numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1757 @@
1
+ import sys
2
+ import warnings
3
+
4
+ import pytest
5
+
6
+ import numpy as np
7
+ from numpy import random
8
+ from numpy.testing import (
9
+ IS_WASM,
10
+ assert_,
11
+ assert_array_almost_equal,
12
+ assert_array_equal,
13
+ assert_equal,
14
+ assert_no_warnings,
15
+ assert_raises,
16
+ assert_warns,
17
+ suppress_warnings,
18
+ )
19
+
20
+
21
+ class TestSeed:
22
+ def test_scalar(self):
23
+ s = np.random.RandomState(0)
24
+ assert_equal(s.randint(1000), 684)
25
+ s = np.random.RandomState(4294967295)
26
+ assert_equal(s.randint(1000), 419)
27
+
28
+ def test_array(self):
29
+ s = np.random.RandomState(range(10))
30
+ assert_equal(s.randint(1000), 468)
31
+ s = np.random.RandomState(np.arange(10))
32
+ assert_equal(s.randint(1000), 468)
33
+ s = np.random.RandomState([0])
34
+ assert_equal(s.randint(1000), 973)
35
+ s = np.random.RandomState([4294967295])
36
+ assert_equal(s.randint(1000), 265)
37
+
38
+ def test_invalid_scalar(self):
39
+ # seed must be an unsigned 32 bit integer
40
+ assert_raises(TypeError, np.random.RandomState, -0.5)
41
+ assert_raises(ValueError, np.random.RandomState, -1)
42
+
43
+ def test_invalid_array(self):
44
+ # seed must be an unsigned 32 bit integer
45
+ assert_raises(TypeError, np.random.RandomState, [-0.5])
46
+ assert_raises(ValueError, np.random.RandomState, [-1])
47
+ assert_raises(ValueError, np.random.RandomState, [4294967296])
48
+ assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
49
+ assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
50
+
51
+ def test_invalid_array_shape(self):
52
+ # gh-9832
53
+ assert_raises(ValueError, np.random.RandomState,
54
+ np.array([], dtype=np.int64))
55
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]])
56
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3],
57
+ [4, 5, 6]])
58
+
59
+
60
+ class TestBinomial:
61
+ def test_n_zero(self):
62
+ # Tests the corner case of n == 0 for the binomial distribution.
63
+ # binomial(0, p) should be zero for any p in [0, 1].
64
+ # This test addresses issue #3480.
65
+ zeros = np.zeros(2, dtype='int')
66
+ for p in [0, .5, 1]:
67
+ assert_(random.binomial(0, p) == 0)
68
+ assert_array_equal(random.binomial(zeros, p), zeros)
69
+
70
+ def test_p_is_nan(self):
71
+ # Issue #4571.
72
+ assert_raises(ValueError, random.binomial, 1, np.nan)
73
+
74
+
75
+ class TestMultinomial:
76
+ def test_basic(self):
77
+ random.multinomial(100, [0.2, 0.8])
78
+
79
+ def test_zero_probability(self):
80
+ random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
81
+
82
+ def test_int_negative_interval(self):
83
+ assert_(-5 <= random.randint(-5, -1) < -1)
84
+ x = random.randint(-5, -1, 5)
85
+ assert_(np.all(-5 <= x))
86
+ assert_(np.all(x < -1))
87
+
88
+ def test_size(self):
89
+ # gh-3173
90
+ p = [0.5, 0.5]
91
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
92
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
93
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
94
+ assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
95
+ assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
96
+ assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
97
+ (2, 2, 2))
98
+
99
+ assert_raises(TypeError, np.random.multinomial, 1, p,
100
+ float(1))
101
+
102
+ def test_multidimensional_pvals(self):
103
+ assert_raises(ValueError, np.random.multinomial, 10, [[0, 1]])
104
+ assert_raises(ValueError, np.random.multinomial, 10, [[0], [1]])
105
+ assert_raises(ValueError, np.random.multinomial, 10, [[[0], [1]], [[1], [0]]])
106
+ assert_raises(ValueError, np.random.multinomial, 10, np.array([[0, 1], [1, 0]]))
107
+
108
+
109
+ class TestSetState:
110
+ def setup_method(self):
111
+ self.seed = 1234567890
112
+ self.prng = random.RandomState(self.seed)
113
+ self.state = self.prng.get_state()
114
+
115
+ def test_basic(self):
116
+ old = self.prng.tomaxint(16)
117
+ self.prng.set_state(self.state)
118
+ new = self.prng.tomaxint(16)
119
+ assert_(np.all(old == new))
120
+
121
+ def test_gaussian_reset(self):
122
+ # Make sure the cached every-other-Gaussian is reset.
123
+ old = self.prng.standard_normal(size=3)
124
+ self.prng.set_state(self.state)
125
+ new = self.prng.standard_normal(size=3)
126
+ assert_(np.all(old == new))
127
+
128
+ def test_gaussian_reset_in_media_res(self):
129
+ # When the state is saved with a cached Gaussian, make sure the
130
+ # cached Gaussian is restored.
131
+
132
+ self.prng.standard_normal()
133
+ state = self.prng.get_state()
134
+ old = self.prng.standard_normal(size=3)
135
+ self.prng.set_state(state)
136
+ new = self.prng.standard_normal(size=3)
137
+ assert_(np.all(old == new))
138
+
139
+ def test_backwards_compatibility(self):
140
+ # Make sure we can accept old state tuples that do not have the
141
+ # cached Gaussian value.
142
+ old_state = self.state[:-2]
143
+ x1 = self.prng.standard_normal(size=16)
144
+ self.prng.set_state(old_state)
145
+ x2 = self.prng.standard_normal(size=16)
146
+ self.prng.set_state(self.state)
147
+ x3 = self.prng.standard_normal(size=16)
148
+ assert_(np.all(x1 == x2))
149
+ assert_(np.all(x1 == x3))
150
+
151
+ def test_negative_binomial(self):
152
+ # Ensure that the negative binomial results take floating point
153
+ # arguments without truncation.
154
+ self.prng.negative_binomial(0.5, 0.5)
155
+
156
+ def test_set_invalid_state(self):
157
+ # gh-25402
158
+ with pytest.raises(IndexError):
159
+ self.prng.set_state(())
160
+
161
+
162
+ class TestRandint:
163
+
164
+ rfunc = np.random.randint
165
+
166
+ # valid integer/boolean types
167
+ itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
168
+ np.int32, np.uint32, np.int64, np.uint64]
169
+
170
+ def test_unsupported_type(self):
171
+ assert_raises(TypeError, self.rfunc, 1, dtype=float)
172
+
173
+ def test_bounds_checking(self):
174
+ for dt in self.itype:
175
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
176
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
177
+ assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
178
+ assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
179
+ assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
180
+ assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
181
+
182
+ def test_rng_zero_and_extremes(self):
183
+ for dt in self.itype:
184
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
185
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
186
+
187
+ tgt = ubnd - 1
188
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
189
+
190
+ tgt = lbnd
191
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
192
+
193
+ tgt = (lbnd + ubnd) // 2
194
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
195
+
196
+ def test_full_range(self):
197
+ # Test for ticket #1690
198
+
199
+ for dt in self.itype:
200
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
201
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
202
+
203
+ try:
204
+ self.rfunc(lbnd, ubnd, dtype=dt)
205
+ except Exception as e:
206
+ raise AssertionError("No error should have been raised, "
207
+ "but one was with the following "
208
+ "message:\n\n%s" % str(e))
209
+
210
+ def test_in_bounds_fuzz(self):
211
+ # Don't use fixed seed
212
+ np.random.seed()
213
+
214
+ for dt in self.itype[1:]:
215
+ for ubnd in [4, 8, 16]:
216
+ vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
217
+ assert_(vals.max() < ubnd)
218
+ assert_(vals.min() >= 2)
219
+
220
+ vals = self.rfunc(0, 2, size=2**16, dtype=np.bool)
221
+
222
+ assert_(vals.max() < 2)
223
+ assert_(vals.min() >= 0)
224
+
225
+ def test_repeatability(self):
226
+ import hashlib
227
+ # We use a sha256 hash of generated sequences of 1000 samples
228
+ # in the range [0, 6) for all but bool, where the range
229
+ # is [0, 2). Hashes are for little endian numbers.
230
+ tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', # noqa: E501
231
+ 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
232
+ 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
233
+ 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
234
+ 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', # noqa: E501
235
+ 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
236
+ 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
237
+ 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
238
+ 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} # noqa: E501
239
+
240
+ for dt in self.itype[1:]:
241
+ np.random.seed(1234)
242
+
243
+ # view as little endian for hash
244
+ if sys.byteorder == 'little':
245
+ val = self.rfunc(0, 6, size=1000, dtype=dt)
246
+ else:
247
+ val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
248
+
249
+ res = hashlib.sha256(val.view(np.int8)).hexdigest()
250
+ assert_(tgt[np.dtype(dt).name] == res)
251
+
252
+ # bools do not depend on endianness
253
+ np.random.seed(1234)
254
+ val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
255
+ res = hashlib.sha256(val).hexdigest()
256
+ assert_(tgt[np.dtype(bool).name] == res)
257
+
258
+ def test_int64_uint64_corner_case(self):
259
+ # When stored in Numpy arrays, `lbnd` is casted
260
+ # as np.int64, and `ubnd` is casted as np.uint64.
261
+ # Checking whether `lbnd` >= `ubnd` used to be
262
+ # done solely via direct comparison, which is incorrect
263
+ # because when Numpy tries to compare both numbers,
264
+ # it casts both to np.float64 because there is
265
+ # no integer superset of np.int64 and np.uint64. However,
266
+ # `ubnd` is too large to be represented in np.float64,
267
+ # causing it be round down to np.iinfo(np.int64).max,
268
+ # leading to a ValueError because `lbnd` now equals
269
+ # the new `ubnd`.
270
+
271
+ dt = np.int64
272
+ tgt = np.iinfo(np.int64).max
273
+ lbnd = np.int64(np.iinfo(np.int64).max)
274
+ ubnd = np.uint64(np.iinfo(np.int64).max + 1)
275
+
276
+ # None of these function calls should
277
+ # generate a ValueError now.
278
+ actual = np.random.randint(lbnd, ubnd, dtype=dt)
279
+ assert_equal(actual, tgt)
280
+
281
+ def test_respect_dtype_singleton(self):
282
+ # See gh-7203
283
+ for dt in self.itype:
284
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
285
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
286
+
287
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
288
+ assert_equal(sample.dtype, np.dtype(dt))
289
+
290
+ for dt in (bool, int):
291
+ # The legacy rng uses "long" as the default integer:
292
+ lbnd = 0 if dt is bool else np.iinfo("long").min
293
+ ubnd = 2 if dt is bool else np.iinfo("long").max + 1
294
+
295
+ # gh-7284: Ensure that we get Python data types
296
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
297
+ assert_(not hasattr(sample, 'dtype'))
298
+ assert_equal(type(sample), dt)
299
+
300
+
301
+ class TestRandomDist:
302
+ # Make sure the random distribution returns the correct value for a
303
+ # given seed
304
+
305
+ def setup_method(self):
306
+ self.seed = 1234567890
307
+
308
+ def test_rand(self):
309
+ np.random.seed(self.seed)
310
+ actual = np.random.rand(3, 2)
311
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
312
+ [0.88868358904449662, 0.89165480011560816],
313
+ [0.4575674820298663, 0.7781880808593471]])
314
+ assert_array_almost_equal(actual, desired, decimal=15)
315
+
316
+ def test_randn(self):
317
+ np.random.seed(self.seed)
318
+ actual = np.random.randn(3, 2)
319
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
320
+ [1.498988344300628, -0.2286433324536169],
321
+ [2.031033998682787, 2.17032494605655257]])
322
+ assert_array_almost_equal(actual, desired, decimal=15)
323
+
324
+ def test_randint(self):
325
+ np.random.seed(self.seed)
326
+ actual = np.random.randint(-99, 99, size=(3, 2))
327
+ desired = np.array([[31, 3],
328
+ [-52, 41],
329
+ [-48, -66]])
330
+ assert_array_equal(actual, desired)
331
+
332
+ def test_random_integers(self):
333
+ np.random.seed(self.seed)
334
+ with suppress_warnings() as sup:
335
+ w = sup.record(DeprecationWarning)
336
+ actual = np.random.random_integers(-99, 99, size=(3, 2))
337
+ assert_(len(w) == 1)
338
+ desired = np.array([[31, 3],
339
+ [-52, 41],
340
+ [-48, -66]])
341
+ assert_array_equal(actual, desired)
342
+
343
+ def test_random_integers_max_int(self):
344
+ # Tests whether random_integers can generate the
345
+ # maximum allowed Python int that can be converted
346
+ # into a C long. Previous implementations of this
347
+ # method have thrown an OverflowError when attempting
348
+ # to generate this integer.
349
+ with suppress_warnings() as sup:
350
+ w = sup.record(DeprecationWarning)
351
+ actual = np.random.random_integers(np.iinfo('l').max,
352
+ np.iinfo('l').max)
353
+ assert_(len(w) == 1)
354
+
355
+ desired = np.iinfo('l').max
356
+ assert_equal(actual, desired)
357
+
358
+ def test_random_integers_deprecated(self):
359
+ with warnings.catch_warnings():
360
+ warnings.simplefilter("error", DeprecationWarning)
361
+
362
+ # DeprecationWarning raised with high == None
363
+ assert_raises(DeprecationWarning,
364
+ np.random.random_integers,
365
+ np.iinfo('l').max)
366
+
367
+ # DeprecationWarning raised with high != None
368
+ assert_raises(DeprecationWarning,
369
+ np.random.random_integers,
370
+ np.iinfo('l').max, np.iinfo('l').max)
371
+
372
+ def test_random(self):
373
+ np.random.seed(self.seed)
374
+ actual = np.random.random((3, 2))
375
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
376
+ [0.88868358904449662, 0.89165480011560816],
377
+ [0.4575674820298663, 0.7781880808593471]])
378
+ assert_array_almost_equal(actual, desired, decimal=15)
379
+
380
+ def test_choice_uniform_replace(self):
381
+ np.random.seed(self.seed)
382
+ actual = np.random.choice(4, 4)
383
+ desired = np.array([2, 3, 2, 3])
384
+ assert_array_equal(actual, desired)
385
+
386
+ def test_choice_nonuniform_replace(self):
387
+ np.random.seed(self.seed)
388
+ actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
389
+ desired = np.array([1, 1, 2, 2])
390
+ assert_array_equal(actual, desired)
391
+
392
+ def test_choice_uniform_noreplace(self):
393
+ np.random.seed(self.seed)
394
+ actual = np.random.choice(4, 3, replace=False)
395
+ desired = np.array([0, 1, 3])
396
+ assert_array_equal(actual, desired)
397
+
398
+ def test_choice_nonuniform_noreplace(self):
399
+ np.random.seed(self.seed)
400
+ actual = np.random.choice(4, 3, replace=False,
401
+ p=[0.1, 0.3, 0.5, 0.1])
402
+ desired = np.array([2, 3, 1])
403
+ assert_array_equal(actual, desired)
404
+
405
+ def test_choice_noninteger(self):
406
+ np.random.seed(self.seed)
407
+ actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
408
+ desired = np.array(['c', 'd', 'c', 'd'])
409
+ assert_array_equal(actual, desired)
410
+
411
+ def test_choice_exceptions(self):
412
+ sample = np.random.choice
413
+ assert_raises(ValueError, sample, -1, 3)
414
+ assert_raises(ValueError, sample, 3., 3)
415
+ assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
416
+ assert_raises(ValueError, sample, [], 3)
417
+ assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
418
+ p=[[0.25, 0.25], [0.25, 0.25]])
419
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
420
+ assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
421
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
422
+ assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
423
+ # gh-13087
424
+ assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
425
+ assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
426
+ assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
427
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
428
+ replace=False, p=[1, 0, 0])
429
+
430
+ def test_choice_return_shape(self):
431
+ p = [0.1, 0.9]
432
+ # Check scalar
433
+ assert_(np.isscalar(np.random.choice(2, replace=True)))
434
+ assert_(np.isscalar(np.random.choice(2, replace=False)))
435
+ assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
436
+ assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
437
+ assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
438
+ assert_(np.random.choice([None], replace=True) is None)
439
+ a = np.array([1, 2])
440
+ arr = np.empty(1, dtype=object)
441
+ arr[0] = a
442
+ assert_(np.random.choice(arr, replace=True) is a)
443
+
444
+ # Check 0-d array
445
+ s = ()
446
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
447
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
448
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
449
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
450
+ assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
451
+ assert_(np.random.choice([None], s, replace=True).ndim == 0)
452
+ a = np.array([1, 2])
453
+ arr = np.empty(1, dtype=object)
454
+ arr[0] = a
455
+ assert_(np.random.choice(arr, s, replace=True).item() is a)
456
+
457
+ # Check multi dimensional array
458
+ s = (2, 3)
459
+ p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
460
+ assert_equal(np.random.choice(6, s, replace=True).shape, s)
461
+ assert_equal(np.random.choice(6, s, replace=False).shape, s)
462
+ assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
463
+ assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
464
+ assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)
465
+
466
+ # Check zero-size
467
+ assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
468
+ assert_equal(np.random.randint(0, -10, size=0).shape, (0,))
469
+ assert_equal(np.random.randint(10, 10, size=0).shape, (0,))
470
+ assert_equal(np.random.choice(0, size=0).shape, (0,))
471
+ assert_equal(np.random.choice([], size=(0,)).shape, (0,))
472
+ assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape,
473
+ (3, 0, 4))
474
+ assert_raises(ValueError, np.random.choice, [], 10)
475
+
476
+ def test_choice_nan_probabilities(self):
477
+ a = np.array([42, 1, 2])
478
+ p = [None, None, None]
479
+ assert_raises(ValueError, np.random.choice, a, p=p)
480
+
481
+ def test_bytes(self):
482
+ np.random.seed(self.seed)
483
+ actual = np.random.bytes(10)
484
+ desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
485
+ assert_equal(actual, desired)
486
+
487
+ def test_shuffle(self):
488
+ # Test lists, arrays (of various dtypes), and multidimensional versions
489
+ # of both, c-contiguous or not:
490
+ for conv in [lambda x: np.array([]),
491
+ lambda x: x,
492
+ lambda x: np.asarray(x).astype(np.int8),
493
+ lambda x: np.asarray(x).astype(np.float32),
494
+ lambda x: np.asarray(x).astype(np.complex64),
495
+ lambda x: np.asarray(x).astype(object),
496
+ lambda x: [(i, i) for i in x],
497
+ lambda x: np.asarray([[i, i] for i in x]),
498
+ lambda x: np.vstack([x, x]).T,
499
+ # gh-11442
500
+ lambda x: (np.asarray([(i, i) for i in x],
501
+ [("a", int), ("b", int)])
502
+ .view(np.recarray)),
503
+ # gh-4270
504
+ lambda x: np.asarray([(i, i) for i in x],
505
+ [("a", object), ("b", np.int32)])]:
506
+ np.random.seed(self.seed)
507
+ alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
508
+ np.random.shuffle(alist)
509
+ actual = alist
510
+ desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
511
+ assert_array_equal(actual, desired)
512
+
513
+ def test_shuffle_masked(self):
514
+ # gh-3263
515
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
516
+ b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
517
+ a_orig = a.copy()
518
+ b_orig = b.copy()
519
+ for i in range(50):
520
+ np.random.shuffle(a)
521
+ assert_equal(
522
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
523
+ np.random.shuffle(b)
524
+ assert_equal(
525
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
526
+
527
+ @pytest.mark.parametrize("random",
528
+ [np.random, np.random.RandomState(), np.random.default_rng()])
529
+ def test_shuffle_untyped_warning(self, random):
530
+ # Create a dict works like a sequence but isn't one
531
+ values = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
532
+ with pytest.warns(UserWarning,
533
+ match="you are shuffling a 'dict' object") as rec:
534
+ random.shuffle(values)
535
+ assert "test_random" in rec[0].filename
536
+
537
+ @pytest.mark.parametrize("random",
538
+ [np.random, np.random.RandomState(), np.random.default_rng()])
539
+ @pytest.mark.parametrize("use_array_like", [True, False])
540
+ def test_shuffle_no_object_unpacking(self, random, use_array_like):
541
+ class MyArr(np.ndarray):
542
+ pass
543
+
544
+ items = [
545
+ None, np.array([3]), np.float64(3), np.array(10), np.float64(7)
546
+ ]
547
+ arr = np.array(items, dtype=object)
548
+ item_ids = {id(i) for i in items}
549
+ if use_array_like:
550
+ arr = arr.view(MyArr)
551
+
552
+ # The array was created fine, and did not modify any objects:
553
+ assert all(id(i) in item_ids for i in arr)
554
+
555
+ if use_array_like and not isinstance(random, np.random.Generator):
556
+ # The old API gives incorrect results, but warns about it.
557
+ with pytest.warns(UserWarning,
558
+ match="Shuffling a one dimensional array.*"):
559
+ random.shuffle(arr)
560
+ else:
561
+ random.shuffle(arr)
562
+ assert all(id(i) in item_ids for i in arr)
563
+
564
+ def test_shuffle_memoryview(self):
565
+ # gh-18273
566
+ # allow graceful handling of memoryviews
567
+ # (treat the same as arrays)
568
+ np.random.seed(self.seed)
569
+ a = np.arange(5).data
570
+ np.random.shuffle(a)
571
+ assert_equal(np.asarray(a), [0, 1, 4, 3, 2])
572
+ rng = np.random.RandomState(self.seed)
573
+ rng.shuffle(a)
574
+ assert_equal(np.asarray(a), [0, 1, 2, 3, 4])
575
+ rng = np.random.default_rng(self.seed)
576
+ rng.shuffle(a)
577
+ assert_equal(np.asarray(a), [4, 1, 0, 3, 2])
578
+
579
+ def test_shuffle_not_writeable(self):
580
+ a = np.zeros(3)
581
+ a.flags.writeable = False
582
+ with pytest.raises(ValueError, match='read-only'):
583
+ np.random.shuffle(a)
584
+
585
+ def test_beta(self):
586
+ np.random.seed(self.seed)
587
+ actual = np.random.beta(.1, .9, size=(3, 2))
588
+ desired = np.array(
589
+ [[1.45341850513746058e-02, 5.31297615662868145e-04],
590
+ [1.85366619058432324e-06, 4.19214516800110563e-03],
591
+ [1.58405155108498093e-04, 1.26252891949397652e-04]])
592
+ assert_array_almost_equal(actual, desired, decimal=15)
593
+
594
+ def test_binomial(self):
595
+ np.random.seed(self.seed)
596
+ actual = np.random.binomial(100, .456, size=(3, 2))
597
+ desired = np.array([[37, 43],
598
+ [42, 48],
599
+ [46, 45]])
600
+ assert_array_equal(actual, desired)
601
+
602
+ def test_chisquare(self):
603
+ np.random.seed(self.seed)
604
+ actual = np.random.chisquare(50, size=(3, 2))
605
+ desired = np.array([[63.87858175501090585, 68.68407748911370447],
606
+ [65.77116116901505904, 47.09686762438974483],
607
+ [72.3828403199695174, 74.18408615260374006]])
608
+ assert_array_almost_equal(actual, desired, decimal=13)
609
+
610
+ def test_dirichlet(self):
611
+ np.random.seed(self.seed)
612
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
613
+ actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
614
+ desired = np.array([[[0.54539444573611562, 0.45460555426388438],
615
+ [0.62345816822039413, 0.37654183177960598]],
616
+ [[0.55206000085785778, 0.44793999914214233],
617
+ [0.58964023305154301, 0.41035976694845688]],
618
+ [[0.59266909280647828, 0.40733090719352177],
619
+ [0.56974431743975207, 0.43025568256024799]]])
620
+ assert_array_almost_equal(actual, desired, decimal=15)
621
+
622
+ def test_dirichlet_size(self):
623
+ # gh-3173
624
+ p = np.array([51.72840233779265162, 39.74494232180943953])
625
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
626
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
627
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
628
+ assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
629
+ assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
630
+ assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
631
+
632
+ assert_raises(TypeError, np.random.dirichlet, p, float(1))
633
+
634
+ def test_dirichlet_bad_alpha(self):
635
+ # gh-2089
636
+ alpha = np.array([5.4e-01, -1.0e-16])
637
+ assert_raises(ValueError, np.random.mtrand.dirichlet, alpha)
638
+
639
+ # gh-15876
640
+ assert_raises(ValueError, random.dirichlet, [[5, 1]])
641
+ assert_raises(ValueError, random.dirichlet, [[5], [1]])
642
+ assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
643
+ assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
644
+
645
+ def test_exponential(self):
646
+ np.random.seed(self.seed)
647
+ actual = np.random.exponential(1.1234, size=(3, 2))
648
+ desired = np.array([[1.08342649775011624, 1.00607889924557314],
649
+ [2.46628830085216721, 2.49668106809923884],
650
+ [0.68717433461363442, 1.69175666993575979]])
651
+ assert_array_almost_equal(actual, desired, decimal=15)
652
+
653
+ def test_exponential_0(self):
654
+ assert_equal(np.random.exponential(scale=0), 0)
655
+ assert_raises(ValueError, np.random.exponential, scale=-0.)
656
+
657
+ def test_f(self):
658
+ np.random.seed(self.seed)
659
+ actual = np.random.f(12, 77, size=(3, 2))
660
+ desired = np.array([[1.21975394418575878, 1.75135759791559775],
661
+ [1.44803115017146489, 1.22108959480396262],
662
+ [1.02176975757740629, 1.34431827623300415]])
663
+ assert_array_almost_equal(actual, desired, decimal=15)
664
+
665
+ def test_gamma(self):
666
+ np.random.seed(self.seed)
667
+ actual = np.random.gamma(5, 3, size=(3, 2))
668
+ desired = np.array([[24.60509188649287182, 28.54993563207210627],
669
+ [26.13476110204064184, 12.56988482927716078],
670
+ [31.71863275789960568, 33.30143302795922011]])
671
+ assert_array_almost_equal(actual, desired, decimal=14)
672
+
673
+ def test_gamma_0(self):
674
+ assert_equal(np.random.gamma(shape=0, scale=0), 0)
675
+ assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
676
+
677
+ def test_geometric(self):
678
+ np.random.seed(self.seed)
679
+ actual = np.random.geometric(.123456789, size=(3, 2))
680
+ desired = np.array([[8, 7],
681
+ [17, 17],
682
+ [5, 12]])
683
+ assert_array_equal(actual, desired)
684
+
685
+ def test_gumbel(self):
686
+ np.random.seed(self.seed)
687
+ actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
688
+ desired = np.array([[0.19591898743416816, 0.34405539668096674],
689
+ [-1.4492522252274278, -1.47374816298446865],
690
+ [1.10651090478803416, -0.69535848626236174]])
691
+ assert_array_almost_equal(actual, desired, decimal=15)
692
+
693
+ def test_gumbel_0(self):
694
+ assert_equal(np.random.gumbel(scale=0), 0)
695
+ assert_raises(ValueError, np.random.gumbel, scale=-0.)
696
+
697
+ def test_hypergeometric(self):
698
+ np.random.seed(self.seed)
699
+ actual = np.random.hypergeometric(10, 5, 14, size=(3, 2))
700
+ desired = np.array([[10, 10],
701
+ [10, 10],
702
+ [9, 9]])
703
+ assert_array_equal(actual, desired)
704
+
705
+ # Test nbad = 0
706
+ actual = np.random.hypergeometric(5, 0, 3, size=4)
707
+ desired = np.array([3, 3, 3, 3])
708
+ assert_array_equal(actual, desired)
709
+
710
+ actual = np.random.hypergeometric(15, 0, 12, size=4)
711
+ desired = np.array([12, 12, 12, 12])
712
+ assert_array_equal(actual, desired)
713
+
714
+ # Test ngood = 0
715
+ actual = np.random.hypergeometric(0, 5, 3, size=4)
716
+ desired = np.array([0, 0, 0, 0])
717
+ assert_array_equal(actual, desired)
718
+
719
+ actual = np.random.hypergeometric(0, 15, 12, size=4)
720
+ desired = np.array([0, 0, 0, 0])
721
+ assert_array_equal(actual, desired)
722
+
723
+ def test_laplace(self):
724
+ np.random.seed(self.seed)
725
+ actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
726
+ desired = np.array([[0.66599721112760157, 0.52829452552221945],
727
+ [3.12791959514407125, 3.18202813572992005],
728
+ [-0.05391065675859356, 1.74901336242837324]])
729
+ assert_array_almost_equal(actual, desired, decimal=15)
730
+
731
+ def test_laplace_0(self):
732
+ assert_equal(np.random.laplace(scale=0), 0)
733
+ assert_raises(ValueError, np.random.laplace, scale=-0.)
734
+
735
+ def test_logistic(self):
736
+ np.random.seed(self.seed)
737
+ actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
738
+ desired = np.array([[1.09232835305011444, 0.8648196662399954],
739
+ [4.27818590694950185, 4.33897006346929714],
740
+ [-0.21682183359214885, 2.63373365386060332]])
741
+ assert_array_almost_equal(actual, desired, decimal=15)
742
+
743
+ def test_lognormal(self):
744
+ np.random.seed(self.seed)
745
+ actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
746
+ desired = np.array([[16.50698631688883822, 36.54846706092654784],
747
+ [22.67886599981281748, 0.71617561058995771],
748
+ [65.72798501792723869, 86.84341601437161273]])
749
+ assert_array_almost_equal(actual, desired, decimal=13)
750
+
751
+ def test_lognormal_0(self):
752
+ assert_equal(np.random.lognormal(sigma=0), 1)
753
+ assert_raises(ValueError, np.random.lognormal, sigma=-0.)
754
+
755
+ def test_logseries(self):
756
+ np.random.seed(self.seed)
757
+ actual = np.random.logseries(p=.923456789, size=(3, 2))
758
+ desired = np.array([[2, 2],
759
+ [6, 17],
760
+ [3, 6]])
761
+ assert_array_equal(actual, desired)
762
+
763
+ def test_multinomial(self):
764
+ np.random.seed(self.seed)
765
+ actual = np.random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
766
+ desired = np.array([[[4, 3, 5, 4, 2, 2],
767
+ [5, 2, 8, 2, 2, 1]],
768
+ [[3, 4, 3, 6, 0, 4],
769
+ [2, 1, 4, 3, 6, 4]],
770
+ [[4, 4, 2, 5, 2, 3],
771
+ [4, 3, 4, 2, 3, 4]]])
772
+ assert_array_equal(actual, desired)
773
+
774
+ def test_multivariate_normal(self):
775
+ np.random.seed(self.seed)
776
+ mean = (.123456789, 10)
777
+ cov = [[1, 0], [0, 1]]
778
+ size = (3, 2)
779
+ actual = np.random.multivariate_normal(mean, cov, size)
780
+ desired = np.array([[[1.463620246718631, 11.73759122771936],
781
+ [1.622445133300628, 9.771356667546383]],
782
+ [[2.154490787682787, 12.170324946056553],
783
+ [1.719909438201865, 9.230548443648306]],
784
+ [[0.689515026297799, 9.880729819607714],
785
+ [-0.023054015651998, 9.201096623542879]]])
786
+
787
+ assert_array_almost_equal(actual, desired, decimal=15)
788
+
789
+ # Check for default size, was raising deprecation warning
790
+ actual = np.random.multivariate_normal(mean, cov)
791
+ desired = np.array([0.895289569463708, 9.17180864067987])
792
+ assert_array_almost_equal(actual, desired, decimal=15)
793
+
794
+ # Check that non positive-semidefinite covariance warns with
795
+ # RuntimeWarning
796
+ mean = [0, 0]
797
+ cov = [[1, 2], [2, 1]]
798
+ assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
799
+
800
+ # and that it doesn't warn with RuntimeWarning check_valid='ignore'
801
+ assert_no_warnings(np.random.multivariate_normal, mean, cov,
802
+ check_valid='ignore')
803
+
804
+ # and that it raises with RuntimeWarning check_valid='raises'
805
+ assert_raises(ValueError, np.random.multivariate_normal, mean, cov,
806
+ check_valid='raise')
807
+
808
+ cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
809
+ with suppress_warnings() as sup:
810
+ np.random.multivariate_normal(mean, cov)
811
+ w = sup.record(RuntimeWarning)
812
+ assert len(w) == 0
813
+
814
+ def test_negative_binomial(self):
815
+ np.random.seed(self.seed)
816
+ actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
817
+ desired = np.array([[848, 841],
818
+ [892, 611],
819
+ [779, 647]])
820
+ assert_array_equal(actual, desired)
821
+
822
+ def test_noncentral_chisquare(self):
823
+ np.random.seed(self.seed)
824
+ actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
825
+ desired = np.array([[23.91905354498517511, 13.35324692733826346],
826
+ [31.22452661329736401, 16.60047399466177254],
827
+ [5.03461598262724586, 17.94973089023519464]])
828
+ assert_array_almost_equal(actual, desired, decimal=14)
829
+
830
+ actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
831
+ desired = np.array([[1.47145377828516666, 0.15052899268012659],
832
+ [0.00943803056963588, 1.02647251615666169],
833
+ [0.332334982684171, 0.15451287602753125]])
834
+ assert_array_almost_equal(actual, desired, decimal=14)
835
+
836
+ np.random.seed(self.seed)
837
+ actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
838
+ desired = np.array([[9.597154162763948, 11.725484450296079],
839
+ [10.413711048138335, 3.694475922923986],
840
+ [13.484222138963087, 14.377255424602957]])
841
+ assert_array_almost_equal(actual, desired, decimal=14)
842
+
843
+ def test_noncentral_f(self):
844
+ np.random.seed(self.seed)
845
+ actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
846
+ size=(3, 2))
847
+ desired = np.array([[1.40598099674926669, 0.34207973179285761],
848
+ [3.57715069265772545, 7.92632662577829805],
849
+ [0.43741599463544162, 1.1774208752428319]])
850
+ assert_array_almost_equal(actual, desired, decimal=14)
851
+
852
+ def test_normal(self):
853
+ np.random.seed(self.seed)
854
+ actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
855
+ desired = np.array([[2.80378370443726244, 3.59863924443872163],
856
+ [3.121433477601256, -0.33382987590723379],
857
+ [4.18552478636557357, 4.46410668111310471]])
858
+ assert_array_almost_equal(actual, desired, decimal=15)
859
+
860
+ def test_normal_0(self):
861
+ assert_equal(np.random.normal(scale=0), 0)
862
+ assert_raises(ValueError, np.random.normal, scale=-0.)
863
+
864
+ def test_pareto(self):
865
+ np.random.seed(self.seed)
866
+ actual = np.random.pareto(a=.123456789, size=(3, 2))
867
+ desired = np.array(
868
+ [[2.46852460439034849e+03, 1.41286880810518346e+03],
869
+ [5.28287797029485181e+07, 6.57720981047328785e+07],
870
+ [1.40840323350391515e+02, 1.98390255135251704e+05]])
871
+ # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
872
+ # matrix differs by 24 nulps. Discussion:
873
+ # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
874
+ # Consensus is that this is probably some gcc quirk that affects
875
+ # rounding but not in any important way, so we just use a looser
876
+ # tolerance on this test:
877
+ np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
878
+
879
+ def test_poisson(self):
880
+ np.random.seed(self.seed)
881
+ actual = np.random.poisson(lam=.123456789, size=(3, 2))
882
+ desired = np.array([[0, 0],
883
+ [1, 0],
884
+ [0, 0]])
885
+ assert_array_equal(actual, desired)
886
+
887
+ def test_poisson_exceptions(self):
888
+ lambig = np.iinfo('l').max
889
+ lamneg = -1
890
+ assert_raises(ValueError, np.random.poisson, lamneg)
891
+ assert_raises(ValueError, np.random.poisson, [lamneg] * 10)
892
+ assert_raises(ValueError, np.random.poisson, lambig)
893
+ assert_raises(ValueError, np.random.poisson, [lambig] * 10)
894
+
895
+ def test_power(self):
896
+ np.random.seed(self.seed)
897
+ actual = np.random.power(a=.123456789, size=(3, 2))
898
+ desired = np.array([[0.02048932883240791, 0.01424192241128213],
899
+ [0.38446073748535298, 0.39499689943484395],
900
+ [0.00177699707563439, 0.13115505880863756]])
901
+ assert_array_almost_equal(actual, desired, decimal=15)
902
+
903
+ def test_rayleigh(self):
904
+ np.random.seed(self.seed)
905
+ actual = np.random.rayleigh(scale=10, size=(3, 2))
906
+ desired = np.array([[13.8882496494248393, 13.383318339044731],
907
+ [20.95413364294492098, 21.08285015800712614],
908
+ [11.06066537006854311, 17.35468505778271009]])
909
+ assert_array_almost_equal(actual, desired, decimal=14)
910
+
911
+ def test_rayleigh_0(self):
912
+ assert_equal(np.random.rayleigh(scale=0), 0)
913
+ assert_raises(ValueError, np.random.rayleigh, scale=-0.)
914
+
915
+ def test_standard_cauchy(self):
916
+ np.random.seed(self.seed)
917
+ actual = np.random.standard_cauchy(size=(3, 2))
918
+ desired = np.array([[0.77127660196445336, -6.55601161955910605],
919
+ [0.93582023391158309, -2.07479293013759447],
920
+ [-4.74601644297011926, 0.18338989290760804]])
921
+ assert_array_almost_equal(actual, desired, decimal=15)
922
+
923
+ def test_standard_exponential(self):
924
+ np.random.seed(self.seed)
925
+ actual = np.random.standard_exponential(size=(3, 2))
926
+ desired = np.array([[0.96441739162374596, 0.89556604882105506],
927
+ [2.1953785836319808, 2.22243285392490542],
928
+ [0.6116915921431676, 1.50592546727413201]])
929
+ assert_array_almost_equal(actual, desired, decimal=15)
930
+
931
+ def test_standard_gamma(self):
932
+ np.random.seed(self.seed)
933
+ actual = np.random.standard_gamma(shape=3, size=(3, 2))
934
+ desired = np.array([[5.50841531318455058, 6.62953470301903103],
935
+ [5.93988484943779227, 2.31044849402133989],
936
+ [7.54838614231317084, 8.012756093271868]])
937
+ assert_array_almost_equal(actual, desired, decimal=14)
938
+
939
+ def test_standard_gamma_0(self):
940
+ assert_equal(np.random.standard_gamma(shape=0), 0)
941
+ assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
942
+
943
+ def test_standard_normal(self):
944
+ np.random.seed(self.seed)
945
+ actual = np.random.standard_normal(size=(3, 2))
946
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
947
+ [1.498988344300628, -0.2286433324536169],
948
+ [2.031033998682787, 2.17032494605655257]])
949
+ assert_array_almost_equal(actual, desired, decimal=15)
950
+
951
+ def test_standard_t(self):
952
+ np.random.seed(self.seed)
953
+ actual = np.random.standard_t(df=10, size=(3, 2))
954
+ desired = np.array([[0.97140611862659965, -0.08830486548450577],
955
+ [1.36311143689505321, -0.55317463909867071],
956
+ [-0.18473749069684214, 0.61181537341755321]])
957
+ assert_array_almost_equal(actual, desired, decimal=15)
958
+
959
+ def test_triangular(self):
960
+ np.random.seed(self.seed)
961
+ actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
962
+ size=(3, 2))
963
+ desired = np.array([[12.68117178949215784, 12.4129206149193152],
964
+ [16.20131377335158263, 16.25692138747600524],
965
+ [11.20400690911820263, 14.4978144835829923]])
966
+ assert_array_almost_equal(actual, desired, decimal=14)
967
+
968
+ def test_uniform(self):
969
+ np.random.seed(self.seed)
970
+ actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
971
+ desired = np.array([[6.99097932346268003, 6.73801597444323974],
972
+ [9.50364421400426274, 9.53130618907631089],
973
+ [5.48995325769805476, 8.47493103280052118]])
974
+ assert_array_almost_equal(actual, desired, decimal=15)
975
+
976
+ def test_uniform_range_bounds(self):
977
+ fmin = np.finfo('float').min
978
+ fmax = np.finfo('float').max
979
+
980
+ func = np.random.uniform
981
+ assert_raises(OverflowError, func, -np.inf, 0)
982
+ assert_raises(OverflowError, func, 0, np.inf)
983
+ assert_raises(OverflowError, func, fmin, fmax)
984
+ assert_raises(OverflowError, func, [-np.inf], [0])
985
+ assert_raises(OverflowError, func, [0], [np.inf])
986
+
987
+ # (fmax / 1e17) - fmin is within range, so this should not throw
988
+ # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
989
+ # DBL_MAX by increasing fmin a bit
990
+ np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
991
+
992
+ def test_scalar_exception_propagation(self):
993
+ # Tests that exceptions are correctly propagated in distributions
994
+ # when called with objects that throw exceptions when converted to
995
+ # scalars.
996
+ #
997
+ # Regression test for gh: 8865
998
+
999
+ class ThrowingFloat(np.ndarray):
1000
+ def __float__(self):
1001
+ raise TypeError
1002
+
1003
+ throwing_float = np.array(1.0).view(ThrowingFloat)
1004
+ assert_raises(TypeError, np.random.uniform, throwing_float,
1005
+ throwing_float)
1006
+
1007
+ class ThrowingInteger(np.ndarray):
1008
+ def __int__(self):
1009
+ raise TypeError
1010
+
1011
+ __index__ = __int__
1012
+
1013
+ throwing_int = np.array(1).view(ThrowingInteger)
1014
+ assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)
1015
+
1016
+ def test_vonmises(self):
1017
+ np.random.seed(self.seed)
1018
+ actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
1019
+ desired = np.array([[2.28567572673902042, 2.89163838442285037],
1020
+ [0.38198375564286025, 2.57638023113890746],
1021
+ [1.19153771588353052, 1.83509849681825354]])
1022
+ assert_array_almost_equal(actual, desired, decimal=15)
1023
+
1024
+ def test_vonmises_small(self):
1025
+ # check infinite loop, gh-4720
1026
+ np.random.seed(self.seed)
1027
+ r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
1028
+ np.testing.assert_(np.isfinite(r).all())
1029
+
1030
+ def test_wald(self):
1031
+ np.random.seed(self.seed)
1032
+ actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
1033
+ desired = np.array([[3.82935265715889983, 5.13125249184285526],
1034
+ [0.35045403618358717, 1.50832396872003538],
1035
+ [0.24124319895843183, 0.22031101461955038]])
1036
+ assert_array_almost_equal(actual, desired, decimal=14)
1037
+
1038
+ def test_weibull(self):
1039
+ np.random.seed(self.seed)
1040
+ actual = np.random.weibull(a=1.23, size=(3, 2))
1041
+ desired = np.array([[0.97097342648766727, 0.91422896443565516],
1042
+ [1.89517770034962929, 1.91414357960479564],
1043
+ [0.67057783752390987, 1.39494046635066793]])
1044
+ assert_array_almost_equal(actual, desired, decimal=15)
1045
+
1046
+ def test_weibull_0(self):
1047
+ np.random.seed(self.seed)
1048
+ assert_equal(np.random.weibull(a=0, size=12), np.zeros(12))
1049
+ assert_raises(ValueError, np.random.weibull, a=-0.)
1050
+
1051
+ def test_zipf(self):
1052
+ np.random.seed(self.seed)
1053
+ actual = np.random.zipf(a=1.23, size=(3, 2))
1054
+ desired = np.array([[66, 29],
1055
+ [1, 1],
1056
+ [3, 13]])
1057
+ assert_array_equal(actual, desired)
1058
+
1059
+
1060
+ class TestBroadcast:
1061
+ # tests that functions that broadcast behave
1062
+ # correctly when presented with non-scalar arguments
1063
+ def setup_method(self):
1064
+ self.seed = 123456789
1065
+
1066
+ def setSeed(self):
1067
+ np.random.seed(self.seed)
1068
+
1069
+ # TODO: Include test for randint once it can broadcast
1070
+ # Can steal the test written in PR #6938
1071
+
1072
+ def test_uniform(self):
1073
+ low = [0]
1074
+ high = [1]
1075
+ uniform = np.random.uniform
1076
+ desired = np.array([0.53283302478975902,
1077
+ 0.53413660089041659,
1078
+ 0.50955303552646702])
1079
+
1080
+ self.setSeed()
1081
+ actual = uniform(low * 3, high)
1082
+ assert_array_almost_equal(actual, desired, decimal=14)
1083
+
1084
+ self.setSeed()
1085
+ actual = uniform(low, high * 3)
1086
+ assert_array_almost_equal(actual, desired, decimal=14)
1087
+
1088
+ def test_normal(self):
1089
+ loc = [0]
1090
+ scale = [1]
1091
+ bad_scale = [-1]
1092
+ normal = np.random.normal
1093
+ desired = np.array([2.2129019979039612,
1094
+ 2.1283977976520019,
1095
+ 1.8417114045748335])
1096
+
1097
+ self.setSeed()
1098
+ actual = normal(loc * 3, scale)
1099
+ assert_array_almost_equal(actual, desired, decimal=14)
1100
+ assert_raises(ValueError, normal, loc * 3, bad_scale)
1101
+
1102
+ self.setSeed()
1103
+ actual = normal(loc, scale * 3)
1104
+ assert_array_almost_equal(actual, desired, decimal=14)
1105
+ assert_raises(ValueError, normal, loc, bad_scale * 3)
1106
+
1107
+ def test_beta(self):
1108
+ a = [1]
1109
+ b = [2]
1110
+ bad_a = [-1]
1111
+ bad_b = [-2]
1112
+ beta = np.random.beta
1113
+ desired = np.array([0.19843558305989056,
1114
+ 0.075230336409423643,
1115
+ 0.24976865978980844])
1116
+
1117
+ self.setSeed()
1118
+ actual = beta(a * 3, b)
1119
+ assert_array_almost_equal(actual, desired, decimal=14)
1120
+ assert_raises(ValueError, beta, bad_a * 3, b)
1121
+ assert_raises(ValueError, beta, a * 3, bad_b)
1122
+
1123
+ self.setSeed()
1124
+ actual = beta(a, b * 3)
1125
+ assert_array_almost_equal(actual, desired, decimal=14)
1126
+ assert_raises(ValueError, beta, bad_a, b * 3)
1127
+ assert_raises(ValueError, beta, a, bad_b * 3)
1128
+
1129
+ def test_exponential(self):
1130
+ scale = [1]
1131
+ bad_scale = [-1]
1132
+ exponential = np.random.exponential
1133
+ desired = np.array([0.76106853658845242,
1134
+ 0.76386282278691653,
1135
+ 0.71243813125891797])
1136
+
1137
+ self.setSeed()
1138
+ actual = exponential(scale * 3)
1139
+ assert_array_almost_equal(actual, desired, decimal=14)
1140
+ assert_raises(ValueError, exponential, bad_scale * 3)
1141
+
1142
+ def test_standard_gamma(self):
1143
+ shape = [1]
1144
+ bad_shape = [-1]
1145
+ std_gamma = np.random.standard_gamma
1146
+ desired = np.array([0.76106853658845242,
1147
+ 0.76386282278691653,
1148
+ 0.71243813125891797])
1149
+
1150
+ self.setSeed()
1151
+ actual = std_gamma(shape * 3)
1152
+ assert_array_almost_equal(actual, desired, decimal=14)
1153
+ assert_raises(ValueError, std_gamma, bad_shape * 3)
1154
+
1155
+ def test_gamma(self):
1156
+ shape = [1]
1157
+ scale = [2]
1158
+ bad_shape = [-1]
1159
+ bad_scale = [-2]
1160
+ gamma = np.random.gamma
1161
+ desired = np.array([1.5221370731769048,
1162
+ 1.5277256455738331,
1163
+ 1.4248762625178359])
1164
+
1165
+ self.setSeed()
1166
+ actual = gamma(shape * 3, scale)
1167
+ assert_array_almost_equal(actual, desired, decimal=14)
1168
+ assert_raises(ValueError, gamma, bad_shape * 3, scale)
1169
+ assert_raises(ValueError, gamma, shape * 3, bad_scale)
1170
+
1171
+ self.setSeed()
1172
+ actual = gamma(shape, scale * 3)
1173
+ assert_array_almost_equal(actual, desired, decimal=14)
1174
+ assert_raises(ValueError, gamma, bad_shape, scale * 3)
1175
+ assert_raises(ValueError, gamma, shape, bad_scale * 3)
1176
+
1177
+ def test_f(self):
1178
+ dfnum = [1]
1179
+ dfden = [2]
1180
+ bad_dfnum = [-1]
1181
+ bad_dfden = [-2]
1182
+ f = np.random.f
1183
+ desired = np.array([0.80038951638264799,
1184
+ 0.86768719635363512,
1185
+ 2.7251095168386801])
1186
+
1187
+ self.setSeed()
1188
+ actual = f(dfnum * 3, dfden)
1189
+ assert_array_almost_equal(actual, desired, decimal=14)
1190
+ assert_raises(ValueError, f, bad_dfnum * 3, dfden)
1191
+ assert_raises(ValueError, f, dfnum * 3, bad_dfden)
1192
+
1193
+ self.setSeed()
1194
+ actual = f(dfnum, dfden * 3)
1195
+ assert_array_almost_equal(actual, desired, decimal=14)
1196
+ assert_raises(ValueError, f, bad_dfnum, dfden * 3)
1197
+ assert_raises(ValueError, f, dfnum, bad_dfden * 3)
1198
+
1199
+ def test_noncentral_f(self):
1200
+ dfnum = [2]
1201
+ dfden = [3]
1202
+ nonc = [4]
1203
+ bad_dfnum = [0]
1204
+ bad_dfden = [-1]
1205
+ bad_nonc = [-2]
1206
+ nonc_f = np.random.noncentral_f
1207
+ desired = np.array([9.1393943263705211,
1208
+ 13.025456344595602,
1209
+ 8.8018098359100545])
1210
+
1211
+ self.setSeed()
1212
+ actual = nonc_f(dfnum * 3, dfden, nonc)
1213
+ assert_array_almost_equal(actual, desired, decimal=14)
1214
+ assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
1215
+ assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
1216
+ assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
1217
+
1218
+ self.setSeed()
1219
+ actual = nonc_f(dfnum, dfden * 3, nonc)
1220
+ assert_array_almost_equal(actual, desired, decimal=14)
1221
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
1222
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
1223
+ assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
1224
+
1225
+ self.setSeed()
1226
+ actual = nonc_f(dfnum, dfden, nonc * 3)
1227
+ assert_array_almost_equal(actual, desired, decimal=14)
1228
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
1229
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
1230
+ assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
1231
+
1232
+ def test_noncentral_f_small_df(self):
1233
+ self.setSeed()
1234
+ desired = np.array([6.869638627492048, 0.785880199263955])
1235
+ actual = np.random.noncentral_f(0.9, 0.9, 2, size=2)
1236
+ assert_array_almost_equal(actual, desired, decimal=14)
1237
+
1238
+ def test_chisquare(self):
1239
+ df = [1]
1240
+ bad_df = [-1]
1241
+ chisquare = np.random.chisquare
1242
+ desired = np.array([0.57022801133088286,
1243
+ 0.51947702108840776,
1244
+ 0.1320969254923558])
1245
+
1246
+ self.setSeed()
1247
+ actual = chisquare(df * 3)
1248
+ assert_array_almost_equal(actual, desired, decimal=14)
1249
+ assert_raises(ValueError, chisquare, bad_df * 3)
1250
+
1251
+ def test_noncentral_chisquare(self):
1252
+ df = [1]
1253
+ nonc = [2]
1254
+ bad_df = [-1]
1255
+ bad_nonc = [-2]
1256
+ nonc_chi = np.random.noncentral_chisquare
1257
+ desired = np.array([9.0015599467913763,
1258
+ 4.5804135049718742,
1259
+ 6.0872302432834564])
1260
+
1261
+ self.setSeed()
1262
+ actual = nonc_chi(df * 3, nonc)
1263
+ assert_array_almost_equal(actual, desired, decimal=14)
1264
+ assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
1265
+ assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
1266
+
1267
+ self.setSeed()
1268
+ actual = nonc_chi(df, nonc * 3)
1269
+ assert_array_almost_equal(actual, desired, decimal=14)
1270
+ assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
1271
+ assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
1272
+
1273
+ def test_standard_t(self):
1274
+ df = [1]
1275
+ bad_df = [-1]
1276
+ t = np.random.standard_t
1277
+ desired = np.array([3.0702872575217643,
1278
+ 5.8560725167361607,
1279
+ 1.0274791436474273])
1280
+
1281
+ self.setSeed()
1282
+ actual = t(df * 3)
1283
+ assert_array_almost_equal(actual, desired, decimal=14)
1284
+ assert_raises(ValueError, t, bad_df * 3)
1285
+
1286
+ def test_vonmises(self):
1287
+ mu = [2]
1288
+ kappa = [1]
1289
+ bad_kappa = [-1]
1290
+ vonmises = np.random.vonmises
1291
+ desired = np.array([2.9883443664201312,
1292
+ -2.7064099483995943,
1293
+ -1.8672476700665914])
1294
+
1295
+ self.setSeed()
1296
+ actual = vonmises(mu * 3, kappa)
1297
+ assert_array_almost_equal(actual, desired, decimal=14)
1298
+ assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
1299
+
1300
+ self.setSeed()
1301
+ actual = vonmises(mu, kappa * 3)
1302
+ assert_array_almost_equal(actual, desired, decimal=14)
1303
+ assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
1304
+
1305
+ def test_pareto(self):
1306
+ a = [1]
1307
+ bad_a = [-1]
1308
+ pareto = np.random.pareto
1309
+ desired = np.array([1.1405622680198362,
1310
+ 1.1465519762044529,
1311
+ 1.0389564467453547])
1312
+
1313
+ self.setSeed()
1314
+ actual = pareto(a * 3)
1315
+ assert_array_almost_equal(actual, desired, decimal=14)
1316
+ assert_raises(ValueError, pareto, bad_a * 3)
1317
+
1318
+ def test_weibull(self):
1319
+ a = [1]
1320
+ bad_a = [-1]
1321
+ weibull = np.random.weibull
1322
+ desired = np.array([0.76106853658845242,
1323
+ 0.76386282278691653,
1324
+ 0.71243813125891797])
1325
+
1326
+ self.setSeed()
1327
+ actual = weibull(a * 3)
1328
+ assert_array_almost_equal(actual, desired, decimal=14)
1329
+ assert_raises(ValueError, weibull, bad_a * 3)
1330
+
1331
+ def test_power(self):
1332
+ a = [1]
1333
+ bad_a = [-1]
1334
+ power = np.random.power
1335
+ desired = np.array([0.53283302478975902,
1336
+ 0.53413660089041659,
1337
+ 0.50955303552646702])
1338
+
1339
+ self.setSeed()
1340
+ actual = power(a * 3)
1341
+ assert_array_almost_equal(actual, desired, decimal=14)
1342
+ assert_raises(ValueError, power, bad_a * 3)
1343
+
1344
+ def test_laplace(self):
1345
+ loc = [0]
1346
+ scale = [1]
1347
+ bad_scale = [-1]
1348
+ laplace = np.random.laplace
1349
+ desired = np.array([0.067921356028507157,
1350
+ 0.070715642226971326,
1351
+ 0.019290950698972624])
1352
+
1353
+ self.setSeed()
1354
+ actual = laplace(loc * 3, scale)
1355
+ assert_array_almost_equal(actual, desired, decimal=14)
1356
+ assert_raises(ValueError, laplace, loc * 3, bad_scale)
1357
+
1358
+ self.setSeed()
1359
+ actual = laplace(loc, scale * 3)
1360
+ assert_array_almost_equal(actual, desired, decimal=14)
1361
+ assert_raises(ValueError, laplace, loc, bad_scale * 3)
1362
+
1363
+ def test_gumbel(self):
1364
+ loc = [0]
1365
+ scale = [1]
1366
+ bad_scale = [-1]
1367
+ gumbel = np.random.gumbel
1368
+ desired = np.array([0.2730318639556768,
1369
+ 0.26936705726291116,
1370
+ 0.33906220393037939])
1371
+
1372
+ self.setSeed()
1373
+ actual = gumbel(loc * 3, scale)
1374
+ assert_array_almost_equal(actual, desired, decimal=14)
1375
+ assert_raises(ValueError, gumbel, loc * 3, bad_scale)
1376
+
1377
+ self.setSeed()
1378
+ actual = gumbel(loc, scale * 3)
1379
+ assert_array_almost_equal(actual, desired, decimal=14)
1380
+ assert_raises(ValueError, gumbel, loc, bad_scale * 3)
1381
+
1382
+ def test_logistic(self):
1383
+ loc = [0]
1384
+ scale = [1]
1385
+ bad_scale = [-1]
1386
+ logistic = np.random.logistic
1387
+ desired = np.array([0.13152135837586171,
1388
+ 0.13675915696285773,
1389
+ 0.038216792802833396])
1390
+
1391
+ self.setSeed()
1392
+ actual = logistic(loc * 3, scale)
1393
+ assert_array_almost_equal(actual, desired, decimal=14)
1394
+ assert_raises(ValueError, logistic, loc * 3, bad_scale)
1395
+
1396
+ self.setSeed()
1397
+ actual = logistic(loc, scale * 3)
1398
+ assert_array_almost_equal(actual, desired, decimal=14)
1399
+ assert_raises(ValueError, logistic, loc, bad_scale * 3)
1400
+
1401
+ def test_lognormal(self):
1402
+ mean = [0]
1403
+ sigma = [1]
1404
+ bad_sigma = [-1]
1405
+ lognormal = np.random.lognormal
1406
+ desired = np.array([9.1422086044848427,
1407
+ 8.4013952870126261,
1408
+ 6.3073234116578671])
1409
+
1410
+ self.setSeed()
1411
+ actual = lognormal(mean * 3, sigma)
1412
+ assert_array_almost_equal(actual, desired, decimal=14)
1413
+ assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
1414
+
1415
+ self.setSeed()
1416
+ actual = lognormal(mean, sigma * 3)
1417
+ assert_array_almost_equal(actual, desired, decimal=14)
1418
+ assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
1419
+
1420
+ def test_rayleigh(self):
1421
+ scale = [1]
1422
+ bad_scale = [-1]
1423
+ rayleigh = np.random.rayleigh
1424
+ desired = np.array([1.2337491937897689,
1425
+ 1.2360119924878694,
1426
+ 1.1936818095781789])
1427
+
1428
+ self.setSeed()
1429
+ actual = rayleigh(scale * 3)
1430
+ assert_array_almost_equal(actual, desired, decimal=14)
1431
+ assert_raises(ValueError, rayleigh, bad_scale * 3)
1432
+
1433
+ def test_wald(self):
1434
+ mean = [0.5]
1435
+ scale = [1]
1436
+ bad_mean = [0]
1437
+ bad_scale = [-2]
1438
+ wald = np.random.wald
1439
+ desired = np.array([0.11873681120271318,
1440
+ 0.12450084820795027,
1441
+ 0.9096122728408238])
1442
+
1443
+ self.setSeed()
1444
+ actual = wald(mean * 3, scale)
1445
+ assert_array_almost_equal(actual, desired, decimal=14)
1446
+ assert_raises(ValueError, wald, bad_mean * 3, scale)
1447
+ assert_raises(ValueError, wald, mean * 3, bad_scale)
1448
+
1449
+ self.setSeed()
1450
+ actual = wald(mean, scale * 3)
1451
+ assert_array_almost_equal(actual, desired, decimal=14)
1452
+ assert_raises(ValueError, wald, bad_mean, scale * 3)
1453
+ assert_raises(ValueError, wald, mean, bad_scale * 3)
1454
+ assert_raises(ValueError, wald, 0.0, 1)
1455
+ assert_raises(ValueError, wald, 0.5, 0.0)
1456
+
1457
+ def test_triangular(self):
1458
+ left = [1]
1459
+ right = [3]
1460
+ mode = [2]
1461
+ bad_left_one = [3]
1462
+ bad_mode_one = [4]
1463
+ bad_left_two, bad_mode_two = right * 2
1464
+ triangular = np.random.triangular
1465
+ desired = np.array([2.03339048710429,
1466
+ 2.0347400359389356,
1467
+ 2.0095991069536208])
1468
+
1469
+ self.setSeed()
1470
+ actual = triangular(left * 3, mode, right)
1471
+ assert_array_almost_equal(actual, desired, decimal=14)
1472
+ assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
1473
+ assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
1474
+ assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
1475
+ right)
1476
+
1477
+ self.setSeed()
1478
+ actual = triangular(left, mode * 3, right)
1479
+ assert_array_almost_equal(actual, desired, decimal=14)
1480
+ assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
1481
+ assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
1482
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
1483
+ right)
1484
+
1485
+ self.setSeed()
1486
+ actual = triangular(left, mode, right * 3)
1487
+ assert_array_almost_equal(actual, desired, decimal=14)
1488
+ assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
1489
+ assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
1490
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
1491
+ right * 3)
1492
+
1493
+ def test_binomial(self):
1494
+ n = [1]
1495
+ p = [0.5]
1496
+ bad_n = [-1]
1497
+ bad_p_one = [-1]
1498
+ bad_p_two = [1.5]
1499
+ binom = np.random.binomial
1500
+ desired = np.array([1, 1, 1])
1501
+
1502
+ self.setSeed()
1503
+ actual = binom(n * 3, p)
1504
+ assert_array_equal(actual, desired)
1505
+ assert_raises(ValueError, binom, bad_n * 3, p)
1506
+ assert_raises(ValueError, binom, n * 3, bad_p_one)
1507
+ assert_raises(ValueError, binom, n * 3, bad_p_two)
1508
+
1509
+ self.setSeed()
1510
+ actual = binom(n, p * 3)
1511
+ assert_array_equal(actual, desired)
1512
+ assert_raises(ValueError, binom, bad_n, p * 3)
1513
+ assert_raises(ValueError, binom, n, bad_p_one * 3)
1514
+ assert_raises(ValueError, binom, n, bad_p_two * 3)
1515
+
1516
+ def test_negative_binomial(self):
1517
+ n = [1]
1518
+ p = [0.5]
1519
+ bad_n = [-1]
1520
+ bad_p_one = [-1]
1521
+ bad_p_two = [1.5]
1522
+ neg_binom = np.random.negative_binomial
1523
+ desired = np.array([1, 0, 1])
1524
+
1525
+ self.setSeed()
1526
+ actual = neg_binom(n * 3, p)
1527
+ assert_array_equal(actual, desired)
1528
+ assert_raises(ValueError, neg_binom, bad_n * 3, p)
1529
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
1530
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
1531
+
1532
+ self.setSeed()
1533
+ actual = neg_binom(n, p * 3)
1534
+ assert_array_equal(actual, desired)
1535
+ assert_raises(ValueError, neg_binom, bad_n, p * 3)
1536
+ assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
1537
+ assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
1538
+
1539
+ def test_poisson(self):
1540
+ max_lam = np.random.RandomState()._poisson_lam_max
1541
+
1542
+ lam = [1]
1543
+ bad_lam_one = [-1]
1544
+ bad_lam_two = [max_lam * 2]
1545
+ poisson = np.random.poisson
1546
+ desired = np.array([1, 1, 0])
1547
+
1548
+ self.setSeed()
1549
+ actual = poisson(lam * 3)
1550
+ assert_array_equal(actual, desired)
1551
+ assert_raises(ValueError, poisson, bad_lam_one * 3)
1552
+ assert_raises(ValueError, poisson, bad_lam_two * 3)
1553
+
1554
+ def test_zipf(self):
1555
+ a = [2]
1556
+ bad_a = [0]
1557
+ zipf = np.random.zipf
1558
+ desired = np.array([2, 2, 1])
1559
+
1560
+ self.setSeed()
1561
+ actual = zipf(a * 3)
1562
+ assert_array_equal(actual, desired)
1563
+ assert_raises(ValueError, zipf, bad_a * 3)
1564
+ with np.errstate(invalid='ignore'):
1565
+ assert_raises(ValueError, zipf, np.nan)
1566
+ assert_raises(ValueError, zipf, [0, 0, np.nan])
1567
+
1568
+ def test_geometric(self):
1569
+ p = [0.5]
1570
+ bad_p_one = [-1]
1571
+ bad_p_two = [1.5]
1572
+ geom = np.random.geometric
1573
+ desired = np.array([2, 2, 2])
1574
+
1575
+ self.setSeed()
1576
+ actual = geom(p * 3)
1577
+ assert_array_equal(actual, desired)
1578
+ assert_raises(ValueError, geom, bad_p_one * 3)
1579
+ assert_raises(ValueError, geom, bad_p_two * 3)
1580
+
1581
+ def test_hypergeometric(self):
1582
+ ngood = [1]
1583
+ nbad = [2]
1584
+ nsample = [2]
1585
+ bad_ngood = [-1]
1586
+ bad_nbad = [-2]
1587
+ bad_nsample_one = [0]
1588
+ bad_nsample_two = [4]
1589
+ hypergeom = np.random.hypergeometric
1590
+ desired = np.array([1, 1, 1])
1591
+
1592
+ self.setSeed()
1593
+ actual = hypergeom(ngood * 3, nbad, nsample)
1594
+ assert_array_equal(actual, desired)
1595
+ assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
1596
+ assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
1597
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
1598
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
1599
+
1600
+ self.setSeed()
1601
+ actual = hypergeom(ngood, nbad * 3, nsample)
1602
+ assert_array_equal(actual, desired)
1603
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
1604
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
1605
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
1606
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
1607
+
1608
+ self.setSeed()
1609
+ actual = hypergeom(ngood, nbad, nsample * 3)
1610
+ assert_array_equal(actual, desired)
1611
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
1612
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
1613
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
1614
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
1615
+
1616
+ def test_logseries(self):
1617
+ p = [0.5]
1618
+ bad_p_one = [2]
1619
+ bad_p_two = [-1]
1620
+ logseries = np.random.logseries
1621
+ desired = np.array([1, 1, 1])
1622
+
1623
+ self.setSeed()
1624
+ actual = logseries(p * 3)
1625
+ assert_array_equal(actual, desired)
1626
+ assert_raises(ValueError, logseries, bad_p_one * 3)
1627
+ assert_raises(ValueError, logseries, bad_p_two * 3)
1628
+
1629
+
1630
+ @pytest.mark.skipif(IS_WASM, reason="can't start thread")
1631
+ class TestThread:
1632
+ # make sure each state produces the same sequence even in threads
1633
+ def setup_method(self):
1634
+ self.seeds = range(4)
1635
+
1636
+ def check_function(self, function, sz):
1637
+ from threading import Thread
1638
+
1639
+ out1 = np.empty((len(self.seeds),) + sz)
1640
+ out2 = np.empty((len(self.seeds),) + sz)
1641
+
1642
+ # threaded generation
1643
+ t = [Thread(target=function, args=(np.random.RandomState(s), o))
1644
+ for s, o in zip(self.seeds, out1)]
1645
+ [x.start() for x in t]
1646
+ [x.join() for x in t]
1647
+
1648
+ # the same serial
1649
+ for s, o in zip(self.seeds, out2):
1650
+ function(np.random.RandomState(s), o)
1651
+
1652
+ # these platforms change x87 fpu precision mode in threads
1653
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
1654
+ assert_array_almost_equal(out1, out2)
1655
+ else:
1656
+ assert_array_equal(out1, out2)
1657
+
1658
+ def test_normal(self):
1659
+ def gen_random(state, out):
1660
+ out[...] = state.normal(size=10000)
1661
+ self.check_function(gen_random, sz=(10000,))
1662
+
1663
+ def test_exp(self):
1664
+ def gen_random(state, out):
1665
+ out[...] = state.exponential(scale=np.ones((100, 1000)))
1666
+ self.check_function(gen_random, sz=(100, 1000))
1667
+
1668
+ def test_multinomial(self):
1669
+ def gen_random(state, out):
1670
+ out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
1671
+ self.check_function(gen_random, sz=(10000, 6))
1672
+
1673
+
1674
+ # See Issue #4263
1675
+ class TestSingleEltArrayInput:
1676
+ def setup_method(self):
1677
+ self.argOne = np.array([2])
1678
+ self.argTwo = np.array([3])
1679
+ self.argThree = np.array([4])
1680
+ self.tgtShape = (1,)
1681
+
1682
+ def test_one_arg_funcs(self):
1683
+ funcs = (np.random.exponential, np.random.standard_gamma,
1684
+ np.random.chisquare, np.random.standard_t,
1685
+ np.random.pareto, np.random.weibull,
1686
+ np.random.power, np.random.rayleigh,
1687
+ np.random.poisson, np.random.zipf,
1688
+ np.random.geometric, np.random.logseries)
1689
+
1690
+ probfuncs = (np.random.geometric, np.random.logseries)
1691
+
1692
+ for func in funcs:
1693
+ if func in probfuncs: # p < 1.0
1694
+ out = func(np.array([0.5]))
1695
+
1696
+ else:
1697
+ out = func(self.argOne)
1698
+
1699
+ assert_equal(out.shape, self.tgtShape)
1700
+
1701
+ def test_two_arg_funcs(self):
1702
+ funcs = (np.random.uniform, np.random.normal,
1703
+ np.random.beta, np.random.gamma,
1704
+ np.random.f, np.random.noncentral_chisquare,
1705
+ np.random.vonmises, np.random.laplace,
1706
+ np.random.gumbel, np.random.logistic,
1707
+ np.random.lognormal, np.random.wald,
1708
+ np.random.binomial, np.random.negative_binomial)
1709
+
1710
+ probfuncs = (np.random.binomial, np.random.negative_binomial)
1711
+
1712
+ for func in funcs:
1713
+ if func in probfuncs: # p <= 1
1714
+ argTwo = np.array([0.5])
1715
+
1716
+ else:
1717
+ argTwo = self.argTwo
1718
+
1719
+ out = func(self.argOne, argTwo)
1720
+ assert_equal(out.shape, self.tgtShape)
1721
+
1722
+ out = func(self.argOne[0], argTwo)
1723
+ assert_equal(out.shape, self.tgtShape)
1724
+
1725
+ out = func(self.argOne, argTwo[0])
1726
+ assert_equal(out.shape, self.tgtShape)
1727
+
1728
+ def test_randint(self):
1729
+ itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
1730
+ np.int32, np.uint32, np.int64, np.uint64]
1731
+ func = np.random.randint
1732
+ high = np.array([1])
1733
+ low = np.array([0])
1734
+
1735
+ for dt in itype:
1736
+ out = func(low, high, dtype=dt)
1737
+ assert_equal(out.shape, self.tgtShape)
1738
+
1739
+ out = func(low[0], high, dtype=dt)
1740
+ assert_equal(out.shape, self.tgtShape)
1741
+
1742
+ out = func(low, high[0], dtype=dt)
1743
+ assert_equal(out.shape, self.tgtShape)
1744
+
1745
+ def test_three_arg_funcs(self):
1746
+ funcs = [np.random.noncentral_f, np.random.triangular,
1747
+ np.random.hypergeometric]
1748
+
1749
+ for func in funcs:
1750
+ out = func(self.argOne, self.argTwo, self.argThree)
1751
+ assert_equal(out.shape, self.tgtShape)
1752
+
1753
+ out = func(self.argOne[0], self.argTwo, self.argThree)
1754
+ assert_equal(out.shape, self.tgtShape)
1755
+
1756
+ out = func(self.argOne, self.argTwo[0], self.argThree)
1757
+ assert_equal(out.shape, self.tgtShape)