numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,1740 @@
1
+ """
2
+ ==============================================================
3
+ Hermite Series, "Physicists" (:mod:`numpy.polynomial.hermite`)
4
+ ==============================================================
5
+
6
+ This module provides a number of objects (mostly functions) useful for
7
+ dealing with Hermite series, including a `Hermite` class that
8
+ encapsulates the usual arithmetic operations. (General information
9
+ on how this module represents and works with such polynomials is in the
10
+ docstring for its "parent" sub-package, `numpy.polynomial`).
11
+
12
+ Classes
13
+ -------
14
+ .. autosummary::
15
+ :toctree: generated/
16
+
17
+ Hermite
18
+
19
+ Constants
20
+ ---------
21
+ .. autosummary::
22
+ :toctree: generated/
23
+
24
+ hermdomain
25
+ hermzero
26
+ hermone
27
+ hermx
28
+
29
+ Arithmetic
30
+ ----------
31
+ .. autosummary::
32
+ :toctree: generated/
33
+
34
+ hermadd
35
+ hermsub
36
+ hermmulx
37
+ hermmul
38
+ hermdiv
39
+ hermpow
40
+ hermval
41
+ hermval2d
42
+ hermval3d
43
+ hermgrid2d
44
+ hermgrid3d
45
+
46
+ Calculus
47
+ --------
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ hermder
52
+ hermint
53
+
54
+ Misc Functions
55
+ --------------
56
+ .. autosummary::
57
+ :toctree: generated/
58
+
59
+ hermfromroots
60
+ hermroots
61
+ hermvander
62
+ hermvander2d
63
+ hermvander3d
64
+ hermgauss
65
+ hermweight
66
+ hermcompanion
67
+ hermfit
68
+ hermtrim
69
+ hermline
70
+ herm2poly
71
+ poly2herm
72
+
73
+ See also
74
+ --------
75
+ `numpy.polynomial`
76
+
77
+ """
78
+ import numpy as np
79
+ import numpy.linalg as la
80
+ from numpy.lib.array_utils import normalize_axis_index
81
+
82
+ from . import polyutils as pu
83
+ from ._polybase import ABCPolyBase
84
+
85
+ __all__ = [
86
+ 'hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd',
87
+ 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', 'hermval',
88
+ 'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
89
+ 'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite',
90
+ 'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d', 'hermvander2d',
91
+ 'hermvander3d', 'hermcompanion', 'hermgauss', 'hermweight']
92
+
93
+ hermtrim = pu.trimcoef
94
+
95
+
96
+ def poly2herm(pol):
97
+ """
98
+ poly2herm(pol)
99
+
100
+ Convert a polynomial to a Hermite series.
101
+
102
+ Convert an array representing the coefficients of a polynomial (relative
103
+ to the "standard" basis) ordered from lowest degree to highest, to an
104
+ array of the coefficients of the equivalent Hermite series, ordered
105
+ from lowest to highest degree.
106
+
107
+ Parameters
108
+ ----------
109
+ pol : array_like
110
+ 1-D array containing the polynomial coefficients
111
+
112
+ Returns
113
+ -------
114
+ c : ndarray
115
+ 1-D array containing the coefficients of the equivalent Hermite
116
+ series.
117
+
118
+ See Also
119
+ --------
120
+ herm2poly
121
+
122
+ Notes
123
+ -----
124
+ The easy way to do conversions between polynomial basis sets
125
+ is to use the convert method of a class instance.
126
+
127
+ Examples
128
+ --------
129
+ >>> from numpy.polynomial.hermite import poly2herm
130
+ >>> poly2herm(np.arange(4))
131
+ array([1. , 2.75 , 0.5 , 0.375])
132
+
133
+ """
134
+ [pol] = pu.as_series([pol])
135
+ deg = len(pol) - 1
136
+ res = 0
137
+ for i in range(deg, -1, -1):
138
+ res = hermadd(hermmulx(res), pol[i])
139
+ return res
140
+
141
+
142
+ def herm2poly(c):
143
+ """
144
+ Convert a Hermite series to a polynomial.
145
+
146
+ Convert an array representing the coefficients of a Hermite series,
147
+ ordered from lowest degree to highest, to an array of the coefficients
148
+ of the equivalent polynomial (relative to the "standard" basis) ordered
149
+ from lowest to highest degree.
150
+
151
+ Parameters
152
+ ----------
153
+ c : array_like
154
+ 1-D array containing the Hermite series coefficients, ordered
155
+ from lowest order term to highest.
156
+
157
+ Returns
158
+ -------
159
+ pol : ndarray
160
+ 1-D array containing the coefficients of the equivalent polynomial
161
+ (relative to the "standard" basis) ordered from lowest order term
162
+ to highest.
163
+
164
+ See Also
165
+ --------
166
+ poly2herm
167
+
168
+ Notes
169
+ -----
170
+ The easy way to do conversions between polynomial basis sets
171
+ is to use the convert method of a class instance.
172
+
173
+ Examples
174
+ --------
175
+ >>> from numpy.polynomial.hermite import herm2poly
176
+ >>> herm2poly([ 1. , 2.75 , 0.5 , 0.375])
177
+ array([0., 1., 2., 3.])
178
+
179
+ """
180
+ from .polynomial import polyadd, polymulx, polysub
181
+
182
+ [c] = pu.as_series([c])
183
+ n = len(c)
184
+ if n == 1:
185
+ return c
186
+ if n == 2:
187
+ c[1] *= 2
188
+ return c
189
+ else:
190
+ c0 = c[-2]
191
+ c1 = c[-1]
192
+ # i is the current degree of c1
193
+ for i in range(n - 1, 1, -1):
194
+ tmp = c0
195
+ c0 = polysub(c[i - 2], c1 * (2 * (i - 1)))
196
+ c1 = polyadd(tmp, polymulx(c1) * 2)
197
+ return polyadd(c0, polymulx(c1) * 2)
198
+
199
+
200
+ #
201
+ # These are constant arrays are of integer type so as to be compatible
202
+ # with the widest range of other types, such as Decimal.
203
+ #
204
+
205
+ # Hermite
206
+ hermdomain = np.array([-1., 1.])
207
+
208
+ # Hermite coefficients representing zero.
209
+ hermzero = np.array([0])
210
+
211
+ # Hermite coefficients representing one.
212
+ hermone = np.array([1])
213
+
214
+ # Hermite coefficients representing the identity x.
215
+ hermx = np.array([0, 1 / 2])
216
+
217
+
218
+ def hermline(off, scl):
219
+ """
220
+ Hermite series whose graph is a straight line.
221
+
222
+
223
+
224
+ Parameters
225
+ ----------
226
+ off, scl : scalars
227
+ The specified line is given by ``off + scl*x``.
228
+
229
+ Returns
230
+ -------
231
+ y : ndarray
232
+ This module's representation of the Hermite series for
233
+ ``off + scl*x``.
234
+
235
+ See Also
236
+ --------
237
+ numpy.polynomial.polynomial.polyline
238
+ numpy.polynomial.chebyshev.chebline
239
+ numpy.polynomial.legendre.legline
240
+ numpy.polynomial.laguerre.lagline
241
+ numpy.polynomial.hermite_e.hermeline
242
+
243
+ Examples
244
+ --------
245
+ >>> from numpy.polynomial.hermite import hermline, hermval
246
+ >>> hermval(0,hermline(3, 2))
247
+ 3.0
248
+ >>> hermval(1,hermline(3, 2))
249
+ 5.0
250
+
251
+ """
252
+ if scl != 0:
253
+ return np.array([off, scl / 2])
254
+ else:
255
+ return np.array([off])
256
+
257
+
258
+ def hermfromroots(roots):
259
+ """
260
+ Generate a Hermite series with given roots.
261
+
262
+ The function returns the coefficients of the polynomial
263
+
264
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
265
+
266
+ in Hermite form, where the :math:`r_n` are the roots specified in `roots`.
267
+ If a zero has multiplicity n, then it must appear in `roots` n times.
268
+ For instance, if 2 is a root of multiplicity three and 3 is a root of
269
+ multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
270
+ roots can appear in any order.
271
+
272
+ If the returned coefficients are `c`, then
273
+
274
+ .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x)
275
+
276
+ The coefficient of the last term is not generally 1 for monic
277
+ polynomials in Hermite form.
278
+
279
+ Parameters
280
+ ----------
281
+ roots : array_like
282
+ Sequence containing the roots.
283
+
284
+ Returns
285
+ -------
286
+ out : ndarray
287
+ 1-D array of coefficients. If all roots are real then `out` is a
288
+ real array, if some of the roots are complex, then `out` is complex
289
+ even if all the coefficients in the result are real (see Examples
290
+ below).
291
+
292
+ See Also
293
+ --------
294
+ numpy.polynomial.polynomial.polyfromroots
295
+ numpy.polynomial.legendre.legfromroots
296
+ numpy.polynomial.laguerre.lagfromroots
297
+ numpy.polynomial.chebyshev.chebfromroots
298
+ numpy.polynomial.hermite_e.hermefromroots
299
+
300
+ Examples
301
+ --------
302
+ >>> from numpy.polynomial.hermite import hermfromroots, hermval
303
+ >>> coef = hermfromroots((-1, 0, 1))
304
+ >>> hermval((-1, 0, 1), coef)
305
+ array([0., 0., 0.])
306
+ >>> coef = hermfromroots((-1j, 1j))
307
+ >>> hermval((-1j, 1j), coef)
308
+ array([0.+0.j, 0.+0.j])
309
+
310
+ """
311
+ return pu._fromroots(hermline, hermmul, roots)
312
+
313
+
314
+ def hermadd(c1, c2):
315
+ """
316
+ Add one Hermite series to another.
317
+
318
+ Returns the sum of two Hermite series `c1` + `c2`. The arguments
319
+ are sequences of coefficients ordered from lowest order term to
320
+ highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
321
+
322
+ Parameters
323
+ ----------
324
+ c1, c2 : array_like
325
+ 1-D arrays of Hermite series coefficients ordered from low to
326
+ high.
327
+
328
+ Returns
329
+ -------
330
+ out : ndarray
331
+ Array representing the Hermite series of their sum.
332
+
333
+ See Also
334
+ --------
335
+ hermsub, hermmulx, hermmul, hermdiv, hermpow
336
+
337
+ Notes
338
+ -----
339
+ Unlike multiplication, division, etc., the sum of two Hermite series
340
+ is a Hermite series (without having to "reproject" the result onto
341
+ the basis set) so addition, just like that of "standard" polynomials,
342
+ is simply "component-wise."
343
+
344
+ Examples
345
+ --------
346
+ >>> from numpy.polynomial.hermite import hermadd
347
+ >>> hermadd([1, 2, 3], [1, 2, 3, 4])
348
+ array([2., 4., 6., 4.])
349
+
350
+ """
351
+ return pu._add(c1, c2)
352
+
353
+
354
+ def hermsub(c1, c2):
355
+ """
356
+ Subtract one Hermite series from another.
357
+
358
+ Returns the difference of two Hermite series `c1` - `c2`. The
359
+ sequences of coefficients are from lowest order term to highest, i.e.,
360
+ [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
361
+
362
+ Parameters
363
+ ----------
364
+ c1, c2 : array_like
365
+ 1-D arrays of Hermite series coefficients ordered from low to
366
+ high.
367
+
368
+ Returns
369
+ -------
370
+ out : ndarray
371
+ Of Hermite series coefficients representing their difference.
372
+
373
+ See Also
374
+ --------
375
+ hermadd, hermmulx, hermmul, hermdiv, hermpow
376
+
377
+ Notes
378
+ -----
379
+ Unlike multiplication, division, etc., the difference of two Hermite
380
+ series is a Hermite series (without having to "reproject" the result
381
+ onto the basis set) so subtraction, just like that of "standard"
382
+ polynomials, is simply "component-wise."
383
+
384
+ Examples
385
+ --------
386
+ >>> from numpy.polynomial.hermite import hermsub
387
+ >>> hermsub([1, 2, 3, 4], [1, 2, 3])
388
+ array([0., 0., 0., 4.])
389
+
390
+ """
391
+ return pu._sub(c1, c2)
392
+
393
+
394
+ def hermmulx(c):
395
+ """Multiply a Hermite series by x.
396
+
397
+ Multiply the Hermite series `c` by x, where x is the independent
398
+ variable.
399
+
400
+
401
+ Parameters
402
+ ----------
403
+ c : array_like
404
+ 1-D array of Hermite series coefficients ordered from low to
405
+ high.
406
+
407
+ Returns
408
+ -------
409
+ out : ndarray
410
+ Array representing the result of the multiplication.
411
+
412
+ See Also
413
+ --------
414
+ hermadd, hermsub, hermmul, hermdiv, hermpow
415
+
416
+ Notes
417
+ -----
418
+ The multiplication uses the recursion relationship for Hermite
419
+ polynomials in the form
420
+
421
+ .. math::
422
+
423
+ xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))
424
+
425
+ Examples
426
+ --------
427
+ >>> from numpy.polynomial.hermite import hermmulx
428
+ >>> hermmulx([1, 2, 3])
429
+ array([2. , 6.5, 1. , 1.5])
430
+
431
+ """
432
+ # c is a trimmed copy
433
+ [c] = pu.as_series([c])
434
+ # The zero series needs special treatment
435
+ if len(c) == 1 and c[0] == 0:
436
+ return c
437
+
438
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
439
+ prd[0] = c[0] * 0
440
+ prd[1] = c[0] / 2
441
+ for i in range(1, len(c)):
442
+ prd[i + 1] = c[i] / 2
443
+ prd[i - 1] += c[i] * i
444
+ return prd
445
+
446
+
447
+ def hermmul(c1, c2):
448
+ """
449
+ Multiply one Hermite series by another.
450
+
451
+ Returns the product of two Hermite series `c1` * `c2`. The arguments
452
+ are sequences of coefficients, from lowest order "term" to highest,
453
+ e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
454
+
455
+ Parameters
456
+ ----------
457
+ c1, c2 : array_like
458
+ 1-D arrays of Hermite series coefficients ordered from low to
459
+ high.
460
+
461
+ Returns
462
+ -------
463
+ out : ndarray
464
+ Of Hermite series coefficients representing their product.
465
+
466
+ See Also
467
+ --------
468
+ hermadd, hermsub, hermmulx, hermdiv, hermpow
469
+
470
+ Notes
471
+ -----
472
+ In general, the (polynomial) product of two C-series results in terms
473
+ that are not in the Hermite polynomial basis set. Thus, to express
474
+ the product as a Hermite series, it is necessary to "reproject" the
475
+ product onto said basis set, which may produce "unintuitive" (but
476
+ correct) results; see Examples section below.
477
+
478
+ Examples
479
+ --------
480
+ >>> from numpy.polynomial.hermite import hermmul
481
+ >>> hermmul([1, 2, 3], [0, 1, 2])
482
+ array([52., 29., 52., 7., 6.])
483
+
484
+ """
485
+ # s1, s2 are trimmed copies
486
+ [c1, c2] = pu.as_series([c1, c2])
487
+
488
+ if len(c1) > len(c2):
489
+ c = c2
490
+ xs = c1
491
+ else:
492
+ c = c1
493
+ xs = c2
494
+
495
+ if len(c) == 1:
496
+ c0 = c[0] * xs
497
+ c1 = 0
498
+ elif len(c) == 2:
499
+ c0 = c[0] * xs
500
+ c1 = c[1] * xs
501
+ else:
502
+ nd = len(c)
503
+ c0 = c[-2] * xs
504
+ c1 = c[-1] * xs
505
+ for i in range(3, len(c) + 1):
506
+ tmp = c0
507
+ nd = nd - 1
508
+ c0 = hermsub(c[-i] * xs, c1 * (2 * (nd - 1)))
509
+ c1 = hermadd(tmp, hermmulx(c1) * 2)
510
+ return hermadd(c0, hermmulx(c1) * 2)
511
+
512
+
513
+ def hermdiv(c1, c2):
514
+ """
515
+ Divide one Hermite series by another.
516
+
517
+ Returns the quotient-with-remainder of two Hermite series
518
+ `c1` / `c2`. The arguments are sequences of coefficients from lowest
519
+ order "term" to highest, e.g., [1,2,3] represents the series
520
+ ``P_0 + 2*P_1 + 3*P_2``.
521
+
522
+ Parameters
523
+ ----------
524
+ c1, c2 : array_like
525
+ 1-D arrays of Hermite series coefficients ordered from low to
526
+ high.
527
+
528
+ Returns
529
+ -------
530
+ [quo, rem] : ndarrays
531
+ Of Hermite series coefficients representing the quotient and
532
+ remainder.
533
+
534
+ See Also
535
+ --------
536
+ hermadd, hermsub, hermmulx, hermmul, hermpow
537
+
538
+ Notes
539
+ -----
540
+ In general, the (polynomial) division of one Hermite series by another
541
+ results in quotient and remainder terms that are not in the Hermite
542
+ polynomial basis set. Thus, to express these results as a Hermite
543
+ series, it is necessary to "reproject" the results onto the Hermite
544
+ basis set, which may produce "unintuitive" (but correct) results; see
545
+ Examples section below.
546
+
547
+ Examples
548
+ --------
549
+ >>> from numpy.polynomial.hermite import hermdiv
550
+ >>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2])
551
+ (array([1., 2., 3.]), array([0.]))
552
+ >>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2])
553
+ (array([1., 2., 3.]), array([2., 2.]))
554
+ >>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2])
555
+ (array([1., 2., 3.]), array([1., 1.]))
556
+
557
+ """
558
+ return pu._div(hermmul, c1, c2)
559
+
560
+
561
+ def hermpow(c, pow, maxpower=16):
562
+ """Raise a Hermite series to a power.
563
+
564
+ Returns the Hermite series `c` raised to the power `pow`. The
565
+ argument `c` is a sequence of coefficients ordered from low to high.
566
+ i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
567
+
568
+ Parameters
569
+ ----------
570
+ c : array_like
571
+ 1-D array of Hermite series coefficients ordered from low to
572
+ high.
573
+ pow : integer
574
+ Power to which the series will be raised
575
+ maxpower : integer, optional
576
+ Maximum power allowed. This is mainly to limit growth of the series
577
+ to unmanageable size. Default is 16
578
+
579
+ Returns
580
+ -------
581
+ coef : ndarray
582
+ Hermite series of power.
583
+
584
+ See Also
585
+ --------
586
+ hermadd, hermsub, hermmulx, hermmul, hermdiv
587
+
588
+ Examples
589
+ --------
590
+ >>> from numpy.polynomial.hermite import hermpow
591
+ >>> hermpow([1, 2, 3], 2)
592
+ array([81., 52., 82., 12., 9.])
593
+
594
+ """
595
+ return pu._pow(hermmul, c, pow, maxpower)
596
+
597
+
598
+ def hermder(c, m=1, scl=1, axis=0):
599
+ """
600
+ Differentiate a Hermite series.
601
+
602
+ Returns the Hermite series coefficients `c` differentiated `m` times
603
+ along `axis`. At each iteration the result is multiplied by `scl` (the
604
+ scaling factor is for use in a linear change of variable). The argument
605
+ `c` is an array of coefficients from low to high degree along each
606
+ axis, e.g., [1,2,3] represents the series ``1*H_0 + 2*H_1 + 3*H_2``
607
+ while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
608
+ 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is
609
+ ``y``.
610
+
611
+ Parameters
612
+ ----------
613
+ c : array_like
614
+ Array of Hermite series coefficients. If `c` is multidimensional the
615
+ different axis correspond to different variables with the degree in
616
+ each axis given by the corresponding index.
617
+ m : int, optional
618
+ Number of derivatives taken, must be non-negative. (Default: 1)
619
+ scl : scalar, optional
620
+ Each differentiation is multiplied by `scl`. The end result is
621
+ multiplication by ``scl**m``. This is for use in a linear change of
622
+ variable. (Default: 1)
623
+ axis : int, optional
624
+ Axis over which the derivative is taken. (Default: 0).
625
+
626
+ Returns
627
+ -------
628
+ der : ndarray
629
+ Hermite series of the derivative.
630
+
631
+ See Also
632
+ --------
633
+ hermint
634
+
635
+ Notes
636
+ -----
637
+ In general, the result of differentiating a Hermite series does not
638
+ resemble the same operation on a power series. Thus the result of this
639
+ function may be "unintuitive," albeit correct; see Examples section
640
+ below.
641
+
642
+ Examples
643
+ --------
644
+ >>> from numpy.polynomial.hermite import hermder
645
+ >>> hermder([ 1. , 0.5, 0.5, 0.5])
646
+ array([1., 2., 3.])
647
+ >>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
648
+ array([1., 2., 3.])
649
+
650
+ """
651
+ c = np.array(c, ndmin=1, copy=True)
652
+ if c.dtype.char in '?bBhHiIlLqQpP':
653
+ c = c.astype(np.double)
654
+ cnt = pu._as_int(m, "the order of derivation")
655
+ iaxis = pu._as_int(axis, "the axis")
656
+ if cnt < 0:
657
+ raise ValueError("The order of derivation must be non-negative")
658
+ iaxis = normalize_axis_index(iaxis, c.ndim)
659
+
660
+ if cnt == 0:
661
+ return c
662
+
663
+ c = np.moveaxis(c, iaxis, 0)
664
+ n = len(c)
665
+ if cnt >= n:
666
+ c = c[:1] * 0
667
+ else:
668
+ for i in range(cnt):
669
+ n = n - 1
670
+ c *= scl
671
+ der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
672
+ for j in range(n, 0, -1):
673
+ der[j - 1] = (2 * j) * c[j]
674
+ c = der
675
+ c = np.moveaxis(c, 0, iaxis)
676
+ return c
677
+
678
+
679
+ def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
680
+ """
681
+ Integrate a Hermite series.
682
+
683
+ Returns the Hermite series coefficients `c` integrated `m` times from
684
+ `lbnd` along `axis`. At each iteration the resulting series is
685
+ **multiplied** by `scl` and an integration constant, `k`, is added.
686
+ The scaling factor is for use in a linear change of variable. ("Buyer
687
+ beware": note that, depending on what one is doing, one may want `scl`
688
+ to be the reciprocal of what one might expect; for more information,
689
+ see the Notes section below.) The argument `c` is an array of
690
+ coefficients from low to high degree along each axis, e.g., [1,2,3]
691
+ represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
692
+ represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
693
+ 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
694
+
695
+ Parameters
696
+ ----------
697
+ c : array_like
698
+ Array of Hermite series coefficients. If c is multidimensional the
699
+ different axis correspond to different variables with the degree in
700
+ each axis given by the corresponding index.
701
+ m : int, optional
702
+ Order of integration, must be positive. (Default: 1)
703
+ k : {[], list, scalar}, optional
704
+ Integration constant(s). The value of the first integral at
705
+ ``lbnd`` is the first value in the list, the value of the second
706
+ integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
707
+ default), all constants are set to zero. If ``m == 1``, a single
708
+ scalar can be given instead of a list.
709
+ lbnd : scalar, optional
710
+ The lower bound of the integral. (Default: 0)
711
+ scl : scalar, optional
712
+ Following each integration the result is *multiplied* by `scl`
713
+ before the integration constant is added. (Default: 1)
714
+ axis : int, optional
715
+ Axis over which the integral is taken. (Default: 0).
716
+
717
+ Returns
718
+ -------
719
+ S : ndarray
720
+ Hermite series coefficients of the integral.
721
+
722
+ Raises
723
+ ------
724
+ ValueError
725
+ If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
726
+ ``np.ndim(scl) != 0``.
727
+
728
+ See Also
729
+ --------
730
+ hermder
731
+
732
+ Notes
733
+ -----
734
+ Note that the result of each integration is *multiplied* by `scl`.
735
+ Why is this important to note? Say one is making a linear change of
736
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
737
+ :math:`dx = du/a`, so one will need to set `scl` equal to
738
+ :math:`1/a` - perhaps not what one would have first thought.
739
+
740
+ Also note that, in general, the result of integrating a C-series needs
741
+ to be "reprojected" onto the C-series basis set. Thus, typically,
742
+ the result of this function is "unintuitive," albeit correct; see
743
+ Examples section below.
744
+
745
+ Examples
746
+ --------
747
+ >>> from numpy.polynomial.hermite import hermint
748
+ >>> hermint([1,2,3]) # integrate once, value 0 at 0.
749
+ array([1. , 0.5, 0.5, 0.5])
750
+ >>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
751
+ array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
752
+ >>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
753
+ array([2. , 0.5, 0.5, 0.5])
754
+ >>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
755
+ array([-2. , 0.5, 0.5, 0.5])
756
+ >>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
757
+ array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
758
+
759
+ """
760
+ c = np.array(c, ndmin=1, copy=True)
761
+ if c.dtype.char in '?bBhHiIlLqQpP':
762
+ c = c.astype(np.double)
763
+ if not np.iterable(k):
764
+ k = [k]
765
+ cnt = pu._as_int(m, "the order of integration")
766
+ iaxis = pu._as_int(axis, "the axis")
767
+ if cnt < 0:
768
+ raise ValueError("The order of integration must be non-negative")
769
+ if len(k) > cnt:
770
+ raise ValueError("Too many integration constants")
771
+ if np.ndim(lbnd) != 0:
772
+ raise ValueError("lbnd must be a scalar.")
773
+ if np.ndim(scl) != 0:
774
+ raise ValueError("scl must be a scalar.")
775
+ iaxis = normalize_axis_index(iaxis, c.ndim)
776
+
777
+ if cnt == 0:
778
+ return c
779
+
780
+ c = np.moveaxis(c, iaxis, 0)
781
+ k = list(k) + [0] * (cnt - len(k))
782
+ for i in range(cnt):
783
+ n = len(c)
784
+ c *= scl
785
+ if n == 1 and np.all(c[0] == 0):
786
+ c[0] += k[i]
787
+ else:
788
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
789
+ tmp[0] = c[0] * 0
790
+ tmp[1] = c[0] / 2
791
+ for j in range(1, n):
792
+ tmp[j + 1] = c[j] / (2 * (j + 1))
793
+ tmp[0] += k[i] - hermval(lbnd, tmp)
794
+ c = tmp
795
+ c = np.moveaxis(c, 0, iaxis)
796
+ return c
797
+
798
+
799
+ def hermval(x, c, tensor=True):
800
+ """
801
+ Evaluate an Hermite series at points x.
802
+
803
+ If `c` is of length ``n + 1``, this function returns the value:
804
+
805
+ .. math:: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x)
806
+
807
+ The parameter `x` is converted to an array only if it is a tuple or a
808
+ list, otherwise it is treated as a scalar. In either case, either `x`
809
+ or its elements must support multiplication and addition both with
810
+ themselves and with the elements of `c`.
811
+
812
+ If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If
813
+ `c` is multidimensional, then the shape of the result depends on the
814
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
815
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
816
+ scalars have shape (,).
817
+
818
+ Trailing zeros in the coefficients will be used in the evaluation, so
819
+ they should be avoided if efficiency is a concern.
820
+
821
+ Parameters
822
+ ----------
823
+ x : array_like, compatible object
824
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
825
+ it is left unchanged and treated as a scalar. In either case, `x`
826
+ or its elements must support addition and multiplication with
827
+ themselves and with the elements of `c`.
828
+ c : array_like
829
+ Array of coefficients ordered so that the coefficients for terms of
830
+ degree n are contained in c[n]. If `c` is multidimensional the
831
+ remaining indices enumerate multiple polynomials. In the two
832
+ dimensional case the coefficients may be thought of as stored in
833
+ the columns of `c`.
834
+ tensor : boolean, optional
835
+ If True, the shape of the coefficient array is extended with ones
836
+ on the right, one for each dimension of `x`. Scalars have dimension 0
837
+ for this action. The result is that every column of coefficients in
838
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
839
+ over the columns of `c` for the evaluation. This keyword is useful
840
+ when `c` is multidimensional. The default value is True.
841
+
842
+ Returns
843
+ -------
844
+ values : ndarray, algebra_like
845
+ The shape of the return value is described above.
846
+
847
+ See Also
848
+ --------
849
+ hermval2d, hermgrid2d, hermval3d, hermgrid3d
850
+
851
+ Notes
852
+ -----
853
+ The evaluation uses Clenshaw recursion, aka synthetic division.
854
+
855
+ Examples
856
+ --------
857
+ >>> from numpy.polynomial.hermite import hermval
858
+ >>> coef = [1,2,3]
859
+ >>> hermval(1, coef)
860
+ 11.0
861
+ >>> hermval([[1,2],[3,4]], coef)
862
+ array([[ 11., 51.],
863
+ [115., 203.]])
864
+
865
+ """
866
+ c = np.array(c, ndmin=1, copy=None)
867
+ if c.dtype.char in '?bBhHiIlLqQpP':
868
+ c = c.astype(np.double)
869
+ if isinstance(x, (tuple, list)):
870
+ x = np.asarray(x)
871
+ if isinstance(x, np.ndarray) and tensor:
872
+ c = c.reshape(c.shape + (1,) * x.ndim)
873
+
874
+ x2 = x * 2
875
+ if len(c) == 1:
876
+ c0 = c[0]
877
+ c1 = 0
878
+ elif len(c) == 2:
879
+ c0 = c[0]
880
+ c1 = c[1]
881
+ else:
882
+ nd = len(c)
883
+ c0 = c[-2]
884
+ c1 = c[-1]
885
+ for i in range(3, len(c) + 1):
886
+ tmp = c0
887
+ nd = nd - 1
888
+ c0 = c[-i] - c1 * (2 * (nd - 1))
889
+ c1 = tmp + c1 * x2
890
+ return c0 + c1 * x2
891
+
892
+
893
+ def hermval2d(x, y, c):
894
+ """
895
+ Evaluate a 2-D Hermite series at points (x, y).
896
+
897
+ This function returns the values:
898
+
899
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * H_i(x) * H_j(y)
900
+
901
+ The parameters `x` and `y` are converted to arrays only if they are
902
+ tuples or a lists, otherwise they are treated as a scalars and they
903
+ must have the same shape after conversion. In either case, either `x`
904
+ and `y` or their elements must support multiplication and addition both
905
+ with themselves and with the elements of `c`.
906
+
907
+ If `c` is a 1-D array a one is implicitly appended to its shape to make
908
+ it 2-D. The shape of the result will be c.shape[2:] + x.shape.
909
+
910
+ Parameters
911
+ ----------
912
+ x, y : array_like, compatible objects
913
+ The two dimensional series is evaluated at the points ``(x, y)``,
914
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
915
+ or tuple, it is first converted to an ndarray, otherwise it is left
916
+ unchanged and if it isn't an ndarray it is treated as a scalar.
917
+ c : array_like
918
+ Array of coefficients ordered so that the coefficient of the term
919
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
920
+ dimension greater than two the remaining indices enumerate multiple
921
+ sets of coefficients.
922
+
923
+ Returns
924
+ -------
925
+ values : ndarray, compatible object
926
+ The values of the two dimensional polynomial at points formed with
927
+ pairs of corresponding values from `x` and `y`.
928
+
929
+ See Also
930
+ --------
931
+ hermval, hermgrid2d, hermval3d, hermgrid3d
932
+
933
+ Examples
934
+ --------
935
+ >>> from numpy.polynomial.hermite import hermval2d
936
+ >>> x = [1, 2]
937
+ >>> y = [4, 5]
938
+ >>> c = [[1, 2, 3], [4, 5, 6]]
939
+ >>> hermval2d(x, y, c)
940
+ array([1035., 2883.])
941
+
942
+ """
943
+ return pu._valnd(hermval, c, x, y)
944
+
945
+
946
+ def hermgrid2d(x, y, c):
947
+ """
948
+ Evaluate a 2-D Hermite series on the Cartesian product of x and y.
949
+
950
+ This function returns the values:
951
+
952
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
953
+
954
+ where the points ``(a, b)`` consist of all pairs formed by taking
955
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
956
+ `x` in the first dimension and `y` in the second.
957
+
958
+ The parameters `x` and `y` are converted to arrays only if they are
959
+ tuples or a lists, otherwise they are treated as a scalars. In either
960
+ case, either `x` and `y` or their elements must support multiplication
961
+ and addition both with themselves and with the elements of `c`.
962
+
963
+ If `c` has fewer than two dimensions, ones are implicitly appended to
964
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
965
+ x.shape.
966
+
967
+ Parameters
968
+ ----------
969
+ x, y : array_like, compatible objects
970
+ The two dimensional series is evaluated at the points in the
971
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
972
+ tuple, it is first converted to an ndarray, otherwise it is left
973
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
974
+ c : array_like
975
+ Array of coefficients ordered so that the coefficients for terms of
976
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
977
+ greater than two the remaining indices enumerate multiple sets of
978
+ coefficients.
979
+
980
+ Returns
981
+ -------
982
+ values : ndarray, compatible object
983
+ The values of the two dimensional polynomial at points in the Cartesian
984
+ product of `x` and `y`.
985
+
986
+ See Also
987
+ --------
988
+ hermval, hermval2d, hermval3d, hermgrid3d
989
+
990
+ Examples
991
+ --------
992
+ >>> from numpy.polynomial.hermite import hermgrid2d
993
+ >>> x = [1, 2, 3]
994
+ >>> y = [4, 5]
995
+ >>> c = [[1, 2, 3], [4, 5, 6]]
996
+ >>> hermgrid2d(x, y, c)
997
+ array([[1035., 1599.],
998
+ [1867., 2883.],
999
+ [2699., 4167.]])
1000
+
1001
+ """
1002
+ return pu._gridnd(hermval, c, x, y)
1003
+
1004
+
1005
+ def hermval3d(x, y, z, c):
1006
+ """
1007
+ Evaluate a 3-D Hermite series at points (x, y, z).
1008
+
1009
+ This function returns the values:
1010
+
1011
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z)
1012
+
1013
+ The parameters `x`, `y`, and `z` are converted to arrays only if
1014
+ they are tuples or a lists, otherwise they are treated as a scalars and
1015
+ they must have the same shape after conversion. In either case, either
1016
+ `x`, `y`, and `z` or their elements must support multiplication and
1017
+ addition both with themselves and with the elements of `c`.
1018
+
1019
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
1020
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
1021
+ x.shape.
1022
+
1023
+ Parameters
1024
+ ----------
1025
+ x, y, z : array_like, compatible object
1026
+ The three dimensional series is evaluated at the points
1027
+ ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If
1028
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
1029
+ to an ndarray, otherwise it is left unchanged and if it isn't an
1030
+ ndarray it is treated as a scalar.
1031
+ c : array_like
1032
+ Array of coefficients ordered so that the coefficient of the term of
1033
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
1034
+ greater than 3 the remaining indices enumerate multiple sets of
1035
+ coefficients.
1036
+
1037
+ Returns
1038
+ -------
1039
+ values : ndarray, compatible object
1040
+ The values of the multidimensional polynomial on points formed with
1041
+ triples of corresponding values from `x`, `y`, and `z`.
1042
+
1043
+ See Also
1044
+ --------
1045
+ hermval, hermval2d, hermgrid2d, hermgrid3d
1046
+
1047
+ Examples
1048
+ --------
1049
+ >>> from numpy.polynomial.hermite import hermval3d
1050
+ >>> x = [1, 2]
1051
+ >>> y = [4, 5]
1052
+ >>> z = [6, 7]
1053
+ >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
1054
+ >>> hermval3d(x, y, z, c)
1055
+ array([ 40077., 120131.])
1056
+
1057
+ """
1058
+ return pu._valnd(hermval, c, x, y, z)
1059
+
1060
+
1061
+ def hermgrid3d(x, y, z, c):
1062
+ """
1063
+ Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.
1064
+
1065
+ This function returns the values:
1066
+
1067
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c)
1068
+
1069
+ where the points ``(a, b, c)`` consist of all triples formed by taking
1070
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
1071
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
1072
+ the third.
1073
+
1074
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
1075
+ are tuples or a lists, otherwise they are treated as a scalars. In
1076
+ either case, either `x`, `y`, and `z` or their elements must support
1077
+ multiplication and addition both with themselves and with the elements
1078
+ of `c`.
1079
+
1080
+ If `c` has fewer than three dimensions, ones are implicitly appended to
1081
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
1082
+ x.shape + y.shape + z.shape.
1083
+
1084
+ Parameters
1085
+ ----------
1086
+ x, y, z : array_like, compatible objects
1087
+ The three dimensional series is evaluated at the points in the
1088
+ Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a
1089
+ list or tuple, it is first converted to an ndarray, otherwise it is
1090
+ left unchanged and, if it isn't an ndarray, it is treated as a
1091
+ scalar.
1092
+ c : array_like
1093
+ Array of coefficients ordered so that the coefficients for terms of
1094
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
1095
+ greater than two the remaining indices enumerate multiple sets of
1096
+ coefficients.
1097
+
1098
+ Returns
1099
+ -------
1100
+ values : ndarray, compatible object
1101
+ The values of the two dimensional polynomial at points in the Cartesian
1102
+ product of `x` and `y`.
1103
+
1104
+ See Also
1105
+ --------
1106
+ hermval, hermval2d, hermgrid2d, hermval3d
1107
+
1108
+ Examples
1109
+ --------
1110
+ >>> from numpy.polynomial.hermite import hermgrid3d
1111
+ >>> x = [1, 2]
1112
+ >>> y = [4, 5]
1113
+ >>> z = [6, 7]
1114
+ >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
1115
+ >>> hermgrid3d(x, y, z, c)
1116
+ array([[[ 40077., 54117.],
1117
+ [ 49293., 66561.]],
1118
+ [[ 72375., 97719.],
1119
+ [ 88975., 120131.]]])
1120
+
1121
+ """
1122
+ return pu._gridnd(hermval, c, x, y, z)
1123
+
1124
+
1125
+ def hermvander(x, deg):
1126
+ """Pseudo-Vandermonde matrix of given degree.
1127
+
1128
+ Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
1129
+ `x`. The pseudo-Vandermonde matrix is defined by
1130
+
1131
+ .. math:: V[..., i] = H_i(x),
1132
+
1133
+ where ``0 <= i <= deg``. The leading indices of `V` index the elements of
1134
+ `x` and the last index is the degree of the Hermite polynomial.
1135
+
1136
+ If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the
1137
+ array ``V = hermvander(x, n)``, then ``np.dot(V, c)`` and
1138
+ ``hermval(x, c)`` are the same up to roundoff. This equivalence is
1139
+ useful both for least squares fitting and for the evaluation of a large
1140
+ number of Hermite series of the same degree and sample points.
1141
+
1142
+ Parameters
1143
+ ----------
1144
+ x : array_like
1145
+ Array of points. The dtype is converted to float64 or complex128
1146
+ depending on whether any of the elements are complex. If `x` is
1147
+ scalar it is converted to a 1-D array.
1148
+ deg : int
1149
+ Degree of the resulting matrix.
1150
+
1151
+ Returns
1152
+ -------
1153
+ vander : ndarray
1154
+ The pseudo-Vandermonde matrix. The shape of the returned matrix is
1155
+ ``x.shape + (deg + 1,)``, where The last index is the degree of the
1156
+ corresponding Hermite polynomial. The dtype will be the same as
1157
+ the converted `x`.
1158
+
1159
+ Examples
1160
+ --------
1161
+ >>> import numpy as np
1162
+ >>> from numpy.polynomial.hermite import hermvander
1163
+ >>> x = np.array([-1, 0, 1])
1164
+ >>> hermvander(x, 3)
1165
+ array([[ 1., -2., 2., 4.],
1166
+ [ 1., 0., -2., -0.],
1167
+ [ 1., 2., 2., -4.]])
1168
+
1169
+ """
1170
+ ideg = pu._as_int(deg, "deg")
1171
+ if ideg < 0:
1172
+ raise ValueError("deg must be non-negative")
1173
+
1174
+ x = np.array(x, copy=None, ndmin=1) + 0.0
1175
+ dims = (ideg + 1,) + x.shape
1176
+ dtyp = x.dtype
1177
+ v = np.empty(dims, dtype=dtyp)
1178
+ v[0] = x * 0 + 1
1179
+ if ideg > 0:
1180
+ x2 = x * 2
1181
+ v[1] = x2
1182
+ for i in range(2, ideg + 1):
1183
+ v[i] = (v[i - 1] * x2 - v[i - 2] * (2 * (i - 1)))
1184
+ return np.moveaxis(v, 0, -1)
1185
+
1186
+
1187
+ def hermvander2d(x, y, deg):
1188
+ """Pseudo-Vandermonde matrix of given degrees.
1189
+
1190
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1191
+ points ``(x, y)``. The pseudo-Vandermonde matrix is defined by
1192
+
1193
+ .. math:: V[..., (deg[1] + 1)*i + j] = H_i(x) * H_j(y),
1194
+
1195
+ where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of
1196
+ `V` index the points ``(x, y)`` and the last index encodes the degrees of
1197
+ the Hermite polynomials.
1198
+
1199
+ If ``V = hermvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
1200
+ correspond to the elements of a 2-D coefficient array `c` of shape
1201
+ (xdeg + 1, ydeg + 1) in the order
1202
+
1203
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
1204
+
1205
+ and ``np.dot(V, c.flat)`` and ``hermval2d(x, y, c)`` will be the same
1206
+ up to roundoff. This equivalence is useful both for least squares
1207
+ fitting and for the evaluation of a large number of 2-D Hermite
1208
+ series of the same degrees and sample points.
1209
+
1210
+ Parameters
1211
+ ----------
1212
+ x, y : array_like
1213
+ Arrays of point coordinates, all of the same shape. The dtypes
1214
+ will be converted to either float64 or complex128 depending on
1215
+ whether any of the elements are complex. Scalars are converted to 1-D
1216
+ arrays.
1217
+ deg : list of ints
1218
+ List of maximum degrees of the form [x_deg, y_deg].
1219
+
1220
+ Returns
1221
+ -------
1222
+ vander2d : ndarray
1223
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1224
+ :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
1225
+ as the converted `x` and `y`.
1226
+
1227
+ See Also
1228
+ --------
1229
+ hermvander, hermvander3d, hermval2d, hermval3d
1230
+
1231
+ Examples
1232
+ --------
1233
+ >>> import numpy as np
1234
+ >>> from numpy.polynomial.hermite import hermvander2d
1235
+ >>> x = np.array([-1, 0, 1])
1236
+ >>> y = np.array([-1, 0, 1])
1237
+ >>> hermvander2d(x, y, [2, 2])
1238
+ array([[ 1., -2., 2., -2., 4., -4., 2., -4., 4.],
1239
+ [ 1., 0., -2., 0., 0., -0., -2., -0., 4.],
1240
+ [ 1., 2., 2., 2., 4., 4., 2., 4., 4.]])
1241
+
1242
+ """
1243
+ return pu._vander_nd_flat((hermvander, hermvander), (x, y), deg)
1244
+
1245
+
1246
+ def hermvander3d(x, y, z, deg):
1247
+ """Pseudo-Vandermonde matrix of given degrees.
1248
+
1249
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1250
+ points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`,
1251
+ then The pseudo-Vandermonde matrix is defined by
1252
+
1253
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z),
1254
+
1255
+ where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading
1256
+ indices of `V` index the points ``(x, y, z)`` and the last index encodes
1257
+ the degrees of the Hermite polynomials.
1258
+
1259
+ If ``V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
1260
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
1261
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
1262
+
1263
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
1264
+
1265
+ and ``np.dot(V, c.flat)`` and ``hermval3d(x, y, z, c)`` will be the
1266
+ same up to roundoff. This equivalence is useful both for least squares
1267
+ fitting and for the evaluation of a large number of 3-D Hermite
1268
+ series of the same degrees and sample points.
1269
+
1270
+ Parameters
1271
+ ----------
1272
+ x, y, z : array_like
1273
+ Arrays of point coordinates, all of the same shape. The dtypes will
1274
+ be converted to either float64 or complex128 depending on whether
1275
+ any of the elements are complex. Scalars are converted to 1-D
1276
+ arrays.
1277
+ deg : list of ints
1278
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
1279
+
1280
+ Returns
1281
+ -------
1282
+ vander3d : ndarray
1283
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1284
+ :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
1285
+ be the same as the converted `x`, `y`, and `z`.
1286
+
1287
+ See Also
1288
+ --------
1289
+ hermvander, hermvander3d, hermval2d, hermval3d
1290
+
1291
+ Examples
1292
+ --------
1293
+ >>> from numpy.polynomial.hermite import hermvander3d
1294
+ >>> x = np.array([-1, 0, 1])
1295
+ >>> y = np.array([-1, 0, 1])
1296
+ >>> z = np.array([-1, 0, 1])
1297
+ >>> hermvander3d(x, y, z, [0, 1, 2])
1298
+ array([[ 1., -2., 2., -2., 4., -4.],
1299
+ [ 1., 0., -2., 0., 0., -0.],
1300
+ [ 1., 2., 2., 2., 4., 4.]])
1301
+
1302
+ """
1303
+ return pu._vander_nd_flat((hermvander, hermvander, hermvander), (x, y, z), deg)
1304
+
1305
+
1306
+ def hermfit(x, y, deg, rcond=None, full=False, w=None):
1307
+ """
1308
+ Least squares fit of Hermite series to data.
1309
+
1310
+ Return the coefficients of a Hermite series of degree `deg` that is the
1311
+ least squares fit to the data values `y` given at points `x`. If `y` is
1312
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
1313
+ fits are done, one for each column of `y`, and the resulting
1314
+ coefficients are stored in the corresponding columns of a 2-D return.
1315
+ The fitted polynomial(s) are in the form
1316
+
1317
+ .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x),
1318
+
1319
+ where `n` is `deg`.
1320
+
1321
+ Parameters
1322
+ ----------
1323
+ x : array_like, shape (M,)
1324
+ x-coordinates of the M sample points ``(x[i], y[i])``.
1325
+ y : array_like, shape (M,) or (M, K)
1326
+ y-coordinates of the sample points. Several data sets of sample
1327
+ points sharing the same x-coordinates can be fitted at once by
1328
+ passing in a 2D-array that contains one dataset per column.
1329
+ deg : int or 1-D array_like
1330
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
1331
+ all terms up to and including the `deg`'th term are included in the
1332
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
1333
+ degrees of the terms to include may be used instead.
1334
+ rcond : float, optional
1335
+ Relative condition number of the fit. Singular values smaller than
1336
+ this relative to the largest singular value will be ignored. The
1337
+ default value is len(x)*eps, where eps is the relative precision of
1338
+ the float type, about 2e-16 in most cases.
1339
+ full : bool, optional
1340
+ Switch determining nature of return value. When it is False (the
1341
+ default) just the coefficients are returned, when True diagnostic
1342
+ information from the singular value decomposition is also returned.
1343
+ w : array_like, shape (`M`,), optional
1344
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
1345
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
1346
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
1347
+ same variance. When using inverse-variance weighting, use
1348
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
1349
+
1350
+ Returns
1351
+ -------
1352
+ coef : ndarray, shape (M,) or (M, K)
1353
+ Hermite coefficients ordered from low to high. If `y` was 2-D,
1354
+ the coefficients for the data in column k of `y` are in column
1355
+ `k`.
1356
+
1357
+ [residuals, rank, singular_values, rcond] : list
1358
+ These values are only returned if ``full == True``
1359
+
1360
+ - residuals -- sum of squared residuals of the least squares fit
1361
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1362
+ - singular_values -- singular values of the scaled Vandermonde matrix
1363
+ - rcond -- value of `rcond`.
1364
+
1365
+ For more details, see `numpy.linalg.lstsq`.
1366
+
1367
+ Warns
1368
+ -----
1369
+ RankWarning
1370
+ The rank of the coefficient matrix in the least-squares fit is
1371
+ deficient. The warning is only raised if ``full == False``. The
1372
+ warnings can be turned off by
1373
+
1374
+ >>> import warnings
1375
+ >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
1376
+
1377
+ See Also
1378
+ --------
1379
+ numpy.polynomial.chebyshev.chebfit
1380
+ numpy.polynomial.legendre.legfit
1381
+ numpy.polynomial.laguerre.lagfit
1382
+ numpy.polynomial.polynomial.polyfit
1383
+ numpy.polynomial.hermite_e.hermefit
1384
+ hermval : Evaluates a Hermite series.
1385
+ hermvander : Vandermonde matrix of Hermite series.
1386
+ hermweight : Hermite weight function
1387
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
1388
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
1389
+
1390
+ Notes
1391
+ -----
1392
+ The solution is the coefficients of the Hermite series `p` that
1393
+ minimizes the sum of the weighted squared errors
1394
+
1395
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
1396
+
1397
+ where the :math:`w_j` are the weights. This problem is solved by
1398
+ setting up the (typically) overdetermined matrix equation
1399
+
1400
+ .. math:: V(x) * c = w * y,
1401
+
1402
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
1403
+ coefficients to be solved for, `w` are the weights, `y` are the
1404
+ observed values. This equation is then solved using the singular value
1405
+ decomposition of `V`.
1406
+
1407
+ If some of the singular values of `V` are so small that they are
1408
+ neglected, then a `~exceptions.RankWarning` will be issued. This means that
1409
+ the coefficient values may be poorly determined. Using a lower order fit
1410
+ will usually get rid of the warning. The `rcond` parameter can also be
1411
+ set to a value smaller than its default, but the resulting fit may be
1412
+ spurious and have large contributions from roundoff error.
1413
+
1414
+ Fits using Hermite series are probably most useful when the data can be
1415
+ approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Hermite
1416
+ weight. In that case the weight ``sqrt(w(x[i]))`` should be used
1417
+ together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
1418
+ available as `hermweight`.
1419
+
1420
+ References
1421
+ ----------
1422
+ .. [1] Wikipedia, "Curve fitting",
1423
+ https://en.wikipedia.org/wiki/Curve_fitting
1424
+
1425
+ Examples
1426
+ --------
1427
+ >>> import numpy as np
1428
+ >>> from numpy.polynomial.hermite import hermfit, hermval
1429
+ >>> x = np.linspace(-10, 10)
1430
+ >>> rng = np.random.default_rng()
1431
+ >>> err = rng.normal(scale=1./10, size=len(x))
1432
+ >>> y = hermval(x, [1, 2, 3]) + err
1433
+ >>> hermfit(x, y, 2)
1434
+ array([1.02294967, 2.00016403, 2.99994614]) # may vary
1435
+
1436
+ """
1437
+ return pu._fit(hermvander, x, y, deg, rcond, full, w)
1438
+
1439
+
1440
+ def hermcompanion(c):
1441
+ """Return the scaled companion matrix of c.
1442
+
1443
+ The basis polynomials are scaled so that the companion matrix is
1444
+ symmetric when `c` is an Hermite basis polynomial. This provides
1445
+ better eigenvalue estimates than the unscaled case and for basis
1446
+ polynomials the eigenvalues are guaranteed to be real if
1447
+ `numpy.linalg.eigvalsh` is used to obtain them.
1448
+
1449
+ Parameters
1450
+ ----------
1451
+ c : array_like
1452
+ 1-D array of Hermite series coefficients ordered from low to high
1453
+ degree.
1454
+
1455
+ Returns
1456
+ -------
1457
+ mat : ndarray
1458
+ Scaled companion matrix of dimensions (deg, deg).
1459
+
1460
+ Examples
1461
+ --------
1462
+ >>> from numpy.polynomial.hermite import hermcompanion
1463
+ >>> hermcompanion([1, 0, 1])
1464
+ array([[0. , 0.35355339],
1465
+ [0.70710678, 0. ]])
1466
+
1467
+ """
1468
+ # c is a trimmed copy
1469
+ [c] = pu.as_series([c])
1470
+ if len(c) < 2:
1471
+ raise ValueError('Series must have maximum degree of at least 1.')
1472
+ if len(c) == 2:
1473
+ return np.array([[-.5 * c[0] / c[1]]])
1474
+
1475
+ n = len(c) - 1
1476
+ mat = np.zeros((n, n), dtype=c.dtype)
1477
+ scl = np.hstack((1., 1. / np.sqrt(2. * np.arange(n - 1, 0, -1))))
1478
+ scl = np.multiply.accumulate(scl)[::-1]
1479
+ top = mat.reshape(-1)[1::n + 1]
1480
+ bot = mat.reshape(-1)[n::n + 1]
1481
+ top[...] = np.sqrt(.5 * np.arange(1, n))
1482
+ bot[...] = top
1483
+ mat[:, -1] -= scl * c[:-1] / (2.0 * c[-1])
1484
+ return mat
1485
+
1486
+
1487
+ def hermroots(c):
1488
+ """
1489
+ Compute the roots of a Hermite series.
1490
+
1491
+ Return the roots (a.k.a. "zeros") of the polynomial
1492
+
1493
+ .. math:: p(x) = \\sum_i c[i] * H_i(x).
1494
+
1495
+ Parameters
1496
+ ----------
1497
+ c : 1-D array_like
1498
+ 1-D array of coefficients.
1499
+
1500
+ Returns
1501
+ -------
1502
+ out : ndarray
1503
+ Array of the roots of the series. If all the roots are real,
1504
+ then `out` is also real, otherwise it is complex.
1505
+
1506
+ See Also
1507
+ --------
1508
+ numpy.polynomial.polynomial.polyroots
1509
+ numpy.polynomial.legendre.legroots
1510
+ numpy.polynomial.laguerre.lagroots
1511
+ numpy.polynomial.chebyshev.chebroots
1512
+ numpy.polynomial.hermite_e.hermeroots
1513
+
1514
+ Notes
1515
+ -----
1516
+ The root estimates are obtained as the eigenvalues of the companion
1517
+ matrix, Roots far from the origin of the complex plane may have large
1518
+ errors due to the numerical instability of the series for such
1519
+ values. Roots with multiplicity greater than 1 will also show larger
1520
+ errors as the value of the series near such points is relatively
1521
+ insensitive to errors in the roots. Isolated roots near the origin can
1522
+ be improved by a few iterations of Newton's method.
1523
+
1524
+ The Hermite series basis polynomials aren't powers of `x` so the
1525
+ results of this function may seem unintuitive.
1526
+
1527
+ Examples
1528
+ --------
1529
+ >>> from numpy.polynomial.hermite import hermroots, hermfromroots
1530
+ >>> coef = hermfromroots([-1, 0, 1])
1531
+ >>> coef
1532
+ array([0. , 0.25 , 0. , 0.125])
1533
+ >>> hermroots(coef)
1534
+ array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])
1535
+
1536
+ """
1537
+ # c is a trimmed copy
1538
+ [c] = pu.as_series([c])
1539
+ if len(c) <= 1:
1540
+ return np.array([], dtype=c.dtype)
1541
+ if len(c) == 2:
1542
+ return np.array([-.5 * c[0] / c[1]])
1543
+
1544
+ # rotated companion matrix reduces error
1545
+ m = hermcompanion(c)[::-1, ::-1]
1546
+ r = la.eigvals(m)
1547
+ r.sort()
1548
+ return r
1549
+
1550
+
1551
+ def _normed_hermite_n(x, n):
1552
+ """
1553
+ Evaluate a normalized Hermite polynomial.
1554
+
1555
+ Compute the value of the normalized Hermite polynomial of degree ``n``
1556
+ at the points ``x``.
1557
+
1558
+
1559
+ Parameters
1560
+ ----------
1561
+ x : ndarray of double.
1562
+ Points at which to evaluate the function
1563
+ n : int
1564
+ Degree of the normalized Hermite function to be evaluated.
1565
+
1566
+ Returns
1567
+ -------
1568
+ values : ndarray
1569
+ The shape of the return value is described above.
1570
+
1571
+ Notes
1572
+ -----
1573
+ This function is needed for finding the Gauss points and integration
1574
+ weights for high degrees. The values of the standard Hermite functions
1575
+ overflow when n >= 207.
1576
+
1577
+ """
1578
+ if n == 0:
1579
+ return np.full(x.shape, 1 / np.sqrt(np.sqrt(np.pi)))
1580
+
1581
+ c0 = 0.
1582
+ c1 = 1. / np.sqrt(np.sqrt(np.pi))
1583
+ nd = float(n)
1584
+ for i in range(n - 1):
1585
+ tmp = c0
1586
+ c0 = -c1 * np.sqrt((nd - 1.) / nd)
1587
+ c1 = tmp + c1 * x * np.sqrt(2. / nd)
1588
+ nd = nd - 1.0
1589
+ return c0 + c1 * x * np.sqrt(2)
1590
+
1591
+
1592
+ def hermgauss(deg):
1593
+ """
1594
+ Gauss-Hermite quadrature.
1595
+
1596
+ Computes the sample points and weights for Gauss-Hermite quadrature.
1597
+ These sample points and weights will correctly integrate polynomials of
1598
+ degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
1599
+ with the weight function :math:`f(x) = \\exp(-x^2)`.
1600
+
1601
+ Parameters
1602
+ ----------
1603
+ deg : int
1604
+ Number of sample points and weights. It must be >= 1.
1605
+
1606
+ Returns
1607
+ -------
1608
+ x : ndarray
1609
+ 1-D ndarray containing the sample points.
1610
+ y : ndarray
1611
+ 1-D ndarray containing the weights.
1612
+
1613
+ Notes
1614
+ -----
1615
+ The results have only been tested up to degree 100, higher degrees may
1616
+ be problematic. The weights are determined by using the fact that
1617
+
1618
+ .. math:: w_k = c / (H'_n(x_k) * H_{n-1}(x_k))
1619
+
1620
+ where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
1621
+ is the k'th root of :math:`H_n`, and then scaling the results to get
1622
+ the right value when integrating 1.
1623
+
1624
+ Examples
1625
+ --------
1626
+ >>> from numpy.polynomial.hermite import hermgauss
1627
+ >>> hermgauss(2)
1628
+ (array([-0.70710678, 0.70710678]), array([0.88622693, 0.88622693]))
1629
+
1630
+ """
1631
+ ideg = pu._as_int(deg, "deg")
1632
+ if ideg <= 0:
1633
+ raise ValueError("deg must be a positive integer")
1634
+
1635
+ # first approximation of roots. We use the fact that the companion
1636
+ # matrix is symmetric in this case in order to obtain better zeros.
1637
+ c = np.array([0] * deg + [1], dtype=np.float64)
1638
+ m = hermcompanion(c)
1639
+ x = la.eigvalsh(m)
1640
+
1641
+ # improve roots by one application of Newton
1642
+ dy = _normed_hermite_n(x, ideg)
1643
+ df = _normed_hermite_n(x, ideg - 1) * np.sqrt(2 * ideg)
1644
+ x -= dy / df
1645
+
1646
+ # compute the weights. We scale the factor to avoid possible numerical
1647
+ # overflow.
1648
+ fm = _normed_hermite_n(x, ideg - 1)
1649
+ fm /= np.abs(fm).max()
1650
+ w = 1 / (fm * fm)
1651
+
1652
+ # for Hermite we can also symmetrize
1653
+ w = (w + w[::-1]) / 2
1654
+ x = (x - x[::-1]) / 2
1655
+
1656
+ # scale w to get the right value
1657
+ w *= np.sqrt(np.pi) / w.sum()
1658
+
1659
+ return x, w
1660
+
1661
+
1662
+ def hermweight(x):
1663
+ """
1664
+ Weight function of the Hermite polynomials.
1665
+
1666
+ The weight function is :math:`\\exp(-x^2)` and the interval of
1667
+ integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are
1668
+ orthogonal, but not normalized, with respect to this weight function.
1669
+
1670
+ Parameters
1671
+ ----------
1672
+ x : array_like
1673
+ Values at which the weight function will be computed.
1674
+
1675
+ Returns
1676
+ -------
1677
+ w : ndarray
1678
+ The weight function at `x`.
1679
+
1680
+ Examples
1681
+ --------
1682
+ >>> import numpy as np
1683
+ >>> from numpy.polynomial.hermite import hermweight
1684
+ >>> x = np.arange(-2, 2)
1685
+ >>> hermweight(x)
1686
+ array([0.01831564, 0.36787944, 1. , 0.36787944])
1687
+
1688
+ """
1689
+ w = np.exp(-x**2)
1690
+ return w
1691
+
1692
+
1693
+ #
1694
+ # Hermite series class
1695
+ #
1696
+
1697
+ class Hermite(ABCPolyBase):
1698
+ """An Hermite series class.
1699
+
1700
+ The Hermite class provides the standard Python numerical methods
1701
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
1702
+ attributes and methods listed below.
1703
+
1704
+ Parameters
1705
+ ----------
1706
+ coef : array_like
1707
+ Hermite coefficients in order of increasing degree, i.e,
1708
+ ``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(x) + 3*H_2(x)``.
1709
+ domain : (2,) array_like, optional
1710
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
1711
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
1712
+ The default value is [-1., 1.].
1713
+ window : (2,) array_like, optional
1714
+ Window, see `domain` for its use. The default value is [-1., 1.].
1715
+ symbol : str, optional
1716
+ Symbol used to represent the independent variable in string
1717
+ representations of the polynomial expression, e.g. for printing.
1718
+ The symbol must be a valid Python identifier. Default value is 'x'.
1719
+
1720
+ .. versionadded:: 1.24
1721
+
1722
+ """
1723
+ # Virtual Functions
1724
+ _add = staticmethod(hermadd)
1725
+ _sub = staticmethod(hermsub)
1726
+ _mul = staticmethod(hermmul)
1727
+ _div = staticmethod(hermdiv)
1728
+ _pow = staticmethod(hermpow)
1729
+ _val = staticmethod(hermval)
1730
+ _int = staticmethod(hermint)
1731
+ _der = staticmethod(hermder)
1732
+ _fit = staticmethod(hermfit)
1733
+ _line = staticmethod(hermline)
1734
+ _roots = staticmethod(hermroots)
1735
+ _fromroots = staticmethod(hermfromroots)
1736
+
1737
+ # Virtual properties
1738
+ domain = np.array(hermdomain)
1739
+ window = np.array(hermdomain)
1740
+ basis_name = 'H'