numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1260 @@
1
+ """
2
+ Set operations for arrays based on sorting.
3
+
4
+ Notes
5
+ -----
6
+
7
+ For floating point arrays, inaccurate results may appear due to usual round-off
8
+ and floating point comparison issues.
9
+
10
+ Speed could be gained in some operations by an implementation of
11
+ `numpy.sort`, that can provide directly the permutation vectors, thus avoiding
12
+ calls to `numpy.argsort`.
13
+
14
+ Original author: Robert Cimrman
15
+
16
+ """
17
+ import functools
18
+ import warnings
19
+ from typing import NamedTuple
20
+
21
+ import numpy as np
22
+ from numpy._core import overrides
23
+ from numpy._core._multiarray_umath import _array_converter, _unique_hash
24
+
25
+ array_function_dispatch = functools.partial(
26
+ overrides.array_function_dispatch, module='numpy')
27
+
28
+
29
+ __all__ = [
30
+ "ediff1d", "in1d", "intersect1d", "isin", "setdiff1d", "setxor1d",
31
+ "union1d", "unique", "unique_all", "unique_counts", "unique_inverse",
32
+ "unique_values"
33
+ ]
34
+
35
+
36
+ def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
37
+ return (ary, to_end, to_begin)
38
+
39
+
40
+ @array_function_dispatch(_ediff1d_dispatcher)
41
+ def ediff1d(ary, to_end=None, to_begin=None):
42
+ """
43
+ The differences between consecutive elements of an array.
44
+
45
+ Parameters
46
+ ----------
47
+ ary : array_like
48
+ If necessary, will be flattened before the differences are taken.
49
+ to_end : array_like, optional
50
+ Number(s) to append at the end of the returned differences.
51
+ to_begin : array_like, optional
52
+ Number(s) to prepend at the beginning of the returned differences.
53
+
54
+ Returns
55
+ -------
56
+ ediff1d : ndarray
57
+ The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
58
+
59
+ See Also
60
+ --------
61
+ diff, gradient
62
+
63
+ Notes
64
+ -----
65
+ When applied to masked arrays, this function drops the mask information
66
+ if the `to_begin` and/or `to_end` parameters are used.
67
+
68
+ Examples
69
+ --------
70
+ >>> import numpy as np
71
+ >>> x = np.array([1, 2, 4, 7, 0])
72
+ >>> np.ediff1d(x)
73
+ array([ 1, 2, 3, -7])
74
+
75
+ >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
76
+ array([-99, 1, 2, ..., -7, 88, 99])
77
+
78
+ The returned array is always 1D.
79
+
80
+ >>> y = [[1, 2, 4], [1, 6, 24]]
81
+ >>> np.ediff1d(y)
82
+ array([ 1, 2, -3, 5, 18])
83
+
84
+ """
85
+ conv = _array_converter(ary)
86
+ # Convert to (any) array and ravel:
87
+ ary = conv[0].ravel()
88
+
89
+ # enforce that the dtype of `ary` is used for the output
90
+ dtype_req = ary.dtype
91
+
92
+ # fast track default case
93
+ if to_begin is None and to_end is None:
94
+ return ary[1:] - ary[:-1]
95
+
96
+ if to_begin is None:
97
+ l_begin = 0
98
+ else:
99
+ to_begin = np.asanyarray(to_begin)
100
+ if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
101
+ raise TypeError("dtype of `to_begin` must be compatible "
102
+ "with input `ary` under the `same_kind` rule.")
103
+
104
+ to_begin = to_begin.ravel()
105
+ l_begin = len(to_begin)
106
+
107
+ if to_end is None:
108
+ l_end = 0
109
+ else:
110
+ to_end = np.asanyarray(to_end)
111
+ if not np.can_cast(to_end, dtype_req, casting="same_kind"):
112
+ raise TypeError("dtype of `to_end` must be compatible "
113
+ "with input `ary` under the `same_kind` rule.")
114
+
115
+ to_end = to_end.ravel()
116
+ l_end = len(to_end)
117
+
118
+ # do the calculation in place and copy to_begin and to_end
119
+ l_diff = max(len(ary) - 1, 0)
120
+ result = np.empty_like(ary, shape=l_diff + l_begin + l_end)
121
+
122
+ if l_begin > 0:
123
+ result[:l_begin] = to_begin
124
+ if l_end > 0:
125
+ result[l_begin + l_diff:] = to_end
126
+ np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
127
+
128
+ return conv.wrap(result)
129
+
130
+
131
+ def _unpack_tuple(x):
132
+ """ Unpacks one-element tuples for use as return values """
133
+ if len(x) == 1:
134
+ return x[0]
135
+ else:
136
+ return x
137
+
138
+
139
+ def _unique_dispatcher(ar, return_index=None, return_inverse=None,
140
+ return_counts=None, axis=None, *, equal_nan=None,
141
+ sorted=True):
142
+ return (ar,)
143
+
144
+
145
+ @array_function_dispatch(_unique_dispatcher)
146
+ def unique(ar, return_index=False, return_inverse=False,
147
+ return_counts=False, axis=None, *, equal_nan=True,
148
+ sorted=True):
149
+ """
150
+ Find the unique elements of an array.
151
+
152
+ Returns the sorted unique elements of an array. There are three optional
153
+ outputs in addition to the unique elements:
154
+
155
+ * the indices of the input array that give the unique values
156
+ * the indices of the unique array that reconstruct the input array
157
+ * the number of times each unique value comes up in the input array
158
+
159
+ Parameters
160
+ ----------
161
+ ar : array_like
162
+ Input array. Unless `axis` is specified, this will be flattened if it
163
+ is not already 1-D.
164
+ return_index : bool, optional
165
+ If True, also return the indices of `ar` (along the specified axis,
166
+ if provided, or in the flattened array) that result in the unique array.
167
+ return_inverse : bool, optional
168
+ If True, also return the indices of the unique array (for the specified
169
+ axis, if provided) that can be used to reconstruct `ar`.
170
+ return_counts : bool, optional
171
+ If True, also return the number of times each unique item appears
172
+ in `ar`.
173
+ axis : int or None, optional
174
+ The axis to operate on. If None, `ar` will be flattened. If an integer,
175
+ the subarrays indexed by the given axis will be flattened and treated
176
+ as the elements of a 1-D array with the dimension of the given axis,
177
+ see the notes for more details. Object arrays or structured arrays
178
+ that contain objects are not supported if the `axis` kwarg is used. The
179
+ default is None.
180
+
181
+ equal_nan : bool, optional
182
+ If True, collapses multiple NaN values in the return array into one.
183
+
184
+ .. versionadded:: 1.24
185
+
186
+ sorted : bool, optional
187
+ If True, the unique elements are sorted. Elements may be sorted in
188
+ practice even if ``sorted=False``, but this could change without
189
+ notice.
190
+
191
+ .. versionadded:: 2.3
192
+
193
+ Returns
194
+ -------
195
+ unique : ndarray
196
+ The sorted unique values.
197
+ unique_indices : ndarray, optional
198
+ The indices of the first occurrences of the unique values in the
199
+ original array. Only provided if `return_index` is True.
200
+ unique_inverse : ndarray, optional
201
+ The indices to reconstruct the original array from the
202
+ unique array. Only provided if `return_inverse` is True.
203
+ unique_counts : ndarray, optional
204
+ The number of times each of the unique values comes up in the
205
+ original array. Only provided if `return_counts` is True.
206
+
207
+ See Also
208
+ --------
209
+ repeat : Repeat elements of an array.
210
+ sort : Return a sorted copy of an array.
211
+
212
+ Notes
213
+ -----
214
+ When an axis is specified the subarrays indexed by the axis are sorted.
215
+ This is done by making the specified axis the first dimension of the array
216
+ (move the axis to the first dimension to keep the order of the other axes)
217
+ and then flattening the subarrays in C order. The flattened subarrays are
218
+ then viewed as a structured type with each element given a label, with the
219
+ effect that we end up with a 1-D array of structured types that can be
220
+ treated in the same way as any other 1-D array. The result is that the
221
+ flattened subarrays are sorted in lexicographic order starting with the
222
+ first element.
223
+
224
+ .. versionchanged:: 1.21
225
+ Like np.sort, NaN will sort to the end of the values.
226
+ For complex arrays all NaN values are considered equivalent
227
+ (no matter whether the NaN is in the real or imaginary part).
228
+ As the representant for the returned array the smallest one in the
229
+ lexicographical order is chosen - see np.sort for how the lexicographical
230
+ order is defined for complex arrays.
231
+
232
+ .. versionchanged:: 2.0
233
+ For multi-dimensional inputs, ``unique_inverse`` is reshaped
234
+ such that the input can be reconstructed using
235
+ ``np.take(unique, unique_inverse, axis=axis)``. The result is
236
+ now not 1-dimensional when ``axis=None``.
237
+
238
+ Note that in NumPy 2.0.0 a higher dimensional array was returned also
239
+ when ``axis`` was not ``None``. This was reverted, but
240
+ ``inverse.reshape(-1)`` can be used to ensure compatibility with both
241
+ versions.
242
+
243
+ Examples
244
+ --------
245
+ >>> import numpy as np
246
+ >>> np.unique([1, 1, 2, 2, 3, 3])
247
+ array([1, 2, 3])
248
+ >>> a = np.array([[1, 1], [2, 3]])
249
+ >>> np.unique(a)
250
+ array([1, 2, 3])
251
+
252
+ Return the unique rows of a 2D array
253
+
254
+ >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
255
+ >>> np.unique(a, axis=0)
256
+ array([[1, 0, 0], [2, 3, 4]])
257
+
258
+ Return the indices of the original array that give the unique values:
259
+
260
+ >>> a = np.array(['a', 'b', 'b', 'c', 'a'])
261
+ >>> u, indices = np.unique(a, return_index=True)
262
+ >>> u
263
+ array(['a', 'b', 'c'], dtype='<U1')
264
+ >>> indices
265
+ array([0, 1, 3])
266
+ >>> a[indices]
267
+ array(['a', 'b', 'c'], dtype='<U1')
268
+
269
+ Reconstruct the input array from the unique values and inverse:
270
+
271
+ >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
272
+ >>> u, indices = np.unique(a, return_inverse=True)
273
+ >>> u
274
+ array([1, 2, 3, 4, 6])
275
+ >>> indices
276
+ array([0, 1, 4, 3, 1, 2, 1])
277
+ >>> u[indices]
278
+ array([1, 2, 6, 4, 2, 3, 2])
279
+
280
+ Reconstruct the input values from the unique values and counts:
281
+
282
+ >>> a = np.array([1, 2, 6, 4, 2, 3, 2])
283
+ >>> values, counts = np.unique(a, return_counts=True)
284
+ >>> values
285
+ array([1, 2, 3, 4, 6])
286
+ >>> counts
287
+ array([1, 3, 1, 1, 1])
288
+ >>> np.repeat(values, counts)
289
+ array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved
290
+
291
+ """
292
+ ar = np.asanyarray(ar)
293
+ if axis is None:
294
+ ret = _unique1d(ar, return_index, return_inverse, return_counts,
295
+ equal_nan=equal_nan, inverse_shape=ar.shape, axis=None,
296
+ sorted=sorted)
297
+ return _unpack_tuple(ret)
298
+
299
+ # axis was specified and not None
300
+ try:
301
+ ar = np.moveaxis(ar, axis, 0)
302
+ except np.exceptions.AxisError:
303
+ # this removes the "axis1" or "axis2" prefix from the error message
304
+ raise np.exceptions.AxisError(axis, ar.ndim) from None
305
+ inverse_shape = [1] * ar.ndim
306
+ inverse_shape[axis] = ar.shape[0]
307
+
308
+ # Must reshape to a contiguous 2D array for this to work...
309
+ orig_shape, orig_dtype = ar.shape, ar.dtype
310
+ ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
311
+ ar = np.ascontiguousarray(ar)
312
+ dtype = [(f'f{i}', ar.dtype) for i in range(ar.shape[1])]
313
+
314
+ # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
315
+ # data type with `m` fields where each field has the data type of `ar`.
316
+ # In the following, we create the array `consolidated`, which has
317
+ # shape `(n,)` with data type `dtype`.
318
+ try:
319
+ if ar.shape[1] > 0:
320
+ consolidated = ar.view(dtype)
321
+ else:
322
+ # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
323
+ # a data type with itemsize 0, and the call `ar.view(dtype)` will
324
+ # fail. Instead, we'll use `np.empty` to explicitly create the
325
+ # array with shape `(len(ar),)`. Because `dtype` in this case has
326
+ # itemsize 0, the total size of the result is still 0 bytes.
327
+ consolidated = np.empty(len(ar), dtype=dtype)
328
+ except TypeError as e:
329
+ # There's no good way to do this for object arrays, etc...
330
+ msg = 'The axis argument to unique is not supported for dtype {dt}'
331
+ raise TypeError(msg.format(dt=ar.dtype)) from e
332
+
333
+ def reshape_uniq(uniq):
334
+ n = len(uniq)
335
+ uniq = uniq.view(orig_dtype)
336
+ uniq = uniq.reshape(n, *orig_shape[1:])
337
+ uniq = np.moveaxis(uniq, 0, axis)
338
+ return uniq
339
+
340
+ output = _unique1d(consolidated, return_index,
341
+ return_inverse, return_counts,
342
+ equal_nan=equal_nan, inverse_shape=inverse_shape,
343
+ axis=axis, sorted=sorted)
344
+ output = (reshape_uniq(output[0]),) + output[1:]
345
+ return _unpack_tuple(output)
346
+
347
+
348
+ def _unique1d(ar, return_index=False, return_inverse=False,
349
+ return_counts=False, *, equal_nan=True, inverse_shape=None,
350
+ axis=None, sorted=True):
351
+ """
352
+ Find the unique elements of an array, ignoring shape.
353
+
354
+ Uses a hash table to find the unique elements if possible.
355
+ """
356
+ ar = np.asanyarray(ar).flatten()
357
+ if len(ar.shape) != 1:
358
+ # np.matrix, and maybe some other array subclasses, insist on keeping
359
+ # two dimensions for all operations. Coerce to an ndarray in such cases.
360
+ ar = np.asarray(ar).flatten()
361
+
362
+ optional_indices = return_index or return_inverse
363
+
364
+ # masked arrays are not supported yet.
365
+ if not optional_indices and not return_counts and not np.ma.is_masked(ar):
366
+ # First we convert the array to a numpy array, later we wrap it back
367
+ # in case it was a subclass of numpy.ndarray.
368
+ conv = _array_converter(ar)
369
+ ar_, = conv
370
+
371
+ if (hash_unique := _unique_hash(ar_)) is not NotImplemented:
372
+ if sorted:
373
+ hash_unique.sort()
374
+ # We wrap the result back in case it was a subclass of numpy.ndarray.
375
+ return (conv.wrap(hash_unique),)
376
+
377
+ # If we don't use the hash map, we use the slower sorting method.
378
+ if optional_indices:
379
+ perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
380
+ aux = ar[perm]
381
+ else:
382
+ ar.sort()
383
+ aux = ar
384
+ mask = np.empty(aux.shape, dtype=np.bool)
385
+ mask[:1] = True
386
+ if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
387
+ np.isnan(aux[-1])):
388
+ if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
389
+ aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
390
+ else:
391
+ aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
392
+ if aux_firstnan > 0:
393
+ mask[1:aux_firstnan] = (
394
+ aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
395
+ mask[aux_firstnan] = True
396
+ mask[aux_firstnan + 1:] = False
397
+ else:
398
+ mask[1:] = aux[1:] != aux[:-1]
399
+
400
+ ret = (aux[mask],)
401
+ if return_index:
402
+ ret += (perm[mask],)
403
+ if return_inverse:
404
+ imask = np.cumsum(mask) - 1
405
+ inv_idx = np.empty(mask.shape, dtype=np.intp)
406
+ inv_idx[perm] = imask
407
+ ret += (inv_idx.reshape(inverse_shape) if axis is None else inv_idx,)
408
+ if return_counts:
409
+ idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
410
+ ret += (np.diff(idx),)
411
+ return ret
412
+
413
+
414
+ # Array API set functions
415
+
416
+ class UniqueAllResult(NamedTuple):
417
+ values: np.ndarray
418
+ indices: np.ndarray
419
+ inverse_indices: np.ndarray
420
+ counts: np.ndarray
421
+
422
+
423
+ class UniqueCountsResult(NamedTuple):
424
+ values: np.ndarray
425
+ counts: np.ndarray
426
+
427
+
428
+ class UniqueInverseResult(NamedTuple):
429
+ values: np.ndarray
430
+ inverse_indices: np.ndarray
431
+
432
+
433
+ def _unique_all_dispatcher(x, /):
434
+ return (x,)
435
+
436
+
437
+ @array_function_dispatch(_unique_all_dispatcher)
438
+ def unique_all(x):
439
+ """
440
+ Find the unique elements of an array, and counts, inverse, and indices.
441
+
442
+ This function is an Array API compatible alternative to::
443
+
444
+ np.unique(x, return_index=True, return_inverse=True,
445
+ return_counts=True, equal_nan=False, sorted=False)
446
+
447
+ but returns a namedtuple for easier access to each output.
448
+
449
+ .. note::
450
+ This function currently always returns a sorted result, however,
451
+ this could change in any NumPy minor release.
452
+
453
+ Parameters
454
+ ----------
455
+ x : array_like
456
+ Input array. It will be flattened if it is not already 1-D.
457
+
458
+ Returns
459
+ -------
460
+ out : namedtuple
461
+ The result containing:
462
+
463
+ * values - The unique elements of an input array.
464
+ * indices - The first occurring indices for each unique element.
465
+ * inverse_indices - The indices from the set of unique elements
466
+ that reconstruct `x`.
467
+ * counts - The corresponding counts for each unique element.
468
+
469
+ See Also
470
+ --------
471
+ unique : Find the unique elements of an array.
472
+
473
+ Examples
474
+ --------
475
+ >>> import numpy as np
476
+ >>> x = [1, 1, 2]
477
+ >>> uniq = np.unique_all(x)
478
+ >>> uniq.values
479
+ array([1, 2])
480
+ >>> uniq.indices
481
+ array([0, 2])
482
+ >>> uniq.inverse_indices
483
+ array([0, 0, 1])
484
+ >>> uniq.counts
485
+ array([2, 1])
486
+ """
487
+ result = unique(
488
+ x,
489
+ return_index=True,
490
+ return_inverse=True,
491
+ return_counts=True,
492
+ equal_nan=False,
493
+ )
494
+ return UniqueAllResult(*result)
495
+
496
+
497
+ def _unique_counts_dispatcher(x, /):
498
+ return (x,)
499
+
500
+
501
+ @array_function_dispatch(_unique_counts_dispatcher)
502
+ def unique_counts(x):
503
+ """
504
+ Find the unique elements and counts of an input array `x`.
505
+
506
+ This function is an Array API compatible alternative to::
507
+
508
+ np.unique(x, return_counts=True, equal_nan=False, sorted=False)
509
+
510
+ but returns a namedtuple for easier access to each output.
511
+
512
+ .. note::
513
+ This function currently always returns a sorted result, however,
514
+ this could change in any NumPy minor release.
515
+
516
+ Parameters
517
+ ----------
518
+ x : array_like
519
+ Input array. It will be flattened if it is not already 1-D.
520
+
521
+ Returns
522
+ -------
523
+ out : namedtuple
524
+ The result containing:
525
+
526
+ * values - The unique elements of an input array.
527
+ * counts - The corresponding counts for each unique element.
528
+
529
+ See Also
530
+ --------
531
+ unique : Find the unique elements of an array.
532
+
533
+ Examples
534
+ --------
535
+ >>> import numpy as np
536
+ >>> x = [1, 1, 2]
537
+ >>> uniq = np.unique_counts(x)
538
+ >>> uniq.values
539
+ array([1, 2])
540
+ >>> uniq.counts
541
+ array([2, 1])
542
+ """
543
+ result = unique(
544
+ x,
545
+ return_index=False,
546
+ return_inverse=False,
547
+ return_counts=True,
548
+ equal_nan=False,
549
+ )
550
+ return UniqueCountsResult(*result)
551
+
552
+
553
+ def _unique_inverse_dispatcher(x, /):
554
+ return (x,)
555
+
556
+
557
+ @array_function_dispatch(_unique_inverse_dispatcher)
558
+ def unique_inverse(x):
559
+ """
560
+ Find the unique elements of `x` and indices to reconstruct `x`.
561
+
562
+ This function is an Array API compatible alternative to::
563
+
564
+ np.unique(x, return_inverse=True, equal_nan=False, sorted=False)
565
+
566
+ but returns a namedtuple for easier access to each output.
567
+
568
+ .. note::
569
+ This function currently always returns a sorted result, however,
570
+ this could change in any NumPy minor release.
571
+
572
+ Parameters
573
+ ----------
574
+ x : array_like
575
+ Input array. It will be flattened if it is not already 1-D.
576
+
577
+ Returns
578
+ -------
579
+ out : namedtuple
580
+ The result containing:
581
+
582
+ * values - The unique elements of an input array.
583
+ * inverse_indices - The indices from the set of unique elements
584
+ that reconstruct `x`.
585
+
586
+ See Also
587
+ --------
588
+ unique : Find the unique elements of an array.
589
+
590
+ Examples
591
+ --------
592
+ >>> import numpy as np
593
+ >>> x = [1, 1, 2]
594
+ >>> uniq = np.unique_inverse(x)
595
+ >>> uniq.values
596
+ array([1, 2])
597
+ >>> uniq.inverse_indices
598
+ array([0, 0, 1])
599
+ """
600
+ result = unique(
601
+ x,
602
+ return_index=False,
603
+ return_inverse=True,
604
+ return_counts=False,
605
+ equal_nan=False,
606
+ )
607
+ return UniqueInverseResult(*result)
608
+
609
+
610
+ def _unique_values_dispatcher(x, /):
611
+ return (x,)
612
+
613
+
614
+ @array_function_dispatch(_unique_values_dispatcher)
615
+ def unique_values(x):
616
+ """
617
+ Returns the unique elements of an input array `x`.
618
+
619
+ This function is an Array API compatible alternative to::
620
+
621
+ np.unique(x, equal_nan=False, sorted=False)
622
+
623
+ .. versionchanged:: 2.3
624
+ The algorithm was changed to a faster one that does not rely on
625
+ sorting, and hence the results are no longer implicitly sorted.
626
+
627
+ Parameters
628
+ ----------
629
+ x : array_like
630
+ Input array. It will be flattened if it is not already 1-D.
631
+
632
+ Returns
633
+ -------
634
+ out : ndarray
635
+ The unique elements of an input array.
636
+
637
+ See Also
638
+ --------
639
+ unique : Find the unique elements of an array.
640
+
641
+ Examples
642
+ --------
643
+ >>> import numpy as np
644
+ >>> np.unique_values([1, 1, 2])
645
+ array([1, 2]) # may vary
646
+
647
+ """
648
+ return unique(
649
+ x,
650
+ return_index=False,
651
+ return_inverse=False,
652
+ return_counts=False,
653
+ equal_nan=False,
654
+ sorted=False,
655
+ )
656
+
657
+
658
+ def _intersect1d_dispatcher(
659
+ ar1, ar2, assume_unique=None, return_indices=None):
660
+ return (ar1, ar2)
661
+
662
+
663
+ @array_function_dispatch(_intersect1d_dispatcher)
664
+ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
665
+ """
666
+ Find the intersection of two arrays.
667
+
668
+ Return the sorted, unique values that are in both of the input arrays.
669
+
670
+ Parameters
671
+ ----------
672
+ ar1, ar2 : array_like
673
+ Input arrays. Will be flattened if not already 1D.
674
+ assume_unique : bool
675
+ If True, the input arrays are both assumed to be unique, which
676
+ can speed up the calculation. If True but ``ar1`` or ``ar2`` are not
677
+ unique, incorrect results and out-of-bounds indices could result.
678
+ Default is False.
679
+ return_indices : bool
680
+ If True, the indices which correspond to the intersection of the two
681
+ arrays are returned. The first instance of a value is used if there are
682
+ multiple. Default is False.
683
+
684
+ Returns
685
+ -------
686
+ intersect1d : ndarray
687
+ Sorted 1D array of common and unique elements.
688
+ comm1 : ndarray
689
+ The indices of the first occurrences of the common values in `ar1`.
690
+ Only provided if `return_indices` is True.
691
+ comm2 : ndarray
692
+ The indices of the first occurrences of the common values in `ar2`.
693
+ Only provided if `return_indices` is True.
694
+
695
+ Examples
696
+ --------
697
+ >>> import numpy as np
698
+ >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
699
+ array([1, 3])
700
+
701
+ To intersect more than two arrays, use functools.reduce:
702
+
703
+ >>> from functools import reduce
704
+ >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
705
+ array([3])
706
+
707
+ To return the indices of the values common to the input arrays
708
+ along with the intersected values:
709
+
710
+ >>> x = np.array([1, 1, 2, 3, 4])
711
+ >>> y = np.array([2, 1, 4, 6])
712
+ >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
713
+ >>> x_ind, y_ind
714
+ (array([0, 2, 4]), array([1, 0, 2]))
715
+ >>> xy, x[x_ind], y[y_ind]
716
+ (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
717
+
718
+ """
719
+ ar1 = np.asanyarray(ar1)
720
+ ar2 = np.asanyarray(ar2)
721
+
722
+ if not assume_unique:
723
+ if return_indices:
724
+ ar1, ind1 = unique(ar1, return_index=True)
725
+ ar2, ind2 = unique(ar2, return_index=True)
726
+ else:
727
+ ar1 = unique(ar1)
728
+ ar2 = unique(ar2)
729
+ else:
730
+ ar1 = ar1.ravel()
731
+ ar2 = ar2.ravel()
732
+
733
+ aux = np.concatenate((ar1, ar2))
734
+ if return_indices:
735
+ aux_sort_indices = np.argsort(aux, kind='mergesort')
736
+ aux = aux[aux_sort_indices]
737
+ else:
738
+ aux.sort()
739
+
740
+ mask = aux[1:] == aux[:-1]
741
+ int1d = aux[:-1][mask]
742
+
743
+ if return_indices:
744
+ ar1_indices = aux_sort_indices[:-1][mask]
745
+ ar2_indices = aux_sort_indices[1:][mask] - ar1.size
746
+ if not assume_unique:
747
+ ar1_indices = ind1[ar1_indices]
748
+ ar2_indices = ind2[ar2_indices]
749
+
750
+ return int1d, ar1_indices, ar2_indices
751
+ else:
752
+ return int1d
753
+
754
+
755
+ def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
756
+ return (ar1, ar2)
757
+
758
+
759
+ @array_function_dispatch(_setxor1d_dispatcher)
760
+ def setxor1d(ar1, ar2, assume_unique=False):
761
+ """
762
+ Find the set exclusive-or of two arrays.
763
+
764
+ Return the sorted, unique values that are in only one (not both) of the
765
+ input arrays.
766
+
767
+ Parameters
768
+ ----------
769
+ ar1, ar2 : array_like
770
+ Input arrays.
771
+ assume_unique : bool
772
+ If True, the input arrays are both assumed to be unique, which
773
+ can speed up the calculation. Default is False.
774
+
775
+ Returns
776
+ -------
777
+ setxor1d : ndarray
778
+ Sorted 1D array of unique values that are in only one of the input
779
+ arrays.
780
+
781
+ Examples
782
+ --------
783
+ >>> import numpy as np
784
+ >>> a = np.array([1, 2, 3, 2, 4])
785
+ >>> b = np.array([2, 3, 5, 7, 5])
786
+ >>> np.setxor1d(a,b)
787
+ array([1, 4, 5, 7])
788
+
789
+ """
790
+ if not assume_unique:
791
+ ar1 = unique(ar1)
792
+ ar2 = unique(ar2)
793
+
794
+ aux = np.concatenate((ar1, ar2), axis=None)
795
+ if aux.size == 0:
796
+ return aux
797
+
798
+ aux.sort()
799
+ flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
800
+ return aux[flag[1:] & flag[:-1]]
801
+
802
+
803
+ def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *,
804
+ kind=None):
805
+ return (ar1, ar2)
806
+
807
+
808
+ @array_function_dispatch(_in1d_dispatcher)
809
+ def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
810
+ """
811
+ Test whether each element of a 1-D array is also present in a second array.
812
+
813
+ .. deprecated:: 2.0
814
+ Use :func:`isin` instead of `in1d` for new code.
815
+
816
+ Returns a boolean array the same length as `ar1` that is True
817
+ where an element of `ar1` is in `ar2` and False otherwise.
818
+
819
+ Parameters
820
+ ----------
821
+ ar1 : (M,) array_like
822
+ Input array.
823
+ ar2 : array_like
824
+ The values against which to test each value of `ar1`.
825
+ assume_unique : bool, optional
826
+ If True, the input arrays are both assumed to be unique, which
827
+ can speed up the calculation. Default is False.
828
+ invert : bool, optional
829
+ If True, the values in the returned array are inverted (that is,
830
+ False where an element of `ar1` is in `ar2` and True otherwise).
831
+ Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
832
+ to (but is faster than) ``np.invert(in1d(a, b))``.
833
+ kind : {None, 'sort', 'table'}, optional
834
+ The algorithm to use. This will not affect the final result,
835
+ but will affect the speed and memory use. The default, None,
836
+ will select automatically based on memory considerations.
837
+
838
+ * If 'sort', will use a mergesort-based approach. This will have
839
+ a memory usage of roughly 6 times the sum of the sizes of
840
+ `ar1` and `ar2`, not accounting for size of dtypes.
841
+ * If 'table', will use a lookup table approach similar
842
+ to a counting sort. This is only available for boolean and
843
+ integer arrays. This will have a memory usage of the
844
+ size of `ar1` plus the max-min value of `ar2`. `assume_unique`
845
+ has no effect when the 'table' option is used.
846
+ * If None, will automatically choose 'table' if
847
+ the required memory allocation is less than or equal to
848
+ 6 times the sum of the sizes of `ar1` and `ar2`,
849
+ otherwise will use 'sort'. This is done to not use
850
+ a large amount of memory by default, even though
851
+ 'table' may be faster in most cases. If 'table' is chosen,
852
+ `assume_unique` will have no effect.
853
+
854
+ Returns
855
+ -------
856
+ in1d : (M,) ndarray, bool
857
+ The values `ar1[in1d]` are in `ar2`.
858
+
859
+ See Also
860
+ --------
861
+ isin : Version of this function that preserves the
862
+ shape of ar1.
863
+
864
+ Notes
865
+ -----
866
+ `in1d` can be considered as an element-wise function version of the
867
+ python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
868
+ equivalent to ``np.array([item in b for item in a])``.
869
+ However, this idea fails if `ar2` is a set, or similar (non-sequence)
870
+ container: As ``ar2`` is converted to an array, in those cases
871
+ ``asarray(ar2)`` is an object array rather than the expected array of
872
+ contained values.
873
+
874
+ Using ``kind='table'`` tends to be faster than `kind='sort'` if the
875
+ following relationship is true:
876
+ ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
877
+ but may use greater memory. The default value for `kind` will
878
+ be automatically selected based only on memory usage, so one may
879
+ manually set ``kind='table'`` if memory constraints can be relaxed.
880
+
881
+ Examples
882
+ --------
883
+ >>> import numpy as np
884
+ >>> test = np.array([0, 1, 2, 5, 0])
885
+ >>> states = [0, 2]
886
+ >>> mask = np.in1d(test, states)
887
+ >>> mask
888
+ array([ True, False, True, False, True])
889
+ >>> test[mask]
890
+ array([0, 2, 0])
891
+ >>> mask = np.in1d(test, states, invert=True)
892
+ >>> mask
893
+ array([False, True, False, True, False])
894
+ >>> test[mask]
895
+ array([1, 5])
896
+ """
897
+
898
+ # Deprecated in NumPy 2.0, 2023-08-18
899
+ warnings.warn(
900
+ "`in1d` is deprecated. Use `np.isin` instead.",
901
+ DeprecationWarning,
902
+ stacklevel=2
903
+ )
904
+
905
+ return _in1d(ar1, ar2, assume_unique, invert, kind=kind)
906
+
907
+
908
+ def _in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
909
+ # Ravel both arrays, behavior for the first array could be different
910
+ ar1 = np.asarray(ar1).ravel()
911
+ ar2 = np.asarray(ar2).ravel()
912
+
913
+ # Ensure that iteration through object arrays yields size-1 arrays
914
+ if ar2.dtype == object:
915
+ ar2 = ar2.reshape(-1, 1)
916
+
917
+ if kind not in {None, 'sort', 'table'}:
918
+ raise ValueError(
919
+ f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.")
920
+
921
+ # Can use the table method if all arrays are integers or boolean:
922
+ is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2))
923
+ use_table_method = is_int_arrays and kind in {None, 'table'}
924
+
925
+ if use_table_method:
926
+ if ar2.size == 0:
927
+ if invert:
928
+ return np.ones_like(ar1, dtype=bool)
929
+ else:
930
+ return np.zeros_like(ar1, dtype=bool)
931
+
932
+ # Convert booleans to uint8 so we can use the fast integer algorithm
933
+ if ar1.dtype == bool:
934
+ ar1 = ar1.astype(np.uint8)
935
+ if ar2.dtype == bool:
936
+ ar2 = ar2.astype(np.uint8)
937
+
938
+ ar2_min = int(np.min(ar2))
939
+ ar2_max = int(np.max(ar2))
940
+
941
+ ar2_range = ar2_max - ar2_min
942
+
943
+ # Constraints on whether we can actually use the table method:
944
+ # 1. Assert memory usage is not too large
945
+ below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size)
946
+ # 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype
947
+ range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max
948
+
949
+ # Optimal performance is for approximately
950
+ # log10(size) > (log10(range) - 2.27) / 0.927.
951
+ # However, here we set the requirement that by default
952
+ # the intermediate array can only be 6x
953
+ # the combined memory allocation of the original
954
+ # arrays. See discussion on
955
+ # https://github.com/numpy/numpy/pull/12065.
956
+
957
+ if (
958
+ range_safe_from_overflow and
959
+ (below_memory_constraint or kind == 'table')
960
+ ):
961
+
962
+ if invert:
963
+ outgoing_array = np.ones_like(ar1, dtype=bool)
964
+ else:
965
+ outgoing_array = np.zeros_like(ar1, dtype=bool)
966
+
967
+ # Make elements 1 where the integer exists in ar2
968
+ if invert:
969
+ isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
970
+ isin_helper_ar[ar2 - ar2_min] = 0
971
+ else:
972
+ isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
973
+ isin_helper_ar[ar2 - ar2_min] = 1
974
+
975
+ # Mask out elements we know won't work
976
+ basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
977
+ in_range_ar1 = ar1[basic_mask]
978
+ if in_range_ar1.size == 0:
979
+ # Nothing more to do, since all values are out of range.
980
+ return outgoing_array
981
+
982
+ # Unfortunately, ar2_min can be out of range for `intp` even
983
+ # if the calculation result must fit in range (and be positive).
984
+ # In that case, use ar2.dtype which must work for all unmasked
985
+ # values.
986
+ try:
987
+ ar2_min = np.array(ar2_min, dtype=np.intp)
988
+ dtype = np.intp
989
+ except OverflowError:
990
+ dtype = ar2.dtype
991
+
992
+ out = np.empty_like(in_range_ar1, dtype=np.intp)
993
+ outgoing_array[basic_mask] = isin_helper_ar[
994
+ np.subtract(in_range_ar1, ar2_min, dtype=dtype,
995
+ out=out, casting="unsafe")]
996
+
997
+ return outgoing_array
998
+ elif kind == 'table': # not range_safe_from_overflow
999
+ raise RuntimeError(
1000
+ "You have specified kind='table', "
1001
+ "but the range of values in `ar2` or `ar1` exceed the "
1002
+ "maximum integer of the datatype. "
1003
+ "Please set `kind` to None or 'sort'."
1004
+ )
1005
+ elif kind == 'table':
1006
+ raise ValueError(
1007
+ "The 'table' method is only "
1008
+ "supported for boolean or integer arrays. "
1009
+ "Please select 'sort' or None for kind."
1010
+ )
1011
+
1012
+ # Check if one of the arrays may contain arbitrary objects
1013
+ contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
1014
+
1015
+ # This code is run when
1016
+ # a) the first condition is true, making the code significantly faster
1017
+ # b) the second condition is true (i.e. `ar1` or `ar2` may contain
1018
+ # arbitrary objects), since then sorting is not guaranteed to work
1019
+ if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
1020
+ if invert:
1021
+ mask = np.ones(len(ar1), dtype=bool)
1022
+ for a in ar2:
1023
+ mask &= (ar1 != a)
1024
+ else:
1025
+ mask = np.zeros(len(ar1), dtype=bool)
1026
+ for a in ar2:
1027
+ mask |= (ar1 == a)
1028
+ return mask
1029
+
1030
+ # Otherwise use sorting
1031
+ if not assume_unique:
1032
+ ar1, rev_idx = np.unique(ar1, return_inverse=True)
1033
+ ar2 = np.unique(ar2)
1034
+
1035
+ ar = np.concatenate((ar1, ar2))
1036
+ # We need this to be a stable sort, so always use 'mergesort'
1037
+ # here. The values from the first array should always come before
1038
+ # the values from the second array.
1039
+ order = ar.argsort(kind='mergesort')
1040
+ sar = ar[order]
1041
+ if invert:
1042
+ bool_ar = (sar[1:] != sar[:-1])
1043
+ else:
1044
+ bool_ar = (sar[1:] == sar[:-1])
1045
+ flag = np.concatenate((bool_ar, [invert]))
1046
+ ret = np.empty(ar.shape, dtype=bool)
1047
+ ret[order] = flag
1048
+
1049
+ if assume_unique:
1050
+ return ret[:len(ar1)]
1051
+ else:
1052
+ return ret[rev_idx]
1053
+
1054
+
1055
+ def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None,
1056
+ *, kind=None):
1057
+ return (element, test_elements)
1058
+
1059
+
1060
+ @array_function_dispatch(_isin_dispatcher)
1061
+ def isin(element, test_elements, assume_unique=False, invert=False, *,
1062
+ kind=None):
1063
+ """
1064
+ Calculates ``element in test_elements``, broadcasting over `element` only.
1065
+ Returns a boolean array of the same shape as `element` that is True
1066
+ where an element of `element` is in `test_elements` and False otherwise.
1067
+
1068
+ Parameters
1069
+ ----------
1070
+ element : array_like
1071
+ Input array.
1072
+ test_elements : array_like
1073
+ The values against which to test each value of `element`.
1074
+ This argument is flattened if it is an array or array_like.
1075
+ See notes for behavior with non-array-like parameters.
1076
+ assume_unique : bool, optional
1077
+ If True, the input arrays are both assumed to be unique, which
1078
+ can speed up the calculation. Default is False.
1079
+ invert : bool, optional
1080
+ If True, the values in the returned array are inverted, as if
1081
+ calculating `element not in test_elements`. Default is False.
1082
+ ``np.isin(a, b, invert=True)`` is equivalent to (but faster
1083
+ than) ``np.invert(np.isin(a, b))``.
1084
+ kind : {None, 'sort', 'table'}, optional
1085
+ The algorithm to use. This will not affect the final result,
1086
+ but will affect the speed and memory use. The default, None,
1087
+ will select automatically based on memory considerations.
1088
+
1089
+ * If 'sort', will use a mergesort-based approach. This will have
1090
+ a memory usage of roughly 6 times the sum of the sizes of
1091
+ `element` and `test_elements`, not accounting for size of dtypes.
1092
+ * If 'table', will use a lookup table approach similar
1093
+ to a counting sort. This is only available for boolean and
1094
+ integer arrays. This will have a memory usage of the
1095
+ size of `element` plus the max-min value of `test_elements`.
1096
+ `assume_unique` has no effect when the 'table' option is used.
1097
+ * If None, will automatically choose 'table' if
1098
+ the required memory allocation is less than or equal to
1099
+ 6 times the sum of the sizes of `element` and `test_elements`,
1100
+ otherwise will use 'sort'. This is done to not use
1101
+ a large amount of memory by default, even though
1102
+ 'table' may be faster in most cases. If 'table' is chosen,
1103
+ `assume_unique` will have no effect.
1104
+
1105
+
1106
+ Returns
1107
+ -------
1108
+ isin : ndarray, bool
1109
+ Has the same shape as `element`. The values `element[isin]`
1110
+ are in `test_elements`.
1111
+
1112
+ Notes
1113
+ -----
1114
+ `isin` is an element-wise function version of the python keyword `in`.
1115
+ ``isin(a, b)`` is roughly equivalent to
1116
+ ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
1117
+
1118
+ `element` and `test_elements` are converted to arrays if they are not
1119
+ already. If `test_elements` is a set (or other non-sequence collection)
1120
+ it will be converted to an object array with one element, rather than an
1121
+ array of the values contained in `test_elements`. This is a consequence
1122
+ of the `array` constructor's way of handling non-sequence collections.
1123
+ Converting the set to a list usually gives the desired behavior.
1124
+
1125
+ Using ``kind='table'`` tends to be faster than `kind='sort'` if the
1126
+ following relationship is true:
1127
+ ``log10(len(test_elements)) >
1128
+ (log10(max(test_elements)-min(test_elements)) - 2.27) / 0.927``,
1129
+ but may use greater memory. The default value for `kind` will
1130
+ be automatically selected based only on memory usage, so one may
1131
+ manually set ``kind='table'`` if memory constraints can be relaxed.
1132
+
1133
+ Examples
1134
+ --------
1135
+ >>> import numpy as np
1136
+ >>> element = 2*np.arange(4).reshape((2, 2))
1137
+ >>> element
1138
+ array([[0, 2],
1139
+ [4, 6]])
1140
+ >>> test_elements = [1, 2, 4, 8]
1141
+ >>> mask = np.isin(element, test_elements)
1142
+ >>> mask
1143
+ array([[False, True],
1144
+ [ True, False]])
1145
+ >>> element[mask]
1146
+ array([2, 4])
1147
+
1148
+ The indices of the matched values can be obtained with `nonzero`:
1149
+
1150
+ >>> np.nonzero(mask)
1151
+ (array([0, 1]), array([1, 0]))
1152
+
1153
+ The test can also be inverted:
1154
+
1155
+ >>> mask = np.isin(element, test_elements, invert=True)
1156
+ >>> mask
1157
+ array([[ True, False],
1158
+ [False, True]])
1159
+ >>> element[mask]
1160
+ array([0, 6])
1161
+
1162
+ Because of how `array` handles sets, the following does not
1163
+ work as expected:
1164
+
1165
+ >>> test_set = {1, 2, 4, 8}
1166
+ >>> np.isin(element, test_set)
1167
+ array([[False, False],
1168
+ [False, False]])
1169
+
1170
+ Casting the set to a list gives the expected result:
1171
+
1172
+ >>> np.isin(element, list(test_set))
1173
+ array([[False, True],
1174
+ [ True, False]])
1175
+ """
1176
+ element = np.asarray(element)
1177
+ return _in1d(element, test_elements, assume_unique=assume_unique,
1178
+ invert=invert, kind=kind).reshape(element.shape)
1179
+
1180
+
1181
+ def _union1d_dispatcher(ar1, ar2):
1182
+ return (ar1, ar2)
1183
+
1184
+
1185
+ @array_function_dispatch(_union1d_dispatcher)
1186
+ def union1d(ar1, ar2):
1187
+ """
1188
+ Find the union of two arrays.
1189
+
1190
+ Return the unique, sorted array of values that are in either of the two
1191
+ input arrays.
1192
+
1193
+ Parameters
1194
+ ----------
1195
+ ar1, ar2 : array_like
1196
+ Input arrays. They are flattened if they are not already 1D.
1197
+
1198
+ Returns
1199
+ -------
1200
+ union1d : ndarray
1201
+ Unique, sorted union of the input arrays.
1202
+
1203
+ Examples
1204
+ --------
1205
+ >>> import numpy as np
1206
+ >>> np.union1d([-1, 0, 1], [-2, 0, 2])
1207
+ array([-2, -1, 0, 1, 2])
1208
+
1209
+ To find the union of more than two arrays, use functools.reduce:
1210
+
1211
+ >>> from functools import reduce
1212
+ >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
1213
+ array([1, 2, 3, 4, 6])
1214
+ """
1215
+ return unique(np.concatenate((ar1, ar2), axis=None))
1216
+
1217
+
1218
+ def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
1219
+ return (ar1, ar2)
1220
+
1221
+
1222
+ @array_function_dispatch(_setdiff1d_dispatcher)
1223
+ def setdiff1d(ar1, ar2, assume_unique=False):
1224
+ """
1225
+ Find the set difference of two arrays.
1226
+
1227
+ Return the unique values in `ar1` that are not in `ar2`.
1228
+
1229
+ Parameters
1230
+ ----------
1231
+ ar1 : array_like
1232
+ Input array.
1233
+ ar2 : array_like
1234
+ Input comparison array.
1235
+ assume_unique : bool
1236
+ If True, the input arrays are both assumed to be unique, which
1237
+ can speed up the calculation. Default is False.
1238
+
1239
+ Returns
1240
+ -------
1241
+ setdiff1d : ndarray
1242
+ 1D array of values in `ar1` that are not in `ar2`. The result
1243
+ is sorted when `assume_unique=False`, but otherwise only sorted
1244
+ if the input is sorted.
1245
+
1246
+ Examples
1247
+ --------
1248
+ >>> import numpy as np
1249
+ >>> a = np.array([1, 2, 3, 2, 4, 1])
1250
+ >>> b = np.array([3, 4, 5, 6])
1251
+ >>> np.setdiff1d(a, b)
1252
+ array([1, 2])
1253
+
1254
+ """
1255
+ if assume_unique:
1256
+ ar1 = np.asarray(ar1).ravel()
1257
+ else:
1258
+ ar1 = unique(ar1)
1259
+ ar2 = unique(ar2)
1260
+ return ar1[_in1d(ar1, ar2, assume_unique=True, invert=True)]