
+
889
+ def _hvdsplit_dispatcher(ary, indices_or_sections):
890
+ return (ary, indices_or_sections)
891
+
892
+
893
+ @array_function_dispatch(_hvdsplit_dispatcher)
894
+ def hsplit(ary, indices_or_sections):
895
+ """
896
+ Split an array into multiple sub-arrays horizontally (column-wise).
897
+
898
+ Please refer to the `split` documentation. `hsplit` is equivalent
899
+ to `split` with ``axis=1``, the array is always split along the second
900
+ axis except for 1-D arrays, where it is split at ``axis=0``.
901
+
902
+ See Also
903
+ --------
904
+ split : Split an array into multiple sub-arrays of equal size.
905
+
906
+ Examples
907
+ --------
908
+ >>> import numpy as np
909
+ >>> x = np.arange(16.0).reshape(4, 4)
910
+ >>> x
911
+ array([[ 0., 1., 2., 3.],
912
+ [ 4., 5., 6., 7.],
913
+ [ 8., 9., 10., 11.],
914
+ [12., 13., 14., 15.]])
915
+ >>> np.hsplit(x, 2)
916
+ [array([[ 0., 1.],
917
+ [ 4., 5.],
918
+ [ 8., 9.],
919
+ [12., 13.]]),
920
+ array([[ 2., 3.],
921
+ [ 6., 7.],
922
+ [10., 11.],
923
+ [14., 15.]])]
924
+ >>> np.hsplit(x, np.array([3, 6]))
925
+ [array([[ 0., 1., 2.],
926
+ [ 4., 5., 6.],
927
+ [ 8., 9., 10.],
928
+ [12., 13., 14.]]),
929
+ array([[ 3.],
930
+ [ 7.],
931
+ [11.],
932
+ [15.]]),
933
+ array([], shape=(4, 0), dtype=float64)]
934
+
935
+ With a higher dimensional array the split is still along the second axis.
936
+
937
+ >>> x = np.arange(8.0).reshape(2, 2, 2)
938
+ >>> x
939
+ array([[[0., 1.],
940
+ [2., 3.]],
941
+ [[4., 5.],
942
+ [6., 7.]]])
943
+ >>> np.hsplit(x, 2)
944
+ [array([[[0., 1.]],
945
+ [[4., 5.]]]),
946
+ array([[[2., 3.]],
947
+ [[6., 7.]]])]
948
+
949
+ With a 1-D array, the split is along axis 0.
950
+
951
+ >>> x = np.array([0, 1, 2, 3, 4, 5])
952
+ >>> np.hsplit(x, 2)
953
+ [array([0, 1, 2]), array([3, 4, 5])]
954
+
955
+ """
956
+ if _nx.ndim(ary) == 0:
957
+ raise ValueError('hsplit only works on arrays of 1 or more dimensions')
958
+ if ary.ndim > 1:
959
+ return split(ary, indices_or_sections, 1)
960
+ else:
961
+ return split(ary, indices_or_sections, 0)
962
+
963
+
964
+ @array_function_dispatch(_hvdsplit_dispatcher)
965
+ def vsplit(ary, indices_or_sections):
966
+ """
967
+ Split an array into multiple sub-arrays vertically (row-wise).
968
+
969
+ Please refer to the ``split`` documentation. ``vsplit`` is equivalent
970
+ to ``split`` with `axis=0` (default), the array is always split along the
971
+ first axis regardless of the array dimension.
972
+
973
+ See Also
974
+ --------
975
+ split : Split an array into multiple sub-arrays of equal size.
976
+
977
+ Examples
978
+ --------
979
+ >>> import numpy as np
980
+ >>> x = np.arange(16.0).reshape(4, 4)
981
+ >>> x
982
+ array([[ 0., 1., 2., 3.],
983
+ [ 4., 5., 6., 7.],
984
+ [ 8., 9., 10., 11.],
985
+ [12., 13., 14., 15.]])
986
+ >>> np.vsplit(x, 2)
987
+ [array([[0., 1., 2., 3.],
988
+ [4., 5., 6., 7.]]),
989
+ array([[ 8., 9., 10., 11.],
990
+ [12., 13., 14., 15.]])]
991
+ >>> np.vsplit(x, np.array([3, 6]))
992
+ [array([[ 0., 1., 2., 3.],
993
+ [ 4., 5., 6., 7.],
994
+ [ 8., 9., 10., 11.]]),
995
+ array([[12., 13., 14., 15.]]),
996
+ array([], shape=(0, 4), dtype=float64)]
997
+
998
+ With a higher dimensional array the split is still along the first axis.
999
+
1000
+ >>> x = np.arange(8.0).reshape(2, 2, 2)
1001
+ >>> x
1002
+ array([[[0., 1.],
1003
+ [2., 3.]],
1004
+ [[4., 5.],
1005
+ [6., 7.]]])
1006
+ >>> np.vsplit(x, 2)
1007
+ [array([[[0., 1.],
1008
+ [2., 3.]]]),
1009
+ array([[[4., 5.],
1010
+ [6., 7.]]])]
1011
+
1012
+ """
1013
+ if _nx.ndim(ary) < 2:
1014
+ raise ValueError('vsplit only works on arrays of 2 or more dimensions')
1015
+ return split(ary, indices_or_sections, 0)
1016
+
1017
+
1018
+ @array_function_dispatch(_hvdsplit_dispatcher)
1019
+ def dsplit(ary, indices_or_sections):
1020
+ """
1021
+ Split array into multiple sub-arrays along the 3rd axis (depth).
1022
+
1023
+ Please refer to the `split` documentation. `dsplit` is equivalent
1024
+ to `split` with ``axis=2``, the array is always split along the third
1025
+ axis provided the array dimension is greater than or equal to 3.
1026
+
1027
+ See Also
1028
+ --------
1029
+ split : Split an array into multiple sub-arrays of equal size.
1030
+
1031
+ Examples
1032
+ --------
1033
+ >>> import numpy as np
1034
+ >>> x = np.arange(16.0).reshape(2, 2, 4)
1035
+ >>> x
1036
+ array([[[ 0., 1., 2., 3.],
1037
+ [ 4., 5., 6., 7.]],
1038
+ [[ 8., 9., 10., 11.],
1039
+ [12., 13., 14., 15.]]])
1040
+ >>> np.dsplit(x, 2)
1041
+ [array([[[ 0., 1.],
1042
+ [ 4., 5.]],
1043
+ [[ 8., 9.],
1044
+ [12., 13.]]]), array([[[ 2., 3.],
1045
+ [ 6., 7.]],
1046
+ [[10., 11.],
1047
+ [14., 15.]]])]
1048
+ >>> np.dsplit(x, np.array([3, 6]))
1049
+ [array([[[ 0., 1., 2.],
1050
+ [ 4., 5., 6.]],
1051
+ [[ 8., 9., 10.],
1052
+ [12., 13., 14.]]]),
1053
+ array([[[ 3.],
1054
+ [ 7.]],
1055
+ [[11.],
1056
+ [15.]]]),
1057
+ array([], shape=(2, 2, 0), dtype=float64)]
1058
+ """
1059
+ if _nx.ndim(ary) < 3:
1060
+ raise ValueError('dsplit only works on arrays of 3 or more dimensions')
1061
+ return split(ary, indices_or_sections, 2)
1062
+
1063
+
1064
+ def get_array_wrap(*args):
1065
+ """Find the wrapper for the array with the highest priority.
1066
+
1067
+ In case of ties, leftmost wins. If no wrapper is found, return None.
1068
+
1069
+ .. deprecated:: 2.0
1070
+ """
1071
+
1072
+ # Deprecated in NumPy 2.0, 2023-07-11
1073
+ warnings.warn(
1074
+ "`get_array_wrap` is deprecated. "
1075
+ "(deprecated in NumPy 2.0)",
1076
+ DeprecationWarning,
1077
+ stacklevel=2
1078
+ )
1079
+
1080
+ wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
1081
+ x.__array_wrap__) for i, x in enumerate(args)
1082
+ if hasattr(x, '__array_wrap__'))
1083
+ if wrappers:
1084
+ return wrappers[-1][-1]
1085
+ return None
1086
+
1087
+
1088
+ def _kron_dispatcher(a, b):
1089
+ return (a, b)
1090
+
1091
+
1092
+ @array_function_dispatch(_kron_dispatcher)
1093
+ def kron(a, b):
1094
+ """
1095
+ Kronecker product of two arrays.
1096
+
1097
+ Computes the Kronecker product, a composite array made of blocks of the
1098
+ second array scaled by the first.
1099
+
1100
+ Parameters
1101
+ ----------
1102
+ a, b : array_like
1103
+
1104
+ Returns
1105
+ -------
1106
+ out : ndarray
1107
+
1108
+ See Also
1109
+ --------
1110
+ outer : The outer product
1111
+
1112
+ Notes
1113
+ -----
1114
+ The function assumes that the number of dimensions of `a` and `b`
1115
+ are the same, if necessary prepending the smallest with ones.
1116
+ If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
1117
+ the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
1118
+ The elements are products of elements from `a` and `b`, organized
1119
+ explicitly by::
1120
+
1121
+ kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
1122
+
1123
+ where::
1124
+
1125
+ kt = it * st + jt, t = 0,...,N
1126
+
1127
+ In the common 2-D case (N=1), the block structure can be visualized::
1128
+
1129
+ [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
1130
+ [ ... ... ],
1131
+ [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
1132
+
1133
+
1134
+ Examples
1135
+ --------
1136
+ >>> import numpy as np
1137
+ >>> np.kron([1,10,100], [5,6,7])
1138
+ array([ 5, 6, 7, ..., 500, 600, 700])
1139
+ >>> np.kron([5,6,7], [1,10,100])
1140
+ array([ 5, 50, 500, ..., 7, 70, 700])
1141
+
1142
+ >>> np.kron(np.eye(2), np.ones((2,2)))
1143
+ array([[1., 1., 0., 0.],
1144
+ [1., 1., 0., 0.],
1145
+ [0., 0., 1., 1.],
1146
+ [0., 0., 1., 1.]])
1147
+
1148
+ >>> a = np.arange(100).reshape((2,5,2,5))
1149
+ >>> b = np.arange(24).reshape((2,3,4))
1150
+ >>> c = np.kron(a,b)
1151
+ >>> c.shape
1152
+ (2, 10, 6, 20)
1153
+ >>> I = (1,3,0,2)
1154
+ >>> J = (0,2,1)
1155
+ >>> J1 = (0,) + J # extend to ndim=4
1156
+ >>> S1 = (1,) + b.shape
1157
+ >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
1158
+ >>> c[K] == a[I]*b[J]
1159
+ True
1160
+
1161
+ """
1162
+ # Working:
1163
+ # 1. Equalise the shapes by prepending smaller array with 1s
1164
+ # 2. Expand shapes of both the arrays by adding new axes at
1165
+ # odd positions for 1st array and even positions for 2nd
1166
+ # 3. Compute the product of the modified array
1167
+ # 4. The inner most array elements now contain the rows of
1168
+ # the Kronecker product
1169
+ # 5. Reshape the result to kron's shape, which is same as
1170
+ # product of shapes of the two arrays.
1171
+ b = asanyarray(b)
1172
+ a = array(a, copy=None, subok=True, ndmin=b.ndim)
1173
+ is_any_mat = isinstance(a, matrix) or isinstance(b, matrix)
1174
+ ndb, nda = b.ndim, a.ndim
1175
+ nd = max(ndb, nda)
1176
+
1177
+ if (nda == 0 or ndb == 0):
1178
+ return _nx.multiply(a, b)
1179
+
1180
+ as_ = a.shape
1181
+ bs = b.shape
1182
+ if not a.flags.contiguous:
1183
+ a = reshape(a, as_)
1184
+ if not b.flags.contiguous:
1185
+ b = reshape(b, bs)
1186
+
1187
+ # Equalise the shapes by prepending smaller one with 1s
1188
+ as_ = (1,) * max(0, ndb - nda) + as_
1189
+ bs = (1,) * max(0, nda - ndb) + bs
1190
+
1191
+ # Insert empty dimensions
1192
+ a_arr = expand_dims(a, axis=tuple(range(ndb - nda)))
1193
+ b_arr = expand_dims(b, axis=tuple(range(nda - ndb)))
1194
+
1195
+ # Compute the product
1196
+ a_arr = expand_dims(a_arr, axis=tuple(range(1, nd * 2, 2)))
1197
+ b_arr = expand_dims(b_arr, axis=tuple(range(0, nd * 2, 2)))
1198
+ # In case of `mat`, convert result to `array`
1199
+ result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat))
1200
+
1201
+ # Reshape back
1202
+ result = result.reshape(_nx.multiply(as_, bs))
1203
+
1204
+ return result if not is_any_mat else matrix(result, copy=False)
1205
+
1206
+
1207
+ def _tile_dispatcher(A, reps):
1208
+ return (A, reps)
1209
+
1210
+
1211
+ @array_function_dispatch(_tile_dispatcher)
1212
+ def tile(A, reps):
1213
+ """
1214
+ Construct an array by repeating A the number of times given by reps.
1215
+
1216
+ If `reps` has length ``d``, the result will have dimension of
1217
+ ``max(d, A.ndim)``.
1218
+
1219
+ If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
1220
+ axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
1221
+ or shape (1, 1, 3) for 3-D replication. If this is not the desired
1222
+ behavior, promote `A` to d-dimensions manually before calling this
1223
+ function.
1224
+
1225
+ If ``A.ndim > d``, `reps` is promoted to `A`.ndim by prepending 1's to it.
1226
+ Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
1227
+ (1, 1, 2, 2).
1228
+
1229
+ Note : Although tile may be used for broadcasting, it is strongly
1230
+ recommended to use numpy's broadcasting operations and functions.
1231
+
1232
+ Parameters
1233
+ ----------
1234
+ A : array_like
1235
+ The input array.
1236
+ reps : array_like
1237
+ The number of repetitions of `A` along each axis.
1238
+
1239
+ Returns
1240
+ -------
1241
+ c : ndarray
1242
+ The tiled output array.
1243
+
1244
+ See Also
1245
+ --------
1246
+ repeat : Repeat elements of an array.
1247
+ broadcast_to : Broadcast an array to a new shape
1248
+
1249
+ Examples
1250
+ --------
1251
+ >>> import numpy as np
1252
+ >>> a = np.array([0, 1, 2])
1253
+ >>> np.tile(a, 2)
1254
+ array([0, 1, 2, 0, 1, 2])
1255
+ >>> np.tile(a, (2, 2))
1256
+ array([[0, 1, 2, 0, 1, 2],
1257
+ [0, 1, 2, 0, 1, 2]])
1258
+ >>> np.tile(a, (2, 1, 2))
1259
+ array([[[0, 1, 2, 0, 1, 2]],
1260
+ [[0, 1, 2, 0, 1, 2]]])
1261
+
1262
+ >>> b = np.array([[1, 2], [3, 4]])
1263
+ >>> np.tile(b, 2)
1264
+ array([[1, 2, 1, 2],
1265
+ [3, 4, 3, 4]])
1266
+ >>> np.tile(b, (2, 1))
1267
+ array([[1, 2],
1268
+ [3, 4],
1269
+ [1, 2],
1270
+ [3, 4]])
1271
+
1272
+ >>> c = np.array([1,2,3,4])
1273
+ >>> np.tile(c,(4,1))
1274
+ array([[1, 2, 3, 4],
1275
+ [1, 2, 3, 4],
1276
+ [1, 2, 3, 4],
1277
+ [1, 2, 3, 4]])
1278
+ """
1279
+ try:
1280
+ tup = tuple(reps)
1281
+ except TypeError:
1282
+ tup = (reps,)
1283
+ d = len(tup)
1284
+ if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
1285
+ # Fixes the problem that the function does not make a copy if A is a
1286
+ # numpy array and the repetitions are 1 in all dimensions
1287
+ return _nx.array(A, copy=True, subok=True, ndmin=d)
1288
+ else:
1289
+ # Note that no copy of zero-sized arrays is made. However since they
1290
+ # have no data there is no risk of an inadvertent overwrite.
1291
+ c = _nx.array(A, copy=None, subok=True, ndmin=d)
1292
+ if (d < c.ndim):
1293
+ tup = (1,) * (c.ndim - d) + tup
1294
+ shape_out = tuple(s * t for s, t in zip(c.shape, tup))
1295
+ n = c.size
1296
+ if n > 0:
1297
+ for dim_in, nrep in zip(c.shape, tup):
1298
+ if nrep != 1:
1299
+ c = c.reshape(-1, n).repeat(nrep, 0)
1300
+ n //= dim_in
1301
+ return c.reshape(shape_out)