numpy 2.3.5__cp313-cp313-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of numpy might be problematic. Click here for more details.

Files changed (897) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +102 -0
  3. numpy/__init__.cython-30.pxd +1241 -0
  4. numpy/__init__.pxd +1154 -0
  5. numpy/__init__.py +945 -0
  6. numpy/__init__.pyi +6147 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +207 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +186 -0
  12. numpy/_core/__init__.pyi +2 -0
  13. numpy/_core/_add_newdocs.py +6967 -0
  14. numpy/_core/_add_newdocs.pyi +3 -0
  15. numpy/_core/_add_newdocs_scalars.py +390 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +134 -0
  18. numpy/_core/_asarray.pyi +41 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +58 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +55 -0
  25. numpy/_core/_internal.py +958 -0
  26. numpy/_core/_internal.pyi +72 -0
  27. numpy/_core/_machar.py +355 -0
  28. numpy/_core/_machar.pyi +55 -0
  29. numpy/_core/_methods.py +255 -0
  30. numpy/_core/_methods.pyi +22 -0
  31. numpy/_core/_multiarray_tests.cpython-313-darwin.so +0 -0
  32. numpy/_core/_multiarray_umath.cpython-313-darwin.so +0 -0
  33. numpy/_core/_operand_flag_tests.cpython-313-darwin.so +0 -0
  34. numpy/_core/_rational_tests.cpython-313-darwin.so +0 -0
  35. numpy/_core/_simd.cpython-313-darwin.so +0 -0
  36. numpy/_core/_simd.pyi +25 -0
  37. numpy/_core/_string_helpers.py +100 -0
  38. numpy/_core/_string_helpers.pyi +12 -0
  39. numpy/_core/_struct_ufunc_tests.cpython-313-darwin.so +0 -0
  40. numpy/_core/_type_aliases.py +119 -0
  41. numpy/_core/_type_aliases.pyi +97 -0
  42. numpy/_core/_ufunc_config.py +491 -0
  43. numpy/_core/_ufunc_config.pyi +78 -0
  44. numpy/_core/_umath_tests.cpython-313-darwin.so +0 -0
  45. numpy/_core/arrayprint.py +1775 -0
  46. numpy/_core/arrayprint.pyi +238 -0
  47. numpy/_core/cversions.py +13 -0
  48. numpy/_core/defchararray.py +1427 -0
  49. numpy/_core/defchararray.pyi +1135 -0
  50. numpy/_core/einsumfunc.py +1498 -0
  51. numpy/_core/einsumfunc.pyi +184 -0
  52. numpy/_core/fromnumeric.py +4269 -0
  53. numpy/_core/fromnumeric.pyi +1750 -0
  54. numpy/_core/function_base.py +545 -0
  55. numpy/_core/function_base.pyi +278 -0
  56. numpy/_core/getlimits.py +748 -0
  57. numpy/_core/getlimits.pyi +3 -0
  58. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  59. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  60. numpy/_core/include/numpy/__ufunc_api.c +54 -0
  61. numpy/_core/include/numpy/__ufunc_api.h +341 -0
  62. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  63. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  64. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  65. numpy/_core/include/numpy/arrayobject.h +7 -0
  66. numpy/_core/include/numpy/arrayscalars.h +196 -0
  67. numpy/_core/include/numpy/dtype_api.h +480 -0
  68. numpy/_core/include/numpy/halffloat.h +70 -0
  69. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  70. numpy/_core/include/numpy/ndarraytypes.h +1950 -0
  71. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  72. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  73. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  74. numpy/_core/include/numpy/npy_common.h +977 -0
  75. numpy/_core/include/numpy/npy_cpu.h +124 -0
  76. numpy/_core/include/numpy/npy_endian.h +78 -0
  77. numpy/_core/include/numpy/npy_math.h +602 -0
  78. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  79. numpy/_core/include/numpy/npy_os.h +42 -0
  80. numpy/_core/include/numpy/numpyconfig.h +182 -0
  81. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  82. numpy/_core/include/numpy/random/bitgen.h +20 -0
  83. numpy/_core/include/numpy/random/distributions.h +209 -0
  84. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  85. numpy/_core/include/numpy/ufuncobject.h +343 -0
  86. numpy/_core/include/numpy/utils.h +37 -0
  87. numpy/_core/lib/libnpymath.a +0 -0
  88. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  89. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  90. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  91. numpy/_core/memmap.py +363 -0
  92. numpy/_core/memmap.pyi +3 -0
  93. numpy/_core/multiarray.py +1762 -0
  94. numpy/_core/multiarray.pyi +1285 -0
  95. numpy/_core/numeric.py +2760 -0
  96. numpy/_core/numeric.pyi +882 -0
  97. numpy/_core/numerictypes.py +633 -0
  98. numpy/_core/numerictypes.pyi +197 -0
  99. numpy/_core/overrides.py +183 -0
  100. numpy/_core/overrides.pyi +48 -0
  101. numpy/_core/printoptions.py +32 -0
  102. numpy/_core/printoptions.pyi +28 -0
  103. numpy/_core/records.py +1089 -0
  104. numpy/_core/records.pyi +333 -0
  105. numpy/_core/shape_base.py +998 -0
  106. numpy/_core/shape_base.pyi +175 -0
  107. numpy/_core/strings.py +1829 -0
  108. numpy/_core/strings.pyi +511 -0
  109. numpy/_core/tests/_locales.py +72 -0
  110. numpy/_core/tests/_natype.py +205 -0
  111. numpy/_core/tests/data/astype_copy.pkl +0 -0
  112. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  113. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  114. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  115. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  123. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  125. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  128. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  129. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  131. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  132. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  134. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  135. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  136. numpy/_core/tests/examples/cython/meson.build +43 -0
  137. numpy/_core/tests/examples/cython/setup.py +39 -0
  138. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  139. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  140. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  141. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  142. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  143. numpy/_core/tests/test__exceptions.py +90 -0
  144. numpy/_core/tests/test_abc.py +54 -0
  145. numpy/_core/tests/test_api.py +654 -0
  146. numpy/_core/tests/test_argparse.py +92 -0
  147. numpy/_core/tests/test_array_api_info.py +113 -0
  148. numpy/_core/tests/test_array_coercion.py +911 -0
  149. numpy/_core/tests/test_array_interface.py +222 -0
  150. numpy/_core/tests/test_arraymethod.py +84 -0
  151. numpy/_core/tests/test_arrayobject.py +75 -0
  152. numpy/_core/tests/test_arrayprint.py +1328 -0
  153. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  154. numpy/_core/tests/test_casting_unittests.py +817 -0
  155. numpy/_core/tests/test_conversion_utils.py +206 -0
  156. numpy/_core/tests/test_cpu_dispatcher.py +49 -0
  157. numpy/_core/tests/test_cpu_features.py +432 -0
  158. numpy/_core/tests/test_custom_dtypes.py +315 -0
  159. numpy/_core/tests/test_cython.py +351 -0
  160. numpy/_core/tests/test_datetime.py +2734 -0
  161. numpy/_core/tests/test_defchararray.py +825 -0
  162. numpy/_core/tests/test_deprecations.py +454 -0
  163. numpy/_core/tests/test_dlpack.py +190 -0
  164. numpy/_core/tests/test_dtype.py +1995 -0
  165. numpy/_core/tests/test_einsum.py +1317 -0
  166. numpy/_core/tests/test_errstate.py +131 -0
  167. numpy/_core/tests/test_extint128.py +217 -0
  168. numpy/_core/tests/test_function_base.py +503 -0
  169. numpy/_core/tests/test_getlimits.py +205 -0
  170. numpy/_core/tests/test_half.py +568 -0
  171. numpy/_core/tests/test_hashtable.py +35 -0
  172. numpy/_core/tests/test_indexerrors.py +125 -0
  173. numpy/_core/tests/test_indexing.py +1455 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +369 -0
  177. numpy/_core/tests/test_machar.py +30 -0
  178. numpy/_core/tests/test_mem_overlap.py +930 -0
  179. numpy/_core/tests/test_mem_policy.py +452 -0
  180. numpy/_core/tests/test_memmap.py +246 -0
  181. numpy/_core/tests/test_multiarray.py +10577 -0
  182. numpy/_core/tests/test_multithreading.py +292 -0
  183. numpy/_core/tests/test_nditer.py +3498 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4247 -0
  186. numpy/_core/tests/test_numerictypes.py +651 -0
  187. numpy/_core/tests/test_overrides.py +791 -0
  188. numpy/_core/tests/test_print.py +200 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2670 -0
  192. numpy/_core/tests/test_scalar_ctors.py +207 -0
  193. numpy/_core/tests/test_scalar_methods.py +246 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1176 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +891 -0
  199. numpy/_core/tests/test_simd.py +1341 -0
  200. numpy/_core/tests/test_simd_module.py +103 -0
  201. numpy/_core/tests/test_stringdtype.py +1814 -0
  202. numpy/_core/tests/test_strings.py +1499 -0
  203. numpy/_core/tests/test_ufunc.py +3313 -0
  204. numpy/_core/tests/test_umath.py +4928 -0
  205. numpy/_core/tests/test_umath_accuracy.py +124 -0
  206. numpy/_core/tests/test_umath_complex.py +626 -0
  207. numpy/_core/tests/test_unicode.py +368 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +197 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +79 -0
  213. numpy/_expired_attrs_2_0.pyi +62 -0
  214. numpy/_globals.py +96 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +13 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +148 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +40 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +941 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +30 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +71 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +121 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +258 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +33 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +245 -0
  277. numpy/doc/ufuncs.py +138 -0
  278. numpy/dtypes.py +41 -0
  279. numpy/dtypes.pyi +631 -0
  280. numpy/exceptions.py +247 -0
  281. numpy/exceptions.pyi +27 -0
  282. numpy/f2py/__init__.py +86 -0
  283. numpy/f2py/__init__.pyi +6 -0
  284. numpy/f2py/__main__.py +5 -0
  285. numpy/f2py/__version__.py +1 -0
  286. numpy/f2py/__version__.pyi +1 -0
  287. numpy/f2py/_backends/__init__.py +9 -0
  288. numpy/f2py/_backends/__init__.pyi +5 -0
  289. numpy/f2py/_backends/_backend.py +44 -0
  290. numpy/f2py/_backends/_backend.pyi +46 -0
  291. numpy/f2py/_backends/_distutils.py +76 -0
  292. numpy/f2py/_backends/_distutils.pyi +13 -0
  293. numpy/f2py/_backends/_meson.py +231 -0
  294. numpy/f2py/_backends/_meson.pyi +63 -0
  295. numpy/f2py/_backends/meson.build.template +55 -0
  296. numpy/f2py/_isocbind.py +62 -0
  297. numpy/f2py/_isocbind.pyi +13 -0
  298. numpy/f2py/_src_pyf.py +247 -0
  299. numpy/f2py/_src_pyf.pyi +29 -0
  300. numpy/f2py/auxfuncs.py +1004 -0
  301. numpy/f2py/auxfuncs.pyi +264 -0
  302. numpy/f2py/capi_maps.py +811 -0
  303. numpy/f2py/capi_maps.pyi +33 -0
  304. numpy/f2py/cb_rules.py +665 -0
  305. numpy/f2py/cb_rules.pyi +17 -0
  306. numpy/f2py/cfuncs.py +1563 -0
  307. numpy/f2py/cfuncs.pyi +31 -0
  308. numpy/f2py/common_rules.py +143 -0
  309. numpy/f2py/common_rules.pyi +9 -0
  310. numpy/f2py/crackfortran.py +3725 -0
  311. numpy/f2py/crackfortran.pyi +258 -0
  312. numpy/f2py/diagnose.py +149 -0
  313. numpy/f2py/diagnose.pyi +1 -0
  314. numpy/f2py/f2py2e.py +786 -0
  315. numpy/f2py/f2py2e.pyi +76 -0
  316. numpy/f2py/f90mod_rules.py +269 -0
  317. numpy/f2py/f90mod_rules.pyi +16 -0
  318. numpy/f2py/func2subr.py +329 -0
  319. numpy/f2py/func2subr.pyi +7 -0
  320. numpy/f2py/rules.py +1629 -0
  321. numpy/f2py/rules.pyi +43 -0
  322. numpy/f2py/setup.cfg +3 -0
  323. numpy/f2py/src/fortranobject.c +1436 -0
  324. numpy/f2py/src/fortranobject.h +173 -0
  325. numpy/f2py/symbolic.py +1516 -0
  326. numpy/f2py/symbolic.pyi +221 -0
  327. numpy/f2py/tests/__init__.py +16 -0
  328. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  329. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  330. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  331. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  332. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  333. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  334. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  335. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  336. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  337. numpy/f2py/tests/src/callback/foo.f +62 -0
  338. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  339. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  340. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  341. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  342. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  343. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  344. numpy/f2py/tests/src/cli/hi77.f +3 -0
  345. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  346. numpy/f2py/tests/src/common/block.f +11 -0
  347. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  348. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  349. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  350. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  351. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  352. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  353. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  354. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  355. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  356. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  357. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  358. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  360. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  361. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  362. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  363. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  364. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  365. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  366. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  367. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  368. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  369. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  370. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  371. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  372. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  373. numpy/f2py/tests/src/mixed/foo.f +5 -0
  374. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  375. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  376. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  377. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  378. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  379. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  380. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  381. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  382. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  383. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  384. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  385. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  386. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  387. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  388. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  389. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  390. numpy/f2py/tests/src/regression/AB.inc +1 -0
  391. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  392. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  393. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  394. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  395. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  396. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  397. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  398. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  399. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  400. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  401. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  402. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  403. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  404. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  405. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  406. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  407. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  408. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  409. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  410. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  411. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  412. numpy/f2py/tests/src/routines/subrout.f +4 -0
  413. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  414. numpy/f2py/tests/src/size/foo.f90 +44 -0
  415. numpy/f2py/tests/src/string/char.f90 +29 -0
  416. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  417. numpy/f2py/tests/src/string/gh24008.f +8 -0
  418. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  419. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  420. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  421. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  422. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  423. numpy/f2py/tests/src/string/string.f +12 -0
  424. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  425. numpy/f2py/tests/test_abstract_interface.py +26 -0
  426. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  427. numpy/f2py/tests/test_assumed_shape.py +50 -0
  428. numpy/f2py/tests/test_block_docstring.py +20 -0
  429. numpy/f2py/tests/test_callback.py +263 -0
  430. numpy/f2py/tests/test_character.py +641 -0
  431. numpy/f2py/tests/test_common.py +23 -0
  432. numpy/f2py/tests/test_crackfortran.py +421 -0
  433. numpy/f2py/tests/test_data.py +71 -0
  434. numpy/f2py/tests/test_docs.py +64 -0
  435. numpy/f2py/tests/test_f2cmap.py +17 -0
  436. numpy/f2py/tests/test_f2py2e.py +964 -0
  437. numpy/f2py/tests/test_isoc.py +56 -0
  438. numpy/f2py/tests/test_kind.py +53 -0
  439. numpy/f2py/tests/test_mixed.py +35 -0
  440. numpy/f2py/tests/test_modules.py +83 -0
  441. numpy/f2py/tests/test_parameter.py +129 -0
  442. numpy/f2py/tests/test_pyf_src.py +43 -0
  443. numpy/f2py/tests/test_quoted_character.py +18 -0
  444. numpy/f2py/tests/test_regression.py +187 -0
  445. numpy/f2py/tests/test_return_character.py +48 -0
  446. numpy/f2py/tests/test_return_complex.py +67 -0
  447. numpy/f2py/tests/test_return_integer.py +55 -0
  448. numpy/f2py/tests/test_return_logical.py +65 -0
  449. numpy/f2py/tests/test_return_real.py +109 -0
  450. numpy/f2py/tests/test_routines.py +29 -0
  451. numpy/f2py/tests/test_semicolon_split.py +75 -0
  452. numpy/f2py/tests/test_size.py +45 -0
  453. numpy/f2py/tests/test_string.py +100 -0
  454. numpy/f2py/tests/test_symbolic.py +495 -0
  455. numpy/f2py/tests/test_value_attrspec.py +15 -0
  456. numpy/f2py/tests/util.py +442 -0
  457. numpy/f2py/use_rules.py +99 -0
  458. numpy/f2py/use_rules.pyi +9 -0
  459. numpy/fft/__init__.py +215 -0
  460. numpy/fft/__init__.pyi +43 -0
  461. numpy/fft/_helper.py +235 -0
  462. numpy/fft/_helper.pyi +45 -0
  463. numpy/fft/_pocketfft.py +1693 -0
  464. numpy/fft/_pocketfft.pyi +138 -0
  465. numpy/fft/_pocketfft_umath.cpython-313-darwin.so +0 -0
  466. numpy/fft/helper.py +17 -0
  467. numpy/fft/helper.pyi +22 -0
  468. numpy/fft/tests/__init__.py +0 -0
  469. numpy/fft/tests/test_helper.py +167 -0
  470. numpy/fft/tests/test_pocketfft.py +589 -0
  471. numpy/lib/__init__.py +97 -0
  472. numpy/lib/__init__.pyi +44 -0
  473. numpy/lib/_array_utils_impl.py +62 -0
  474. numpy/lib/_array_utils_impl.pyi +26 -0
  475. numpy/lib/_arraypad_impl.py +890 -0
  476. numpy/lib/_arraypad_impl.pyi +89 -0
  477. numpy/lib/_arraysetops_impl.py +1260 -0
  478. numpy/lib/_arraysetops_impl.pyi +468 -0
  479. numpy/lib/_arrayterator_impl.py +224 -0
  480. numpy/lib/_arrayterator_impl.pyi +46 -0
  481. numpy/lib/_datasource.py +700 -0
  482. numpy/lib/_datasource.pyi +31 -0
  483. numpy/lib/_format_impl.py +1036 -0
  484. numpy/lib/_format_impl.pyi +26 -0
  485. numpy/lib/_function_base_impl.py +5844 -0
  486. numpy/lib/_function_base_impl.pyi +1164 -0
  487. numpy/lib/_histograms_impl.py +1085 -0
  488. numpy/lib/_histograms_impl.pyi +50 -0
  489. numpy/lib/_index_tricks_impl.py +1067 -0
  490. numpy/lib/_index_tricks_impl.pyi +208 -0
  491. numpy/lib/_iotools.py +900 -0
  492. numpy/lib/_iotools.pyi +114 -0
  493. numpy/lib/_nanfunctions_impl.py +2024 -0
  494. numpy/lib/_nanfunctions_impl.pyi +52 -0
  495. numpy/lib/_npyio_impl.py +2596 -0
  496. numpy/lib/_npyio_impl.pyi +301 -0
  497. numpy/lib/_polynomial_impl.py +1465 -0
  498. numpy/lib/_polynomial_impl.pyi +318 -0
  499. numpy/lib/_scimath_impl.py +642 -0
  500. numpy/lib/_scimath_impl.pyi +93 -0
  501. numpy/lib/_shape_base_impl.py +1301 -0
  502. numpy/lib/_shape_base_impl.pyi +235 -0
  503. numpy/lib/_stride_tricks_impl.py +549 -0
  504. numpy/lib/_stride_tricks_impl.pyi +74 -0
  505. numpy/lib/_twodim_base_impl.py +1201 -0
  506. numpy/lib/_twodim_base_impl.pyi +438 -0
  507. numpy/lib/_type_check_impl.py +699 -0
  508. numpy/lib/_type_check_impl.pyi +350 -0
  509. numpy/lib/_ufunclike_impl.py +207 -0
  510. numpy/lib/_ufunclike_impl.pyi +67 -0
  511. numpy/lib/_user_array_impl.py +299 -0
  512. numpy/lib/_user_array_impl.pyi +225 -0
  513. numpy/lib/_utils_impl.py +784 -0
  514. numpy/lib/_utils_impl.pyi +10 -0
  515. numpy/lib/_version.py +154 -0
  516. numpy/lib/_version.pyi +17 -0
  517. numpy/lib/array_utils.py +7 -0
  518. numpy/lib/array_utils.pyi +12 -0
  519. numpy/lib/format.py +24 -0
  520. numpy/lib/format.pyi +66 -0
  521. numpy/lib/introspect.py +95 -0
  522. numpy/lib/introspect.pyi +3 -0
  523. numpy/lib/mixins.py +180 -0
  524. numpy/lib/mixins.pyi +77 -0
  525. numpy/lib/npyio.py +1 -0
  526. numpy/lib/npyio.pyi +9 -0
  527. numpy/lib/recfunctions.py +1681 -0
  528. numpy/lib/recfunctions.pyi +435 -0
  529. numpy/lib/scimath.py +13 -0
  530. numpy/lib/scimath.pyi +30 -0
  531. numpy/lib/stride_tricks.py +1 -0
  532. numpy/lib/stride_tricks.pyi +6 -0
  533. numpy/lib/tests/__init__.py +0 -0
  534. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  535. numpy/lib/tests/data/py2-objarr.npy +0 -0
  536. numpy/lib/tests/data/py2-objarr.npz +0 -0
  537. numpy/lib/tests/data/py3-objarr.npy +0 -0
  538. numpy/lib/tests/data/py3-objarr.npz +0 -0
  539. numpy/lib/tests/data/python3.npy +0 -0
  540. numpy/lib/tests/data/win64python2.npy +0 -0
  541. numpy/lib/tests/test__datasource.py +352 -0
  542. numpy/lib/tests/test__iotools.py +360 -0
  543. numpy/lib/tests/test__version.py +64 -0
  544. numpy/lib/tests/test_array_utils.py +32 -0
  545. numpy/lib/tests/test_arraypad.py +1415 -0
  546. numpy/lib/tests/test_arraysetops.py +1074 -0
  547. numpy/lib/tests/test_arrayterator.py +46 -0
  548. numpy/lib/tests/test_format.py +1054 -0
  549. numpy/lib/tests/test_function_base.py +4573 -0
  550. numpy/lib/tests/test_histograms.py +855 -0
  551. numpy/lib/tests/test_index_tricks.py +573 -0
  552. numpy/lib/tests/test_io.py +2848 -0
  553. numpy/lib/tests/test_loadtxt.py +1101 -0
  554. numpy/lib/tests/test_mixins.py +215 -0
  555. numpy/lib/tests/test_nanfunctions.py +1438 -0
  556. numpy/lib/tests/test_packbits.py +376 -0
  557. numpy/lib/tests/test_polynomial.py +320 -0
  558. numpy/lib/tests/test_recfunctions.py +1052 -0
  559. numpy/lib/tests/test_regression.py +231 -0
  560. numpy/lib/tests/test_shape_base.py +813 -0
  561. numpy/lib/tests/test_stride_tricks.py +656 -0
  562. numpy/lib/tests/test_twodim_base.py +559 -0
  563. numpy/lib/tests/test_type_check.py +473 -0
  564. numpy/lib/tests/test_ufunclike.py +97 -0
  565. numpy/lib/tests/test_utils.py +80 -0
  566. numpy/lib/user_array.py +1 -0
  567. numpy/lib/user_array.pyi +1 -0
  568. numpy/linalg/__init__.py +98 -0
  569. numpy/linalg/__init__.pyi +73 -0
  570. numpy/linalg/_linalg.py +3682 -0
  571. numpy/linalg/_linalg.pyi +475 -0
  572. numpy/linalg/_umath_linalg.cpython-313-darwin.so +0 -0
  573. numpy/linalg/_umath_linalg.pyi +61 -0
  574. numpy/linalg/lapack_lite.cpython-313-darwin.so +0 -0
  575. numpy/linalg/lapack_lite.pyi +141 -0
  576. numpy/linalg/linalg.py +17 -0
  577. numpy/linalg/linalg.pyi +69 -0
  578. numpy/linalg/tests/__init__.py +0 -0
  579. numpy/linalg/tests/test_deprecations.py +20 -0
  580. numpy/linalg/tests/test_linalg.py +2443 -0
  581. numpy/linalg/tests/test_regression.py +181 -0
  582. numpy/ma/API_CHANGES.txt +135 -0
  583. numpy/ma/LICENSE +24 -0
  584. numpy/ma/README.rst +236 -0
  585. numpy/ma/__init__.py +53 -0
  586. numpy/ma/__init__.pyi +458 -0
  587. numpy/ma/core.py +8933 -0
  588. numpy/ma/core.pyi +1462 -0
  589. numpy/ma/extras.py +2344 -0
  590. numpy/ma/extras.pyi +138 -0
  591. numpy/ma/mrecords.py +773 -0
  592. numpy/ma/mrecords.pyi +96 -0
  593. numpy/ma/tests/__init__.py +0 -0
  594. numpy/ma/tests/test_arrayobject.py +40 -0
  595. numpy/ma/tests/test_core.py +5886 -0
  596. numpy/ma/tests/test_deprecations.py +87 -0
  597. numpy/ma/tests/test_extras.py +1998 -0
  598. numpy/ma/tests/test_mrecords.py +497 -0
  599. numpy/ma/tests/test_old_ma.py +942 -0
  600. numpy/ma/tests/test_regression.py +100 -0
  601. numpy/ma/tests/test_subclassing.py +469 -0
  602. numpy/ma/testutils.py +294 -0
  603. numpy/matlib.py +380 -0
  604. numpy/matlib.pyi +582 -0
  605. numpy/matrixlib/__init__.py +12 -0
  606. numpy/matrixlib/__init__.pyi +5 -0
  607. numpy/matrixlib/defmatrix.py +1119 -0
  608. numpy/matrixlib/defmatrix.pyi +17 -0
  609. numpy/matrixlib/tests/__init__.py +0 -0
  610. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  611. numpy/matrixlib/tests/test_interaction.py +360 -0
  612. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  613. numpy/matrixlib/tests/test_matrix_linalg.py +105 -0
  614. numpy/matrixlib/tests/test_multiarray.py +17 -0
  615. numpy/matrixlib/tests/test_numeric.py +18 -0
  616. numpy/matrixlib/tests/test_regression.py +31 -0
  617. numpy/polynomial/__init__.py +187 -0
  618. numpy/polynomial/__init__.pyi +25 -0
  619. numpy/polynomial/_polybase.py +1191 -0
  620. numpy/polynomial/_polybase.pyi +285 -0
  621. numpy/polynomial/_polytypes.pyi +892 -0
  622. numpy/polynomial/chebyshev.py +2003 -0
  623. numpy/polynomial/chebyshev.pyi +181 -0
  624. numpy/polynomial/hermite.py +1740 -0
  625. numpy/polynomial/hermite.pyi +107 -0
  626. numpy/polynomial/hermite_e.py +1642 -0
  627. numpy/polynomial/hermite_e.pyi +107 -0
  628. numpy/polynomial/laguerre.py +1675 -0
  629. numpy/polynomial/laguerre.pyi +100 -0
  630. numpy/polynomial/legendre.py +1605 -0
  631. numpy/polynomial/legendre.pyi +100 -0
  632. numpy/polynomial/polynomial.py +1616 -0
  633. numpy/polynomial/polynomial.pyi +89 -0
  634. numpy/polynomial/polyutils.py +759 -0
  635. numpy/polynomial/polyutils.pyi +423 -0
  636. numpy/polynomial/tests/__init__.py +0 -0
  637. numpy/polynomial/tests/test_chebyshev.py +623 -0
  638. numpy/polynomial/tests/test_classes.py +618 -0
  639. numpy/polynomial/tests/test_hermite.py +558 -0
  640. numpy/polynomial/tests/test_hermite_e.py +559 -0
  641. numpy/polynomial/tests/test_laguerre.py +540 -0
  642. numpy/polynomial/tests/test_legendre.py +571 -0
  643. numpy/polynomial/tests/test_polynomial.py +669 -0
  644. numpy/polynomial/tests/test_polyutils.py +128 -0
  645. numpy/polynomial/tests/test_printing.py +555 -0
  646. numpy/polynomial/tests/test_symbol.py +217 -0
  647. numpy/py.typed +0 -0
  648. numpy/random/LICENSE.md +71 -0
  649. numpy/random/__init__.pxd +14 -0
  650. numpy/random/__init__.py +213 -0
  651. numpy/random/__init__.pyi +124 -0
  652. numpy/random/_bounded_integers.cpython-313-darwin.so +0 -0
  653. numpy/random/_bounded_integers.pxd +29 -0
  654. numpy/random/_bounded_integers.pyi +1 -0
  655. numpy/random/_common.cpython-313-darwin.so +0 -0
  656. numpy/random/_common.pxd +107 -0
  657. numpy/random/_common.pyi +16 -0
  658. numpy/random/_examples/cffi/extending.py +44 -0
  659. numpy/random/_examples/cffi/parse.py +53 -0
  660. numpy/random/_examples/cython/extending.pyx +77 -0
  661. numpy/random/_examples/cython/extending_distributions.pyx +118 -0
  662. numpy/random/_examples/cython/meson.build +53 -0
  663. numpy/random/_examples/numba/extending.py +86 -0
  664. numpy/random/_examples/numba/extending_distributions.py +67 -0
  665. numpy/random/_generator.cpython-313-darwin.so +0 -0
  666. numpy/random/_generator.pyi +861 -0
  667. numpy/random/_mt19937.cpython-313-darwin.so +0 -0
  668. numpy/random/_mt19937.pyi +25 -0
  669. numpy/random/_pcg64.cpython-313-darwin.so +0 -0
  670. numpy/random/_pcg64.pyi +44 -0
  671. numpy/random/_philox.cpython-313-darwin.so +0 -0
  672. numpy/random/_philox.pyi +39 -0
  673. numpy/random/_pickle.py +88 -0
  674. numpy/random/_pickle.pyi +43 -0
  675. numpy/random/_sfc64.cpython-313-darwin.so +0 -0
  676. numpy/random/_sfc64.pyi +28 -0
  677. numpy/random/bit_generator.cpython-313-darwin.so +0 -0
  678. numpy/random/bit_generator.pxd +35 -0
  679. numpy/random/bit_generator.pyi +124 -0
  680. numpy/random/c_distributions.pxd +119 -0
  681. numpy/random/lib/libnpyrandom.a +0 -0
  682. numpy/random/mtrand.cpython-313-darwin.so +0 -0
  683. numpy/random/mtrand.pyi +703 -0
  684. numpy/random/tests/__init__.py +0 -0
  685. numpy/random/tests/data/__init__.py +0 -0
  686. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  687. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  688. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  689. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  690. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  691. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  692. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  693. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  694. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  695. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  696. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  697. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  698. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  699. numpy/random/tests/test_direct.py +592 -0
  700. numpy/random/tests/test_extending.py +127 -0
  701. numpy/random/tests/test_generator_mt19937.py +2809 -0
  702. numpy/random/tests/test_generator_mt19937_regressions.py +207 -0
  703. numpy/random/tests/test_random.py +1757 -0
  704. numpy/random/tests/test_randomstate.py +2130 -0
  705. numpy/random/tests/test_randomstate_regression.py +217 -0
  706. numpy/random/tests/test_regression.py +152 -0
  707. numpy/random/tests/test_seed_sequence.py +79 -0
  708. numpy/random/tests/test_smoke.py +819 -0
  709. numpy/rec/__init__.py +2 -0
  710. numpy/rec/__init__.pyi +23 -0
  711. numpy/strings/__init__.py +2 -0
  712. numpy/strings/__init__.pyi +97 -0
  713. numpy/testing/__init__.py +22 -0
  714. numpy/testing/__init__.pyi +102 -0
  715. numpy/testing/_private/__init__.py +0 -0
  716. numpy/testing/_private/__init__.pyi +0 -0
  717. numpy/testing/_private/extbuild.py +250 -0
  718. numpy/testing/_private/extbuild.pyi +25 -0
  719. numpy/testing/_private/utils.py +2752 -0
  720. numpy/testing/_private/utils.pyi +499 -0
  721. numpy/testing/overrides.py +84 -0
  722. numpy/testing/overrides.pyi +11 -0
  723. numpy/testing/print_coercion_tables.py +207 -0
  724. numpy/testing/print_coercion_tables.pyi +27 -0
  725. numpy/testing/tests/__init__.py +0 -0
  726. numpy/testing/tests/test_utils.py +1917 -0
  727. numpy/tests/__init__.py +0 -0
  728. numpy/tests/test__all__.py +10 -0
  729. numpy/tests/test_configtool.py +48 -0
  730. numpy/tests/test_ctypeslib.py +377 -0
  731. numpy/tests/test_lazyloading.py +38 -0
  732. numpy/tests/test_matlib.py +59 -0
  733. numpy/tests/test_numpy_config.py +46 -0
  734. numpy/tests/test_numpy_version.py +54 -0
  735. numpy/tests/test_public_api.py +806 -0
  736. numpy/tests/test_reloading.py +74 -0
  737. numpy/tests/test_scripts.py +49 -0
  738. numpy/tests/test_warnings.py +78 -0
  739. numpy/typing/__init__.py +201 -0
  740. numpy/typing/mypy_plugin.py +195 -0
  741. numpy/typing/tests/__init__.py +0 -0
  742. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  743. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  744. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  745. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  746. numpy/typing/tests/data/fail/arrayprint.pyi +16 -0
  747. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  748. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  749. numpy/typing/tests/data/fail/char.pyi +65 -0
  750. numpy/typing/tests/data/fail/chararray.pyi +62 -0
  751. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  752. numpy/typing/tests/data/fail/constants.pyi +3 -0
  753. numpy/typing/tests/data/fail/datasource.pyi +15 -0
  754. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  755. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  756. numpy/typing/tests/data/fail/flatiter.pyi +20 -0
  757. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  758. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  759. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  760. numpy/typing/tests/data/fail/lib_function_base.pyi +62 -0
  761. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  762. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  763. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  764. numpy/typing/tests/data/fail/linalg.pyi +48 -0
  765. numpy/typing/tests/data/fail/ma.pyi +143 -0
  766. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  767. numpy/typing/tests/data/fail/modules.pyi +17 -0
  768. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  769. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  770. numpy/typing/tests/data/fail/ndarray_misc.pyi +36 -0
  771. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  772. numpy/typing/tests/data/fail/nested_sequence.pyi +16 -0
  773. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  774. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  775. numpy/typing/tests/data/fail/random.pyi +62 -0
  776. numpy/typing/tests/data/fail/rec.pyi +17 -0
  777. numpy/typing/tests/data/fail/scalars.pyi +87 -0
  778. numpy/typing/tests/data/fail/shape.pyi +6 -0
  779. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  780. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  781. numpy/typing/tests/data/fail/strings.pyi +52 -0
  782. numpy/typing/tests/data/fail/testing.pyi +28 -0
  783. numpy/typing/tests/data/fail/twodim_base.pyi +32 -0
  784. numpy/typing/tests/data/fail/type_check.pyi +13 -0
  785. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  786. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  787. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  788. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  789. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  790. numpy/typing/tests/data/mypy.ini +9 -0
  791. numpy/typing/tests/data/pass/arithmetic.py +612 -0
  792. numpy/typing/tests/data/pass/array_constructors.py +137 -0
  793. numpy/typing/tests/data/pass/array_like.py +43 -0
  794. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  795. numpy/typing/tests/data/pass/arrayterator.py +27 -0
  796. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  797. numpy/typing/tests/data/pass/comparisons.py +315 -0
  798. numpy/typing/tests/data/pass/dtype.py +57 -0
  799. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  800. numpy/typing/tests/data/pass/flatiter.py +19 -0
  801. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  802. numpy/typing/tests/data/pass/index_tricks.py +60 -0
  803. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  804. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  805. numpy/typing/tests/data/pass/lib_version.py +18 -0
  806. numpy/typing/tests/data/pass/literal.py +51 -0
  807. numpy/typing/tests/data/pass/ma.py +174 -0
  808. numpy/typing/tests/data/pass/mod.py +149 -0
  809. numpy/typing/tests/data/pass/modules.py +45 -0
  810. numpy/typing/tests/data/pass/multiarray.py +76 -0
  811. numpy/typing/tests/data/pass/ndarray_conversion.py +87 -0
  812. numpy/typing/tests/data/pass/ndarray_misc.py +203 -0
  813. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  814. numpy/typing/tests/data/pass/nditer.py +4 -0
  815. numpy/typing/tests/data/pass/numeric.py +95 -0
  816. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  817. numpy/typing/tests/data/pass/random.py +1497 -0
  818. numpy/typing/tests/data/pass/recfunctions.py +161 -0
  819. numpy/typing/tests/data/pass/scalars.py +248 -0
  820. numpy/typing/tests/data/pass/shape.py +19 -0
  821. numpy/typing/tests/data/pass/simple.py +168 -0
  822. numpy/typing/tests/data/pass/simple_py3.py +6 -0
  823. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  824. numpy/typing/tests/data/pass/ufunclike.py +47 -0
  825. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  826. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  827. numpy/typing/tests/data/reveal/arithmetic.pyi +720 -0
  828. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  829. numpy/typing/tests/data/reveal/array_constructors.pyi +249 -0
  830. numpy/typing/tests/data/reveal/arraypad.pyi +22 -0
  831. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  832. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  833. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  834. numpy/typing/tests/data/reveal/bitwise_ops.pyi +167 -0
  835. numpy/typing/tests/data/reveal/char.pyi +224 -0
  836. numpy/typing/tests/data/reveal/chararray.pyi +137 -0
  837. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  838. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  839. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  840. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  841. numpy/typing/tests/data/reveal/dtype.pyi +136 -0
  842. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  843. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  844. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  845. numpy/typing/tests/data/reveal/flatiter.pyi +47 -0
  846. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  847. numpy/typing/tests/data/reveal/getlimits.pyi +51 -0
  848. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  849. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  850. numpy/typing/tests/data/reveal/lib_function_base.pyi +213 -0
  851. numpy/typing/tests/data/reveal/lib_polynomial.pyi +144 -0
  852. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  853. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  854. numpy/typing/tests/data/reveal/linalg.pyi +132 -0
  855. numpy/typing/tests/data/reveal/ma.pyi +369 -0
  856. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  857. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  858. numpy/typing/tests/data/reveal/mod.pyi +179 -0
  859. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  860. numpy/typing/tests/data/reveal/multiarray.pyi +194 -0
  861. numpy/typing/tests/data/reveal/nbit_base_example.pyi +21 -0
  862. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +77 -0
  863. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +85 -0
  864. numpy/typing/tests/data/reveal/ndarray_misc.pyi +247 -0
  865. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +39 -0
  866. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  867. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  868. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  869. numpy/typing/tests/data/reveal/numeric.pyi +134 -0
  870. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  871. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +220 -0
  872. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +219 -0
  873. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  874. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  875. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  876. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  877. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  878. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  879. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  880. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  881. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  882. numpy/typing/tests/data/reveal/twodim_base.pyi +145 -0
  883. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  884. numpy/typing/tests/data/reveal/ufunc_config.pyi +30 -0
  885. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  886. numpy/typing/tests/data/reveal/ufuncs.pyi +123 -0
  887. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  888. numpy/typing/tests/test_isfile.py +32 -0
  889. numpy/typing/tests/test_runtime.py +102 -0
  890. numpy/typing/tests/test_typing.py +205 -0
  891. numpy/version.py +11 -0
  892. numpy/version.pyi +18 -0
  893. numpy-2.3.5.dist-info/LICENSE.txt +971 -0
  894. numpy-2.3.5.dist-info/METADATA +1093 -0
  895. numpy-2.3.5.dist-info/RECORD +897 -0
  896. numpy-2.3.5.dist-info/WHEEL +6 -0
  897. numpy-2.3.5.dist-info/entry_points.txt +13 -0
@@ -0,0 +1,2024 @@
1
+ """
2
+ Functions that ignore NaN.
3
+
4
+ Functions
5
+ ---------
6
+
7
+ - `nanmin` -- minimum non-NaN value
8
+ - `nanmax` -- maximum non-NaN value
9
+ - `nanargmin` -- index of minimum non-NaN value
10
+ - `nanargmax` -- index of maximum non-NaN value
11
+ - `nansum` -- sum of non-NaN values
12
+ - `nanprod` -- product of non-NaN values
13
+ - `nancumsum` -- cumulative sum of non-NaN values
14
+ - `nancumprod` -- cumulative product of non-NaN values
15
+ - `nanmean` -- mean of non-NaN values
16
+ - `nanvar` -- variance of non-NaN values
17
+ - `nanstd` -- standard deviation of non-NaN values
18
+ - `nanmedian` -- median of non-NaN values
19
+ - `nanquantile` -- qth quantile of non-NaN values
20
+ - `nanpercentile` -- qth percentile of non-NaN values
21
+
22
+ """
23
+ import functools
24
+ import warnings
25
+
26
+ import numpy as np
27
+ import numpy._core.numeric as _nx
28
+ from numpy._core import overrides
29
+ from numpy.lib import _function_base_impl as fnb
30
+ from numpy.lib._function_base_impl import _weights_are_valid
31
+
32
+ array_function_dispatch = functools.partial(
33
+ overrides.array_function_dispatch, module='numpy')
34
+
35
+
36
+ __all__ = [
37
+ 'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean',
38
+ 'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod',
39
+ 'nancumsum', 'nancumprod', 'nanquantile'
40
+ ]
41
+
42
+
43
+ def _nan_mask(a, out=None):
44
+ """
45
+ Parameters
46
+ ----------
47
+ a : array-like
48
+ Input array with at least 1 dimension.
49
+ out : ndarray, optional
50
+ Alternate output array in which to place the result. The default
51
+ is ``None``; if provided, it must have the same shape as the
52
+ expected output and will prevent the allocation of a new array.
53
+
54
+ Returns
55
+ -------
56
+ y : bool ndarray or True
57
+ A bool array where ``np.nan`` positions are marked with ``False``
58
+ and other positions are marked with ``True``. If the type of ``a``
59
+ is such that it can't possibly contain ``np.nan``, returns ``True``.
60
+ """
61
+ # we assume that a is an array for this private function
62
+
63
+ if a.dtype.kind not in 'fc':
64
+ return True
65
+
66
+ y = np.isnan(a, out=out)
67
+ y = np.invert(y, out=y)
68
+ return y
69
+
70
+ def _replace_nan(a, val):
71
+ """
72
+ If `a` is of inexact type, make a copy of `a`, replace NaNs with
73
+ the `val` value, and return the copy together with a boolean mask
74
+ marking the locations where NaNs were present. If `a` is not of
75
+ inexact type, do nothing and return `a` together with a mask of None.
76
+
77
+ Note that scalars will end up as array scalars, which is important
78
+ for using the result as the value of the out argument in some
79
+ operations.
80
+
81
+ Parameters
82
+ ----------
83
+ a : array-like
84
+ Input array.
85
+ val : float
86
+ NaN values are set to val before doing the operation.
87
+
88
+ Returns
89
+ -------
90
+ y : ndarray
91
+ If `a` is of inexact type, return a copy of `a` with the NaNs
92
+ replaced by the fill value, otherwise return `a`.
93
+ mask: {bool, None}
94
+ If `a` is of inexact type, return a boolean mask marking locations of
95
+ NaNs, otherwise return None.
96
+
97
+ """
98
+ a = np.asanyarray(a)
99
+
100
+ if a.dtype == np.object_:
101
+ # object arrays do not support `isnan` (gh-9009), so make a guess
102
+ mask = np.not_equal(a, a, dtype=bool)
103
+ elif issubclass(a.dtype.type, np.inexact):
104
+ mask = np.isnan(a)
105
+ else:
106
+ mask = None
107
+
108
+ if mask is not None:
109
+ a = np.array(a, subok=True, copy=True)
110
+ np.copyto(a, val, where=mask)
111
+
112
+ return a, mask
113
+
114
+
115
+ def _copyto(a, val, mask):
116
+ """
117
+ Replace values in `a` with NaN where `mask` is True. This differs from
118
+ copyto in that it will deal with the case where `a` is a numpy scalar.
119
+
120
+ Parameters
121
+ ----------
122
+ a : ndarray or numpy scalar
123
+ Array or numpy scalar some of whose values are to be replaced
124
+ by val.
125
+ val : numpy scalar
126
+ Value used a replacement.
127
+ mask : ndarray, scalar
128
+ Boolean array. Where True the corresponding element of `a` is
129
+ replaced by `val`. Broadcasts.
130
+
131
+ Returns
132
+ -------
133
+ res : ndarray, scalar
134
+ Array with elements replaced or scalar `val`.
135
+
136
+ """
137
+ if isinstance(a, np.ndarray):
138
+ np.copyto(a, val, where=mask, casting='unsafe')
139
+ else:
140
+ a = a.dtype.type(val)
141
+ return a
142
+
143
+
144
+ def _remove_nan_1d(arr1d, second_arr1d=None, overwrite_input=False):
145
+ """
146
+ Equivalent to arr1d[~arr1d.isnan()], but in a different order
147
+
148
+ Presumably faster as it incurs fewer copies
149
+
150
+ Parameters
151
+ ----------
152
+ arr1d : ndarray
153
+ Array to remove nans from
154
+ second_arr1d : ndarray or None
155
+ A second array which will have the same positions removed as arr1d.
156
+ overwrite_input : bool
157
+ True if `arr1d` can be modified in place
158
+
159
+ Returns
160
+ -------
161
+ res : ndarray
162
+ Array with nan elements removed
163
+ second_res : ndarray or None
164
+ Second array with nan element positions of first array removed.
165
+ overwrite_input : bool
166
+ True if `res` can be modified in place, given the constraint on the
167
+ input
168
+ """
169
+ if arr1d.dtype == object:
170
+ # object arrays do not support `isnan` (gh-9009), so make a guess
171
+ c = np.not_equal(arr1d, arr1d, dtype=bool)
172
+ else:
173
+ c = np.isnan(arr1d)
174
+
175
+ s = np.nonzero(c)[0]
176
+ if s.size == arr1d.size:
177
+ warnings.warn("All-NaN slice encountered", RuntimeWarning,
178
+ stacklevel=6)
179
+ if second_arr1d is None:
180
+ return arr1d[:0], None, True
181
+ else:
182
+ return arr1d[:0], second_arr1d[:0], True
183
+ elif s.size == 0:
184
+ return arr1d, second_arr1d, overwrite_input
185
+ else:
186
+ if not overwrite_input:
187
+ arr1d = arr1d.copy()
188
+ # select non-nans at end of array
189
+ enonan = arr1d[-s.size:][~c[-s.size:]]
190
+ # fill nans in beginning of array with non-nans of end
191
+ arr1d[s[:enonan.size]] = enonan
192
+
193
+ if second_arr1d is None:
194
+ return arr1d[:-s.size], None, True
195
+ else:
196
+ if not overwrite_input:
197
+ second_arr1d = second_arr1d.copy()
198
+ enonan = second_arr1d[-s.size:][~c[-s.size:]]
199
+ second_arr1d[s[:enonan.size]] = enonan
200
+
201
+ return arr1d[:-s.size], second_arr1d[:-s.size], True
202
+
203
+
204
+ def _divide_by_count(a, b, out=None):
205
+ """
206
+ Compute a/b ignoring invalid results. If `a` is an array the division
207
+ is done in place. If `a` is a scalar, then its type is preserved in the
208
+ output. If out is None, then a is used instead so that the division
209
+ is in place. Note that this is only called with `a` an inexact type.
210
+
211
+ Parameters
212
+ ----------
213
+ a : {ndarray, numpy scalar}
214
+ Numerator. Expected to be of inexact type but not checked.
215
+ b : {ndarray, numpy scalar}
216
+ Denominator.
217
+ out : ndarray, optional
218
+ Alternate output array in which to place the result. The default
219
+ is ``None``; if provided, it must have the same shape as the
220
+ expected output, but the type will be cast if necessary.
221
+
222
+ Returns
223
+ -------
224
+ ret : {ndarray, numpy scalar}
225
+ The return value is a/b. If `a` was an ndarray the division is done
226
+ in place. If `a` is a numpy scalar, the division preserves its type.
227
+
228
+ """
229
+ with np.errstate(invalid='ignore', divide='ignore'):
230
+ if isinstance(a, np.ndarray):
231
+ if out is None:
232
+ return np.divide(a, b, out=a, casting='unsafe')
233
+ else:
234
+ return np.divide(a, b, out=out, casting='unsafe')
235
+ elif out is None:
236
+ # Precaution against reduced object arrays
237
+ try:
238
+ return a.dtype.type(a / b)
239
+ except AttributeError:
240
+ return a / b
241
+ else:
242
+ # This is questionable, but currently a numpy scalar can
243
+ # be output to a zero dimensional array.
244
+ return np.divide(a, b, out=out, casting='unsafe')
245
+
246
+
247
+ def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None,
248
+ initial=None, where=None):
249
+ return (a, out)
250
+
251
+
252
+ @array_function_dispatch(_nanmin_dispatcher)
253
+ def nanmin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
254
+ where=np._NoValue):
255
+ """
256
+ Return minimum of an array or minimum along an axis, ignoring any NaNs.
257
+ When all-NaN slices are encountered a ``RuntimeWarning`` is raised and
258
+ Nan is returned for that slice.
259
+
260
+ Parameters
261
+ ----------
262
+ a : array_like
263
+ Array containing numbers whose minimum is desired. If `a` is not an
264
+ array, a conversion is attempted.
265
+ axis : {int, tuple of int, None}, optional
266
+ Axis or axes along which the minimum is computed. The default is to compute
267
+ the minimum of the flattened array.
268
+ out : ndarray, optional
269
+ Alternate output array in which to place the result. The default
270
+ is ``None``; if provided, it must have the same shape as the
271
+ expected output, but the type will be cast if necessary. See
272
+ :ref:`ufuncs-output-type` for more details.
273
+ keepdims : bool, optional
274
+ If this is set to True, the axes which are reduced are left
275
+ in the result as dimensions with size one. With this option,
276
+ the result will broadcast correctly against the original `a`.
277
+
278
+ If the value is anything but the default, then
279
+ `keepdims` will be passed through to the `min` method
280
+ of sub-classes of `ndarray`. If the sub-classes methods
281
+ does not implement `keepdims` any exceptions will be raised.
282
+ initial : scalar, optional
283
+ The maximum value of an output element. Must be present to allow
284
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
285
+
286
+ .. versionadded:: 1.22.0
287
+ where : array_like of bool, optional
288
+ Elements to compare for the minimum. See `~numpy.ufunc.reduce`
289
+ for details.
290
+
291
+ .. versionadded:: 1.22.0
292
+
293
+ Returns
294
+ -------
295
+ nanmin : ndarray
296
+ An array with the same shape as `a`, with the specified axis
297
+ removed. If `a` is a 0-d array, or if axis is None, an ndarray
298
+ scalar is returned. The same dtype as `a` is returned.
299
+
300
+ See Also
301
+ --------
302
+ nanmax :
303
+ The maximum value of an array along a given axis, ignoring any NaNs.
304
+ amin :
305
+ The minimum value of an array along a given axis, propagating any NaNs.
306
+ fmin :
307
+ Element-wise minimum of two arrays, ignoring any NaNs.
308
+ minimum :
309
+ Element-wise minimum of two arrays, propagating any NaNs.
310
+ isnan :
311
+ Shows which elements are Not a Number (NaN).
312
+ isfinite:
313
+ Shows which elements are neither NaN nor infinity.
314
+
315
+ amax, fmax, maximum
316
+
317
+ Notes
318
+ -----
319
+ NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
320
+ (IEEE 754). This means that Not a Number is not equivalent to infinity.
321
+ Positive infinity is treated as a very large number and negative
322
+ infinity is treated as a very small (i.e. negative) number.
323
+
324
+ If the input has a integer type the function is equivalent to np.min.
325
+
326
+ Examples
327
+ --------
328
+ >>> import numpy as np
329
+ >>> a = np.array([[1, 2], [3, np.nan]])
330
+ >>> np.nanmin(a)
331
+ 1.0
332
+ >>> np.nanmin(a, axis=0)
333
+ array([1., 2.])
334
+ >>> np.nanmin(a, axis=1)
335
+ array([1., 3.])
336
+
337
+ When positive infinity and negative infinity are present:
338
+
339
+ >>> np.nanmin([1, 2, np.nan, np.inf])
340
+ 1.0
341
+ >>> np.nanmin([1, 2, np.nan, -np.inf])
342
+ -inf
343
+
344
+ """
345
+ kwargs = {}
346
+ if keepdims is not np._NoValue:
347
+ kwargs['keepdims'] = keepdims
348
+ if initial is not np._NoValue:
349
+ kwargs['initial'] = initial
350
+ if where is not np._NoValue:
351
+ kwargs['where'] = where
352
+
353
+ if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_:
354
+ # Fast, but not safe for subclasses of ndarray, or object arrays,
355
+ # which do not implement isnan (gh-9009), or fmin correctly (gh-8975)
356
+ res = np.fmin.reduce(a, axis=axis, out=out, **kwargs)
357
+ if np.isnan(res).any():
358
+ warnings.warn("All-NaN slice encountered", RuntimeWarning,
359
+ stacklevel=2)
360
+ else:
361
+ # Slow, but safe for subclasses of ndarray
362
+ a, mask = _replace_nan(a, +np.inf)
363
+ res = np.amin(a, axis=axis, out=out, **kwargs)
364
+ if mask is None:
365
+ return res
366
+
367
+ # Check for all-NaN axis
368
+ kwargs.pop("initial", None)
369
+ mask = np.all(mask, axis=axis, **kwargs)
370
+ if np.any(mask):
371
+ res = _copyto(res, np.nan, mask)
372
+ warnings.warn("All-NaN axis encountered", RuntimeWarning,
373
+ stacklevel=2)
374
+ return res
375
+
376
+
377
+ def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None,
378
+ initial=None, where=None):
379
+ return (a, out)
380
+
381
+
382
+ @array_function_dispatch(_nanmax_dispatcher)
383
+ def nanmax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
384
+ where=np._NoValue):
385
+ """
386
+ Return the maximum of an array or maximum along an axis, ignoring any
387
+ NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is
388
+ raised and NaN is returned for that slice.
389
+
390
+ Parameters
391
+ ----------
392
+ a : array_like
393
+ Array containing numbers whose maximum is desired. If `a` is not an
394
+ array, a conversion is attempted.
395
+ axis : {int, tuple of int, None}, optional
396
+ Axis or axes along which the maximum is computed. The default is to compute
397
+ the maximum of the flattened array.
398
+ out : ndarray, optional
399
+ Alternate output array in which to place the result. The default
400
+ is ``None``; if provided, it must have the same shape as the
401
+ expected output, but the type will be cast if necessary. See
402
+ :ref:`ufuncs-output-type` for more details.
403
+ keepdims : bool, optional
404
+ If this is set to True, the axes which are reduced are left
405
+ in the result as dimensions with size one. With this option,
406
+ the result will broadcast correctly against the original `a`.
407
+ If the value is anything but the default, then
408
+ `keepdims` will be passed through to the `max` method
409
+ of sub-classes of `ndarray`. If the sub-classes methods
410
+ does not implement `keepdims` any exceptions will be raised.
411
+ initial : scalar, optional
412
+ The minimum value of an output element. Must be present to allow
413
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
414
+
415
+ .. versionadded:: 1.22.0
416
+ where : array_like of bool, optional
417
+ Elements to compare for the maximum. See `~numpy.ufunc.reduce`
418
+ for details.
419
+
420
+ .. versionadded:: 1.22.0
421
+
422
+ Returns
423
+ -------
424
+ nanmax : ndarray
425
+ An array with the same shape as `a`, with the specified axis removed.
426
+ If `a` is a 0-d array, or if axis is None, an ndarray scalar is
427
+ returned. The same dtype as `a` is returned.
428
+
429
+ See Also
430
+ --------
431
+ nanmin :
432
+ The minimum value of an array along a given axis, ignoring any NaNs.
433
+ amax :
434
+ The maximum value of an array along a given axis, propagating any NaNs.
435
+ fmax :
436
+ Element-wise maximum of two arrays, ignoring any NaNs.
437
+ maximum :
438
+ Element-wise maximum of two arrays, propagating any NaNs.
439
+ isnan :
440
+ Shows which elements are Not a Number (NaN).
441
+ isfinite:
442
+ Shows which elements are neither NaN nor infinity.
443
+
444
+ amin, fmin, minimum
445
+
446
+ Notes
447
+ -----
448
+ NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
449
+ (IEEE 754). This means that Not a Number is not equivalent to infinity.
450
+ Positive infinity is treated as a very large number and negative
451
+ infinity is treated as a very small (i.e. negative) number.
452
+
453
+ If the input has a integer type the function is equivalent to np.max.
454
+
455
+ Examples
456
+ --------
457
+ >>> import numpy as np
458
+ >>> a = np.array([[1, 2], [3, np.nan]])
459
+ >>> np.nanmax(a)
460
+ 3.0
461
+ >>> np.nanmax(a, axis=0)
462
+ array([3., 2.])
463
+ >>> np.nanmax(a, axis=1)
464
+ array([2., 3.])
465
+
466
+ When positive infinity and negative infinity are present:
467
+
468
+ >>> np.nanmax([1, 2, np.nan, -np.inf])
469
+ 2.0
470
+ >>> np.nanmax([1, 2, np.nan, np.inf])
471
+ inf
472
+
473
+ """
474
+ kwargs = {}
475
+ if keepdims is not np._NoValue:
476
+ kwargs['keepdims'] = keepdims
477
+ if initial is not np._NoValue:
478
+ kwargs['initial'] = initial
479
+ if where is not np._NoValue:
480
+ kwargs['where'] = where
481
+
482
+ if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_:
483
+ # Fast, but not safe for subclasses of ndarray, or object arrays,
484
+ # which do not implement isnan (gh-9009), or fmax correctly (gh-8975)
485
+ res = np.fmax.reduce(a, axis=axis, out=out, **kwargs)
486
+ if np.isnan(res).any():
487
+ warnings.warn("All-NaN slice encountered", RuntimeWarning,
488
+ stacklevel=2)
489
+ else:
490
+ # Slow, but safe for subclasses of ndarray
491
+ a, mask = _replace_nan(a, -np.inf)
492
+ res = np.amax(a, axis=axis, out=out, **kwargs)
493
+ if mask is None:
494
+ return res
495
+
496
+ # Check for all-NaN axis
497
+ kwargs.pop("initial", None)
498
+ mask = np.all(mask, axis=axis, **kwargs)
499
+ if np.any(mask):
500
+ res = _copyto(res, np.nan, mask)
501
+ warnings.warn("All-NaN axis encountered", RuntimeWarning,
502
+ stacklevel=2)
503
+ return res
504
+
505
+
506
+ def _nanargmin_dispatcher(a, axis=None, out=None, *, keepdims=None):
507
+ return (a,)
508
+
509
+
510
+ @array_function_dispatch(_nanargmin_dispatcher)
511
+ def nanargmin(a, axis=None, out=None, *, keepdims=np._NoValue):
512
+ """
513
+ Return the indices of the minimum values in the specified axis ignoring
514
+ NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results
515
+ cannot be trusted if a slice contains only NaNs and Infs.
516
+
517
+ Parameters
518
+ ----------
519
+ a : array_like
520
+ Input data.
521
+ axis : int, optional
522
+ Axis along which to operate. By default flattened input is used.
523
+ out : array, optional
524
+ If provided, the result will be inserted into this array. It should
525
+ be of the appropriate shape and dtype.
526
+
527
+ .. versionadded:: 1.22.0
528
+ keepdims : bool, optional
529
+ If this is set to True, the axes which are reduced are left
530
+ in the result as dimensions with size one. With this option,
531
+ the result will broadcast correctly against the array.
532
+
533
+ .. versionadded:: 1.22.0
534
+
535
+ Returns
536
+ -------
537
+ index_array : ndarray
538
+ An array of indices or a single index value.
539
+
540
+ See Also
541
+ --------
542
+ argmin, nanargmax
543
+
544
+ Examples
545
+ --------
546
+ >>> import numpy as np
547
+ >>> a = np.array([[np.nan, 4], [2, 3]])
548
+ >>> np.argmin(a)
549
+ 0
550
+ >>> np.nanargmin(a)
551
+ 2
552
+ >>> np.nanargmin(a, axis=0)
553
+ array([1, 1])
554
+ >>> np.nanargmin(a, axis=1)
555
+ array([1, 0])
556
+
557
+ """
558
+ a, mask = _replace_nan(a, np.inf)
559
+ if mask is not None and mask.size:
560
+ mask = np.all(mask, axis=axis)
561
+ if np.any(mask):
562
+ raise ValueError("All-NaN slice encountered")
563
+ res = np.argmin(a, axis=axis, out=out, keepdims=keepdims)
564
+ return res
565
+
566
+
567
+ def _nanargmax_dispatcher(a, axis=None, out=None, *, keepdims=None):
568
+ return (a,)
569
+
570
+
571
+ @array_function_dispatch(_nanargmax_dispatcher)
572
+ def nanargmax(a, axis=None, out=None, *, keepdims=np._NoValue):
573
+ """
574
+ Return the indices of the maximum values in the specified axis ignoring
575
+ NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the
576
+ results cannot be trusted if a slice contains only NaNs and -Infs.
577
+
578
+
579
+ Parameters
580
+ ----------
581
+ a : array_like
582
+ Input data.
583
+ axis : int, optional
584
+ Axis along which to operate. By default flattened input is used.
585
+ out : array, optional
586
+ If provided, the result will be inserted into this array. It should
587
+ be of the appropriate shape and dtype.
588
+
589
+ .. versionadded:: 1.22.0
590
+ keepdims : bool, optional
591
+ If this is set to True, the axes which are reduced are left
592
+ in the result as dimensions with size one. With this option,
593
+ the result will broadcast correctly against the array.
594
+
595
+ .. versionadded:: 1.22.0
596
+
597
+ Returns
598
+ -------
599
+ index_array : ndarray
600
+ An array of indices or a single index value.
601
+
602
+ See Also
603
+ --------
604
+ argmax, nanargmin
605
+
606
+ Examples
607
+ --------
608
+ >>> import numpy as np
609
+ >>> a = np.array([[np.nan, 4], [2, 3]])
610
+ >>> np.argmax(a)
611
+ 0
612
+ >>> np.nanargmax(a)
613
+ 1
614
+ >>> np.nanargmax(a, axis=0)
615
+ array([1, 0])
616
+ >>> np.nanargmax(a, axis=1)
617
+ array([1, 1])
618
+
619
+ """
620
+ a, mask = _replace_nan(a, -np.inf)
621
+ if mask is not None and mask.size:
622
+ mask = np.all(mask, axis=axis)
623
+ if np.any(mask):
624
+ raise ValueError("All-NaN slice encountered")
625
+ res = np.argmax(a, axis=axis, out=out, keepdims=keepdims)
626
+ return res
627
+
628
+
629
+ def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
630
+ initial=None, where=None):
631
+ return (a, out)
632
+
633
+
634
+ @array_function_dispatch(_nansum_dispatcher)
635
+ def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
636
+ initial=np._NoValue, where=np._NoValue):
637
+ """
638
+ Return the sum of array elements over a given axis treating Not a
639
+ Numbers (NaNs) as zero.
640
+
641
+ In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or
642
+ empty. In later versions zero is returned.
643
+
644
+ Parameters
645
+ ----------
646
+ a : array_like
647
+ Array containing numbers whose sum is desired. If `a` is not an
648
+ array, a conversion is attempted.
649
+ axis : {int, tuple of int, None}, optional
650
+ Axis or axes along which the sum is computed. The default is to compute the
651
+ sum of the flattened array.
652
+ dtype : data-type, optional
653
+ The type of the returned array and of the accumulator in which the
654
+ elements are summed. By default, the dtype of `a` is used. An
655
+ exception is when `a` has an integer type with less precision than
656
+ the platform (u)intp. In that case, the default will be either
657
+ (u)int32 or (u)int64 depending on whether the platform is 32 or 64
658
+ bits. For inexact inputs, dtype must be inexact.
659
+ out : ndarray, optional
660
+ Alternate output array in which to place the result. The default
661
+ is ``None``. If provided, it must have the same shape as the
662
+ expected output, but the type will be cast if necessary. See
663
+ :ref:`ufuncs-output-type` for more details. The casting of NaN to integer
664
+ can yield unexpected results.
665
+ keepdims : bool, optional
666
+ If this is set to True, the axes which are reduced are left
667
+ in the result as dimensions with size one. With this option,
668
+ the result will broadcast correctly against the original `a`.
669
+
670
+ If the value is anything but the default, then
671
+ `keepdims` will be passed through to the `mean` or `sum` methods
672
+ of sub-classes of `ndarray`. If the sub-classes methods
673
+ does not implement `keepdims` any exceptions will be raised.
674
+ initial : scalar, optional
675
+ Starting value for the sum. See `~numpy.ufunc.reduce` for details.
676
+
677
+ .. versionadded:: 1.22.0
678
+ where : array_like of bool, optional
679
+ Elements to include in the sum. See `~numpy.ufunc.reduce` for details.
680
+
681
+ .. versionadded:: 1.22.0
682
+
683
+ Returns
684
+ -------
685
+ nansum : ndarray.
686
+ A new array holding the result is returned unless `out` is
687
+ specified, in which it is returned. The result has the same
688
+ size as `a`, and the same shape as `a` if `axis` is not None
689
+ or `a` is a 1-d array.
690
+
691
+ See Also
692
+ --------
693
+ numpy.sum : Sum across array propagating NaNs.
694
+ isnan : Show which elements are NaN.
695
+ isfinite : Show which elements are not NaN or +/-inf.
696
+
697
+ Notes
698
+ -----
699
+ If both positive and negative infinity are present, the sum will be Not
700
+ A Number (NaN).
701
+
702
+ Examples
703
+ --------
704
+ >>> import numpy as np
705
+ >>> np.nansum(1)
706
+ 1
707
+ >>> np.nansum([1])
708
+ 1
709
+ >>> np.nansum([1, np.nan])
710
+ 1.0
711
+ >>> a = np.array([[1, 1], [1, np.nan]])
712
+ >>> np.nansum(a)
713
+ 3.0
714
+ >>> np.nansum(a, axis=0)
715
+ array([2., 1.])
716
+ >>> np.nansum([1, np.nan, np.inf])
717
+ inf
718
+ >>> np.nansum([1, np.nan, -np.inf])
719
+ -inf
720
+ >>> from numpy.testing import suppress_warnings
721
+ >>> with np.errstate(invalid="ignore"):
722
+ ... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
723
+ np.float64(nan)
724
+
725
+ """
726
+ a, mask = _replace_nan(a, 0)
727
+ return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
728
+ initial=initial, where=where)
729
+
730
+
731
+ def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
732
+ initial=None, where=None):
733
+ return (a, out)
734
+
735
+
736
+ @array_function_dispatch(_nanprod_dispatcher)
737
+ def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
738
+ initial=np._NoValue, where=np._NoValue):
739
+ """
740
+ Return the product of array elements over a given axis treating Not a
741
+ Numbers (NaNs) as ones.
742
+
743
+ One is returned for slices that are all-NaN or empty.
744
+
745
+ Parameters
746
+ ----------
747
+ a : array_like
748
+ Array containing numbers whose product is desired. If `a` is not an
749
+ array, a conversion is attempted.
750
+ axis : {int, tuple of int, None}, optional
751
+ Axis or axes along which the product is computed. The default is to compute
752
+ the product of the flattened array.
753
+ dtype : data-type, optional
754
+ The type of the returned array and of the accumulator in which the
755
+ elements are summed. By default, the dtype of `a` is used. An
756
+ exception is when `a` has an integer type with less precision than
757
+ the platform (u)intp. In that case, the default will be either
758
+ (u)int32 or (u)int64 depending on whether the platform is 32 or 64
759
+ bits. For inexact inputs, dtype must be inexact.
760
+ out : ndarray, optional
761
+ Alternate output array in which to place the result. The default
762
+ is ``None``. If provided, it must have the same shape as the
763
+ expected output, but the type will be cast if necessary. See
764
+ :ref:`ufuncs-output-type` for more details. The casting of NaN to integer
765
+ can yield unexpected results.
766
+ keepdims : bool, optional
767
+ If True, the axes which are reduced are left in the result as
768
+ dimensions with size one. With this option, the result will
769
+ broadcast correctly against the original `arr`.
770
+ initial : scalar, optional
771
+ The starting value for this product. See `~numpy.ufunc.reduce`
772
+ for details.
773
+
774
+ .. versionadded:: 1.22.0
775
+ where : array_like of bool, optional
776
+ Elements to include in the product. See `~numpy.ufunc.reduce`
777
+ for details.
778
+
779
+ .. versionadded:: 1.22.0
780
+
781
+ Returns
782
+ -------
783
+ nanprod : ndarray
784
+ A new array holding the result is returned unless `out` is
785
+ specified, in which case it is returned.
786
+
787
+ See Also
788
+ --------
789
+ numpy.prod : Product across array propagating NaNs.
790
+ isnan : Show which elements are NaN.
791
+
792
+ Examples
793
+ --------
794
+ >>> import numpy as np
795
+ >>> np.nanprod(1)
796
+ 1
797
+ >>> np.nanprod([1])
798
+ 1
799
+ >>> np.nanprod([1, np.nan])
800
+ 1.0
801
+ >>> a = np.array([[1, 2], [3, np.nan]])
802
+ >>> np.nanprod(a)
803
+ 6.0
804
+ >>> np.nanprod(a, axis=0)
805
+ array([3., 2.])
806
+
807
+ """
808
+ a, mask = _replace_nan(a, 1)
809
+ return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
810
+ initial=initial, where=where)
811
+
812
+
813
+ def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None):
814
+ return (a, out)
815
+
816
+
817
+ @array_function_dispatch(_nancumsum_dispatcher)
818
+ def nancumsum(a, axis=None, dtype=None, out=None):
819
+ """
820
+ Return the cumulative sum of array elements over a given axis treating Not a
821
+ Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are
822
+ encountered and leading NaNs are replaced by zeros.
823
+
824
+ Zeros are returned for slices that are all-NaN or empty.
825
+
826
+ Parameters
827
+ ----------
828
+ a : array_like
829
+ Input array.
830
+ axis : int, optional
831
+ Axis along which the cumulative sum is computed. The default
832
+ (None) is to compute the cumsum over the flattened array.
833
+ dtype : dtype, optional
834
+ Type of the returned array and of the accumulator in which the
835
+ elements are summed. If `dtype` is not specified, it defaults
836
+ to the dtype of `a`, unless `a` has an integer dtype with a
837
+ precision less than that of the default platform integer. In
838
+ that case, the default platform integer is used.
839
+ out : ndarray, optional
840
+ Alternative output array in which to place the result. It must
841
+ have the same shape and buffer length as the expected output
842
+ but the type will be cast if necessary. See :ref:`ufuncs-output-type` for
843
+ more details.
844
+
845
+ Returns
846
+ -------
847
+ nancumsum : ndarray.
848
+ A new array holding the result is returned unless `out` is
849
+ specified, in which it is returned. The result has the same
850
+ size as `a`, and the same shape as `a` if `axis` is not None
851
+ or `a` is a 1-d array.
852
+
853
+ See Also
854
+ --------
855
+ numpy.cumsum : Cumulative sum across array propagating NaNs.
856
+ isnan : Show which elements are NaN.
857
+
858
+ Examples
859
+ --------
860
+ >>> import numpy as np
861
+ >>> np.nancumsum(1)
862
+ array([1])
863
+ >>> np.nancumsum([1])
864
+ array([1])
865
+ >>> np.nancumsum([1, np.nan])
866
+ array([1., 1.])
867
+ >>> a = np.array([[1, 2], [3, np.nan]])
868
+ >>> np.nancumsum(a)
869
+ array([1., 3., 6., 6.])
870
+ >>> np.nancumsum(a, axis=0)
871
+ array([[1., 2.],
872
+ [4., 2.]])
873
+ >>> np.nancumsum(a, axis=1)
874
+ array([[1., 3.],
875
+ [3., 3.]])
876
+
877
+ """
878
+ a, mask = _replace_nan(a, 0)
879
+ return np.cumsum(a, axis=axis, dtype=dtype, out=out)
880
+
881
+
882
+ def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None):
883
+ return (a, out)
884
+
885
+
886
+ @array_function_dispatch(_nancumprod_dispatcher)
887
+ def nancumprod(a, axis=None, dtype=None, out=None):
888
+ """
889
+ Return the cumulative product of array elements over a given axis treating Not a
890
+ Numbers (NaNs) as one. The cumulative product does not change when NaNs are
891
+ encountered and leading NaNs are replaced by ones.
892
+
893
+ Ones are returned for slices that are all-NaN or empty.
894
+
895
+ Parameters
896
+ ----------
897
+ a : array_like
898
+ Input array.
899
+ axis : int, optional
900
+ Axis along which the cumulative product is computed. By default
901
+ the input is flattened.
902
+ dtype : dtype, optional
903
+ Type of the returned array, as well as of the accumulator in which
904
+ the elements are multiplied. If *dtype* is not specified, it
905
+ defaults to the dtype of `a`, unless `a` has an integer dtype with
906
+ a precision less than that of the default platform integer. In
907
+ that case, the default platform integer is used instead.
908
+ out : ndarray, optional
909
+ Alternative output array in which to place the result. It must
910
+ have the same shape and buffer length as the expected output
911
+ but the type of the resulting values will be cast if necessary.
912
+
913
+ Returns
914
+ -------
915
+ nancumprod : ndarray
916
+ A new array holding the result is returned unless `out` is
917
+ specified, in which case it is returned.
918
+
919
+ See Also
920
+ --------
921
+ numpy.cumprod : Cumulative product across array propagating NaNs.
922
+ isnan : Show which elements are NaN.
923
+
924
+ Examples
925
+ --------
926
+ >>> import numpy as np
927
+ >>> np.nancumprod(1)
928
+ array([1])
929
+ >>> np.nancumprod([1])
930
+ array([1])
931
+ >>> np.nancumprod([1, np.nan])
932
+ array([1., 1.])
933
+ >>> a = np.array([[1, 2], [3, np.nan]])
934
+ >>> np.nancumprod(a)
935
+ array([1., 2., 6., 6.])
936
+ >>> np.nancumprod(a, axis=0)
937
+ array([[1., 2.],
938
+ [3., 2.]])
939
+ >>> np.nancumprod(a, axis=1)
940
+ array([[1., 2.],
941
+ [3., 3.]])
942
+
943
+ """
944
+ a, mask = _replace_nan(a, 1)
945
+ return np.cumprod(a, axis=axis, dtype=dtype, out=out)
946
+
947
+
948
+ def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
949
+ *, where=None):
950
+ return (a, out)
951
+
952
+
953
+ @array_function_dispatch(_nanmean_dispatcher)
954
+ def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
955
+ *, where=np._NoValue):
956
+ """
957
+ Compute the arithmetic mean along the specified axis, ignoring NaNs.
958
+
959
+ Returns the average of the array elements. The average is taken over
960
+ the flattened array by default, otherwise over the specified axis.
961
+ `float64` intermediate and return values are used for integer inputs.
962
+
963
+ For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised.
964
+
965
+ Parameters
966
+ ----------
967
+ a : array_like
968
+ Array containing numbers whose mean is desired. If `a` is not an
969
+ array, a conversion is attempted.
970
+ axis : {int, tuple of int, None}, optional
971
+ Axis or axes along which the means are computed. The default is to compute
972
+ the mean of the flattened array.
973
+ dtype : data-type, optional
974
+ Type to use in computing the mean. For integer inputs, the default
975
+ is `float64`; for inexact inputs, it is the same as the input
976
+ dtype.
977
+ out : ndarray, optional
978
+ Alternate output array in which to place the result. The default
979
+ is ``None``; if provided, it must have the same shape as the
980
+ expected output, but the type will be cast if necessary.
981
+ See :ref:`ufuncs-output-type` for more details.
982
+ keepdims : bool, optional
983
+ If this is set to True, the axes which are reduced are left
984
+ in the result as dimensions with size one. With this option,
985
+ the result will broadcast correctly against the original `a`.
986
+
987
+ If the value is anything but the default, then
988
+ `keepdims` will be passed through to the `mean` or `sum` methods
989
+ of sub-classes of `ndarray`. If the sub-classes methods
990
+ does not implement `keepdims` any exceptions will be raised.
991
+ where : array_like of bool, optional
992
+ Elements to include in the mean. See `~numpy.ufunc.reduce` for details.
993
+
994
+ .. versionadded:: 1.22.0
995
+
996
+ Returns
997
+ -------
998
+ m : ndarray, see dtype parameter above
999
+ If `out=None`, returns a new array containing the mean values,
1000
+ otherwise a reference to the output array is returned. Nan is
1001
+ returned for slices that contain only NaNs.
1002
+
1003
+ See Also
1004
+ --------
1005
+ average : Weighted average
1006
+ mean : Arithmetic mean taken while not ignoring NaNs
1007
+ var, nanvar
1008
+
1009
+ Notes
1010
+ -----
1011
+ The arithmetic mean is the sum of the non-NaN elements along the axis
1012
+ divided by the number of non-NaN elements.
1013
+
1014
+ Note that for floating-point input, the mean is computed using the same
1015
+ precision the input has. Depending on the input data, this can cause
1016
+ the results to be inaccurate, especially for `float32`. Specifying a
1017
+ higher-precision accumulator using the `dtype` keyword can alleviate
1018
+ this issue.
1019
+
1020
+ Examples
1021
+ --------
1022
+ >>> import numpy as np
1023
+ >>> a = np.array([[1, np.nan], [3, 4]])
1024
+ >>> np.nanmean(a)
1025
+ 2.6666666666666665
1026
+ >>> np.nanmean(a, axis=0)
1027
+ array([2., 4.])
1028
+ >>> np.nanmean(a, axis=1)
1029
+ array([1., 3.5]) # may vary
1030
+
1031
+ """
1032
+ arr, mask = _replace_nan(a, 0)
1033
+ if mask is None:
1034
+ return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
1035
+ where=where)
1036
+
1037
+ if dtype is not None:
1038
+ dtype = np.dtype(dtype)
1039
+ if dtype is not None and not issubclass(dtype.type, np.inexact):
1040
+ raise TypeError("If a is inexact, then dtype must be inexact")
1041
+ if out is not None and not issubclass(out.dtype.type, np.inexact):
1042
+ raise TypeError("If a is inexact, then out must be inexact")
1043
+
1044
+ cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims,
1045
+ where=where)
1046
+ tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
1047
+ where=where)
1048
+ avg = _divide_by_count(tot, cnt, out=out)
1049
+
1050
+ isbad = (cnt == 0)
1051
+ if isbad.any():
1052
+ warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2)
1053
+ # NaN is the only possible bad value, so no further
1054
+ # action is needed to handle bad results.
1055
+ return avg
1056
+
1057
+
1058
+ def _nanmedian1d(arr1d, overwrite_input=False):
1059
+ """
1060
+ Private function for rank 1 arrays. Compute the median ignoring NaNs.
1061
+ See nanmedian for parameter usage
1062
+ """
1063
+ arr1d_parsed, _, overwrite_input = _remove_nan_1d(
1064
+ arr1d, overwrite_input=overwrite_input,
1065
+ )
1066
+
1067
+ if arr1d_parsed.size == 0:
1068
+ # Ensure that a nan-esque scalar of the appropriate type (and unit)
1069
+ # is returned for `timedelta64` and `complexfloating`
1070
+ return arr1d[-1]
1071
+
1072
+ return np.median(arr1d_parsed, overwrite_input=overwrite_input)
1073
+
1074
+
1075
+ def _nanmedian(a, axis=None, out=None, overwrite_input=False):
1076
+ """
1077
+ Private function that doesn't support extended axis or keepdims.
1078
+ These methods are extended to this function using _ureduce
1079
+ See nanmedian for parameter usage
1080
+
1081
+ """
1082
+ if axis is None or a.ndim == 1:
1083
+ part = a.ravel()
1084
+ if out is None:
1085
+ return _nanmedian1d(part, overwrite_input)
1086
+ else:
1087
+ out[...] = _nanmedian1d(part, overwrite_input)
1088
+ return out
1089
+ else:
1090
+ # for small medians use sort + indexing which is still faster than
1091
+ # apply_along_axis
1092
+ # benchmarked with shuffled (50, 50, x) containing a few NaN
1093
+ if a.shape[axis] < 600:
1094
+ return _nanmedian_small(a, axis, out, overwrite_input)
1095
+ result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
1096
+ if out is not None:
1097
+ out[...] = result
1098
+ return result
1099
+
1100
+
1101
+ def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
1102
+ """
1103
+ sort + indexing median, faster for small medians along multiple
1104
+ dimensions due to the high overhead of apply_along_axis
1105
+
1106
+ see nanmedian for parameter usage
1107
+ """
1108
+ a = np.ma.masked_array(a, np.isnan(a))
1109
+ m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input)
1110
+ for i in range(np.count_nonzero(m.mask.ravel())):
1111
+ warnings.warn("All-NaN slice encountered", RuntimeWarning,
1112
+ stacklevel=5)
1113
+
1114
+ fill_value = np.timedelta64("NaT") if m.dtype.kind == "m" else np.nan
1115
+ if out is not None:
1116
+ out[...] = m.filled(fill_value)
1117
+ return out
1118
+ return m.filled(fill_value)
1119
+
1120
+
1121
+ def _nanmedian_dispatcher(
1122
+ a, axis=None, out=None, overwrite_input=None, keepdims=None):
1123
+ return (a, out)
1124
+
1125
+
1126
+ @array_function_dispatch(_nanmedian_dispatcher)
1127
+ def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue):
1128
+ """
1129
+ Compute the median along the specified axis, while ignoring NaNs.
1130
+
1131
+ Returns the median of the array elements.
1132
+
1133
+ Parameters
1134
+ ----------
1135
+ a : array_like
1136
+ Input array or object that can be converted to an array.
1137
+ axis : {int, sequence of int, None}, optional
1138
+ Axis or axes along which the medians are computed. The default
1139
+ is to compute the median along a flattened version of the array.
1140
+ A sequence of axes is supported since version 1.9.0.
1141
+ out : ndarray, optional
1142
+ Alternative output array in which to place the result. It must
1143
+ have the same shape and buffer length as the expected output,
1144
+ but the type (of the output) will be cast if necessary.
1145
+ overwrite_input : bool, optional
1146
+ If True, then allow use of memory of input array `a` for
1147
+ calculations. The input array will be modified by the call to
1148
+ `median`. This will save memory when you do not need to preserve
1149
+ the contents of the input array. Treat the input as undefined,
1150
+ but it will probably be fully or partially sorted. Default is
1151
+ False. If `overwrite_input` is ``True`` and `a` is not already an
1152
+ `ndarray`, an error will be raised.
1153
+ keepdims : bool, optional
1154
+ If this is set to True, the axes which are reduced are left
1155
+ in the result as dimensions with size one. With this option,
1156
+ the result will broadcast correctly against the original `a`.
1157
+
1158
+ If this is anything but the default value it will be passed
1159
+ through (in the special case of an empty array) to the
1160
+ `mean` function of the underlying array. If the array is
1161
+ a sub-class and `mean` does not have the kwarg `keepdims` this
1162
+ will raise a RuntimeError.
1163
+
1164
+ Returns
1165
+ -------
1166
+ median : ndarray
1167
+ A new array holding the result. If the input contains integers
1168
+ or floats smaller than ``float64``, then the output data-type is
1169
+ ``np.float64``. Otherwise, the data-type of the output is the
1170
+ same as that of the input. If `out` is specified, that array is
1171
+ returned instead.
1172
+
1173
+ See Also
1174
+ --------
1175
+ mean, median, percentile
1176
+
1177
+ Notes
1178
+ -----
1179
+ Given a vector ``V`` of length ``N``, the median of ``V`` is the
1180
+ middle value of a sorted copy of ``V``, ``V_sorted`` - i.e.,
1181
+ ``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two
1182
+ middle values of ``V_sorted`` when ``N`` is even.
1183
+
1184
+ Examples
1185
+ --------
1186
+ >>> import numpy as np
1187
+ >>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
1188
+ >>> a[0, 1] = np.nan
1189
+ >>> a
1190
+ array([[10., nan, 4.],
1191
+ [ 3., 2., 1.]])
1192
+ >>> np.median(a)
1193
+ np.float64(nan)
1194
+ >>> np.nanmedian(a)
1195
+ 3.0
1196
+ >>> np.nanmedian(a, axis=0)
1197
+ array([6.5, 2. , 2.5])
1198
+ >>> np.median(a, axis=1)
1199
+ array([nan, 2.])
1200
+ >>> b = a.copy()
1201
+ >>> np.nanmedian(b, axis=1, overwrite_input=True)
1202
+ array([7., 2.])
1203
+ >>> assert not np.all(a==b)
1204
+ >>> b = a.copy()
1205
+ >>> np.nanmedian(b, axis=None, overwrite_input=True)
1206
+ 3.0
1207
+ >>> assert not np.all(a==b)
1208
+
1209
+ """
1210
+ a = np.asanyarray(a)
1211
+ # apply_along_axis in _nanmedian doesn't handle empty arrays well,
1212
+ # so deal them upfront
1213
+ if a.size == 0:
1214
+ return np.nanmean(a, axis, out=out, keepdims=keepdims)
1215
+
1216
+ return fnb._ureduce(a, func=_nanmedian, keepdims=keepdims,
1217
+ axis=axis, out=out,
1218
+ overwrite_input=overwrite_input)
1219
+
1220
+
1221
+ def _nanpercentile_dispatcher(
1222
+ a, q, axis=None, out=None, overwrite_input=None,
1223
+ method=None, keepdims=None, *, weights=None, interpolation=None):
1224
+ return (a, q, out, weights)
1225
+
1226
+
1227
+ @array_function_dispatch(_nanpercentile_dispatcher)
1228
+ def nanpercentile(
1229
+ a,
1230
+ q,
1231
+ axis=None,
1232
+ out=None,
1233
+ overwrite_input=False,
1234
+ method="linear",
1235
+ keepdims=np._NoValue,
1236
+ *,
1237
+ weights=None,
1238
+ interpolation=None,
1239
+ ):
1240
+ """
1241
+ Compute the qth percentile of the data along the specified axis,
1242
+ while ignoring nan values.
1243
+
1244
+ Returns the qth percentile(s) of the array elements.
1245
+
1246
+ Parameters
1247
+ ----------
1248
+ a : array_like
1249
+ Input array or object that can be converted to an array, containing
1250
+ nan values to be ignored.
1251
+ q : array_like of float
1252
+ Percentile or sequence of percentiles to compute, which must be
1253
+ between 0 and 100 inclusive.
1254
+ axis : {int, tuple of int, None}, optional
1255
+ Axis or axes along which the percentiles are computed. The default
1256
+ is to compute the percentile(s) along a flattened version of the
1257
+ array.
1258
+ out : ndarray, optional
1259
+ Alternative output array in which to place the result. It must have
1260
+ the same shape and buffer length as the expected output, but the
1261
+ type (of the output) will be cast if necessary.
1262
+ overwrite_input : bool, optional
1263
+ If True, then allow the input array `a` to be modified by
1264
+ intermediate calculations, to save memory. In this case, the
1265
+ contents of the input `a` after this function completes is
1266
+ undefined.
1267
+ method : str, optional
1268
+ This parameter specifies the method to use for estimating the
1269
+ percentile. There are many different methods, some unique to NumPy.
1270
+ See the notes for explanation. The options sorted by their R type
1271
+ as summarized in the H&F paper [1]_ are:
1272
+
1273
+ 1. 'inverted_cdf'
1274
+ 2. 'averaged_inverted_cdf'
1275
+ 3. 'closest_observation'
1276
+ 4. 'interpolated_inverted_cdf'
1277
+ 5. 'hazen'
1278
+ 6. 'weibull'
1279
+ 7. 'linear' (default)
1280
+ 8. 'median_unbiased'
1281
+ 9. 'normal_unbiased'
1282
+
1283
+ The first three methods are discontinuous. NumPy further defines the
1284
+ following discontinuous variations of the default 'linear' (7.) option:
1285
+
1286
+ * 'lower'
1287
+ * 'higher',
1288
+ * 'midpoint'
1289
+ * 'nearest'
1290
+
1291
+ .. versionchanged:: 1.22.0
1292
+ This argument was previously called "interpolation" and only
1293
+ offered the "linear" default and last four options.
1294
+
1295
+ keepdims : bool, optional
1296
+ If this is set to True, the axes which are reduced are left in
1297
+ the result as dimensions with size one. With this option, the
1298
+ result will broadcast correctly against the original array `a`.
1299
+
1300
+ If this is anything but the default value it will be passed
1301
+ through (in the special case of an empty array) to the
1302
+ `mean` function of the underlying array. If the array is
1303
+ a sub-class and `mean` does not have the kwarg `keepdims` this
1304
+ will raise a RuntimeError.
1305
+
1306
+ weights : array_like, optional
1307
+ An array of weights associated with the values in `a`. Each value in
1308
+ `a` contributes to the percentile according to its associated weight.
1309
+ The weights array can either be 1-D (in which case its length must be
1310
+ the size of `a` along the given axis) or of the same shape as `a`.
1311
+ If `weights=None`, then all data in `a` are assumed to have a
1312
+ weight equal to one.
1313
+ Only `method="inverted_cdf"` supports weights.
1314
+
1315
+ .. versionadded:: 2.0.0
1316
+
1317
+ interpolation : str, optional
1318
+ Deprecated name for the method keyword argument.
1319
+
1320
+ .. deprecated:: 1.22.0
1321
+
1322
+ Returns
1323
+ -------
1324
+ percentile : scalar or ndarray
1325
+ If `q` is a single percentile and `axis=None`, then the result
1326
+ is a scalar. If multiple percentiles are given, first axis of
1327
+ the result corresponds to the percentiles. The other axes are
1328
+ the axes that remain after the reduction of `a`. If the input
1329
+ contains integers or floats smaller than ``float64``, the output
1330
+ data-type is ``float64``. Otherwise, the output data-type is the
1331
+ same as that of the input. If `out` is specified, that array is
1332
+ returned instead.
1333
+
1334
+ See Also
1335
+ --------
1336
+ nanmean
1337
+ nanmedian : equivalent to ``nanpercentile(..., 50)``
1338
+ percentile, median, mean
1339
+ nanquantile : equivalent to nanpercentile, except q in range [0, 1].
1340
+
1341
+ Notes
1342
+ -----
1343
+ The behavior of `numpy.nanpercentile` with percentage `q` is that of
1344
+ `numpy.quantile` with argument ``q/100`` (ignoring nan values).
1345
+ For more information, please see `numpy.quantile`.
1346
+
1347
+ Examples
1348
+ --------
1349
+ >>> import numpy as np
1350
+ >>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
1351
+ >>> a[0][1] = np.nan
1352
+ >>> a
1353
+ array([[10., nan, 4.],
1354
+ [ 3., 2., 1.]])
1355
+ >>> np.percentile(a, 50)
1356
+ np.float64(nan)
1357
+ >>> np.nanpercentile(a, 50)
1358
+ 3.0
1359
+ >>> np.nanpercentile(a, 50, axis=0)
1360
+ array([6.5, 2. , 2.5])
1361
+ >>> np.nanpercentile(a, 50, axis=1, keepdims=True)
1362
+ array([[7.],
1363
+ [2.]])
1364
+ >>> m = np.nanpercentile(a, 50, axis=0)
1365
+ >>> out = np.zeros_like(m)
1366
+ >>> np.nanpercentile(a, 50, axis=0, out=out)
1367
+ array([6.5, 2. , 2.5])
1368
+ >>> m
1369
+ array([6.5, 2. , 2.5])
1370
+
1371
+ >>> b = a.copy()
1372
+ >>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
1373
+ array([7., 2.])
1374
+ >>> assert not np.all(a==b)
1375
+
1376
+ References
1377
+ ----------
1378
+ .. [1] R. J. Hyndman and Y. Fan,
1379
+ "Sample quantiles in statistical packages,"
1380
+ The American Statistician, 50(4), pp. 361-365, 1996
1381
+
1382
+ """
1383
+ if interpolation is not None:
1384
+ method = fnb._check_interpolation_as_method(
1385
+ method, interpolation, "nanpercentile")
1386
+
1387
+ a = np.asanyarray(a)
1388
+ if a.dtype.kind == "c":
1389
+ raise TypeError("a must be an array of real numbers")
1390
+
1391
+ q = np.true_divide(q, a.dtype.type(100) if a.dtype.kind == "f" else 100, out=...)
1392
+ if not fnb._quantile_is_valid(q):
1393
+ raise ValueError("Percentiles must be in the range [0, 100]")
1394
+
1395
+ if weights is not None:
1396
+ if method != "inverted_cdf":
1397
+ msg = ("Only method 'inverted_cdf' supports weights. "
1398
+ f"Got: {method}.")
1399
+ raise ValueError(msg)
1400
+ if axis is not None:
1401
+ axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis")
1402
+ weights = _weights_are_valid(weights=weights, a=a, axis=axis)
1403
+ if np.any(weights < 0):
1404
+ raise ValueError("Weights must be non-negative.")
1405
+
1406
+ return _nanquantile_unchecked(
1407
+ a, q, axis, out, overwrite_input, method, keepdims, weights)
1408
+
1409
+
1410
+ def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
1411
+ method=None, keepdims=None, *, weights=None,
1412
+ interpolation=None):
1413
+ return (a, q, out, weights)
1414
+
1415
+
1416
+ @array_function_dispatch(_nanquantile_dispatcher)
1417
+ def nanquantile(
1418
+ a,
1419
+ q,
1420
+ axis=None,
1421
+ out=None,
1422
+ overwrite_input=False,
1423
+ method="linear",
1424
+ keepdims=np._NoValue,
1425
+ *,
1426
+ weights=None,
1427
+ interpolation=None,
1428
+ ):
1429
+ """
1430
+ Compute the qth quantile of the data along the specified axis,
1431
+ while ignoring nan values.
1432
+ Returns the qth quantile(s) of the array elements.
1433
+
1434
+ Parameters
1435
+ ----------
1436
+ a : array_like
1437
+ Input array or object that can be converted to an array, containing
1438
+ nan values to be ignored
1439
+ q : array_like of float
1440
+ Probability or sequence of probabilities for the quantiles to compute.
1441
+ Values must be between 0 and 1 inclusive.
1442
+ axis : {int, tuple of int, None}, optional
1443
+ Axis or axes along which the quantiles are computed. The
1444
+ default is to compute the quantile(s) along a flattened
1445
+ version of the array.
1446
+ out : ndarray, optional
1447
+ Alternative output array in which to place the result. It must
1448
+ have the same shape and buffer length as the expected output,
1449
+ but the type (of the output) will be cast if necessary.
1450
+ overwrite_input : bool, optional
1451
+ If True, then allow the input array `a` to be modified by intermediate
1452
+ calculations, to save memory. In this case, the contents of the input
1453
+ `a` after this function completes is undefined.
1454
+ method : str, optional
1455
+ This parameter specifies the method to use for estimating the
1456
+ quantile. There are many different methods, some unique to NumPy.
1457
+ See the notes for explanation. The options sorted by their R type
1458
+ as summarized in the H&F paper [1]_ are:
1459
+
1460
+ 1. 'inverted_cdf'
1461
+ 2. 'averaged_inverted_cdf'
1462
+ 3. 'closest_observation'
1463
+ 4. 'interpolated_inverted_cdf'
1464
+ 5. 'hazen'
1465
+ 6. 'weibull'
1466
+ 7. 'linear' (default)
1467
+ 8. 'median_unbiased'
1468
+ 9. 'normal_unbiased'
1469
+
1470
+ The first three methods are discontinuous. NumPy further defines the
1471
+ following discontinuous variations of the default 'linear' (7.) option:
1472
+
1473
+ * 'lower'
1474
+ * 'higher',
1475
+ * 'midpoint'
1476
+ * 'nearest'
1477
+
1478
+ .. versionchanged:: 1.22.0
1479
+ This argument was previously called "interpolation" and only
1480
+ offered the "linear" default and last four options.
1481
+
1482
+ keepdims : bool, optional
1483
+ If this is set to True, the axes which are reduced are left in
1484
+ the result as dimensions with size one. With this option, the
1485
+ result will broadcast correctly against the original array `a`.
1486
+
1487
+ If this is anything but the default value it will be passed
1488
+ through (in the special case of an empty array) to the
1489
+ `mean` function of the underlying array. If the array is
1490
+ a sub-class and `mean` does not have the kwarg `keepdims` this
1491
+ will raise a RuntimeError.
1492
+
1493
+ weights : array_like, optional
1494
+ An array of weights associated with the values in `a`. Each value in
1495
+ `a` contributes to the quantile according to its associated weight.
1496
+ The weights array can either be 1-D (in which case its length must be
1497
+ the size of `a` along the given axis) or of the same shape as `a`.
1498
+ If `weights=None`, then all data in `a` are assumed to have a
1499
+ weight equal to one.
1500
+ Only `method="inverted_cdf"` supports weights.
1501
+
1502
+ .. versionadded:: 2.0.0
1503
+
1504
+ interpolation : str, optional
1505
+ Deprecated name for the method keyword argument.
1506
+
1507
+ .. deprecated:: 1.22.0
1508
+
1509
+ Returns
1510
+ -------
1511
+ quantile : scalar or ndarray
1512
+ If `q` is a single probability and `axis=None`, then the result
1513
+ is a scalar. If multiple probability levels are given, first axis of
1514
+ the result corresponds to the quantiles. The other axes are
1515
+ the axes that remain after the reduction of `a`. If the input
1516
+ contains integers or floats smaller than ``float64``, the output
1517
+ data-type is ``float64``. Otherwise, the output data-type is the
1518
+ same as that of the input. If `out` is specified, that array is
1519
+ returned instead.
1520
+
1521
+ See Also
1522
+ --------
1523
+ quantile
1524
+ nanmean, nanmedian
1525
+ nanmedian : equivalent to ``nanquantile(..., 0.5)``
1526
+ nanpercentile : same as nanquantile, but with q in the range [0, 100].
1527
+
1528
+ Notes
1529
+ -----
1530
+ The behavior of `numpy.nanquantile` is the same as that of
1531
+ `numpy.quantile` (ignoring nan values).
1532
+ For more information, please see `numpy.quantile`.
1533
+
1534
+ Examples
1535
+ --------
1536
+ >>> import numpy as np
1537
+ >>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
1538
+ >>> a[0][1] = np.nan
1539
+ >>> a
1540
+ array([[10., nan, 4.],
1541
+ [ 3., 2., 1.]])
1542
+ >>> np.quantile(a, 0.5)
1543
+ np.float64(nan)
1544
+ >>> np.nanquantile(a, 0.5)
1545
+ 3.0
1546
+ >>> np.nanquantile(a, 0.5, axis=0)
1547
+ array([6.5, 2. , 2.5])
1548
+ >>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
1549
+ array([[7.],
1550
+ [2.]])
1551
+ >>> m = np.nanquantile(a, 0.5, axis=0)
1552
+ >>> out = np.zeros_like(m)
1553
+ >>> np.nanquantile(a, 0.5, axis=0, out=out)
1554
+ array([6.5, 2. , 2.5])
1555
+ >>> m
1556
+ array([6.5, 2. , 2.5])
1557
+ >>> b = a.copy()
1558
+ >>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
1559
+ array([7., 2.])
1560
+ >>> assert not np.all(a==b)
1561
+
1562
+ References
1563
+ ----------
1564
+ .. [1] R. J. Hyndman and Y. Fan,
1565
+ "Sample quantiles in statistical packages,"
1566
+ The American Statistician, 50(4), pp. 361-365, 1996
1567
+
1568
+ """
1569
+
1570
+ if interpolation is not None:
1571
+ method = fnb._check_interpolation_as_method(
1572
+ method, interpolation, "nanquantile")
1573
+
1574
+ a = np.asanyarray(a)
1575
+ if a.dtype.kind == "c":
1576
+ raise TypeError("a must be an array of real numbers")
1577
+
1578
+ # Use dtype of array if possible (e.g., if q is a python int or float).
1579
+ if isinstance(q, (int, float)) and a.dtype.kind == "f":
1580
+ q = np.asanyarray(q, dtype=a.dtype)
1581
+ else:
1582
+ q = np.asanyarray(q)
1583
+
1584
+ if not fnb._quantile_is_valid(q):
1585
+ raise ValueError("Quantiles must be in the range [0, 1]")
1586
+
1587
+ if weights is not None:
1588
+ if method != "inverted_cdf":
1589
+ msg = ("Only method 'inverted_cdf' supports weights. "
1590
+ f"Got: {method}.")
1591
+ raise ValueError(msg)
1592
+ if axis is not None:
1593
+ axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis")
1594
+ weights = _weights_are_valid(weights=weights, a=a, axis=axis)
1595
+ if np.any(weights < 0):
1596
+ raise ValueError("Weights must be non-negative.")
1597
+
1598
+ return _nanquantile_unchecked(
1599
+ a, q, axis, out, overwrite_input, method, keepdims, weights)
1600
+
1601
+
1602
+ def _nanquantile_unchecked(
1603
+ a,
1604
+ q,
1605
+ axis=None,
1606
+ out=None,
1607
+ overwrite_input=False,
1608
+ method="linear",
1609
+ keepdims=np._NoValue,
1610
+ weights=None,
1611
+ ):
1612
+ """Assumes that q is in [0, 1], and is an ndarray"""
1613
+ # apply_along_axis in _nanpercentile doesn't handle empty arrays well,
1614
+ # so deal them upfront
1615
+ if a.size == 0:
1616
+ return np.nanmean(a, axis, out=out, keepdims=keepdims)
1617
+ return fnb._ureduce(a,
1618
+ func=_nanquantile_ureduce_func,
1619
+ q=q,
1620
+ weights=weights,
1621
+ keepdims=keepdims,
1622
+ axis=axis,
1623
+ out=out,
1624
+ overwrite_input=overwrite_input,
1625
+ method=method)
1626
+
1627
+
1628
+ def _nanquantile_ureduce_func(
1629
+ a: np.array,
1630
+ q: np.array,
1631
+ weights: np.array,
1632
+ axis: int | None = None,
1633
+ out=None,
1634
+ overwrite_input: bool = False,
1635
+ method="linear",
1636
+ ):
1637
+ """
1638
+ Private function that doesn't support extended axis or keepdims.
1639
+ These methods are extended to this function using _ureduce
1640
+ See nanpercentile for parameter usage
1641
+ """
1642
+ if axis is None or a.ndim == 1:
1643
+ part = a.ravel()
1644
+ wgt = None if weights is None else weights.ravel()
1645
+ result = _nanquantile_1d(part, q, overwrite_input, method, weights=wgt)
1646
+ # Note that this code could try to fill in `out` right away
1647
+ elif weights is None:
1648
+ result = np.apply_along_axis(_nanquantile_1d, axis, a, q,
1649
+ overwrite_input, method, weights)
1650
+ # apply_along_axis fills in collapsed axis with results.
1651
+ # Move those axes to the beginning to match percentile's
1652
+ # convention.
1653
+ if q.ndim != 0:
1654
+ from_ax = [axis + i for i in range(q.ndim)]
1655
+ result = np.moveaxis(result, from_ax, list(range(q.ndim)))
1656
+ else:
1657
+ # We need to apply along axis over 2 arrays, a and weights.
1658
+ # move operation axes to end for simplicity:
1659
+ a = np.moveaxis(a, axis, -1)
1660
+ if weights is not None:
1661
+ weights = np.moveaxis(weights, axis, -1)
1662
+ if out is not None:
1663
+ result = out
1664
+ else:
1665
+ # weights are limited to `inverted_cdf` so the result dtype
1666
+ # is known to be identical to that of `a` here:
1667
+ result = np.empty_like(a, shape=q.shape + a.shape[:-1])
1668
+
1669
+ for ii in np.ndindex(a.shape[:-1]):
1670
+ result[(...,) + ii] = _nanquantile_1d(
1671
+ a[ii], q, weights=weights[ii],
1672
+ overwrite_input=overwrite_input, method=method,
1673
+ )
1674
+ # This path dealt with `out` already...
1675
+ return result
1676
+
1677
+ if out is not None:
1678
+ out[...] = result
1679
+ return result
1680
+
1681
+
1682
+ def _nanquantile_1d(
1683
+ arr1d, q, overwrite_input=False, method="linear", weights=None,
1684
+ ):
1685
+ """
1686
+ Private function for rank 1 arrays. Compute quantile ignoring NaNs.
1687
+ See nanpercentile for parameter usage
1688
+ """
1689
+ # TODO: What to do when arr1d = [1, np.nan] and weights = [0, 1]?
1690
+ arr1d, weights, overwrite_input = _remove_nan_1d(arr1d,
1691
+ second_arr1d=weights, overwrite_input=overwrite_input)
1692
+ if arr1d.size == 0:
1693
+ # convert to scalar
1694
+ return np.full(q.shape, np.nan, dtype=arr1d.dtype)[()]
1695
+
1696
+ return fnb._quantile_unchecked(
1697
+ arr1d,
1698
+ q,
1699
+ overwrite_input=overwrite_input,
1700
+ method=method,
1701
+ weights=weights,
1702
+ )
1703
+
1704
+
1705
+ def _nanvar_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
1706
+ keepdims=None, *, where=None, mean=None,
1707
+ correction=None):
1708
+ return (a, out)
1709
+
1710
+
1711
+ @array_function_dispatch(_nanvar_dispatcher)
1712
+ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue,
1713
+ *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue):
1714
+ """
1715
+ Compute the variance along the specified axis, while ignoring NaNs.
1716
+
1717
+ Returns the variance of the array elements, a measure of the spread of
1718
+ a distribution. The variance is computed for the flattened array by
1719
+ default, otherwise over the specified axis.
1720
+
1721
+ For all-NaN slices or slices with zero degrees of freedom, NaN is
1722
+ returned and a `RuntimeWarning` is raised.
1723
+
1724
+ Parameters
1725
+ ----------
1726
+ a : array_like
1727
+ Array containing numbers whose variance is desired. If `a` is not an
1728
+ array, a conversion is attempted.
1729
+ axis : {int, tuple of int, None}, optional
1730
+ Axis or axes along which the variance is computed. The default is to compute
1731
+ the variance of the flattened array.
1732
+ dtype : data-type, optional
1733
+ Type to use in computing the variance. For arrays of integer type
1734
+ the default is `float64`; for arrays of float types it is the same as
1735
+ the array type.
1736
+ out : ndarray, optional
1737
+ Alternate output array in which to place the result. It must have
1738
+ the same shape as the expected output, but the type is cast if
1739
+ necessary.
1740
+ ddof : {int, float}, optional
1741
+ "Delta Degrees of Freedom": the divisor used in the calculation is
1742
+ ``N - ddof``, where ``N`` represents the number of non-NaN
1743
+ elements. By default `ddof` is zero.
1744
+ keepdims : bool, optional
1745
+ If this is set to True, the axes which are reduced are left
1746
+ in the result as dimensions with size one. With this option,
1747
+ the result will broadcast correctly against the original `a`.
1748
+ where : array_like of bool, optional
1749
+ Elements to include in the variance. See `~numpy.ufunc.reduce` for
1750
+ details.
1751
+
1752
+ .. versionadded:: 1.22.0
1753
+
1754
+ mean : array_like, optional
1755
+ Provide the mean to prevent its recalculation. The mean should have
1756
+ a shape as if it was calculated with ``keepdims=True``.
1757
+ The axis for the calculation of the mean should be the same as used in
1758
+ the call to this var function.
1759
+
1760
+ .. versionadded:: 2.0.0
1761
+
1762
+ correction : {int, float}, optional
1763
+ Array API compatible name for the ``ddof`` parameter. Only one of them
1764
+ can be provided at the same time.
1765
+
1766
+ .. versionadded:: 2.0.0
1767
+
1768
+ Returns
1769
+ -------
1770
+ variance : ndarray, see dtype parameter above
1771
+ If `out` is None, return a new array containing the variance,
1772
+ otherwise return a reference to the output array. If ddof is >= the
1773
+ number of non-NaN elements in a slice or the slice contains only
1774
+ NaNs, then the result for that slice is NaN.
1775
+
1776
+ See Also
1777
+ --------
1778
+ std : Standard deviation
1779
+ mean : Average
1780
+ var : Variance while not ignoring NaNs
1781
+ nanstd, nanmean
1782
+ :ref:`ufuncs-output-type`
1783
+
1784
+ Notes
1785
+ -----
1786
+ The variance is the average of the squared deviations from the mean,
1787
+ i.e., ``var = mean(abs(x - x.mean())**2)``.
1788
+
1789
+ The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``.
1790
+ If, however, `ddof` is specified, the divisor ``N - ddof`` is used
1791
+ instead. In standard statistical practice, ``ddof=1`` provides an
1792
+ unbiased estimator of the variance of a hypothetical infinite
1793
+ population. ``ddof=0`` provides a maximum likelihood estimate of the
1794
+ variance for normally distributed variables.
1795
+
1796
+ Note that for complex numbers, the absolute value is taken before
1797
+ squaring, so that the result is always real and nonnegative.
1798
+
1799
+ For floating-point input, the variance is computed using the same
1800
+ precision the input has. Depending on the input data, this can cause
1801
+ the results to be inaccurate, especially for `float32` (see example
1802
+ below). Specifying a higher-accuracy accumulator using the ``dtype``
1803
+ keyword can alleviate this issue.
1804
+
1805
+ For this function to work on sub-classes of ndarray, they must define
1806
+ `sum` with the kwarg `keepdims`
1807
+
1808
+ Examples
1809
+ --------
1810
+ >>> import numpy as np
1811
+ >>> a = np.array([[1, np.nan], [3, 4]])
1812
+ >>> np.nanvar(a)
1813
+ 1.5555555555555554
1814
+ >>> np.nanvar(a, axis=0)
1815
+ array([1., 0.])
1816
+ >>> np.nanvar(a, axis=1)
1817
+ array([0., 0.25]) # may vary
1818
+
1819
+ """
1820
+ arr, mask = _replace_nan(a, 0)
1821
+ if mask is None:
1822
+ return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof,
1823
+ keepdims=keepdims, where=where, mean=mean,
1824
+ correction=correction)
1825
+
1826
+ if dtype is not None:
1827
+ dtype = np.dtype(dtype)
1828
+ if dtype is not None and not issubclass(dtype.type, np.inexact):
1829
+ raise TypeError("If a is inexact, then dtype must be inexact")
1830
+ if out is not None and not issubclass(out.dtype.type, np.inexact):
1831
+ raise TypeError("If a is inexact, then out must be inexact")
1832
+
1833
+ if correction != np._NoValue:
1834
+ if ddof != 0:
1835
+ raise ValueError(
1836
+ "ddof and correction can't be provided simultaneously."
1837
+ )
1838
+ else:
1839
+ ddof = correction
1840
+
1841
+ # Compute mean
1842
+ if type(arr) is np.matrix:
1843
+ _keepdims = np._NoValue
1844
+ else:
1845
+ _keepdims = True
1846
+
1847
+ cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims,
1848
+ where=where)
1849
+
1850
+ if mean is not np._NoValue:
1851
+ avg = mean
1852
+ else:
1853
+ # we need to special case matrix for reverse compatibility
1854
+ # in order for this to work, these sums need to be called with
1855
+ # keepdims=True, however matrix now raises an error in this case, but
1856
+ # the reason that it drops the keepdims kwarg is to force keepdims=True
1857
+ # so this used to work by serendipity.
1858
+ avg = np.sum(arr, axis=axis, dtype=dtype,
1859
+ keepdims=_keepdims, where=where)
1860
+ avg = _divide_by_count(avg, cnt)
1861
+
1862
+ # Compute squared deviation from mean.
1863
+ np.subtract(arr, avg, out=arr, casting='unsafe', where=where)
1864
+ arr = _copyto(arr, 0, mask)
1865
+ if issubclass(arr.dtype.type, np.complexfloating):
1866
+ sqr = np.multiply(arr, arr.conj(), out=arr, where=where).real
1867
+ else:
1868
+ sqr = np.multiply(arr, arr, out=arr, where=where)
1869
+
1870
+ # Compute variance.
1871
+ var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims,
1872
+ where=where)
1873
+
1874
+ # Precaution against reduced object arrays
1875
+ try:
1876
+ var_ndim = var.ndim
1877
+ except AttributeError:
1878
+ var_ndim = np.ndim(var)
1879
+ if var_ndim < cnt.ndim:
1880
+ # Subclasses of ndarray may ignore keepdims, so check here.
1881
+ cnt = cnt.squeeze(axis)
1882
+ dof = cnt - ddof
1883
+ var = _divide_by_count(var, dof)
1884
+
1885
+ isbad = (dof <= 0)
1886
+ if np.any(isbad):
1887
+ warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning,
1888
+ stacklevel=2)
1889
+ # NaN, inf, or negative numbers are all possible bad
1890
+ # values, so explicitly replace them with NaN.
1891
+ var = _copyto(var, np.nan, isbad)
1892
+ return var
1893
+
1894
+
1895
+ def _nanstd_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
1896
+ keepdims=None, *, where=None, mean=None,
1897
+ correction=None):
1898
+ return (a, out)
1899
+
1900
+
1901
+ @array_function_dispatch(_nanstd_dispatcher)
1902
+ def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue,
1903
+ *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue):
1904
+ """
1905
+ Compute the standard deviation along the specified axis, while
1906
+ ignoring NaNs.
1907
+
1908
+ Returns the standard deviation, a measure of the spread of a
1909
+ distribution, of the non-NaN array elements. The standard deviation is
1910
+ computed for the flattened array by default, otherwise over the
1911
+ specified axis.
1912
+
1913
+ For all-NaN slices or slices with zero degrees of freedom, NaN is
1914
+ returned and a `RuntimeWarning` is raised.
1915
+
1916
+ Parameters
1917
+ ----------
1918
+ a : array_like
1919
+ Calculate the standard deviation of the non-NaN values.
1920
+ axis : {int, tuple of int, None}, optional
1921
+ Axis or axes along which the standard deviation is computed. The default is
1922
+ to compute the standard deviation of the flattened array.
1923
+ dtype : dtype, optional
1924
+ Type to use in computing the standard deviation. For arrays of
1925
+ integer type the default is float64, for arrays of float types it
1926
+ is the same as the array type.
1927
+ out : ndarray, optional
1928
+ Alternative output array in which to place the result. It must have
1929
+ the same shape as the expected output but the type (of the
1930
+ calculated values) will be cast if necessary.
1931
+ ddof : {int, float}, optional
1932
+ Means Delta Degrees of Freedom. The divisor used in calculations
1933
+ is ``N - ddof``, where ``N`` represents the number of non-NaN
1934
+ elements. By default `ddof` is zero.
1935
+
1936
+ keepdims : bool, optional
1937
+ If this is set to True, the axes which are reduced are left
1938
+ in the result as dimensions with size one. With this option,
1939
+ the result will broadcast correctly against the original `a`.
1940
+
1941
+ If this value is anything but the default it is passed through
1942
+ as-is to the relevant functions of the sub-classes. If these
1943
+ functions do not have a `keepdims` kwarg, a RuntimeError will
1944
+ be raised.
1945
+ where : array_like of bool, optional
1946
+ Elements to include in the standard deviation.
1947
+ See `~numpy.ufunc.reduce` for details.
1948
+
1949
+ .. versionadded:: 1.22.0
1950
+
1951
+ mean : array_like, optional
1952
+ Provide the mean to prevent its recalculation. The mean should have
1953
+ a shape as if it was calculated with ``keepdims=True``.
1954
+ The axis for the calculation of the mean should be the same as used in
1955
+ the call to this std function.
1956
+
1957
+ .. versionadded:: 2.0.0
1958
+
1959
+ correction : {int, float}, optional
1960
+ Array API compatible name for the ``ddof`` parameter. Only one of them
1961
+ can be provided at the same time.
1962
+
1963
+ .. versionadded:: 2.0.0
1964
+
1965
+ Returns
1966
+ -------
1967
+ standard_deviation : ndarray, see dtype parameter above.
1968
+ If `out` is None, return a new array containing the standard
1969
+ deviation, otherwise return a reference to the output array. If
1970
+ ddof is >= the number of non-NaN elements in a slice or the slice
1971
+ contains only NaNs, then the result for that slice is NaN.
1972
+
1973
+ See Also
1974
+ --------
1975
+ var, mean, std
1976
+ nanvar, nanmean
1977
+ :ref:`ufuncs-output-type`
1978
+
1979
+ Notes
1980
+ -----
1981
+ The standard deviation is the square root of the average of the squared
1982
+ deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``.
1983
+
1984
+ The average squared deviation is normally calculated as
1985
+ ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is
1986
+ specified, the divisor ``N - ddof`` is used instead. In standard
1987
+ statistical practice, ``ddof=1`` provides an unbiased estimator of the
1988
+ variance of the infinite population. ``ddof=0`` provides a maximum
1989
+ likelihood estimate of the variance for normally distributed variables.
1990
+ The standard deviation computed in this function is the square root of
1991
+ the estimated variance, so even with ``ddof=1``, it will not be an
1992
+ unbiased estimate of the standard deviation per se.
1993
+
1994
+ Note that, for complex numbers, `std` takes the absolute value before
1995
+ squaring, so that the result is always real and nonnegative.
1996
+
1997
+ For floating-point input, the *std* is computed using the same
1998
+ precision the input has. Depending on the input data, this can cause
1999
+ the results to be inaccurate, especially for float32 (see example
2000
+ below). Specifying a higher-accuracy accumulator using the `dtype`
2001
+ keyword can alleviate this issue.
2002
+
2003
+ Examples
2004
+ --------
2005
+ >>> import numpy as np
2006
+ >>> a = np.array([[1, np.nan], [3, 4]])
2007
+ >>> np.nanstd(a)
2008
+ 1.247219128924647
2009
+ >>> np.nanstd(a, axis=0)
2010
+ array([1., 0.])
2011
+ >>> np.nanstd(a, axis=1)
2012
+ array([0., 0.5]) # may vary
2013
+
2014
+ """
2015
+ var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
2016
+ keepdims=keepdims, where=where, mean=mean,
2017
+ correction=correction)
2018
+ if isinstance(var, np.ndarray):
2019
+ std = np.sqrt(var, out=var)
2020
+ elif hasattr(var, 'dtype'):
2021
+ std = var.dtype.type(np.sqrt(var))
2022
+ else:
2023
+ std = np.sqrt(var)
2024
+ return std