mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,466 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 33489,
|
|
4
|
+
"number_of_characters": 478879013,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 478570118,
|
|
7
|
+
"min_text_length": 37,
|
|
8
|
+
"average_text_length": 16119.442150291354,
|
|
9
|
+
"max_text_length": 287838,
|
|
10
|
+
"unique_texts": 29689
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 308895,
|
|
15
|
+
"min_text_length": 3,
|
|
16
|
+
"average_text_length": 81.28815789473684,
|
|
17
|
+
"max_text_length": 2589,
|
|
18
|
+
"unique_texts": 3800
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 3800,
|
|
23
|
+
"min_relevant_docs_per_query": 8,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 29689
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": {
|
|
29
|
+
"num_top_ranked": 30400,
|
|
30
|
+
"min_top_ranked_per_query": 8,
|
|
31
|
+
"average_top_ranked_per_query": 8.0,
|
|
32
|
+
"max_top_ranked_per_query": 8
|
|
33
|
+
},
|
|
34
|
+
"hf_subset_descriptive_stats": {
|
|
35
|
+
"ar": {
|
|
36
|
+
"num_samples": 1759,
|
|
37
|
+
"number_of_characters": 17483509,
|
|
38
|
+
"documents_text_statistics": {
|
|
39
|
+
"total_text_length": 17468355,
|
|
40
|
+
"min_text_length": 2467,
|
|
41
|
+
"average_text_length": 11204.846055163567,
|
|
42
|
+
"max_text_length": 115382,
|
|
43
|
+
"unique_texts": 1559
|
|
44
|
+
},
|
|
45
|
+
"documents_image_statistics": null,
|
|
46
|
+
"queries_text_statistics": {
|
|
47
|
+
"total_text_length": 15154,
|
|
48
|
+
"min_text_length": 7,
|
|
49
|
+
"average_text_length": 75.77,
|
|
50
|
+
"max_text_length": 695,
|
|
51
|
+
"unique_texts": 200
|
|
52
|
+
},
|
|
53
|
+
"queries_image_statistics": null,
|
|
54
|
+
"relevant_docs_statistics": {
|
|
55
|
+
"num_relevant_docs": 200,
|
|
56
|
+
"min_relevant_docs_per_query": 8,
|
|
57
|
+
"average_relevant_docs_per_query": 1.0,
|
|
58
|
+
"max_relevant_docs_per_query": 8,
|
|
59
|
+
"unique_relevant_docs": 1559
|
|
60
|
+
},
|
|
61
|
+
"top_ranked_statistics": {
|
|
62
|
+
"num_top_ranked": 1600,
|
|
63
|
+
"min_top_ranked_per_query": 8,
|
|
64
|
+
"average_top_ranked_per_query": 8.0,
|
|
65
|
+
"max_top_ranked_per_query": 8
|
|
66
|
+
}
|
|
67
|
+
},
|
|
68
|
+
"de": {
|
|
69
|
+
"num_samples": 1800,
|
|
70
|
+
"number_of_characters": 9860028,
|
|
71
|
+
"documents_text_statistics": {
|
|
72
|
+
"total_text_length": 9835298,
|
|
73
|
+
"min_text_length": 107,
|
|
74
|
+
"average_text_length": 6147.06125,
|
|
75
|
+
"max_text_length": 92210,
|
|
76
|
+
"unique_texts": 1600
|
|
77
|
+
},
|
|
78
|
+
"documents_image_statistics": null,
|
|
79
|
+
"queries_text_statistics": {
|
|
80
|
+
"total_text_length": 24730,
|
|
81
|
+
"min_text_length": 10,
|
|
82
|
+
"average_text_length": 123.65,
|
|
83
|
+
"max_text_length": 957,
|
|
84
|
+
"unique_texts": 200
|
|
85
|
+
},
|
|
86
|
+
"queries_image_statistics": null,
|
|
87
|
+
"relevant_docs_statistics": {
|
|
88
|
+
"num_relevant_docs": 200,
|
|
89
|
+
"min_relevant_docs_per_query": 8,
|
|
90
|
+
"average_relevant_docs_per_query": 1.0,
|
|
91
|
+
"max_relevant_docs_per_query": 8,
|
|
92
|
+
"unique_relevant_docs": 1600
|
|
93
|
+
},
|
|
94
|
+
"top_ranked_statistics": {
|
|
95
|
+
"num_top_ranked": 1600,
|
|
96
|
+
"min_top_ranked_per_query": 8,
|
|
97
|
+
"average_top_ranked_per_query": 8.0,
|
|
98
|
+
"max_top_ranked_per_query": 8
|
|
99
|
+
}
|
|
100
|
+
},
|
|
101
|
+
"en": {
|
|
102
|
+
"num_samples": 6878,
|
|
103
|
+
"number_of_characters": 221164232,
|
|
104
|
+
"documents_text_statistics": {
|
|
105
|
+
"total_text_length": 221099168,
|
|
106
|
+
"min_text_length": 12147,
|
|
107
|
+
"average_text_length": 36376.96084238236,
|
|
108
|
+
"max_text_length": 287838,
|
|
109
|
+
"unique_texts": 6078
|
|
110
|
+
},
|
|
111
|
+
"documents_image_statistics": null,
|
|
112
|
+
"queries_text_statistics": {
|
|
113
|
+
"total_text_length": 65064,
|
|
114
|
+
"min_text_length": 18,
|
|
115
|
+
"average_text_length": 81.33,
|
|
116
|
+
"max_text_length": 255,
|
|
117
|
+
"unique_texts": 800
|
|
118
|
+
},
|
|
119
|
+
"queries_image_statistics": null,
|
|
120
|
+
"relevant_docs_statistics": {
|
|
121
|
+
"num_relevant_docs": 800,
|
|
122
|
+
"min_relevant_docs_per_query": 8,
|
|
123
|
+
"average_relevant_docs_per_query": 1.0,
|
|
124
|
+
"max_relevant_docs_per_query": 8,
|
|
125
|
+
"unique_relevant_docs": 6078
|
|
126
|
+
},
|
|
127
|
+
"top_ranked_statistics": {
|
|
128
|
+
"num_top_ranked": 6400,
|
|
129
|
+
"min_top_ranked_per_query": 8,
|
|
130
|
+
"average_top_ranked_per_query": 8.0,
|
|
131
|
+
"max_top_ranked_per_query": 8
|
|
132
|
+
}
|
|
133
|
+
},
|
|
134
|
+
"es": {
|
|
135
|
+
"num_samples": 1780,
|
|
136
|
+
"number_of_characters": 20852843,
|
|
137
|
+
"documents_text_statistics": {
|
|
138
|
+
"total_text_length": 20826446,
|
|
139
|
+
"min_text_length": 2657,
|
|
140
|
+
"average_text_length": 13181.29493670886,
|
|
141
|
+
"max_text_length": 270338,
|
|
142
|
+
"unique_texts": 1580
|
|
143
|
+
},
|
|
144
|
+
"documents_image_statistics": null,
|
|
145
|
+
"queries_text_statistics": {
|
|
146
|
+
"total_text_length": 26397,
|
|
147
|
+
"min_text_length": 40,
|
|
148
|
+
"average_text_length": 131.985,
|
|
149
|
+
"max_text_length": 480,
|
|
150
|
+
"unique_texts": 200
|
|
151
|
+
},
|
|
152
|
+
"queries_image_statistics": null,
|
|
153
|
+
"relevant_docs_statistics": {
|
|
154
|
+
"num_relevant_docs": 200,
|
|
155
|
+
"min_relevant_docs_per_query": 8,
|
|
156
|
+
"average_relevant_docs_per_query": 1.0,
|
|
157
|
+
"max_relevant_docs_per_query": 8,
|
|
158
|
+
"unique_relevant_docs": 1580
|
|
159
|
+
},
|
|
160
|
+
"top_ranked_statistics": {
|
|
161
|
+
"num_top_ranked": 1600,
|
|
162
|
+
"min_top_ranked_per_query": 8,
|
|
163
|
+
"average_top_ranked_per_query": 8.0,
|
|
164
|
+
"max_top_ranked_per_query": 8
|
|
165
|
+
}
|
|
166
|
+
},
|
|
167
|
+
"fr": {
|
|
168
|
+
"num_samples": 1762,
|
|
169
|
+
"number_of_characters": 17828712,
|
|
170
|
+
"documents_text_statistics": {
|
|
171
|
+
"total_text_length": 17798753,
|
|
172
|
+
"min_text_length": 2093,
|
|
173
|
+
"average_text_length": 11394.848271446863,
|
|
174
|
+
"max_text_length": 133854,
|
|
175
|
+
"unique_texts": 1562
|
|
176
|
+
},
|
|
177
|
+
"documents_image_statistics": null,
|
|
178
|
+
"queries_text_statistics": {
|
|
179
|
+
"total_text_length": 29959,
|
|
180
|
+
"min_text_length": 33,
|
|
181
|
+
"average_text_length": 149.795,
|
|
182
|
+
"max_text_length": 2589,
|
|
183
|
+
"unique_texts": 200
|
|
184
|
+
},
|
|
185
|
+
"queries_image_statistics": null,
|
|
186
|
+
"relevant_docs_statistics": {
|
|
187
|
+
"num_relevant_docs": 200,
|
|
188
|
+
"min_relevant_docs_per_query": 8,
|
|
189
|
+
"average_relevant_docs_per_query": 1.0,
|
|
190
|
+
"max_relevant_docs_per_query": 8,
|
|
191
|
+
"unique_relevant_docs": 1562
|
|
192
|
+
},
|
|
193
|
+
"top_ranked_statistics": {
|
|
194
|
+
"num_top_ranked": 1600,
|
|
195
|
+
"min_top_ranked_per_query": 8,
|
|
196
|
+
"average_top_ranked_per_query": 8.0,
|
|
197
|
+
"max_top_ranked_per_query": 8
|
|
198
|
+
}
|
|
199
|
+
},
|
|
200
|
+
"hi": {
|
|
201
|
+
"num_samples": 1715,
|
|
202
|
+
"number_of_characters": 18465376,
|
|
203
|
+
"documents_text_statistics": {
|
|
204
|
+
"total_text_length": 18444624,
|
|
205
|
+
"min_text_length": 2426,
|
|
206
|
+
"average_text_length": 12174.669306930693,
|
|
207
|
+
"max_text_length": 227264,
|
|
208
|
+
"unique_texts": 1515
|
|
209
|
+
},
|
|
210
|
+
"documents_image_statistics": null,
|
|
211
|
+
"queries_text_statistics": {
|
|
212
|
+
"total_text_length": 20752,
|
|
213
|
+
"min_text_length": 6,
|
|
214
|
+
"average_text_length": 103.76,
|
|
215
|
+
"max_text_length": 2022,
|
|
216
|
+
"unique_texts": 200
|
|
217
|
+
},
|
|
218
|
+
"queries_image_statistics": null,
|
|
219
|
+
"relevant_docs_statistics": {
|
|
220
|
+
"num_relevant_docs": 200,
|
|
221
|
+
"min_relevant_docs_per_query": 8,
|
|
222
|
+
"average_relevant_docs_per_query": 1.0,
|
|
223
|
+
"max_relevant_docs_per_query": 8,
|
|
224
|
+
"unique_relevant_docs": 1515
|
|
225
|
+
},
|
|
226
|
+
"top_ranked_statistics": {
|
|
227
|
+
"num_top_ranked": 1600,
|
|
228
|
+
"min_top_ranked_per_query": 8,
|
|
229
|
+
"average_top_ranked_per_query": 8.0,
|
|
230
|
+
"max_top_ranked_per_query": 8
|
|
231
|
+
}
|
|
232
|
+
},
|
|
233
|
+
"it": {
|
|
234
|
+
"num_samples": 1780,
|
|
235
|
+
"number_of_characters": 22616410,
|
|
236
|
+
"documents_text_statistics": {
|
|
237
|
+
"total_text_length": 22593491,
|
|
238
|
+
"min_text_length": 2518,
|
|
239
|
+
"average_text_length": 14299.677848101266,
|
|
240
|
+
"max_text_length": 117197,
|
|
241
|
+
"unique_texts": 1580
|
|
242
|
+
},
|
|
243
|
+
"documents_image_statistics": null,
|
|
244
|
+
"queries_text_statistics": {
|
|
245
|
+
"total_text_length": 22919,
|
|
246
|
+
"min_text_length": 12,
|
|
247
|
+
"average_text_length": 114.595,
|
|
248
|
+
"max_text_length": 1899,
|
|
249
|
+
"unique_texts": 200
|
|
250
|
+
},
|
|
251
|
+
"queries_image_statistics": null,
|
|
252
|
+
"relevant_docs_statistics": {
|
|
253
|
+
"num_relevant_docs": 200,
|
|
254
|
+
"min_relevant_docs_per_query": 8,
|
|
255
|
+
"average_relevant_docs_per_query": 1.0,
|
|
256
|
+
"max_relevant_docs_per_query": 8,
|
|
257
|
+
"unique_relevant_docs": 1580
|
|
258
|
+
},
|
|
259
|
+
"top_ranked_statistics": {
|
|
260
|
+
"num_top_ranked": 1600,
|
|
261
|
+
"min_top_ranked_per_query": 8,
|
|
262
|
+
"average_top_ranked_per_query": 8.0,
|
|
263
|
+
"max_top_ranked_per_query": 8
|
|
264
|
+
}
|
|
265
|
+
},
|
|
266
|
+
"ja": {
|
|
267
|
+
"num_samples": 1781,
|
|
268
|
+
"number_of_characters": 8562074,
|
|
269
|
+
"documents_text_statistics": {
|
|
270
|
+
"total_text_length": 8550928,
|
|
271
|
+
"min_text_length": 1244,
|
|
272
|
+
"average_text_length": 5408.556609740671,
|
|
273
|
+
"max_text_length": 97242,
|
|
274
|
+
"unique_texts": 1581
|
|
275
|
+
},
|
|
276
|
+
"documents_image_statistics": null,
|
|
277
|
+
"queries_text_statistics": {
|
|
278
|
+
"total_text_length": 11146,
|
|
279
|
+
"min_text_length": 6,
|
|
280
|
+
"average_text_length": 55.73,
|
|
281
|
+
"max_text_length": 416,
|
|
282
|
+
"unique_texts": 200
|
|
283
|
+
},
|
|
284
|
+
"queries_image_statistics": null,
|
|
285
|
+
"relevant_docs_statistics": {
|
|
286
|
+
"num_relevant_docs": 200,
|
|
287
|
+
"min_relevant_docs_per_query": 8,
|
|
288
|
+
"average_relevant_docs_per_query": 1.0,
|
|
289
|
+
"max_relevant_docs_per_query": 8,
|
|
290
|
+
"unique_relevant_docs": 1581
|
|
291
|
+
},
|
|
292
|
+
"top_ranked_statistics": {
|
|
293
|
+
"num_top_ranked": 1600,
|
|
294
|
+
"min_top_ranked_per_query": 8,
|
|
295
|
+
"average_top_ranked_per_query": 8.0,
|
|
296
|
+
"max_top_ranked_per_query": 8
|
|
297
|
+
}
|
|
298
|
+
},
|
|
299
|
+
"ko": {
|
|
300
|
+
"num_samples": 1770,
|
|
301
|
+
"number_of_characters": 9773349,
|
|
302
|
+
"documents_text_statistics": {
|
|
303
|
+
"total_text_length": 9761605,
|
|
304
|
+
"min_text_length": 1490,
|
|
305
|
+
"average_text_length": 6217.58280254777,
|
|
306
|
+
"max_text_length": 76949,
|
|
307
|
+
"unique_texts": 1570
|
|
308
|
+
},
|
|
309
|
+
"documents_image_statistics": null,
|
|
310
|
+
"queries_text_statistics": {
|
|
311
|
+
"total_text_length": 11744,
|
|
312
|
+
"min_text_length": 8,
|
|
313
|
+
"average_text_length": 58.72,
|
|
314
|
+
"max_text_length": 330,
|
|
315
|
+
"unique_texts": 200
|
|
316
|
+
},
|
|
317
|
+
"queries_image_statistics": null,
|
|
318
|
+
"relevant_docs_statistics": {
|
|
319
|
+
"num_relevant_docs": 200,
|
|
320
|
+
"min_relevant_docs_per_query": 8,
|
|
321
|
+
"average_relevant_docs_per_query": 1.0,
|
|
322
|
+
"max_relevant_docs_per_query": 8,
|
|
323
|
+
"unique_relevant_docs": 1570
|
|
324
|
+
},
|
|
325
|
+
"top_ranked_statistics": {
|
|
326
|
+
"num_top_ranked": 1600,
|
|
327
|
+
"min_top_ranked_per_query": 8,
|
|
328
|
+
"average_top_ranked_per_query": 8.0,
|
|
329
|
+
"max_top_ranked_per_query": 8
|
|
330
|
+
}
|
|
331
|
+
},
|
|
332
|
+
"pt": {
|
|
333
|
+
"num_samples": 1764,
|
|
334
|
+
"number_of_characters": 23152911,
|
|
335
|
+
"documents_text_statistics": {
|
|
336
|
+
"total_text_length": 23130220,
|
|
337
|
+
"min_text_length": 3473,
|
|
338
|
+
"average_text_length": 14789.143222506395,
|
|
339
|
+
"max_text_length": 108535,
|
|
340
|
+
"unique_texts": 1564
|
|
341
|
+
},
|
|
342
|
+
"documents_image_statistics": null,
|
|
343
|
+
"queries_text_statistics": {
|
|
344
|
+
"total_text_length": 22691,
|
|
345
|
+
"min_text_length": 4,
|
|
346
|
+
"average_text_length": 113.455,
|
|
347
|
+
"max_text_length": 511,
|
|
348
|
+
"unique_texts": 200
|
|
349
|
+
},
|
|
350
|
+
"queries_image_statistics": null,
|
|
351
|
+
"relevant_docs_statistics": {
|
|
352
|
+
"num_relevant_docs": 200,
|
|
353
|
+
"min_relevant_docs_per_query": 8,
|
|
354
|
+
"average_relevant_docs_per_query": 1.0,
|
|
355
|
+
"max_relevant_docs_per_query": 8,
|
|
356
|
+
"unique_relevant_docs": 1564
|
|
357
|
+
},
|
|
358
|
+
"top_ranked_statistics": {
|
|
359
|
+
"num_top_ranked": 1600,
|
|
360
|
+
"min_top_ranked_per_query": 8,
|
|
361
|
+
"average_top_ranked_per_query": 8.0,
|
|
362
|
+
"max_top_ranked_per_query": 8
|
|
363
|
+
}
|
|
364
|
+
},
|
|
365
|
+
"ru": {
|
|
366
|
+
"num_samples": 1779,
|
|
367
|
+
"number_of_characters": 22994826,
|
|
368
|
+
"documents_text_statistics": {
|
|
369
|
+
"total_text_length": 22975852,
|
|
370
|
+
"min_text_length": 2914,
|
|
371
|
+
"average_text_length": 14550.887903736542,
|
|
372
|
+
"max_text_length": 151133,
|
|
373
|
+
"unique_texts": 1579
|
|
374
|
+
},
|
|
375
|
+
"documents_image_statistics": null,
|
|
376
|
+
"queries_text_statistics": {
|
|
377
|
+
"total_text_length": 18974,
|
|
378
|
+
"min_text_length": 12,
|
|
379
|
+
"average_text_length": 94.87,
|
|
380
|
+
"max_text_length": 413,
|
|
381
|
+
"unique_texts": 200
|
|
382
|
+
},
|
|
383
|
+
"queries_image_statistics": null,
|
|
384
|
+
"relevant_docs_statistics": {
|
|
385
|
+
"num_relevant_docs": 200,
|
|
386
|
+
"min_relevant_docs_per_query": 8,
|
|
387
|
+
"average_relevant_docs_per_query": 1.0,
|
|
388
|
+
"max_relevant_docs_per_query": 8,
|
|
389
|
+
"unique_relevant_docs": 1579
|
|
390
|
+
},
|
|
391
|
+
"top_ranked_statistics": {
|
|
392
|
+
"num_top_ranked": 1600,
|
|
393
|
+
"min_top_ranked_per_query": 8,
|
|
394
|
+
"average_top_ranked_per_query": 8.0,
|
|
395
|
+
"max_top_ranked_per_query": 8
|
|
396
|
+
}
|
|
397
|
+
},
|
|
398
|
+
"th": {
|
|
399
|
+
"num_samples": 1800,
|
|
400
|
+
"number_of_characters": 8022609,
|
|
401
|
+
"documents_text_statistics": {
|
|
402
|
+
"total_text_length": 8003011,
|
|
403
|
+
"min_text_length": 37,
|
|
404
|
+
"average_text_length": 5001.881875,
|
|
405
|
+
"max_text_length": 44872,
|
|
406
|
+
"unique_texts": 1600
|
|
407
|
+
},
|
|
408
|
+
"documents_image_statistics": null,
|
|
409
|
+
"queries_text_statistics": {
|
|
410
|
+
"total_text_length": 19598,
|
|
411
|
+
"min_text_length": 11,
|
|
412
|
+
"average_text_length": 97.99,
|
|
413
|
+
"max_text_length": 309,
|
|
414
|
+
"unique_texts": 200
|
|
415
|
+
},
|
|
416
|
+
"queries_image_statistics": null,
|
|
417
|
+
"relevant_docs_statistics": {
|
|
418
|
+
"num_relevant_docs": 200,
|
|
419
|
+
"min_relevant_docs_per_query": 8,
|
|
420
|
+
"average_relevant_docs_per_query": 1.0,
|
|
421
|
+
"max_relevant_docs_per_query": 8,
|
|
422
|
+
"unique_relevant_docs": 1600
|
|
423
|
+
},
|
|
424
|
+
"top_ranked_statistics": {
|
|
425
|
+
"num_top_ranked": 1600,
|
|
426
|
+
"min_top_ranked_per_query": 8,
|
|
427
|
+
"average_top_ranked_per_query": 8.0,
|
|
428
|
+
"max_top_ranked_per_query": 8
|
|
429
|
+
}
|
|
430
|
+
},
|
|
431
|
+
"zh": {
|
|
432
|
+
"num_samples": 7121,
|
|
433
|
+
"number_of_characters": 78102134,
|
|
434
|
+
"documents_text_statistics": {
|
|
435
|
+
"total_text_length": 78082367,
|
|
436
|
+
"min_text_length": 6268,
|
|
437
|
+
"average_text_length": 12352.850340136054,
|
|
438
|
+
"max_text_length": 278468,
|
|
439
|
+
"unique_texts": 6321
|
|
440
|
+
},
|
|
441
|
+
"documents_image_statistics": null,
|
|
442
|
+
"queries_text_statistics": {
|
|
443
|
+
"total_text_length": 19767,
|
|
444
|
+
"min_text_length": 3,
|
|
445
|
+
"average_text_length": 24.70875,
|
|
446
|
+
"max_text_length": 646,
|
|
447
|
+
"unique_texts": 800
|
|
448
|
+
},
|
|
449
|
+
"queries_image_statistics": null,
|
|
450
|
+
"relevant_docs_statistics": {
|
|
451
|
+
"num_relevant_docs": 800,
|
|
452
|
+
"min_relevant_docs_per_query": 8,
|
|
453
|
+
"average_relevant_docs_per_query": 1.0,
|
|
454
|
+
"max_relevant_docs_per_query": 8,
|
|
455
|
+
"unique_relevant_docs": 6321
|
|
456
|
+
},
|
|
457
|
+
"top_ranked_statistics": {
|
|
458
|
+
"num_top_ranked": 6400,
|
|
459
|
+
"min_top_ranked_per_query": 8,
|
|
460
|
+
"average_top_ranked_per_query": 8.0,
|
|
461
|
+
"max_top_ranked_per_query": 8
|
|
462
|
+
}
|
|
463
|
+
}
|
|
464
|
+
}
|
|
465
|
+
}
|
|
466
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 10080,
|
|
4
|
+
"number_of_characters": 11742019,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 9897099,
|
|
7
|
+
"min_text_length": 1,
|
|
8
|
+
"average_text_length": 1141.0074936592114,
|
|
9
|
+
"max_text_length": 7337,
|
|
10
|
+
"unique_texts": 8624
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 1844920,
|
|
15
|
+
"min_text_length": 252,
|
|
16
|
+
"average_text_length": 1312.176386913229,
|
|
17
|
+
"max_text_length": 6050,
|
|
18
|
+
"unique_texts": 1298
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1406,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 1406
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 306638,
|
|
4
|
+
"number_of_characters": 56607519,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 56466000,
|
|
7
|
+
"min_text_length": 142,
|
|
8
|
+
"average_text_length": 186.57934562084074,
|
|
9
|
+
"max_text_length": 252,
|
|
10
|
+
"unique_texts": 299096
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 141519,
|
|
15
|
+
"min_text_length": 9,
|
|
16
|
+
"average_text_length": 35.37975,
|
|
17
|
+
"max_text_length": 176,
|
|
18
|
+
"unique_texts": 3993
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 4000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 4000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 66799,
|
|
4
|
+
"number_of_characters": 280024895,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 279974341,
|
|
7
|
+
"min_text_length": 8,
|
|
8
|
+
"average_text_length": 4254.799869304884,
|
|
9
|
+
"max_text_length": 188424,
|
|
10
|
+
"unique_texts": 65802
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 50554,
|
|
15
|
+
"min_text_length": 16,
|
|
16
|
+
"average_text_length": 50.70611835506519,
|
|
17
|
+
"max_text_length": 98,
|
|
18
|
+
"unique_texts": 997
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 997,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 989
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 105924,
|
|
4
|
+
"number_of_characters": 20818958,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 20803724,
|
|
7
|
+
"min_text_length": 4,
|
|
8
|
+
"average_text_length": 198.01001294449097,
|
|
9
|
+
"max_text_length": 13231,
|
|
10
|
+
"unique_texts": 104988
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 15234,
|
|
15
|
+
"min_text_length": 7,
|
|
16
|
+
"average_text_length": 17.71395348837209,
|
|
17
|
+
"max_text_length": 48,
|
|
18
|
+
"unique_texts": 860
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 1790,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 2.0813953488372094,
|
|
25
|
+
"max_relevant_docs_per_query": 11,
|
|
26
|
+
"unique_relevant_docs": 1728
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 94102,
|
|
4
|
+
"number_of_characters": 17949014,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 17935995,
|
|
7
|
+
"min_text_length": 4,
|
|
8
|
+
"average_text_length": 192.07122357627807,
|
|
9
|
+
"max_text_length": 10778,
|
|
10
|
+
"unique_texts": 93122
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 13019,
|
|
15
|
+
"min_text_length": 6,
|
|
16
|
+
"average_text_length": 18.081944444444446,
|
|
17
|
+
"max_text_length": 44,
|
|
18
|
+
"unique_texts": 720
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 923,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.2819444444444446,
|
|
25
|
+
"max_relevant_docs_per_query": 3,
|
|
26
|
+
"unique_relevant_docs": 880
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 3956,
|
|
4
|
+
"number_of_characters": 6345348,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 6337710,
|
|
7
|
+
"min_text_length": 144,
|
|
8
|
+
"average_text_length": 1744.483897605285,
|
|
9
|
+
"max_text_length": 8480,
|
|
10
|
+
"unique_texts": 3593
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 7638,
|
|
15
|
+
"min_text_length": 3,
|
|
16
|
+
"average_text_length": 23.647058823529413,
|
|
17
|
+
"max_text_length": 89,
|
|
18
|
+
"unique_texts": 323
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 12334,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 38.18575851393189,
|
|
25
|
+
"max_relevant_docs_per_query": 475,
|
|
26
|
+
"unique_relevant_docs": 3128
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|