mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,164 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch.utils.data import DataLoader
|
|
5
|
+
from tqdm.auto import tqdm
|
|
6
|
+
|
|
7
|
+
from mteb._requires_package import (
|
|
8
|
+
requires_image_dependencies,
|
|
9
|
+
requires_package,
|
|
10
|
+
)
|
|
11
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
13
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class EagerEmbedV1Wrapper(AbsEncoder):
|
|
18
|
+
"""Wrapper for EagerEmbed single-vector embedding models."""
|
|
19
|
+
|
|
20
|
+
def __init__(
|
|
21
|
+
self,
|
|
22
|
+
model_name: str,
|
|
23
|
+
revision: str | None = None,
|
|
24
|
+
device: str | None = None,
|
|
25
|
+
image_size: int = 784,
|
|
26
|
+
**kwargs,
|
|
27
|
+
):
|
|
28
|
+
requires_image_dependencies()
|
|
29
|
+
requires_package(
|
|
30
|
+
self, "qwen_vl_utils", model_name, "pip install mteb[eager_embed]"
|
|
31
|
+
)
|
|
32
|
+
from transformers import AutoProcessor, Qwen3VLForConditionalGeneration
|
|
33
|
+
|
|
34
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
35
|
+
self.image_size = image_size
|
|
36
|
+
|
|
37
|
+
# Load model
|
|
38
|
+
self.mdl = Qwen3VLForConditionalGeneration.from_pretrained(model_name, **kwargs)
|
|
39
|
+
self.mdl = self.mdl.to(self.device)
|
|
40
|
+
self.mdl.eval()
|
|
41
|
+
|
|
42
|
+
# Load processor
|
|
43
|
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
44
|
+
|
|
45
|
+
def get_embedding(self, last_hidden_state: torch.Tensor) -> torch.Tensor:
|
|
46
|
+
"""Extract embeddings from last token of last hidden state."""
|
|
47
|
+
reps = last_hidden_state[:, -1]
|
|
48
|
+
return reps
|
|
49
|
+
|
|
50
|
+
def encode(
|
|
51
|
+
self,
|
|
52
|
+
inputs: DataLoader[BatchedInput],
|
|
53
|
+
*,
|
|
54
|
+
task_metadata: TaskMetadata,
|
|
55
|
+
hf_split: str,
|
|
56
|
+
hf_subset: str,
|
|
57
|
+
prompt_type: PromptType | None = None,
|
|
58
|
+
**kwargs: Any,
|
|
59
|
+
) -> Array:
|
|
60
|
+
"""Encode inputs (text and/or images) into embeddings."""
|
|
61
|
+
from qwen_vl_utils import process_vision_info
|
|
62
|
+
|
|
63
|
+
all_embeddings: list[torch.Tensor] = []
|
|
64
|
+
|
|
65
|
+
with torch.no_grad():
|
|
66
|
+
for batch in tqdm(inputs, desc="Encoding"):
|
|
67
|
+
batch_texts = batch.get("text", [])
|
|
68
|
+
batch_images = batch.get("image", [])
|
|
69
|
+
|
|
70
|
+
messages = []
|
|
71
|
+
for i in range(max(len(batch_texts), len(batch_images))):
|
|
72
|
+
text_content = batch_texts[i] if batch_texts else ""
|
|
73
|
+
image_content = batch_images[i] if batch_images else None
|
|
74
|
+
|
|
75
|
+
query_prefix = "Query: " if prompt_type == PromptType.query else ""
|
|
76
|
+
content = [
|
|
77
|
+
{"type": "text", "text": f"{query_prefix}{text_content}"}
|
|
78
|
+
]
|
|
79
|
+
|
|
80
|
+
if image_content is not None:
|
|
81
|
+
content.append(
|
|
82
|
+
{
|
|
83
|
+
"type": "image",
|
|
84
|
+
"image": image_content,
|
|
85
|
+
"resized_height": self.image_size,
|
|
86
|
+
"resized_width": self.image_size,
|
|
87
|
+
}
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
messages.append([{"role": "user", "content": content}])
|
|
91
|
+
|
|
92
|
+
# Prepare inputs
|
|
93
|
+
texts = [
|
|
94
|
+
self.processor.apply_chat_template(
|
|
95
|
+
msg, tokenize=False, add_generation_prompt=False
|
|
96
|
+
)
|
|
97
|
+
+ "<|endoftext|>"
|
|
98
|
+
for msg in messages
|
|
99
|
+
]
|
|
100
|
+
|
|
101
|
+
image_inputs = None
|
|
102
|
+
video_inputs = None
|
|
103
|
+
if batch_images:
|
|
104
|
+
image_inputs, video_inputs = process_vision_info(messages)
|
|
105
|
+
|
|
106
|
+
model_inputs = self.processor(
|
|
107
|
+
text=texts,
|
|
108
|
+
images=image_inputs,
|
|
109
|
+
videos=video_inputs,
|
|
110
|
+
padding="longest",
|
|
111
|
+
return_tensors="pt",
|
|
112
|
+
).to(self.device)
|
|
113
|
+
|
|
114
|
+
# Get embeddings
|
|
115
|
+
output = self.mdl(
|
|
116
|
+
**model_inputs, return_dict=True, output_hidden_states=True
|
|
117
|
+
)
|
|
118
|
+
embeddings = self.get_embedding(output.hidden_states[-1])
|
|
119
|
+
embeddings = embeddings.cpu().to(torch.float32)
|
|
120
|
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=-1)
|
|
121
|
+
|
|
122
|
+
all_embeddings.append(embeddings)
|
|
123
|
+
|
|
124
|
+
return torch.cat(all_embeddings, dim=0)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
EAGER_EMBED_V1_CITATION = """@article{EagerEmbed,
|
|
128
|
+
title={Eager Embed V1: Multimodal Dense Embeddings for Retrieval},
|
|
129
|
+
author={Juan Pablo Balarini},
|
|
130
|
+
year={2025},
|
|
131
|
+
publisher={Eagerworks},
|
|
132
|
+
url={https://github.com/eagerworks/eager-embed},
|
|
133
|
+
}"""
|
|
134
|
+
|
|
135
|
+
EAGER_EMBED_V1_TRAINING_DATASETS = {"colpali", "bge-ir", "pixmo-docs", "wiki-ss"}
|
|
136
|
+
|
|
137
|
+
Eager_Embed_V1 = ModelMeta(
|
|
138
|
+
loader=EagerEmbedV1Wrapper,
|
|
139
|
+
loader_kwargs=dict(
|
|
140
|
+
dtype=torch.float16,
|
|
141
|
+
image_size=784,
|
|
142
|
+
),
|
|
143
|
+
name="eagerworks/eager-embed-v1",
|
|
144
|
+
model_type=["dense"],
|
|
145
|
+
languages=["fra-Latn", "spa-Latn", "eng-Latn", "deu-Latn"],
|
|
146
|
+
revision="a6bec272729c5056e2c26618ce085205c82a3b3c",
|
|
147
|
+
release_date="2025-11-20",
|
|
148
|
+
modalities=["image", "text"],
|
|
149
|
+
n_parameters=4_000_000_000,
|
|
150
|
+
memory_usage_mb=16929,
|
|
151
|
+
max_tokens=262144,
|
|
152
|
+
embed_dim=2560,
|
|
153
|
+
license="apache-2.0",
|
|
154
|
+
open_weights=True,
|
|
155
|
+
framework=["Tevatron"],
|
|
156
|
+
reference="https://huggingface.co/eagerworks/eager-embed-v1",
|
|
157
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
158
|
+
use_instructions=True,
|
|
159
|
+
training_datasets=EAGER_EMBED_V1_TRAINING_DATASETS,
|
|
160
|
+
citation=EAGER_EMBED_V1_CITATION,
|
|
161
|
+
adapted_from="https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct",
|
|
162
|
+
public_training_code="https://github.com/eagerworks/eager-embed",
|
|
163
|
+
public_training_data="https://github.com/eagerworks/eager-embed/blob/main/dataset_config.yaml",
|
|
164
|
+
)
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
embedding_gemma_300m_scandi = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader, # type: ignore
|
|
6
|
+
name="emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
9
|
+
open_weights=True,
|
|
10
|
+
revision="9f3307b9f601db564a9190cb475324d128dcfe86",
|
|
11
|
+
release_date="2025-10-17",
|
|
12
|
+
n_parameters=307_581_696,
|
|
13
|
+
embed_dim=768,
|
|
14
|
+
max_tokens=2048,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
reference="https://huggingface.co/emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
17
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
18
|
+
use_instructions=True,
|
|
19
|
+
public_training_code=None,
|
|
20
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
21
|
+
training_datasets=set(),
|
|
22
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
23
|
+
adapted_from="google/embeddinggemma-300m",
|
|
24
|
+
memory_usage_mb=578,
|
|
25
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
26
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
27
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
28
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
29
|
+
month = "11",
|
|
30
|
+
year = "2019",
|
|
31
|
+
publisher = "Association for Computational Linguistics",
|
|
32
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
33
|
+
}""",
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
qwen_scandi = ModelMeta(
|
|
38
|
+
loader=sentence_transformers_loader, # type: ignore
|
|
39
|
+
name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
40
|
+
model_type=["dense"],
|
|
41
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
42
|
+
open_weights=True,
|
|
43
|
+
revision="cf1e7ba36ebd3d605549d8f02930a18e17b54513",
|
|
44
|
+
release_date="2025-10-17",
|
|
45
|
+
n_parameters=595776512,
|
|
46
|
+
memory_usage_mb=2272,
|
|
47
|
+
embed_dim=1024,
|
|
48
|
+
max_tokens=32768,
|
|
49
|
+
license="apache-2.0",
|
|
50
|
+
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
51
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
52
|
+
use_instructions=True,
|
|
53
|
+
public_training_code=None,
|
|
54
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
55
|
+
training_datasets=set(),
|
|
56
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
57
|
+
adapted_from="Qwen/Qwen3-Embedding-0.6B",
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
mmbert_scandi = ModelMeta(
|
|
62
|
+
loader=sentence_transformers_loader, # type: ignore
|
|
63
|
+
name="emillykkejensen/mmBERTscandi-base-embedding",
|
|
64
|
+
model_type=["dense"],
|
|
65
|
+
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
66
|
+
open_weights=True,
|
|
67
|
+
revision="82d74c7a5d8e1ddf31b132865df2d16b2b0294ee",
|
|
68
|
+
release_date="2025-10-17",
|
|
69
|
+
n_parameters=306939648,
|
|
70
|
+
memory_usage_mb=1171,
|
|
71
|
+
embed_dim=768,
|
|
72
|
+
max_tokens=8192,
|
|
73
|
+
license="apache-2.0",
|
|
74
|
+
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
75
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
76
|
+
use_instructions=True,
|
|
77
|
+
public_training_code=None,
|
|
78
|
+
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
79
|
+
training_datasets=set(),
|
|
80
|
+
similarity_fn_name="cosine", # type: ignore[arg-type]
|
|
81
|
+
adapted_from="jonasaise/scandmmBERT-base-scandinavian",
|
|
82
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
83
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
84
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
85
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
86
|
+
month = "11",
|
|
87
|
+
year = "2019",
|
|
88
|
+
publisher = "Association for Computational Linguistics",
|
|
89
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
90
|
+
}""",
|
|
91
|
+
)
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
Euler_Legal_Embedding_V1 = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
|
+
name="Mira190/Euler-Legal-Embedding-V1",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
revision="df607ed9e25e569514a99c27cdaaab16e76b6dd4",
|
|
9
|
+
release_date="2025-11-06",
|
|
10
|
+
languages=["eng-Latn"],
|
|
11
|
+
n_parameters=8000000000,
|
|
12
|
+
memory_usage_mb=15618,
|
|
13
|
+
max_tokens=1536,
|
|
14
|
+
embed_dim=4096,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
open_weights=True,
|
|
17
|
+
public_training_code=None,
|
|
18
|
+
public_training_data=None,
|
|
19
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
20
|
+
reference="https://huggingface.co/Mira190/Euler-Legal-Embedding-V1",
|
|
21
|
+
similarity_fn_name="cosine",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
training_datasets=set(), # final-data-new-anonymized-grok4-filtered
|
|
24
|
+
adapted_from="Qwen/Qwen3-Embedding-8B",
|
|
25
|
+
superseded_by=None,
|
|
26
|
+
citation="""@misc{euler2025legal,
|
|
27
|
+
title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
|
|
28
|
+
author={LawRank Team},
|
|
29
|
+
year={2025},
|
|
30
|
+
publisher={Hugging Face}
|
|
31
|
+
}""",
|
|
32
|
+
)
|
|
@@ -138,6 +138,7 @@ laion_2b = set(
|
|
|
138
138
|
EVA02_CLIP_B_16 = ModelMeta(
|
|
139
139
|
loader=evaclip_loader,
|
|
140
140
|
name="QuanSun/EVA02-CLIP-B-16",
|
|
141
|
+
model_type=["dense"],
|
|
141
142
|
languages=["eng-Latn"],
|
|
142
143
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
143
144
|
release_date="2023-04-26",
|
|
@@ -161,6 +162,7 @@ EVA02_CLIP_B_16 = ModelMeta(
|
|
|
161
162
|
EVA02_CLIP_L_14 = ModelMeta(
|
|
162
163
|
loader=evaclip_loader,
|
|
163
164
|
name="QuanSun/EVA02-CLIP-L-14",
|
|
165
|
+
model_type=["dense"],
|
|
164
166
|
languages=["eng-Latn"],
|
|
165
167
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
166
168
|
release_date="2023-04-26",
|
|
@@ -184,6 +186,7 @@ EVA02_CLIP_L_14 = ModelMeta(
|
|
|
184
186
|
EVA02_CLIP_bigE_14 = ModelMeta(
|
|
185
187
|
loader=evaclip_loader,
|
|
186
188
|
name="QuanSun/EVA02-CLIP-bigE-14",
|
|
189
|
+
model_type=["dense"],
|
|
187
190
|
languages=["eng-Latn"],
|
|
188
191
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
189
192
|
release_date="2023-04-26",
|
|
@@ -208,6 +211,7 @@ EVA02_CLIP_bigE_14 = ModelMeta(
|
|
|
208
211
|
EVA02_CLIP_bigE_14_plus = ModelMeta(
|
|
209
212
|
loader=evaclip_loader,
|
|
210
213
|
name="QuanSun/EVA02-CLIP-bigE-14-plus",
|
|
214
|
+
model_type=["dense"],
|
|
211
215
|
languages=["eng-Latn"],
|
|
212
216
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
213
217
|
release_date="2023-04-26",
|
|
@@ -6,6 +6,7 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
6
6
|
parsbert = ModelMeta(
|
|
7
7
|
loader=sentence_transformers_loader,
|
|
8
8
|
name="HooshvareLab/bert-base-parsbert-uncased",
|
|
9
|
+
model_type=["dense"],
|
|
9
10
|
languages=["fas-Arab"],
|
|
10
11
|
open_weights=True,
|
|
11
12
|
revision="d73a0e2c7492c33bd5819bcdb23eba207404dd19",
|
|
@@ -41,6 +42,7 @@ parsbert = ModelMeta(
|
|
|
41
42
|
bert_zwnj = ModelMeta(
|
|
42
43
|
loader=sentence_transformers_loader,
|
|
43
44
|
name="m3hrdadfi/bert-zwnj-wnli-mean-tokens",
|
|
45
|
+
model_type=["dense"],
|
|
44
46
|
languages=["fas-Arab"],
|
|
45
47
|
open_weights=True,
|
|
46
48
|
revision="b9506ddc579ac8c398ae6dae680401ae0a1a5b23",
|
|
@@ -66,6 +68,7 @@ bert_zwnj = ModelMeta(
|
|
|
66
68
|
roberta_zwnj = ModelMeta(
|
|
67
69
|
loader=sentence_transformers_loader,
|
|
68
70
|
name="m3hrdadfi/roberta-zwnj-wnli-mean-tokens",
|
|
71
|
+
model_type=["dense"],
|
|
69
72
|
languages=["fas-Arab"],
|
|
70
73
|
open_weights=True,
|
|
71
74
|
revision="36f912ac44e22250aee16ea533a4ff8cd848c1a1",
|
|
@@ -90,6 +93,7 @@ roberta_zwnj = ModelMeta(
|
|
|
90
93
|
sentence_transformer_parsbert = ModelMeta(
|
|
91
94
|
loader=sentence_transformers_loader,
|
|
92
95
|
name="myrkur/sentence-transformer-parsbert-fa",
|
|
96
|
+
model_type=["dense"],
|
|
93
97
|
languages=["fas-Arab"],
|
|
94
98
|
open_weights=True,
|
|
95
99
|
revision="72bd0a3557622f0ae08a092f4643609e0b950cdd",
|
|
@@ -140,6 +144,7 @@ tooka_bert_base = ModelMeta(
|
|
|
140
144
|
tooka_sbert = ModelMeta(
|
|
141
145
|
loader=sentence_transformers_loader,
|
|
142
146
|
name="PartAI/Tooka-SBERT",
|
|
147
|
+
model_type=["dense"],
|
|
143
148
|
languages=["fas-Arab"],
|
|
144
149
|
open_weights=True,
|
|
145
150
|
revision="5d07f0c543aca654373b931ae07cd197769110fd",
|
|
@@ -156,11 +161,21 @@ tooka_sbert = ModelMeta(
|
|
|
156
161
|
public_training_code=None,
|
|
157
162
|
public_training_data=None,
|
|
158
163
|
training_datasets=None,
|
|
164
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
165
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
166
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
167
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
168
|
+
month = "11",
|
|
169
|
+
year = "2019",
|
|
170
|
+
publisher = "Association for Computational Linguistics",
|
|
171
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
172
|
+
}""",
|
|
159
173
|
)
|
|
160
174
|
|
|
161
175
|
fa_bert = ModelMeta(
|
|
162
176
|
loader=sentence_transformers_loader,
|
|
163
177
|
name="sbunlp/fabert",
|
|
178
|
+
model_type=["dense"],
|
|
164
179
|
languages=["fas-Arab"],
|
|
165
180
|
open_weights=True,
|
|
166
181
|
revision="a0e3973064c97768e121b9b95f21adc94e0ca3fb",
|
|
@@ -180,11 +195,35 @@ fa_bert = ModelMeta(
|
|
|
180
195
|
# It's just a base model
|
|
181
196
|
# https://huggingface.co/datasets/sbunlp/hmblogs-v3
|
|
182
197
|
),
|
|
198
|
+
citation="""@inproceedings{masumi-etal-2025-fabert,
|
|
199
|
+
title = "{F}a{BERT}: Pre-training {BERT} on {P}ersian Blogs",
|
|
200
|
+
author = "Masumi, Mostafa and
|
|
201
|
+
Majd, Seyed Soroush and
|
|
202
|
+
Shamsfard, Mehrnoush and
|
|
203
|
+
Beigy, Hamid",
|
|
204
|
+
editor = "Bak, JinYeong and
|
|
205
|
+
Goot, Rob van der and
|
|
206
|
+
Jang, Hyeju and
|
|
207
|
+
Buaphet, Weerayut and
|
|
208
|
+
Ramponi, Alan and
|
|
209
|
+
Xu, Wei and
|
|
210
|
+
Ritter, Alan",
|
|
211
|
+
booktitle = "Proceedings of the Tenth Workshop on Noisy and User-generated Text",
|
|
212
|
+
month = may,
|
|
213
|
+
year = "2025",
|
|
214
|
+
address = "Albuquerque, New Mexico, USA",
|
|
215
|
+
publisher = "Association for Computational Linguistics",
|
|
216
|
+
url = "https://aclanthology.org/2025.wnut-1.10/",
|
|
217
|
+
doi = "10.18653/v1/2025.wnut-1.10",
|
|
218
|
+
pages = "85--96",
|
|
219
|
+
ISBN = "979-8-89176-232-9",
|
|
220
|
+
}""",
|
|
183
221
|
)
|
|
184
222
|
|
|
185
223
|
tooka_sbert_v2_small = ModelMeta(
|
|
186
224
|
loader=sentence_transformers_loader,
|
|
187
225
|
name="PartAI/Tooka-SBERT-V2-Small",
|
|
226
|
+
model_type=["dense"],
|
|
188
227
|
languages=["fas-Arab"],
|
|
189
228
|
open_weights=True,
|
|
190
229
|
revision="8bbed87e36669387f71437c061430ba56d1b496f",
|
|
@@ -201,11 +240,21 @@ tooka_sbert_v2_small = ModelMeta(
|
|
|
201
240
|
public_training_code=None,
|
|
202
241
|
public_training_data=None,
|
|
203
242
|
training_datasets=None,
|
|
243
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
244
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
245
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
246
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
247
|
+
month = "11",
|
|
248
|
+
year = "2019",
|
|
249
|
+
publisher = "Association for Computational Linguistics",
|
|
250
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
251
|
+
}""",
|
|
204
252
|
)
|
|
205
253
|
|
|
206
254
|
tooka_sbert_v2_large = ModelMeta(
|
|
207
255
|
loader=sentence_transformers_loader,
|
|
208
256
|
name="PartAI/Tooka-SBERT-V2-Large",
|
|
257
|
+
model_type=["dense"],
|
|
209
258
|
languages=["fas-Arab"],
|
|
210
259
|
open_weights=True,
|
|
211
260
|
revision="b59682efa961122cc0e4408296d5852870c82eae",
|
|
@@ -222,4 +271,13 @@ tooka_sbert_v2_large = ModelMeta(
|
|
|
222
271
|
public_training_code=None,
|
|
223
272
|
public_training_data=None,
|
|
224
273
|
training_datasets=None,
|
|
274
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
275
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
276
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
277
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
278
|
+
month = "11",
|
|
279
|
+
year = "2019",
|
|
280
|
+
publisher = "Association for Computational Linguistics",
|
|
281
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
282
|
+
}""",
|
|
225
283
|
)
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
from mteb.models import sentence_transformers_loader
|
|
2
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
3
|
+
|
|
4
|
+
XLMR_LANGUAGES = [
|
|
5
|
+
"afr-Latn",
|
|
6
|
+
"amh-Latn",
|
|
7
|
+
"ara-Latn",
|
|
8
|
+
"asm-Latn",
|
|
9
|
+
"aze-Latn",
|
|
10
|
+
"bel-Latn",
|
|
11
|
+
"bul-Latn",
|
|
12
|
+
"ben-Latn",
|
|
13
|
+
"ben-Beng",
|
|
14
|
+
"bre-Latn",
|
|
15
|
+
"bos-Latn",
|
|
16
|
+
"cat-Latn",
|
|
17
|
+
"ces-Latn",
|
|
18
|
+
"cym-Latn",
|
|
19
|
+
"dan-Latn",
|
|
20
|
+
"deu-Latn",
|
|
21
|
+
"ell-Latn",
|
|
22
|
+
"eng-Latn",
|
|
23
|
+
"epo-Latn",
|
|
24
|
+
"spa-Latn",
|
|
25
|
+
"est-Latn",
|
|
26
|
+
"eus-Latn",
|
|
27
|
+
"fas-Latn",
|
|
28
|
+
"fin-Latn",
|
|
29
|
+
"fra-Latn",
|
|
30
|
+
"fry-Latn",
|
|
31
|
+
"gle-Latn",
|
|
32
|
+
"gla-Latn",
|
|
33
|
+
"glg-Latn",
|
|
34
|
+
"guj-Latn",
|
|
35
|
+
"hau-Latn",
|
|
36
|
+
"heb-Latn",
|
|
37
|
+
"hin-Latn",
|
|
38
|
+
"hin-Deva",
|
|
39
|
+
"hrv-Latn",
|
|
40
|
+
"hun-Latn",
|
|
41
|
+
"hye-Latn",
|
|
42
|
+
"ind-Latn",
|
|
43
|
+
"isl-Latn",
|
|
44
|
+
"ita-Latn",
|
|
45
|
+
"jpn-Latn",
|
|
46
|
+
"jav-Latn",
|
|
47
|
+
"kat-Latn",
|
|
48
|
+
"kaz-Latn",
|
|
49
|
+
"khm-Latn",
|
|
50
|
+
"kan-Latn",
|
|
51
|
+
"kor-Latn",
|
|
52
|
+
"kur-Latn",
|
|
53
|
+
"kir-Latn",
|
|
54
|
+
"lat-Latn",
|
|
55
|
+
"lao-Latn",
|
|
56
|
+
"lit-Latn",
|
|
57
|
+
"lav-Latn",
|
|
58
|
+
"mlg-Latn",
|
|
59
|
+
"mkd-Latn",
|
|
60
|
+
"mal-Latn",
|
|
61
|
+
"mon-Latn",
|
|
62
|
+
"mar-Latn",
|
|
63
|
+
"msa-Latn",
|
|
64
|
+
"mya-Latn",
|
|
65
|
+
"nep-Latn",
|
|
66
|
+
"nld-Latn",
|
|
67
|
+
"nob-Latn",
|
|
68
|
+
"orm-Latn",
|
|
69
|
+
"ori-Latn",
|
|
70
|
+
"pan-Latn",
|
|
71
|
+
"pol-Latn",
|
|
72
|
+
"pus-Latn",
|
|
73
|
+
"por-Latn",
|
|
74
|
+
"ron-Latn",
|
|
75
|
+
"rus-Latn",
|
|
76
|
+
"san-Latn",
|
|
77
|
+
"snd-Latn",
|
|
78
|
+
"sin-Latn",
|
|
79
|
+
"slk-Latn",
|
|
80
|
+
"slv-Latn",
|
|
81
|
+
"som-Latn",
|
|
82
|
+
"sqi-Latn",
|
|
83
|
+
"srp-Latn",
|
|
84
|
+
"sun-Latn",
|
|
85
|
+
"swe-Latn",
|
|
86
|
+
"swa-Latn",
|
|
87
|
+
"tam-Latn",
|
|
88
|
+
"tam-Taml",
|
|
89
|
+
"tel-Latn",
|
|
90
|
+
"tel-Telu",
|
|
91
|
+
"tha-Latn",
|
|
92
|
+
"tgl-Latn",
|
|
93
|
+
"tur-Latn",
|
|
94
|
+
"uig-Latn",
|
|
95
|
+
"ukr-Latn",
|
|
96
|
+
"urd-Latn",
|
|
97
|
+
"urd-Arab",
|
|
98
|
+
"uzb-Latn",
|
|
99
|
+
"vie-Latn",
|
|
100
|
+
"xho-Latn",
|
|
101
|
+
"yid-Latn",
|
|
102
|
+
"zho-Hant",
|
|
103
|
+
"zho-Hans",
|
|
104
|
+
]
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
xlmr_base = ModelMeta(
|
|
108
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
109
|
+
name="FacebookAI/xlm-roberta-base",
|
|
110
|
+
model_type=["dense"],
|
|
111
|
+
languages=XLMR_LANGUAGES,
|
|
112
|
+
open_weights=True,
|
|
113
|
+
revision="e73636d4f797dec63c3081bb6ed5c7b0bb3f2089",
|
|
114
|
+
release_date="2019-11-05", # arxiv paper release
|
|
115
|
+
n_parameters=278043648,
|
|
116
|
+
memory_usage_mb=1064,
|
|
117
|
+
embed_dim=768,
|
|
118
|
+
license="mit",
|
|
119
|
+
max_tokens=512,
|
|
120
|
+
reference="https://huggingface.co/FacebookAI/xlm-roberta-base",
|
|
121
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
122
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
123
|
+
use_instructions=False,
|
|
124
|
+
public_training_code=None,
|
|
125
|
+
public_training_data=None,
|
|
126
|
+
training_datasets=set(),
|
|
127
|
+
citation="""@article{DBLP:journals/corr/abs-1911-02116,
|
|
128
|
+
author = {Alexis Conneau and
|
|
129
|
+
Kartikay Khandelwal and
|
|
130
|
+
Naman Goyal and
|
|
131
|
+
Vishrav Chaudhary and
|
|
132
|
+
Guillaume Wenzek and
|
|
133
|
+
Francisco Guzm{\'{a}}n and
|
|
134
|
+
Edouard Grave and
|
|
135
|
+
Myle Ott and
|
|
136
|
+
Luke Zettlemoyer and
|
|
137
|
+
Veselin Stoyanov},
|
|
138
|
+
title = {Unsupervised Cross-lingual Representation Learning at Scale},
|
|
139
|
+
journal = {CoRR},
|
|
140
|
+
volume = {abs/1911.02116},
|
|
141
|
+
year = {2019},
|
|
142
|
+
url = {http://arxiv.org/abs/1911.02116},
|
|
143
|
+
eprinttype = {arXiv},
|
|
144
|
+
eprint = {1911.02116},
|
|
145
|
+
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
|
|
146
|
+
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
|
|
147
|
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
148
|
+
}""",
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
xlmr_large = ModelMeta(
|
|
152
|
+
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
153
|
+
name="FacebookAI/xlm-roberta-large",
|
|
154
|
+
model_type=["dense"],
|
|
155
|
+
languages=XLMR_LANGUAGES,
|
|
156
|
+
open_weights=True,
|
|
157
|
+
revision="c23d21b0620b635a76227c604d44e43a9f0ee389",
|
|
158
|
+
release_date="2019-11-05", # arxiv paper release
|
|
159
|
+
n_parameters=559890432,
|
|
160
|
+
memory_usage_mb=2141,
|
|
161
|
+
embed_dim=1024,
|
|
162
|
+
license="mit",
|
|
163
|
+
max_tokens=512,
|
|
164
|
+
reference="https://huggingface.co/FacebookAI/xlm-roberta-large",
|
|
165
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
166
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
167
|
+
use_instructions=False,
|
|
168
|
+
public_training_code=None,
|
|
169
|
+
public_training_data=None,
|
|
170
|
+
training_datasets=set(),
|
|
171
|
+
citation="""@article{DBLP:journals/corr/abs-1911-02116,
|
|
172
|
+
author = {Alexis Conneau and
|
|
173
|
+
Kartikay Khandelwal and
|
|
174
|
+
Naman Goyal and
|
|
175
|
+
Vishrav Chaudhary and
|
|
176
|
+
Guillaume Wenzek and
|
|
177
|
+
Francisco Guzm{\'{a}}n and
|
|
178
|
+
Edouard Grave and
|
|
179
|
+
Myle Ott and
|
|
180
|
+
Luke Zettlemoyer and
|
|
181
|
+
Veselin Stoyanov},
|
|
182
|
+
title = {Unsupervised Cross-lingual Representation Learning at Scale},
|
|
183
|
+
journal = {CoRR},
|
|
184
|
+
volume = {abs/1911.02116},
|
|
185
|
+
year = {2019},
|
|
186
|
+
url = {http://arxiv.org/abs/1911.02116},
|
|
187
|
+
eprinttype = {arXiv},
|
|
188
|
+
eprint = {1911.02116},
|
|
189
|
+
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
|
|
190
|
+
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
|
|
191
|
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
192
|
+
}""",
|
|
193
|
+
)
|