mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -140,6 +140,7 @@ arctic_v2_training_datasets = {
|
|
|
140
140
|
arctic_embed_xs = ModelMeta(
|
|
141
141
|
loader=sentence_transformers_loader,
|
|
142
142
|
name="Snowflake/snowflake-arctic-embed-xs",
|
|
143
|
+
model_type=["dense"],
|
|
143
144
|
revision="742da4f66e1823b5b4dbe6c320a1375a1fd85f9e",
|
|
144
145
|
release_date="2024-07-08", # initial commit of hf model.
|
|
145
146
|
languages=["eng-Latn"],
|
|
@@ -165,6 +166,7 @@ arctic_embed_xs = ModelMeta(
|
|
|
165
166
|
arctic_embed_s = ModelMeta(
|
|
166
167
|
loader=sentence_transformers_loader,
|
|
167
168
|
name="Snowflake/snowflake-arctic-embed-s",
|
|
169
|
+
model_type=["dense"],
|
|
168
170
|
revision="d3c1d2d433dd0fdc8e9ca01331a5f225639e798f",
|
|
169
171
|
release_date="2024-04-12", # initial commit of hf model.
|
|
170
172
|
languages=["eng-Latn"],
|
|
@@ -190,6 +192,7 @@ arctic_embed_s = ModelMeta(
|
|
|
190
192
|
arctic_embed_m = ModelMeta(
|
|
191
193
|
loader=sentence_transformers_loader,
|
|
192
194
|
name="Snowflake/snowflake-arctic-embed-m",
|
|
195
|
+
model_type=["dense"],
|
|
193
196
|
revision="cc17beacbac32366782584c8752220405a0f3f40",
|
|
194
197
|
release_date="2024-04-12", # initial commit of hf model.
|
|
195
198
|
languages=["eng-Latn"],
|
|
@@ -215,6 +218,7 @@ arctic_embed_m_long = ModelMeta(
|
|
|
215
218
|
loader=sentence_transformers_loader,
|
|
216
219
|
loader_kwargs={"trust_remote_code": True},
|
|
217
220
|
name="Snowflake/snowflake-arctic-embed-m-long",
|
|
221
|
+
model_type=["dense"],
|
|
218
222
|
revision="89d0f6ab196eead40b90cb6f9fefec01a908d2d1",
|
|
219
223
|
release_date="2024-04-12", # initial commit of hf model.
|
|
220
224
|
languages=["eng-Latn"],
|
|
@@ -239,6 +243,7 @@ arctic_embed_m_long = ModelMeta(
|
|
|
239
243
|
arctic_embed_l = ModelMeta(
|
|
240
244
|
loader=sentence_transformers_loader,
|
|
241
245
|
name="Snowflake/snowflake-arctic-embed-l",
|
|
246
|
+
model_type=["dense"],
|
|
242
247
|
revision="9a9e5834d2e89cdd8bb72b64111dde496e4fe78c",
|
|
243
248
|
release_date="2024-04-12", # initial commit of hf model.
|
|
244
249
|
languages=["eng-Latn"],
|
|
@@ -268,6 +273,7 @@ arctic_embed_m_v1_5 = ModelMeta(
|
|
|
268
273
|
},
|
|
269
274
|
),
|
|
270
275
|
name="Snowflake/snowflake-arctic-embed-m-v1.5",
|
|
276
|
+
model_type=["dense"],
|
|
271
277
|
revision="97eab2e17fcb7ccb8bb94d6e547898fa1a6a0f47",
|
|
272
278
|
release_date="2024-07-08", # initial commit of hf model.
|
|
273
279
|
languages=["eng-Latn"],
|
|
@@ -293,6 +299,7 @@ arctic_embed_m_v2_0 = ModelMeta(
|
|
|
293
299
|
loader=sentence_transformers_loader,
|
|
294
300
|
loader_kwargs={"trust_remote_code": True},
|
|
295
301
|
name="Snowflake/snowflake-arctic-embed-m-v2.0",
|
|
302
|
+
model_type=["dense"],
|
|
296
303
|
revision="f2a7d59d80dfda5b1d14f096f3ce88bb6bf9ebdc",
|
|
297
304
|
release_date="2024-12-04", # initial commit of hf model.
|
|
298
305
|
languages=LANGUAGES_V2_0,
|
|
@@ -317,6 +324,7 @@ arctic_embed_m_v2_0 = ModelMeta(
|
|
|
317
324
|
arctic_embed_l_v2_0 = ModelMeta(
|
|
318
325
|
loader=sentence_transformers_loader,
|
|
319
326
|
name="Snowflake/snowflake-arctic-embed-l-v2.0",
|
|
327
|
+
model_type=["dense"],
|
|
320
328
|
revision="edc2df7b6c25794b340229ca082e7c78782e6374",
|
|
321
329
|
release_date="2024-12-04", # initial commit of hf model.
|
|
322
330
|
languages=LANGUAGES_V2_0,
|
|
@@ -155,6 +155,7 @@ class BedrockModel(AbsEncoder):
|
|
|
155
155
|
|
|
156
156
|
amazon_titan_embed_text_v1 = ModelMeta(
|
|
157
157
|
name="bedrock/amazon-titan-embed-text-v1",
|
|
158
|
+
model_type=["dense"],
|
|
158
159
|
revision="1",
|
|
159
160
|
release_date="2023-09-27",
|
|
160
161
|
languages=None, # not specified
|
|
@@ -181,6 +182,7 @@ amazon_titan_embed_text_v1 = ModelMeta(
|
|
|
181
182
|
|
|
182
183
|
amazon_titan_embed_text_v2 = ModelMeta(
|
|
183
184
|
name="bedrock/amazon-titan-embed-text-v2",
|
|
185
|
+
model_type=["dense"],
|
|
184
186
|
revision="1",
|
|
185
187
|
release_date="2024-04-30",
|
|
186
188
|
languages=None, # not specified
|
|
@@ -216,6 +218,7 @@ cohere_embed_english_v3 = ModelMeta(
|
|
|
216
218
|
model_prompts=cohere_model_prompts,
|
|
217
219
|
),
|
|
218
220
|
name="bedrock/cohere-embed-english-v3",
|
|
221
|
+
model_type=["dense"],
|
|
219
222
|
languages=["eng-Latn"],
|
|
220
223
|
open_weights=False,
|
|
221
224
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -243,6 +246,7 @@ cohere_embed_multilingual_v3 = ModelMeta(
|
|
|
243
246
|
model_prompts=cohere_model_prompts,
|
|
244
247
|
),
|
|
245
248
|
name="bedrock/cohere-embed-multilingual-v3",
|
|
249
|
+
model_type=["dense"],
|
|
246
250
|
languages=cohere_supported_languages,
|
|
247
251
|
open_weights=False,
|
|
248
252
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -319,6 +319,7 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
319
319
|
model_prompts=model_prompts,
|
|
320
320
|
),
|
|
321
321
|
name="BAAI/bge-small-en-v1.5",
|
|
322
|
+
model_type=["dense"],
|
|
322
323
|
languages=["eng-Latn"],
|
|
323
324
|
open_weights=True,
|
|
324
325
|
revision="5c38ec7c405ec4b44b94cc5a9bb96e735b38267a",
|
|
@@ -344,6 +345,7 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
344
345
|
model_prompts=model_prompts,
|
|
345
346
|
),
|
|
346
347
|
name="BAAI/bge-base-en-v1.5",
|
|
348
|
+
model_type=["dense"],
|
|
347
349
|
languages=["eng-Latn"],
|
|
348
350
|
open_weights=True,
|
|
349
351
|
revision="a5beb1e3e68b9ab74eb54cfd186867f64f240e1a",
|
|
@@ -369,6 +371,7 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
369
371
|
model_prompts=model_prompts,
|
|
370
372
|
),
|
|
371
373
|
name="BAAI/bge-large-en-v1.5",
|
|
374
|
+
model_type=["dense"],
|
|
372
375
|
languages=["eng-Latn"],
|
|
373
376
|
open_weights=True,
|
|
374
377
|
revision="d4aa6901d3a41ba39fb536a557fa166f842b0e09",
|
|
@@ -394,6 +397,7 @@ bge_small_zh = ModelMeta(
|
|
|
394
397
|
model_prompts=model_prompts_zh,
|
|
395
398
|
),
|
|
396
399
|
name="BAAI/bge-small-zh",
|
|
400
|
+
model_type=["dense"],
|
|
397
401
|
languages=["zho-Hans"],
|
|
398
402
|
open_weights=True,
|
|
399
403
|
revision="1d2363c5de6ce9ba9c890c8e23a4c72dce540ca8",
|
|
@@ -411,6 +415,7 @@ bge_small_zh = ModelMeta(
|
|
|
411
415
|
public_training_data=None,
|
|
412
416
|
training_datasets=bge_chinese_training_data,
|
|
413
417
|
superseded_by="BAAI/bge-small-zh-v1.5",
|
|
418
|
+
citation=BGE_15_CITATION,
|
|
414
419
|
)
|
|
415
420
|
|
|
416
421
|
bge_base_zh = ModelMeta(
|
|
@@ -419,6 +424,7 @@ bge_base_zh = ModelMeta(
|
|
|
419
424
|
model_prompts=model_prompts_zh,
|
|
420
425
|
),
|
|
421
426
|
name="BAAI/bge-base-zh",
|
|
427
|
+
model_type=["dense"],
|
|
422
428
|
languages=["zho-Hans"],
|
|
423
429
|
open_weights=True,
|
|
424
430
|
revision="0e5f83d4895db7955e4cb9ed37ab73f7ded339b6",
|
|
@@ -436,6 +442,7 @@ bge_base_zh = ModelMeta(
|
|
|
436
442
|
public_training_data=None,
|
|
437
443
|
training_datasets=bge_chinese_training_data,
|
|
438
444
|
superseded_by="BAAI/bge-base-zh-v1.5",
|
|
445
|
+
citation=BGE_15_CITATION,
|
|
439
446
|
)
|
|
440
447
|
|
|
441
448
|
bge_large_zh = ModelMeta(
|
|
@@ -444,6 +451,7 @@ bge_large_zh = ModelMeta(
|
|
|
444
451
|
model_prompts=model_prompts_zh,
|
|
445
452
|
),
|
|
446
453
|
name="BAAI/bge-large-zh",
|
|
454
|
+
model_type=["dense"],
|
|
447
455
|
languages=["zho-Hans"],
|
|
448
456
|
open_weights=True,
|
|
449
457
|
revision="b5d9f5c027e87b6f0b6fa4b614f8f9cdc45ce0e8",
|
|
@@ -461,6 +469,7 @@ bge_large_zh = ModelMeta(
|
|
|
461
469
|
public_training_data=None,
|
|
462
470
|
training_datasets=bge_chinese_training_data,
|
|
463
471
|
superseded_by="BAAI/bge-large-zh-v1.5",
|
|
472
|
+
citation=BGE_15_CITATION,
|
|
464
473
|
)
|
|
465
474
|
|
|
466
475
|
bge_small_en = ModelMeta(
|
|
@@ -469,6 +478,7 @@ bge_small_en = ModelMeta(
|
|
|
469
478
|
model_prompts=model_prompts,
|
|
470
479
|
),
|
|
471
480
|
name="BAAI/bge-small-en",
|
|
481
|
+
model_type=["dense"],
|
|
472
482
|
languages=["eng-Latn"],
|
|
473
483
|
open_weights=True,
|
|
474
484
|
revision="4778d71a06863076696b03fd2777eb118712cad8",
|
|
@@ -486,6 +496,7 @@ bge_small_en = ModelMeta(
|
|
|
486
496
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
487
497
|
training_datasets=bge_training_data,
|
|
488
498
|
superseded_by="BAAI/bge-small-en-v1.5",
|
|
499
|
+
citation=BGE_15_CITATION,
|
|
489
500
|
)
|
|
490
501
|
|
|
491
502
|
bge_base_en = ModelMeta(
|
|
@@ -494,6 +505,7 @@ bge_base_en = ModelMeta(
|
|
|
494
505
|
model_prompts=model_prompts,
|
|
495
506
|
),
|
|
496
507
|
name="BAAI/bge-base-en",
|
|
508
|
+
model_type=["dense"],
|
|
497
509
|
languages=["eng-Latn"],
|
|
498
510
|
open_weights=True,
|
|
499
511
|
revision="b737bf5dcc6ee8bdc530531266b4804a5d77b5d8",
|
|
@@ -511,6 +523,7 @@ bge_base_en = ModelMeta(
|
|
|
511
523
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
512
524
|
training_datasets=bge_training_data,
|
|
513
525
|
superseded_by="BAAI/bge-base-en-v1.5",
|
|
526
|
+
citation=BGE_15_CITATION,
|
|
514
527
|
)
|
|
515
528
|
|
|
516
529
|
bge_large_en = ModelMeta(
|
|
@@ -519,6 +532,7 @@ bge_large_en = ModelMeta(
|
|
|
519
532
|
model_prompts=model_prompts,
|
|
520
533
|
),
|
|
521
534
|
name="BAAI/bge-large-en",
|
|
535
|
+
model_type=["dense"],
|
|
522
536
|
languages=["eng-Latn"],
|
|
523
537
|
open_weights=True,
|
|
524
538
|
revision="abe7d9d814b775ca171121fb03f394dc42974275",
|
|
@@ -536,6 +550,7 @@ bge_large_en = ModelMeta(
|
|
|
536
550
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
537
551
|
training_datasets=bge_training_data,
|
|
538
552
|
superseded_by="BAAI/bge-large-en-v1.5",
|
|
553
|
+
citation=BGE_15_CITATION,
|
|
539
554
|
)
|
|
540
555
|
|
|
541
556
|
|
|
@@ -545,6 +560,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
545
560
|
model_prompts=model_prompts_zh,
|
|
546
561
|
),
|
|
547
562
|
name="BAAI/bge-small-zh-v1.5",
|
|
563
|
+
model_type=["dense"],
|
|
548
564
|
languages=["zho-Hans"],
|
|
549
565
|
open_weights=True,
|
|
550
566
|
revision="7999e1d3359715c523056ef9478215996d62a620",
|
|
@@ -561,6 +577,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
561
577
|
public_training_code=None,
|
|
562
578
|
public_training_data=None,
|
|
563
579
|
training_datasets=bge_chinese_training_data,
|
|
580
|
+
citation=BGE_15_CITATION,
|
|
564
581
|
)
|
|
565
582
|
|
|
566
583
|
bge_base_zh_v1_5 = ModelMeta(
|
|
@@ -569,6 +586,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
569
586
|
model_prompts=model_prompts_zh,
|
|
570
587
|
),
|
|
571
588
|
name="BAAI/bge-base-zh-v1.5",
|
|
589
|
+
model_type=["dense"],
|
|
572
590
|
languages=["zho-Hans"],
|
|
573
591
|
open_weights=True,
|
|
574
592
|
revision="f03589ceff5aac7111bd60cfc7d497ca17ecac65",
|
|
@@ -585,6 +603,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
585
603
|
public_training_code=None,
|
|
586
604
|
public_training_data=None,
|
|
587
605
|
training_datasets=bge_chinese_training_data,
|
|
606
|
+
citation=BGE_15_CITATION,
|
|
588
607
|
)
|
|
589
608
|
|
|
590
609
|
bge_large_zh_v1_5 = ModelMeta(
|
|
@@ -593,6 +612,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
593
612
|
model_prompts=model_prompts_zh,
|
|
594
613
|
),
|
|
595
614
|
name="BAAI/bge-large-zh-v1.5",
|
|
615
|
+
model_type=["dense"],
|
|
596
616
|
languages=["zho-Hans"],
|
|
597
617
|
open_weights=True,
|
|
598
618
|
revision="79e7739b6ab944e86d6171e44d24c997fc1e0116",
|
|
@@ -609,11 +629,13 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
609
629
|
public_training_code=None,
|
|
610
630
|
public_training_data=None,
|
|
611
631
|
training_datasets=bge_chinese_training_data,
|
|
632
|
+
citation=BGE_15_CITATION,
|
|
612
633
|
)
|
|
613
634
|
|
|
614
635
|
bge_m3 = ModelMeta(
|
|
615
636
|
loader=sentence_transformers_loader,
|
|
616
637
|
name="BAAI/bge-m3",
|
|
638
|
+
model_type=["dense"],
|
|
617
639
|
languages=bgem3_languages,
|
|
618
640
|
open_weights=True,
|
|
619
641
|
revision="5617a9f61b028005a4858fdac845db406aefb181",
|
|
@@ -630,6 +652,14 @@ bge_m3 = ModelMeta(
|
|
|
630
652
|
public_training_code=None,
|
|
631
653
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
632
654
|
training_datasets=bge_m3_training_data,
|
|
655
|
+
citation="""@misc{bge-m3,
|
|
656
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
657
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
658
|
+
year={2024},
|
|
659
|
+
eprint={2402.03216},
|
|
660
|
+
archivePrefix={arXiv},
|
|
661
|
+
primaryClass={cs.CL}
|
|
662
|
+
}""",
|
|
633
663
|
)
|
|
634
664
|
|
|
635
665
|
# Contents of cfli/bge-full-data
|
|
@@ -692,6 +722,7 @@ bge_full_data = {
|
|
|
692
722
|
bge_multilingual_gemma2 = ModelMeta(
|
|
693
723
|
loader=sentence_transformers_loader,
|
|
694
724
|
name="BAAI/bge-multilingual-gemma2",
|
|
725
|
+
model_type=["dense"],
|
|
695
726
|
languages=[
|
|
696
727
|
"eng-Latn",
|
|
697
728
|
"zho-Hans",
|
|
@@ -722,11 +753,30 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
722
753
|
}
|
|
723
754
|
| bge_full_data
|
|
724
755
|
| bge_m3_training_data,
|
|
756
|
+
citation="""@misc{bge-m3,
|
|
757
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
758
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
759
|
+
year={2024},
|
|
760
|
+
eprint={2402.03216},
|
|
761
|
+
archivePrefix={arXiv},
|
|
762
|
+
primaryClass={cs.CL}
|
|
763
|
+
}
|
|
764
|
+
|
|
765
|
+
|
|
766
|
+
@misc{bge_embedding,
|
|
767
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
768
|
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
769
|
+
year={2023},
|
|
770
|
+
eprint={2309.07597},
|
|
771
|
+
archivePrefix={arXiv},
|
|
772
|
+
primaryClass={cs.CL}
|
|
773
|
+
}""",
|
|
725
774
|
)
|
|
726
775
|
|
|
727
776
|
bge_en_icl = ModelMeta(
|
|
728
777
|
loader=sentence_transformers_loader,
|
|
729
778
|
name="BAAI/bge-en-icl",
|
|
779
|
+
model_type=["dense"],
|
|
730
780
|
languages=[
|
|
731
781
|
"eng-Latn",
|
|
732
782
|
],
|
|
@@ -762,6 +812,7 @@ bge_en_icl = ModelMeta(
|
|
|
762
812
|
bge_m3_unsupervised = ModelMeta(
|
|
763
813
|
loader=sentence_transformers_loader,
|
|
764
814
|
name="BAAI/bge-m3-unsupervised",
|
|
815
|
+
model_type=["dense"],
|
|
765
816
|
languages=bgem3_languages,
|
|
766
817
|
open_weights=True,
|
|
767
818
|
revision="46f03bc86361cf88102b0b517b36c8259f2946b1",
|
|
@@ -778,10 +829,19 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
778
829
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
779
830
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
780
831
|
training_datasets=bge_m3_training_data,
|
|
832
|
+
citation="""@misc{bge-m3,
|
|
833
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
834
|
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
835
|
+
year={2024},
|
|
836
|
+
eprint={2402.03216},
|
|
837
|
+
archivePrefix={arXiv},
|
|
838
|
+
primaryClass={cs.CL}
|
|
839
|
+
}""",
|
|
781
840
|
)
|
|
782
841
|
|
|
783
842
|
manu__bge_m3_custom_fr = ModelMeta(
|
|
784
843
|
name="manu/bge-m3-custom-fr",
|
|
844
|
+
model_type=["dense"],
|
|
785
845
|
revision="ed3ef88678ba83ddf4c0fab71a93cb90d89a9078",
|
|
786
846
|
release_date="2024-04-11",
|
|
787
847
|
languages=None,
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
from mteb.models import ModelMeta, sentence_transformers_loader
|
|
2
|
+
|
|
3
|
+
bica_base = ModelMeta(
|
|
4
|
+
name="bisectgroup/BiCA-base",
|
|
5
|
+
model_type=["dense"],
|
|
6
|
+
loader=sentence_transformers_loader,
|
|
7
|
+
languages=["eng-Latn"],
|
|
8
|
+
open_weights=True,
|
|
9
|
+
revision="31237a836e5ae908c308a256573e5f0986498574",
|
|
10
|
+
release_date="2025-11-14",
|
|
11
|
+
n_parameters=110_000_000,
|
|
12
|
+
memory_usage_mb=418,
|
|
13
|
+
embed_dim=768,
|
|
14
|
+
license="mit",
|
|
15
|
+
max_tokens=512,
|
|
16
|
+
reference="https://huggingface.co/bisectgroup/BiCA-base",
|
|
17
|
+
similarity_fn_name="cosine",
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
use_instructions=False,
|
|
20
|
+
public_training_code="https://github.com/NiravBhattLab/BiCA",
|
|
21
|
+
public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
|
|
22
|
+
adapted_from="thenlper/gte-base",
|
|
23
|
+
citation="""
|
|
24
|
+
@misc{sinha2025bicaeffectivebiomedicaldense,
|
|
25
|
+
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
|
+
author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
|
|
27
|
+
year={2025},
|
|
28
|
+
eprint={2511.08029},
|
|
29
|
+
archivePrefix={arXiv},
|
|
30
|
+
primaryClass={cs.IR},
|
|
31
|
+
url={https://arxiv.org/abs/2511.08029},
|
|
32
|
+
}
|
|
33
|
+
""",
|
|
34
|
+
training_datasets=set(),
|
|
35
|
+
)
|
|
@@ -10,6 +10,13 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
11
|
from mteb.types import Array, BatchedInput, PromptType
|
|
12
12
|
|
|
13
|
+
BLIP2_CITATION = """@inproceedings{li2023blip2,
|
|
14
|
+
title={{BLIP-2:} Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models},
|
|
15
|
+
author={Junnan Li and Dongxu Li and Silvio Savarese and Steven Hoi},
|
|
16
|
+
year={2023},
|
|
17
|
+
booktitle={ICML},
|
|
18
|
+
}"""
|
|
19
|
+
|
|
13
20
|
|
|
14
21
|
def blip2_loader(model_name, **kwargs):
|
|
15
22
|
requires_package(
|
|
@@ -159,6 +166,7 @@ blip2_training_datasets = set(
|
|
|
159
166
|
blip2_opt_2_7b = ModelMeta(
|
|
160
167
|
loader=blip2_loader,
|
|
161
168
|
name="Salesforce/blip2-opt-2.7b",
|
|
169
|
+
model_type=["dense"],
|
|
162
170
|
languages=["eng-Latn"],
|
|
163
171
|
revision="51572668da0eb669e01a189dc22abe6088589a24",
|
|
164
172
|
release_date="2024-03-22",
|
|
@@ -176,11 +184,13 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
176
184
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
177
185
|
use_instructions=False,
|
|
178
186
|
training_datasets=blip2_training_datasets,
|
|
187
|
+
citation=BLIP2_CITATION,
|
|
179
188
|
)
|
|
180
189
|
|
|
181
190
|
blip2_opt_6_7b_coco = ModelMeta(
|
|
182
191
|
loader=blip2_loader,
|
|
183
192
|
name="Salesforce/blip2-opt-6.7b-coco",
|
|
193
|
+
model_type=["dense"],
|
|
184
194
|
languages=["eng-Latn"],
|
|
185
195
|
revision="0d580de59320a25a4d2c386387bcef310d5f286e",
|
|
186
196
|
release_date="2024-03-31",
|
|
@@ -198,4 +208,5 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
198
208
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
199
209
|
use_instructions=False,
|
|
200
210
|
training_datasets=blip2_training_datasets,
|
|
211
|
+
citation=BLIP2_CITATION,
|
|
201
212
|
)
|
|
@@ -10,6 +10,17 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
11
|
from mteb.types import Array, BatchedInput, PromptType
|
|
12
12
|
|
|
13
|
+
BLIP_CITATION = """@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
|
14
|
+
doi = {10.48550/ARXIV.2201.12086},
|
|
15
|
+
url = {https://arxiv.org/abs/2201.12086},
|
|
16
|
+
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
|
17
|
+
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
|
18
|
+
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
|
19
|
+
publisher = {arXiv},
|
|
20
|
+
year = {2022},
|
|
21
|
+
copyright = {Creative Commons Attribution 4.0 International}
|
|
22
|
+
}"""
|
|
23
|
+
|
|
13
24
|
|
|
14
25
|
class BLIPModel(AbsEncoder):
|
|
15
26
|
def __init__(
|
|
@@ -119,6 +130,7 @@ class BLIPModel(AbsEncoder):
|
|
|
119
130
|
blip_image_captioning_large = ModelMeta(
|
|
120
131
|
loader=BLIPModel, # type: ignore
|
|
121
132
|
name="Salesforce/blip-image-captioning-large",
|
|
133
|
+
model_type=["dense"],
|
|
122
134
|
languages=["eng-Latn"],
|
|
123
135
|
revision="2227ac38c9f16105cb0412e7cab4759978a8fd90",
|
|
124
136
|
release_date="2023-12-07",
|
|
@@ -140,11 +152,13 @@ blip_image_captioning_large = ModelMeta(
|
|
|
140
152
|
# CC3M+CC12M+SBU
|
|
141
153
|
# LAION115M
|
|
142
154
|
),
|
|
155
|
+
citation=BLIP_CITATION,
|
|
143
156
|
)
|
|
144
157
|
|
|
145
158
|
blip_image_captioning_base = ModelMeta(
|
|
146
159
|
loader=BLIPModel, # type: ignore
|
|
147
160
|
name="Salesforce/blip-image-captioning-base",
|
|
161
|
+
model_type=["dense"],
|
|
148
162
|
languages=["eng-Latn"],
|
|
149
163
|
revision="89b09ea1789f7addf2f6d6f0dfc4ce10ab58ef84",
|
|
150
164
|
release_date="2023-08-01",
|
|
@@ -166,12 +180,14 @@ blip_image_captioning_base = ModelMeta(
|
|
|
166
180
|
# CC3M+CC12M+SBU
|
|
167
181
|
# LAION115M
|
|
168
182
|
),
|
|
183
|
+
citation=BLIP_CITATION,
|
|
169
184
|
)
|
|
170
185
|
|
|
171
186
|
|
|
172
187
|
blip_vqa_base = ModelMeta(
|
|
173
188
|
loader=BLIPModel, # type: ignore
|
|
174
189
|
name="Salesforce/blip-vqa-base",
|
|
190
|
+
model_type=["dense"],
|
|
175
191
|
languages=["eng-Latn"],
|
|
176
192
|
revision="c7df8e7cd7aa2ee9af18f56e2b29e59a92651b64",
|
|
177
193
|
release_date="2023-12-07",
|
|
@@ -192,11 +208,13 @@ blip_vqa_base = ModelMeta(
|
|
|
192
208
|
# CC3M+CC12M+SBU
|
|
193
209
|
# LAION115M
|
|
194
210
|
),
|
|
211
|
+
citation=BLIP_CITATION,
|
|
195
212
|
)
|
|
196
213
|
|
|
197
214
|
blip_vqa_capfilt_large = ModelMeta(
|
|
198
215
|
loader=BLIPModel, # type: ignore
|
|
199
216
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
|
+
model_type=["dense"],
|
|
200
218
|
languages=["eng-Latn"],
|
|
201
219
|
revision="e53f95265aeab69013fabb5380500ab984adbbb4",
|
|
202
220
|
release_date="2023-01-22",
|
|
@@ -217,11 +235,13 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
217
235
|
# CC3M+CC12M+SBU
|
|
218
236
|
# LAION115M
|
|
219
237
|
),
|
|
238
|
+
citation=BLIP_CITATION,
|
|
220
239
|
)
|
|
221
240
|
|
|
222
241
|
blip_itm_base_coco = ModelMeta(
|
|
223
242
|
loader=BLIPModel, # type: ignore
|
|
224
243
|
name="Salesforce/blip-itm-base-coco",
|
|
244
|
+
model_type=["dense"],
|
|
225
245
|
languages=["eng-Latn"],
|
|
226
246
|
revision="7eaa90c11850c0b17fc38c6a11e7d88bd6ac231f",
|
|
227
247
|
release_date="2023-08-01",
|
|
@@ -242,11 +262,13 @@ blip_itm_base_coco = ModelMeta(
|
|
|
242
262
|
# CC3M+CC12M+SBU
|
|
243
263
|
# LAION115M
|
|
244
264
|
),
|
|
265
|
+
citation=BLIP_CITATION,
|
|
245
266
|
)
|
|
246
267
|
|
|
247
268
|
blip_itm_large_coco = ModelMeta(
|
|
248
269
|
loader=BLIPModel, # type: ignore
|
|
249
270
|
name="Salesforce/blip-itm-large-coco",
|
|
271
|
+
model_type=["dense"],
|
|
250
272
|
languages=["eng-Latn"],
|
|
251
273
|
revision="fef05cafc05298067cbbca00b125749394a77a6f",
|
|
252
274
|
release_date="2023-08-01",
|
|
@@ -268,11 +290,13 @@ blip_itm_large_coco = ModelMeta(
|
|
|
268
290
|
# CC3M+CC12M+SBU
|
|
269
291
|
# LAION115M
|
|
270
292
|
),
|
|
293
|
+
citation=BLIP_CITATION,
|
|
271
294
|
)
|
|
272
295
|
|
|
273
296
|
blip_itm_base_flickr = ModelMeta(
|
|
274
297
|
loader=BLIPModel, # type: ignore
|
|
275
298
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
|
+
model_type=["dense"],
|
|
276
300
|
languages=["eng-Latn"],
|
|
277
301
|
revision="1de29e660d91ae1786c1876212ea805a22eab251",
|
|
278
302
|
release_date="2023-08-01",
|
|
@@ -294,11 +318,13 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
294
318
|
# LAION115M
|
|
295
319
|
# Flickr30k
|
|
296
320
|
),
|
|
321
|
+
citation=BLIP_CITATION,
|
|
297
322
|
)
|
|
298
323
|
|
|
299
324
|
blip_itm_large_flickr = ModelMeta(
|
|
300
325
|
loader=BLIPModel, # type: ignore
|
|
301
326
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
|
+
model_type=["dense"],
|
|
302
328
|
languages=["eng-Latn"],
|
|
303
329
|
revision="bda12e6506758f54261b5ab174b2c55a3ba143fb",
|
|
304
330
|
release_date="2023-08-01",
|
|
@@ -319,4 +345,5 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
319
345
|
# CC3M+CC12M+SBU
|
|
320
346
|
# LAION115M
|
|
321
347
|
),
|
|
348
|
+
citation=BLIP_CITATION,
|
|
322
349
|
)
|
|
@@ -90,6 +90,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
90
90
|
apply_instruction_to_passages=True,
|
|
91
91
|
),
|
|
92
92
|
name="BMRetriever/BMRetriever-410M",
|
|
93
|
+
model_type=["dense"],
|
|
93
94
|
languages=["eng-Latn"],
|
|
94
95
|
open_weights=True,
|
|
95
96
|
revision="e3569bfbcfe3a1bc48c142e11a7b0f38e86065a3",
|
|
@@ -119,6 +120,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
119
120
|
apply_instruction_to_passages=True,
|
|
120
121
|
),
|
|
121
122
|
name="BMRetriever/BMRetriever-1B",
|
|
123
|
+
model_type=["dense"],
|
|
122
124
|
languages=["eng-Latn"],
|
|
123
125
|
open_weights=True,
|
|
124
126
|
revision="1b758c5f4d3af48ef6035cc4088bdbcd7df43ca6",
|
|
@@ -148,6 +150,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
148
150
|
apply_instruction_to_passages=True,
|
|
149
151
|
),
|
|
150
152
|
name="BMRetriever/BMRetriever-2B",
|
|
153
|
+
model_type=["dense"],
|
|
151
154
|
languages=["eng-Latn"],
|
|
152
155
|
open_weights=True,
|
|
153
156
|
revision="718179afd57926369c347f46eee616db81084941",
|
|
@@ -177,6 +180,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
177
180
|
apply_instruction_to_passages=True,
|
|
178
181
|
),
|
|
179
182
|
name="BMRetriever/BMRetriever-7B",
|
|
183
|
+
model_type=["dense"],
|
|
180
184
|
languages=["eng-Latn"],
|
|
181
185
|
open_weights=True,
|
|
182
186
|
revision="13e6adb9273c5f254e037987d6b44e9e4b005b9a",
|
|
@@ -3,6 +3,13 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
3
3
|
|
|
4
4
|
from .bge_models import bge_m3_training_data
|
|
5
5
|
|
|
6
|
+
CADET_CITATION = """@article{tamber2025conventionalcontrastivelearningfalls,
|
|
7
|
+
title={Conventional Contrastive Learning Often Falls Short: Improving Dense Retrieval with Cross-Encoder Listwise Distillation and Synthetic Data},
|
|
8
|
+
author={Manveer Singh Tamber and Suleman Kazi and Vivek Sourabh and Jimmy Lin},
|
|
9
|
+
journal={arXiv:2505.19274},
|
|
10
|
+
year={2025}
|
|
11
|
+
}"""
|
|
12
|
+
|
|
6
13
|
cadet_training_data = {
|
|
7
14
|
# we train with the corpora of FEVER, MSMARCO, and DBPEDIA. We only train with synthetic generated queries.
|
|
8
15
|
# However, we do use queries from MSMARCO as examples for synthetic query generation.
|
|
@@ -28,6 +35,7 @@ cadet_embed = ModelMeta(
|
|
|
28
35
|
},
|
|
29
36
|
),
|
|
30
37
|
name="manveertamber/cadet-embed-base-v1",
|
|
38
|
+
model_type=["dense"],
|
|
31
39
|
languages=["eng-Latn"],
|
|
32
40
|
revision="8056d118be37a566f20972a5f35cda815f6bc47e",
|
|
33
41
|
open_weights=True,
|
|
@@ -46,4 +54,5 @@ cadet_embed = ModelMeta(
|
|
|
46
54
|
public_training_data="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
47
55
|
training_datasets=cadet_training_data,
|
|
48
56
|
adapted_from="intfloat/e5-base-unsupervised",
|
|
57
|
+
citation=CADET_CITATION,
|
|
49
58
|
)
|
|
@@ -24,6 +24,16 @@ if TYPE_CHECKING:
|
|
|
24
24
|
)
|
|
25
25
|
logger = logging.getLogger(__name__)
|
|
26
26
|
|
|
27
|
+
CDE_CITATION = """@misc{morris2024contextualdocumentembeddings,
|
|
28
|
+
title={Contextual Document Embeddings},
|
|
29
|
+
author={John X. Morris and Alexander M. Rush},
|
|
30
|
+
year={2024},
|
|
31
|
+
eprint={2410.02525},
|
|
32
|
+
archivePrefix={arXiv},
|
|
33
|
+
primaryClass={cs.CL},
|
|
34
|
+
url={https://arxiv.org/abs/2410.02525},
|
|
35
|
+
}"""
|
|
36
|
+
|
|
27
37
|
|
|
28
38
|
class CDEWrapper(SentenceTransformerEncoderWrapper):
|
|
29
39
|
dataset_embeddings: torch.Tensor | None = None
|
|
@@ -199,6 +209,7 @@ cde_small_v1 = ModelMeta(
|
|
|
199
209
|
trust_remote_code=True,
|
|
200
210
|
),
|
|
201
211
|
name="jxm/cde-small-v1",
|
|
212
|
+
model_type=["dense"],
|
|
202
213
|
languages=["eng-Latn"],
|
|
203
214
|
open_weights=True,
|
|
204
215
|
revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
|
|
@@ -217,6 +228,7 @@ cde_small_v1 = ModelMeta(
|
|
|
217
228
|
training_datasets=bge_full_data,
|
|
218
229
|
public_training_code="https://github.com/jxmorris12/cde",
|
|
219
230
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
231
|
+
citation=CDE_CITATION,
|
|
220
232
|
)
|
|
221
233
|
|
|
222
234
|
cde_small_v2 = ModelMeta(
|
|
@@ -226,6 +238,7 @@ cde_small_v2 = ModelMeta(
|
|
|
226
238
|
trust_remote_code=True,
|
|
227
239
|
),
|
|
228
240
|
name="jxm/cde-small-v2",
|
|
241
|
+
model_type=["dense"],
|
|
229
242
|
languages=["eng-Latn"],
|
|
230
243
|
open_weights=True,
|
|
231
244
|
revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
|
|
@@ -244,4 +257,5 @@ cde_small_v2 = ModelMeta(
|
|
|
244
257
|
training_datasets=bge_full_data,
|
|
245
258
|
public_training_code="https://github.com/jxmorris12/cde",
|
|
246
259
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
260
|
+
citation=CDE_CITATION,
|
|
247
261
|
)
|