mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (458) hide show
  1. mteb/__init__.py +4 -0
  2. mteb/_create_dataloaders.py +6 -3
  3. mteb/_evaluators/any_sts_evaluator.py +21 -12
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +1 -1
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
  7. mteb/_evaluators/pair_classification_evaluator.py +30 -38
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_data_filter/__init__.py +0 -0
  13. mteb/abstasks/_data_filter/filters.py +125 -0
  14. mteb/abstasks/_data_filter/task_pipelines.py +102 -0
  15. mteb/abstasks/_statistics_calculation.py +6 -2
  16. mteb/abstasks/classification.py +0 -2
  17. mteb/abstasks/clustering.py +1 -1
  18. mteb/abstasks/clustering_legacy.py +3 -0
  19. mteb/abstasks/multilabel_classification.py +10 -3
  20. mteb/abstasks/pair_classification.py +8 -1
  21. mteb/abstasks/sts.py +7 -0
  22. mteb/abstasks/task_metadata.py +1 -0
  23. mteb/benchmarks/_create_table.py +84 -37
  24. mteb/benchmarks/benchmark.py +74 -15
  25. mteb/benchmarks/benchmarks/__init__.py +8 -0
  26. mteb/benchmarks/benchmarks/benchmarks.py +259 -15
  27. mteb/benchmarks/get_benchmark.py +2 -0
  28. mteb/cache.py +47 -10
  29. mteb/deprecated_evaluator.py +8 -13
  30. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  31. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  32. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  33. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  34. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  35. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  36. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  37. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  38. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  39. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  40. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  41. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  42. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  43. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  44. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  45. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  46. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  47. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  48. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  49. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  50. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  51. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  53. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  54. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  55. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  56. mteb/evaluate.py +65 -45
  57. mteb/leaderboard/app.py +268 -133
  58. mteb/leaderboard/benchmark_selector.py +14 -5
  59. mteb/leaderboard/figures.py +13 -15
  60. mteb/leaderboard/table.py +82 -17
  61. mteb/models/__init__.py +4 -1
  62. mteb/models/abs_encoder.py +21 -17
  63. mteb/models/cache_wrappers/__init__.py +2 -1
  64. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
  65. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  66. mteb/models/get_model_meta.py +3 -114
  67. mteb/models/instruct_wrapper.py +5 -1
  68. mteb/models/model_implementations/align_models.py +7 -0
  69. mteb/models/model_implementations/amazon_models.py +1 -0
  70. mteb/models/model_implementations/andersborges.py +65 -0
  71. mteb/models/model_implementations/ara_models.py +8 -0
  72. mteb/models/model_implementations/arctic_models.py +8 -0
  73. mteb/models/model_implementations/b1ade_models.py +1 -0
  74. mteb/models/model_implementations/bedrock_models.py +4 -0
  75. mteb/models/model_implementations/bge_models.py +60 -0
  76. mteb/models/model_implementations/bica_model.py +35 -0
  77. mteb/models/model_implementations/blip2_models.py +11 -0
  78. mteb/models/model_implementations/blip_models.py +27 -0
  79. mteb/models/model_implementations/bm25.py +1 -0
  80. mteb/models/model_implementations/bmretriever_models.py +4 -0
  81. mteb/models/model_implementations/cadet_models.py +9 -0
  82. mteb/models/model_implementations/cde_models.py +14 -0
  83. mteb/models/model_implementations/clip_models.py +3 -0
  84. mteb/models/model_implementations/clips_models.py +100 -0
  85. mteb/models/model_implementations/codefuse_models.py +162 -0
  86. mteb/models/model_implementations/codesage_models.py +15 -0
  87. mteb/models/model_implementations/cohere_models.py +8 -1
  88. mteb/models/model_implementations/cohere_v.py +5 -0
  89. mteb/models/model_implementations/colpali_models.py +14 -6
  90. mteb/models/model_implementations/colqwen_models.py +271 -1
  91. mteb/models/model_implementations/colsmol_models.py +2 -0
  92. mteb/models/model_implementations/conan_models.py +1 -0
  93. mteb/models/model_implementations/dino_models.py +171 -0
  94. mteb/models/model_implementations/e5_instruct.py +4 -0
  95. mteb/models/model_implementations/e5_models.py +12 -101
  96. mteb/models/model_implementations/e5_v.py +1 -0
  97. mteb/models/model_implementations/eagerworks_models.py +164 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  99. mteb/models/model_implementations/en_code_retriever.py +1 -0
  100. mteb/models/model_implementations/euler_models.py +32 -0
  101. mteb/models/model_implementations/evaclip_models.py +4 -0
  102. mteb/models/model_implementations/fa_models.py +58 -0
  103. mteb/models/model_implementations/facebookai.py +193 -0
  104. mteb/models/model_implementations/geogpt_models.py +1 -0
  105. mteb/models/model_implementations/gme_v_models.py +11 -5
  106. mteb/models/model_implementations/google_models.py +16 -5
  107. mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
  108. mteb/models/model_implementations/gritlm_models.py +2 -0
  109. mteb/models/model_implementations/gte_models.py +78 -0
  110. mteb/models/model_implementations/hinvec_models.py +1 -0
  111. mteb/models/model_implementations/human.py +1 -0
  112. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  113. mteb/models/model_implementations/inf_models.py +2 -0
  114. mteb/models/model_implementations/jasper_models.py +255 -2
  115. mteb/models/model_implementations/jina_clip.py +1 -0
  116. mteb/models/model_implementations/jina_models.py +209 -5
  117. mteb/models/model_implementations/kalm_models.py +203 -25
  118. mteb/models/model_implementations/kblab.py +31 -0
  119. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  120. mteb/models/model_implementations/kfst.py +25 -0
  121. mteb/models/model_implementations/kowshik24_models.py +32 -0
  122. mteb/models/model_implementations/lens_models.py +2 -0
  123. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  124. mteb/models/model_implementations/linq_models.py +3 -2
  125. mteb/models/model_implementations/listconranker.py +1 -1
  126. mteb/models/model_implementations/llm2clip_models.py +3 -0
  127. mteb/models/model_implementations/llm2vec_models.py +8 -0
  128. mteb/models/model_implementations/mcinext_models.py +3 -0
  129. mteb/models/model_implementations/mdbr_models.py +2 -0
  130. mteb/models/model_implementations/misc_models.py +362 -0
  131. mteb/models/model_implementations/mme5_models.py +1 -0
  132. mteb/models/model_implementations/moco_models.py +11 -0
  133. mteb/models/model_implementations/mod_models.py +191 -0
  134. mteb/models/model_implementations/model2vec_models.py +13 -0
  135. mteb/models/model_implementations/moka_models.py +3 -0
  136. mteb/models/model_implementations/mxbai_models.py +9 -0
  137. mteb/models/model_implementations/nbailab.py +70 -0
  138. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  139. mteb/models/model_implementations/nomic_models.py +156 -4
  140. mteb/models/model_implementations/nomic_models_vision.py +7 -2
  141. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
  142. mteb/models/model_implementations/nvidia_models.py +4 -1
  143. mteb/models/model_implementations/octen_models.py +195 -0
  144. mteb/models/model_implementations/openai_models.py +20 -16
  145. mteb/models/model_implementations/openclip_models.py +24 -0
  146. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  147. mteb/models/model_implementations/ops_moa_models.py +4 -2
  148. mteb/models/model_implementations/pawan_models.py +39 -0
  149. mteb/models/model_implementations/piccolo_models.py +8 -0
  150. mteb/models/model_implementations/promptriever_models.py +8 -4
  151. mteb/models/model_implementations/pylate_models.py +37 -4
  152. mteb/models/model_implementations/qodo_models.py +2 -0
  153. mteb/models/model_implementations/qtack_models.py +1 -0
  154. mteb/models/model_implementations/qwen3_models.py +6 -3
  155. mteb/models/model_implementations/qzhou_models.py +3 -1
  156. mteb/models/model_implementations/random_baseline.py +16 -21
  157. mteb/models/model_implementations/rasgaard_models.py +34 -0
  158. mteb/models/model_implementations/reasonir_model.py +1 -0
  159. mteb/models/model_implementations/repllama_models.py +2 -0
  160. mteb/models/model_implementations/rerankers_custom.py +3 -3
  161. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  162. mteb/models/model_implementations/richinfoai_models.py +1 -0
  163. mteb/models/model_implementations/ru_sentence_models.py +51 -0
  164. mteb/models/model_implementations/ruri_models.py +322 -0
  165. mteb/models/model_implementations/salesforce_models.py +3 -0
  166. mteb/models/model_implementations/samilpwc_models.py +1 -0
  167. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  168. mteb/models/model_implementations/searchmap_models.py +1 -0
  169. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  170. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
  171. mteb/models/model_implementations/seed_models.py +1 -0
  172. mteb/models/model_implementations/sentence_transformers_models.py +57 -0
  173. mteb/models/model_implementations/shuu_model.py +32 -31
  174. mteb/models/model_implementations/siglip_models.py +10 -0
  175. mteb/models/model_implementations/sonar_models.py +1 -0
  176. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  177. mteb/models/model_implementations/stella_models.py +6 -0
  178. mteb/models/model_implementations/tarka_models.py +376 -0
  179. mteb/models/model_implementations/ua_sentence_models.py +10 -0
  180. mteb/models/model_implementations/uae_models.py +1 -0
  181. mteb/models/model_implementations/vdr_models.py +2 -0
  182. mteb/models/model_implementations/vi_vn_models.py +39 -0
  183. mteb/models/model_implementations/vista_models.py +2 -0
  184. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  185. mteb/models/model_implementations/voyage_models.py +15 -0
  186. mteb/models/model_implementations/voyage_v.py +8 -2
  187. mteb/models/model_implementations/xyz_models.py +1 -0
  188. mteb/models/model_implementations/youtu_models.py +1 -0
  189. mteb/models/model_implementations/yuan_models.py +34 -0
  190. mteb/models/model_implementations/yuan_models_en.py +58 -0
  191. mteb/models/model_meta.py +442 -22
  192. mteb/models/search_encoder_index/__init__.py +7 -0
  193. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  194. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  195. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
  196. mteb/models/search_wrappers.py +165 -48
  197. mteb/models/sentence_transformer_wrapper.py +2 -7
  198. mteb/results/benchmark_results.py +88 -47
  199. mteb/results/model_result.py +11 -4
  200. mteb/results/task_result.py +37 -19
  201. mteb/similarity_functions.py +49 -0
  202. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  203. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  204. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  205. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  206. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  207. mteb/tasks/classification/ara/ajgt.py +1 -2
  208. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  209. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  210. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  211. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  212. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  213. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  214. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  215. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  216. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  217. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  218. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  220. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  221. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  222. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  223. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  224. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  225. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  226. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  227. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  228. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  229. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  230. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  231. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  232. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  233. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  234. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  235. mteb/tasks/classification/eng/news_classification.py +1 -2
  236. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  237. mteb/tasks/classification/eng/patent_classification.py +1 -2
  238. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  239. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  240. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  241. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  242. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  243. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  244. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  245. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  246. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  247. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  248. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  249. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  250. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  251. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  252. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  253. mteb/tasks/classification/est/estonian_valence.py +1 -2
  254. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  255. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  256. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  257. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  258. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  259. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  260. mteb/tasks/classification/heb/__init__.py +6 -1
  261. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  262. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  263. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  264. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  265. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  266. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  267. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  268. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  269. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  270. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  271. mteb/tasks/classification/kor/klue_tc.py +1 -2
  272. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  273. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  274. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  275. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  276. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  277. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  278. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  279. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  280. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  281. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  282. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  283. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  284. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  285. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  286. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  287. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  288. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  289. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  290. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  291. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  292. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  293. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  294. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  295. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  296. mteb/tasks/classification/pol/polish_classification.py +3 -6
  297. mteb/tasks/classification/ron/moroco.py +1 -2
  298. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  299. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  300. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  301. mteb/tasks/classification/rus/headline_classification.py +1 -2
  302. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  303. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  304. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  305. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  306. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  307. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  308. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  309. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  310. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  311. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  312. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  313. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  314. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  315. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  316. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  317. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  318. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  319. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  320. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  321. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  322. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  323. mteb/tasks/classification/tur/__init__.py +4 -0
  324. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  325. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  326. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  327. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  328. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  329. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  330. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  331. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  332. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  333. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  334. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  335. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  336. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  337. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  338. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  339. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  340. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  341. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  342. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  343. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  344. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  345. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  346. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  347. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  348. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  349. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  350. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  351. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  352. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  353. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  354. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  355. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  356. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  357. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  358. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  359. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  360. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  361. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  362. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  363. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  364. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  365. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  366. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  367. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  368. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  369. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  370. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  371. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  372. mteb/tasks/pair_classification/rus/terra.py +51 -25
  373. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  374. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  375. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  376. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  377. mteb/tasks/reranking/jpn/__init__.py +9 -1
  378. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  379. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  380. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  381. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  382. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  383. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  384. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  385. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  386. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  387. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  388. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  389. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  390. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  391. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  392. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  393. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  394. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  395. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  396. mteb/tasks/retrieval/kor/__init__.py +2 -1
  397. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  398. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  399. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  400. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  401. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  402. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  403. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  404. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  405. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  406. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  407. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  408. mteb/tasks/retrieval/nld/__init__.py +8 -4
  409. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  410. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  411. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  412. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  413. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  414. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  415. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  416. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  417. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  418. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  419. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  420. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  421. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  422. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  423. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  424. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  425. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  426. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  427. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  428. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  429. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  430. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  431. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  432. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  433. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  434. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  435. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  436. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  437. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  438. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  439. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  440. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  441. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  442. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  443. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  444. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  445. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  446. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  447. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  448. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  449. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  450. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  451. mteb/types/_encoder_io.py +7 -2
  452. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
  453. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
  454. mteb/models/model_implementations/nb_sbert.py +0 -25
  455. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
  456. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
  457. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
  458. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
@@ -45,8 +45,7 @@ class BengaliSentimentAnalysis(AbsTaskClassification):
45
45
  class BengaliSentimentAnalysisV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="BengaliSentimentAnalysis.v2",
48
- description="""dataset contains 2854 Negative reviews and 7238 Positive reviews collected and manually annotated from Youtube Bengali drama.
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)""",
48
+ description="dataset contains 2854 Negative reviews and 7238 Positive reviews collected and manually annotated from Youtube Bengali drama. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2632)",
50
49
  reference="https://data.mendeley.com/datasets/p6zc7krs37/4",
51
50
  dataset={
52
51
  "path": "mteb/bengali_sentiment_analysis",
@@ -51,8 +51,7 @@ class CSFDCZMovieReviewSentimentClassification(AbsTaskClassification):
51
51
  class CSFDCZMovieReviewSentimentClassificationV2(AbsTaskClassification):
52
52
  metadata = TaskMetadata(
53
53
  name="CSFDCZMovieReviewSentimentClassification.v2",
54
- description="""The dataset contains 30k user reviews from csfd.cz in Czech.
55
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
54
+ description="The dataset contains 30k user reviews from csfd.cz in Czech. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
56
55
  reference="https://arxiv.org/abs/2304.01922",
57
56
  dataset={
58
57
  "path": "mteb/csfdcz_movie_review_sentiment",
@@ -58,8 +58,7 @@ Montoyo, Andres},
58
58
  class CzechProductReviewSentimentClassificationV2(AbsTaskClassification):
59
59
  metadata = TaskMetadata(
60
60
  name="CzechProductReviewSentimentClassification.v2",
61
- description="""User reviews of products on Czech e-shop Mall.cz with 3 sentiment classes (positive, neutral, negative)
62
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
61
+ description="User reviews of products on Czech e-shop Mall.cz with 3 sentiment classes (positive, neutral, negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
63
62
  reference="https://aclanthology.org/W13-1609/",
64
63
  dataset={
65
64
  "path": "mteb/czech_product_review_sentiment",
@@ -55,8 +55,7 @@ Montoyo, Andres},
55
55
  class CzechSoMeSentimentClassificationV2(AbsTaskClassification):
56
56
  metadata = TaskMetadata(
57
57
  name="CzechSoMeSentimentClassification.v2",
58
- description="""User comments on Facebook
59
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
58
+ description="User comments on Facebook This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
60
59
  reference="https://aclanthology.org/W13-1609/",
61
60
  dataset={
62
61
  "path": "mteb/czech_so_me_sentiment",
@@ -47,8 +47,7 @@ class AngryTweetsClassificationV2(AbsTaskClassification):
47
47
  "path": "mteb/angry_tweets",
48
48
  "revision": "b9475fb66a13befda4fa9871cd92343bb2c0eb77",
49
49
  },
50
- description="""A sentiment dataset with 3 classes (positive, negative, neutral) for Danish tweets
51
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
50
+ description="A sentiment dataset with 3 classes (positive, negative, neutral) for Danish tweets This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
52
51
  reference="https://aclanthology.org/2021.nodalida-main.53/",
53
52
  type="Classification",
54
53
  category="t2c",
@@ -49,8 +49,7 @@ class DanishPoliticalCommentsClassificationV2(AbsTaskClassification):
49
49
  "path": "mteb/danish_political_comments",
50
50
  "revision": "476a9e7327aba70ad3e97a169d7310b86be9b245",
51
51
  },
52
- description="""A dataset of Danish political comments rated for sentiment
53
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
52
+ description="A dataset of Danish political comments rated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
54
53
  reference="https://huggingface.co/datasets/danish_political_comments",
55
54
  type="Classification",
56
55
  category="t2c",
@@ -69,8 +69,7 @@ class DdiscoCohesionClassificationV2(AbsTaskClassification):
69
69
  "path": "mteb/ddisco_cohesion",
70
70
  "revision": "b5a05bdecdfc6efc14eebc8f7a86e0986edaf5ff",
71
71
  },
72
- description="""A Danish Discourse dataset with values for coherence and source (Wikipedia or Reddit)
73
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
72
+ description="A Danish Discourse dataset with values for coherence and source (Wikipedia or Reddit) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
74
73
  reference="https://aclanthology.org/2022.lrec-1.260/",
75
74
  type="Classification",
76
75
  category="t2c",
@@ -76,8 +76,7 @@ class DKHateClassificationV2(AbsTaskClassification):
76
76
  "path": "mteb/dk_hate",
77
77
  "revision": "0468ff11393992d8347cf4282fb706fe970608d4",
78
78
  },
79
- description="""Danish Tweets annotated for Hate Speech either being Offensive or not
80
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
79
+ description="Danish Tweets annotated for Hate Speech either being Offensive or not This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
81
80
  reference="https://aclanthology.org/2020.lrec-1.430/",
82
81
  type="Classification",
83
82
  category="t2c",
@@ -56,8 +56,7 @@ Zesch, Torsten},
56
56
  class GermanPoliticiansTwitterSentimentClassificationV2(AbsTaskClassification):
57
57
  metadata = TaskMetadata(
58
58
  name="GermanPoliticiansTwitterSentimentClassification.v2",
59
- description="""GermanPoliticiansTwitterSentiment is a dataset of German tweets categorized with their sentiment (3 classes).
60
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
59
+ description="GermanPoliticiansTwitterSentiment is a dataset of German tweets categorized with their sentiment (3 classes). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
61
60
  reference="https://aclanthology.org/2022.konvens-1.9",
62
61
  dataset={
63
62
  "path": "mteb/german_politicians_twitter_sentiment",
@@ -43,8 +43,7 @@ class TenKGnadClassification(AbsTaskClassification):
43
43
  class TenKGnadClassificationV2(AbsTaskClassification):
44
44
  metadata = TaskMetadata(
45
45
  name="TenKGnadClassification.v2",
46
- description="""10k German News Articles Dataset (10kGNAD) contains news articles from the online Austrian newspaper website DER Standard with their topic classification (9 classes).
47
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
46
+ description="10k German News Articles Dataset (10kGNAD) contains news articles from the online Austrian newspaper website DER Standard with their topic classification (9 classes). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
48
47
  reference="https://tblock.github.io/10kGNAD/",
49
48
  dataset={
50
49
  "path": "mteb/ten_k_gnad",
@@ -44,8 +44,7 @@ class AmazonPolarityClassification(AbsTaskClassification):
44
44
  class AmazonPolarityClassificationV2(AbsTaskClassification):
45
45
  metadata = TaskMetadata(
46
46
  name="AmazonPolarityClassification.v2",
47
- description="""Amazon Polarity Classification Dataset.
48
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
47
+ description="Amazon Polarity Classification Dataset. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
49
48
  reference="https://huggingface.co/datasets/amazon_polarity",
50
49
  dataset={
51
50
  "path": "mteb/amazon_polarity",
@@ -43,8 +43,7 @@ class ArxivClassification(AbsTaskClassification):
43
43
  class ArxivClassificationV2(AbsTaskClassification):
44
44
  metadata = TaskMetadata(
45
45
  name="ArxivClassification.v2",
46
- description="""Classification Dataset of Arxiv Papers
47
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
46
+ description="Classification Dataset of Arxiv Papers This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
48
47
  dataset={
49
48
  "path": "mteb/arxiv",
50
49
  "revision": "202e10e9a5d37a5068397b48184d0728346a7b4a",
@@ -61,8 +61,7 @@ Shah, Rushin},
61
61
  class Banking77ClassificationV2(AbsTaskClassification):
62
62
  metadata = TaskMetadata(
63
63
  name="Banking77Classification.v2",
64
- description="""Dataset composed of online banking queries annotated with their corresponding intents.
65
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
64
+ description="Dataset composed of online banking queries annotated with their corresponding intents. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
66
65
  reference="https://arxiv.org/abs/2003.04807",
67
66
  dataset={
68
67
  "path": "mteb/banking77",
@@ -50,8 +50,7 @@ class DBpediaClassification(AbsTaskClassification):
50
50
  class DBpediaClassificationV2(AbsTaskClassification):
51
51
  metadata = TaskMetadata(
52
52
  name="DBpediaClassification.v2",
53
- description="""DBpedia14 is a dataset of English texts from Wikipedia articles, categorized into 14 non-overlapping classes based on their DBpedia ontology.
54
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="DBpedia14 is a dataset of English texts from Wikipedia articles, categorized into 14 non-overlapping classes based on their DBpedia ontology. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
55
54
  reference="https://arxiv.org/abs/1509.01626",
56
55
  dataset={
57
56
  "path": "mteb/d_bpedia",
@@ -59,8 +59,7 @@ Tsujii, Jun{'}ichi},
59
59
  class EmotionClassificationV2(AbsTaskClassification):
60
60
  metadata = TaskMetadata(
61
61
  name="EmotionClassification.v2",
62
- description="""Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.
63
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
62
+ description="Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
64
63
  reference="https://www.aclweb.org/anthology/D18-1404",
65
64
  dataset={
66
65
  "path": "mteb/emotion",
@@ -40,8 +40,7 @@ class FinancialPhrasebankClassification(AbsTaskClassification):
40
40
  class FinancialPhrasebankClassificationV2(AbsTaskClassification):
41
41
  metadata = TaskMetadata(
42
42
  name="FinancialPhrasebankClassification.v2",
43
- description="""Polar sentiment dataset of sentences from financial news, categorized by sentiment into positive, negative, or neutral.
44
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
43
+ description="Polar sentiment dataset of sentences from financial news, categorized by sentiment into positive, negative, or neutral. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
45
44
  reference="https://arxiv.org/abs/1307.5336",
46
45
  dataset={
47
46
  "path": "mteb/financial_phrasebank",
@@ -42,8 +42,7 @@ class FrenkEnClassification(AbsTaskClassification):
42
42
  class FrenkEnClassificationV2(AbsTaskClassification):
43
43
  metadata = TaskMetadata(
44
44
  name="FrenkEnClassification.v2",
45
- description="""English subset of the FRENK dataset
46
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
45
+ description="English subset of the FRENK dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
47
46
  dataset={
48
47
  "path": "mteb/frenk_en",
49
48
  "revision": "630d941b6e0879a7238da89af6bfe1b1eb27ca0f",
@@ -10,7 +10,7 @@ class GTSRBClassification(AbsTaskClassification):
10
10
 
11
11
  metadata = TaskMetadata(
12
12
  name="GTSRB",
13
- description="""The German Traffic Sign Recognition Benchmark (GTSRB) is a multi-class classification dataset for traffic signs. It consists of dataset of more than 50,000 traffic sign images. The dataset comprises 43 classes with unbalanced class frequencies.""",
13
+ description="The German Traffic Sign Recognition Benchmark (GTSRB) is a multi-class classification dataset for traffic signs. It consists of dataset of more than 50,000 traffic sign images. The dataset comprises 43 classes with unbalanced class frequencies.",
14
14
  reference="https://benchmark.ini.rub.de/",
15
15
  dataset={
16
16
  "path": "clip-benchmark/wds_gtsrb",
@@ -55,8 +55,7 @@ Mihalcea, Rada},
55
55
  class ImdbClassificationV2(AbsTaskClassification):
56
56
  metadata = TaskMetadata(
57
57
  name="ImdbClassification.v2",
58
- description="""Large Movie Review Dataset
59
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
58
+ description="Large Movie Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
60
59
  dataset={
61
60
  "path": "mteb/imdb",
62
61
  "revision": "d05f0155defa7991dad75bc68c5ccb6774b1fdc5",
@@ -2520,15 +2520,7 @@ class Diversity6LegalBenchClassification(AbsTaskClassification):
2520
2520
  class FunctionOfDecisionSectionLegalBenchClassification(AbsTaskClassification):
2521
2521
  metadata = TaskMetadata(
2522
2522
  name="FunctionOfDecisionSectionLegalBenchClassification",
2523
- description="""The task is to classify a paragraph extracted from a written court decision into one of seven possible categories:
2524
- 1. Facts - The paragraph describes the faction background that led up to the present lawsuit.
2525
- 2. Procedural History - The paragraph describes the course of litigation that led to the current proceeding before the court.
2526
- 3. Issue - The paragraph describes the legal or factual issue that must be resolved by the court.
2527
- 4. Rule - The paragraph describes a rule of law relevant to resolving the issue.
2528
- 5. Analysis - The paragraph analyzes the legal issue by applying the relevant legal principles to the facts of the present dispute.
2529
- 6. Conclusion - The paragraph presents a conclusion of the court.
2530
- 7. Decree - The paragraph constitutes a decree resolving the dispute.
2531
- """,
2523
+ description="The task is to classify a paragraph extracted from a written court decision into one of seven possible categories: 1. Facts - The paragraph describes the faction background that led up to the present lawsuit. 2. Procedural History - The paragraph describes the course of litigation that led to the current proceeding before the court. 3. Issue - The paragraph describes the legal or factual issue that must be resolved by the court. 4. Rule - The paragraph describes a rule of law relevant to resolving the issue. 5. Analysis - The paragraph analyzes the legal issue by applying the relevant legal principles to the facts of the present dispute. 6. Conclusion - The paragraph presents a conclusion of the court. 7. Decree - The paragraph constitutes a decree resolving the dispute.",
2532
2524
  reference="https://huggingface.co/datasets/nguha/legalbench",
2533
2525
  dataset={
2534
2526
  "path": "mteb/FunctionOfDecisionSectionLegalBenchClassification",
@@ -2677,8 +2669,7 @@ class JCrewBlockerLegalBenchClassification(AbsTaskClassification):
2677
2669
  class JCrewBlockerLegalBenchClassificationV2(AbsTaskClassification):
2678
2670
  metadata = TaskMetadata(
2679
2671
  name="JCrewBlockerLegalBenchClassification.v2",
2680
- description="""The J.Crew Blocker, also known as the J.Crew Protection, is a provision included in leveraged loan documents to prevent companies from removing security by transferring intellectual property (IP) into new subsidiaries and raising additional debt. The task consists of determining whether the J.Crew Blocker is present in the document.
2681
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
2672
+ description="The J.Crew Blocker, also known as the J.Crew Protection, is a provision included in leveraged loan documents to prevent companies from removing security by transferring intellectual property (IP) into new subsidiaries and raising additional debt. The task consists of determining whether the J.Crew Blocker is present in the document. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
2682
2673
  reference="https://huggingface.co/datasets/nguha/legalbench",
2683
2674
  dataset={
2684
2675
  "path": "mteb/j_crew_blocker_legal_bench",
@@ -3454,8 +3445,7 @@ class LegalReasoningCausalityLegalBenchClassification(AbsTaskClassification):
3454
3445
  class LegalReasoningCausalityLegalBenchClassificationV2(AbsTaskClassification):
3455
3446
  metadata = TaskMetadata(
3456
3447
  name="LegalReasoningCausalityLegalBenchClassification.v2",
3457
- description="""Given an excerpt from a district court opinion, classify if it relies on statistical evidence in its reasoning.
3458
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
3448
+ description="Given an excerpt from a district court opinion, classify if it relies on statistical evidence in its reasoning. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
3459
3449
  reference="https://huggingface.co/datasets/nguha/legalbench",
3460
3450
  dataset={
3461
3451
  "path": "mteb/legal_reasoning_causality_legal_bench",
@@ -3599,44 +3589,7 @@ _MAUD_DATASET_MAP = [
3599
3589
  class MAUDLegalBenchClassification(AbsTaskClassification):
3600
3590
  metadata = TaskMetadata(
3601
3591
  name="MAUDLegalBenchClassification",
3602
- description="""This task was constructed from the MAUD dataset, which consists of over 47,000 labels across 152 merger agreements annotated to identify 92 questions in each agreement used by the 2021 American Bar Association (ABA) Public Target Deal Points Study. Each dataset is formatted as a series of multiple-choice questions, where given a segment of the merger agreement and a Deal Point question, the model is to choose the answer that best characterizes the agreement as response.
3603
-
3604
- This is a combination of all 34 of the MAUD Legal Bench datasets:
3605
- 1. MAUD Ability To Consummate Concept Is Subject To MAE Carveouts: Given an excerpt from a merger agreement and the task is to answer: is the “ability to consummate” concept subject to Material Adverse Effect (MAE) carveouts? amongst the multiple choice options.
3606
- 2. MAUD Accuracy Of Fundamental Target RWS Bringdown Standard: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3607
- 3. MAUD Accuracy Of Target Capitalization RW Outstanding Shares Bringdown Standard Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3608
- 4. MAUD Accuracy Of Target General RW Bringdown Timing Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3609
- 5. MAUD Additional Matching Rights Period For Modifications Cor: Given an excerpt from a merger agreement and the task is to answer: how long is the additional matching rights period for modifications in case the board changes its recommendation, amongst the multiple choice options.
3610
- 6. MAUD Application Of Buyer Consent Requirement Negative Interim Covenant: Given an excerpt from a merger agreement and the task is to answer: what negative covenants does the requirement of Buyer consent apply to, amongst the multiple choice options.
3611
- 7. MAUD Buyer Consent Requirement Ordinary Course: Given an excerpt from a merger agreement and the task is to answer: in case the Buyer's consent for the acquired company's ordinary business operations is required, are there any limitations on the Buyer's right to condition, withhold, or delay their consent, amongst the multiple choice options.
3612
- 8. MAUD Change In Law Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in law that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3613
- 9. MAUD Changes In GAAP Or Other Accounting Principles Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in GAAP or other accounting principles that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3614
- 10. MAUD COR Permitted In Response To Intervening Event: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted in response to an intervening event, amongst the multiple choice options.
3615
- 11. MAUD COR Permitted With Board Fiduciary Determination Only: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted as long as the board determines that such change is required to fulfill its fiduciary obligations, amongst the multiple choice options.
3616
- 12. MAUD COR Standard Intervening Event: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in response to an intervening event, amongst the multiple choice options.
3617
- 13. MAUD COR Standard Superior Offer: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in connection with a superior offer, amongst the multiple choice options.
3618
- 14. MAUD Definition Contains Knowledge Requirement Answer: Given an excerpt from a merger agreement and the task is to answer: what is the knowledge requirement in the definition of “Intervening Event”, amongst the multiple choice options.
3619
- 15. MAUD Definition Includes Asset Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of asset deals, amongst the multiple choice options.
3620
- 16. MAUD Definition Includes Stock Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of stock deals, amongst the multiple choice options.
3621
- 17. MAUD Fiduciary Exception Board Determination Standard: Given an excerpt from a merger agreement and the task is to answer: under what circumstances could the Board take actions on a different acquisition proposal notwithstanding the no-shop provision, amongst the multiple choice options.
3622
- 18. MAUD Fiduciary Exception Board Determination Trigger No Shop: Given an excerpt from a merger agreement and the task is to answer: what type of offer could the Board take actions on notwithstanding the no-shop provision, amongst the multiple choice options.
3623
- 19. MAUD Financial Point Of View Is The Sole Consideration: Given an excerpt from a merger agreement and the task is to answer: is “financial point of view” the sole consideration when determining whether an offer is superior, amongst the multiple choice options.
3624
- 20. MAUD FLS MAE Standard: Given an excerpt from a merger agreement and the task is to answer: what is the Forward Looking Standard (FLS) with respect to Material Adverse Effect (MAE), amongst the multiple choice options.
3625
- 21. MAUD General Economic and Financial Conditions Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes caused by general economic and financial conditions that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3626
- 22. MAUD Includes Consistent With Past Practice: Given an excerpt from a merger agreement and the task is to answer: does the wording of the Efforts Covenant clause include “consistent with past practice”, amongst the multiple choice options.
3627
- 23. MAUD Initial Matching Rights Period COR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in case the board changes its recommendation, amongst the multiple choice options.
3628
- 24. MAUD Initial Matching Rights Period FTR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in connection with the Fiduciary Termination Right (FTR), amongst the multiple choice options.
3629
- 25. MAUDInterveningEventRequiredToOccurAfterSigningAnswer: Given an excerpt from a merger agreement and the task is to answer: is an “Intervening Event” required to occur after signing, amongst the multiple choice options.
3630
- 26. MAUD Knowledge Definition: Given an excerpt from a merger agreement and the task is to answer: what counts as Knowledge, amongst the multiple choice options.
3631
- 27. MAUDLiabilityStandardForNoShopBreachByTargetNonDORepresentatives: Given an excerpt from a merger agreement and the task is to answer: what is the liability standard for no-shop breach by Target Non-D&O Representatives, amongst the multiple choice options.
3632
- 28. MAUD Ordinary Course Efforts Standard: Given an excerpt from a merger agreement and the task is to answer: what is the efforts standard, amongst the multiple choice options.
3633
- 29. MAUD Pandemic Or Other Public Health Event Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do pandemics or other public health events have to have disproportionate impact to qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3634
- 30. MAUD Pandemic Or Other Public Health Event Specific Reference To Pandemic Related Governmental Responses Or Measures: Given an excerpt from a merger agreement and the task is to answer: is there specific reference to pandemic-related governmental responses or measures in the clause that qualifies pandemics or other public health events for Material Adverse Effect (MAE), amongst the multiple choice options.
3635
- 31. MAUD Relational Language MAE Applies To: Given an excerpt from a merger agreement and the task is to answer: what carveouts pertaining to Material Adverse Effect (MAE) does the relational language apply to?, amongst the multiple choice options.
3636
- 32. MAUD Specific Performance: Given an excerpt from a merger agreement and the task is to answer: what is the wording of the Specific Performance clause regarding the parties' entitlement in the event of a contractual breach, amongst the multiple choice options.
3637
- 33. MAUD Tail Period Length: Given an excerpt from a merger agreement and the task is to answer: how long is the Tail Period, amongst the multiple choice options.
3638
- 34. MAUD Type Of Consideration: Given an excerpt from a merger agreement and the task is to answer: what type of consideration is specified in this agreement, amongst the multiple choice options.
3639
- """,
3592
+ description="This task was constructed from the MAUD dataset, which consists of over 47,000 labels across 152 merger agreements annotated to identify 92 questions in each agreement used by the 2021 American Bar Association (ABA) Public Target Deal Points Study. Each dataset is formatted as a series of multiple-choice questions, where given a segment of the merger agreement and a Deal Point question, the model is to choose the answer that best characterizes the agreement as response. This is a combination of all 34 of the MAUD Legal Bench datasets: 1. MAUD Ability To Consummate Concept Is Subject To MAE Carveouts: Given an excerpt from a merger agreement and the task is to answer: is the “ability to consummate” concept subject to Material Adverse Effect (MAE) carveouts? amongst the multiple choice options. 2. MAUD Accuracy Of Fundamental Target RWS Bringdown Standard: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 3. MAUD Accuracy Of Target Capitalization RW Outstanding Shares Bringdown Standard Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 4. MAUD Accuracy Of Target General RW Bringdown Timing Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 5. MAUD Additional Matching Rights Period For Modifications Cor: Given an excerpt from a merger agreement and the task is to answer: how long is the additional matching rights period for modifications in case the board changes its recommendation, amongst the multiple choice options. 6. MAUD Application Of Buyer Consent Requirement Negative Interim Covenant: Given an excerpt from a merger agreement and the task is to answer: what negative covenants does the requirement of Buyer consent apply to, amongst the multiple choice options. 7. MAUD Buyer Consent Requirement Ordinary Course: Given an excerpt from a merger agreement and the task is to answer: in case the Buyer's consent for the acquired company's ordinary business operations is required, are there any limitations on the Buyer's right to condition, withhold, or delay their consent, amongst the multiple choice options. 8. MAUD Change In Law Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in law that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 9. MAUD Changes In GAAP Or Other Accounting Principles Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in GAAP or other accounting principles that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 10. MAUD COR Permitted In Response To Intervening Event: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted in response to an intervening event, amongst the multiple choice options. 11. MAUD COR Permitted With Board Fiduciary Determination Only: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted as long as the board determines that such change is required to fulfill its fiduciary obligations, amongst the multiple choice options. 12. MAUD COR Standard Intervening Event: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in response to an intervening event, amongst the multiple choice options. 13. MAUD COR Standard Superior Offer: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in connection with a superior offer, amongst the multiple choice options. 14. MAUD Definition Contains Knowledge Requirement Answer: Given an excerpt from a merger agreement and the task is to answer: what is the knowledge requirement in the definition of “Intervening Event”, amongst the multiple choice options. 15. MAUD Definition Includes Asset Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of asset deals, amongst the multiple choice options. 16. MAUD Definition Includes Stock Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of stock deals, amongst the multiple choice options. 17. MAUD Fiduciary Exception Board Determination Standard: Given an excerpt from a merger agreement and the task is to answer: under what circumstances could the Board take actions on a different acquisition proposal notwithstanding the no-shop provision, amongst the multiple choice options. 18. MAUD Fiduciary Exception Board Determination Trigger No Shop: Given an excerpt from a merger agreement and the task is to answer: what type of offer could the Board take actions on notwithstanding the no-shop provision, amongst the multiple choice options. 19. MAUD Financial Point Of View Is The Sole Consideration: Given an excerpt from a merger agreement and the task is to answer: is “financial point of view” the sole consideration when determining whether an offer is superior, amongst the multiple choice options. 20. MAUD FLS MAE Standard: Given an excerpt from a merger agreement and the task is to answer: what is the Forward Looking Standard (FLS) with respect to Material Adverse Effect (MAE), amongst the multiple choice options. 21. MAUD General Economic and Financial Conditions Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes caused by general economic and financial conditions that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 22. MAUD Includes Consistent With Past Practice: Given an excerpt from a merger agreement and the task is to answer: does the wording of the Efforts Covenant clause include “consistent with past practice”, amongst the multiple choice options. 23. MAUD Initial Matching Rights Period COR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in case the board changes its recommendation, amongst the multiple choice options. 24. MAUD Initial Matching Rights Period FTR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in connection with the Fiduciary Termination Right (FTR), amongst the multiple choice options. 25. MAUDInterveningEventRequiredToOccurAfterSigningAnswer: Given an excerpt from a merger agreement and the task is to answer: is an “Intervening Event” required to occur after signing, amongst the multiple choice options. 26. MAUD Knowledge Definition: Given an excerpt from a merger agreement and the task is to answer: what counts as Knowledge, amongst the multiple choice options. 27. MAUDLiabilityStandardForNoShopBreachByTargetNonDORepresentatives: Given an excerpt from a merger agreement and the task is to answer: what is the liability standard for no-shop breach by Target Non-D&O Representatives, amongst the multiple choice options. 28. MAUD Ordinary Course Efforts Standard: Given an excerpt from a merger agreement and the task is to answer: what is the efforts standard, amongst the multiple choice options. 29. MAUD Pandemic Or Other Public Health Event Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do pandemics or other public health events have to have disproportionate impact to qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 30. MAUD Pandemic Or Other Public Health Event Specific Reference To Pandemic Related Governmental Responses Or Measures: Given an excerpt from a merger agreement and the task is to answer: is there specific reference to pandemic-related governmental responses or measures in the clause that qualifies pandemics or other public health events for Material Adverse Effect (MAE), amongst the multiple choice options. 31. MAUD Relational Language MAE Applies To: Given an excerpt from a merger agreement and the task is to answer: what carveouts pertaining to Material Adverse Effect (MAE) does the relational language apply to?, amongst the multiple choice options. 32. MAUD Specific Performance: Given an excerpt from a merger agreement and the task is to answer: what is the wording of the Specific Performance clause regarding the parties' entitlement in the event of a contractual breach, amongst the multiple choice options. 33. MAUD Tail Period Length: Given an excerpt from a merger agreement and the task is to answer: how long is the Tail Period, amongst the multiple choice options. 34. MAUD Type Of Consideration: Given an excerpt from a merger agreement and the task is to answer: what type of consideration is specified in this agreement, amongst the multiple choice options.",
3640
3593
  reference="https://huggingface.co/datasets/nguha/legalbench",
3641
3594
  dataset={
3642
3595
  "path": "mteb/MAUDLegalBenchClassification",
@@ -3679,45 +3632,7 @@ class MAUDLegalBenchClassification(AbsTaskClassification):
3679
3632
  class MAUDLegalBenchClassificationV2(AbsTaskClassification):
3680
3633
  metadata = TaskMetadata(
3681
3634
  name="MAUDLegalBenchClassification.v2",
3682
- description="""This task was constructed from the MAUD dataset, which consists of over 47,000 labels across 152 merger agreements annotated to identify 92 questions in each agreement used by the 2021 American Bar Association (ABA) Public Target Deal Points Study. Each dataset is formatted as a series of multiple-choice questions, where given a segment of the merger agreement and a Deal Point question, the model is to choose the answer that best characterizes the agreement as response.
3683
-
3684
- This is a combination of all 34 of the MAUD Legal Bench datasets:
3685
- 1. MAUD Ability To Consummate Concept Is Subject To MAE Carveouts: Given an excerpt from a merger agreement and the task is to answer: is the “ability to consummate” concept subject to Material Adverse Effect (MAE) carveouts? amongst the multiple choice options.
3686
- 2. MAUD Accuracy Of Fundamental Target RWS Bringdown Standard: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3687
- 3. MAUD Accuracy Of Target Capitalization RW Outstanding Shares Bringdown Standard Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3688
- 4. MAUD Accuracy Of Target General RW Bringdown Timing Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options.
3689
- 5. MAUD Additional Matching Rights Period For Modifications Cor: Given an excerpt from a merger agreement and the task is to answer: how long is the additional matching rights period for modifications in case the board changes its recommendation, amongst the multiple choice options.
3690
- 6. MAUD Application Of Buyer Consent Requirement Negative Interim Covenant: Given an excerpt from a merger agreement and the task is to answer: what negative covenants does the requirement of Buyer consent apply to, amongst the multiple choice options.
3691
- 7. MAUD Buyer Consent Requirement Ordinary Course: Given an excerpt from a merger agreement and the task is to answer: in case the Buyer's consent for the acquired company's ordinary business operations is required, are there any limitations on the Buyer's right to condition, withhold, or delay their consent, amongst the multiple choice options.
3692
- 8. MAUD Change In Law Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in law that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3693
- 9. MAUD Changes In GAAP Or Other Accounting Principles Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in GAAP or other accounting principles that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3694
- 10. MAUD COR Permitted In Response To Intervening Event: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted in response to an intervening event, amongst the multiple choice options.
3695
- 11. MAUD COR Permitted With Board Fiduciary Determination Only: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted as long as the board determines that such change is required to fulfill its fiduciary obligations, amongst the multiple choice options.
3696
- 12. MAUD COR Standard Intervening Event: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in response to an intervening event, amongst the multiple choice options.
3697
- 13. MAUD COR Standard Superior Offer: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in connection with a superior offer, amongst the multiple choice options.
3698
- 14. MAUD Definition Contains Knowledge Requirement Answer: Given an excerpt from a merger agreement and the task is to answer: what is the knowledge requirement in the definition of “Intervening Event”, amongst the multiple choice options.
3699
- 15. MAUD Definition Includes Asset Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of asset deals, amongst the multiple choice options.
3700
- 16. MAUD Definition Includes Stock Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of stock deals, amongst the multiple choice options.
3701
- 17. MAUD Fiduciary Exception Board Determination Standard: Given an excerpt from a merger agreement and the task is to answer: under what circumstances could the Board take actions on a different acquisition proposal notwithstanding the no-shop provision, amongst the multiple choice options.
3702
- 18. MAUD Fiduciary Exception Board Determination Trigger No Shop: Given an excerpt from a merger agreement and the task is to answer: what type of offer could the Board take actions on notwithstanding the no-shop provision, amongst the multiple choice options.
3703
- 19. MAUD Financial Point Of View Is The Sole Consideration: Given an excerpt from a merger agreement and the task is to answer: is “financial point of view” the sole consideration when determining whether an offer is superior, amongst the multiple choice options.
3704
- 20. MAUD FLS MAE Standard: Given an excerpt from a merger agreement and the task is to answer: what is the Forward Looking Standard (FLS) with respect to Material Adverse Effect (MAE), amongst the multiple choice options.
3705
- 21. MAUD General Economic and Financial Conditions Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes caused by general economic and financial conditions that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3706
- 22. MAUD Includes Consistent With Past Practice: Given an excerpt from a merger agreement and the task is to answer: does the wording of the Efforts Covenant clause include “consistent with past practice”, amongst the multiple choice options.
3707
- 23. MAUD Initial Matching Rights Period COR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in case the board changes its recommendation, amongst the multiple choice options.
3708
- 24. MAUD Initial Matching Rights Period FTR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in connection with the Fiduciary Termination Right (FTR), amongst the multiple choice options.
3709
- 25. MAUDInterveningEventRequiredToOccurAfterSigningAnswer: Given an excerpt from a merger agreement and the task is to answer: is an “Intervening Event” required to occur after signing, amongst the multiple choice options.
3710
- 26. MAUD Knowledge Definition: Given an excerpt from a merger agreement and the task is to answer: what counts as Knowledge, amongst the multiple choice options.
3711
- 27. MAUDLiabilityStandardForNoShopBreachByTargetNonDORepresentatives: Given an excerpt from a merger agreement and the task is to answer: what is the liability standard for no-shop breach by Target Non-D&O Representatives, amongst the multiple choice options.
3712
- 28. MAUD Ordinary Course Efforts Standard: Given an excerpt from a merger agreement and the task is to answer: what is the efforts standard, amongst the multiple choice options.
3713
- 29. MAUD Pandemic Or Other Public Health Event Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do pandemics or other public health events have to have disproportionate impact to qualify for Material Adverse Effect (MAE), amongst the multiple choice options.
3714
- 30. MAUD Pandemic Or Other Public Health Event Specific Reference To Pandemic Related Governmental Responses Or Measures: Given an excerpt from a merger agreement and the task is to answer: is there specific reference to pandemic-related governmental responses or measures in the clause that qualifies pandemics or other public health events for Material Adverse Effect (MAE), amongst the multiple choice options.
3715
- 31. MAUD Relational Language MAE Applies To: Given an excerpt from a merger agreement and the task is to answer: what carveouts pertaining to Material Adverse Effect (MAE) does the relational language apply to?, amongst the multiple choice options.
3716
- 32. MAUD Specific Performance: Given an excerpt from a merger agreement and the task is to answer: what is the wording of the Specific Performance clause regarding the parties' entitlement in the event of a contractual breach, amongst the multiple choice options.
3717
- 33. MAUD Tail Period Length: Given an excerpt from a merger agreement and the task is to answer: how long is the Tail Period, amongst the multiple choice options.
3718
- 34. MAUD Type Of Consideration: Given an excerpt from a merger agreement and the task is to answer: what type of consideration is specified in this agreement, amongst the multiple choice options.
3719
-
3720
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
3635
+ description="This task was constructed from the MAUD dataset, which consists of over 47,000 labels across 152 merger agreements annotated to identify 92 questions in each agreement used by the 2021 American Bar Association (ABA) Public Target Deal Points Study. Each dataset is formatted as a series of multiple-choice questions, where given a segment of the merger agreement and a Deal Point question, the model is to choose the answer that best characterizes the agreement as response. This is a combination of all 34 of the MAUD Legal Bench datasets: 1. MAUD Ability To Consummate Concept Is Subject To MAE Carveouts: Given an excerpt from a merger agreement and the task is to answer: is the “ability to consummate” concept subject to Material Adverse Effect (MAE) carveouts? amongst the multiple choice options. 2. MAUD Accuracy Of Fundamental Target RWS Bringdown Standard: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 3. MAUD Accuracy Of Target Capitalization RW Outstanding Shares Bringdown Standard Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 4. MAUD Accuracy Of Target General RW Bringdown Timing Answer: Given an excerpt from a merger agreement and the task is to answer: how accurate must the fundamental representations and warranties be according to the bring down provision, amongst the multiple choice options. 5. MAUD Additional Matching Rights Period For Modifications Cor: Given an excerpt from a merger agreement and the task is to answer: how long is the additional matching rights period for modifications in case the board changes its recommendation, amongst the multiple choice options. 6. MAUD Application Of Buyer Consent Requirement Negative Interim Covenant: Given an excerpt from a merger agreement and the task is to answer: what negative covenants does the requirement of Buyer consent apply to, amongst the multiple choice options. 7. MAUD Buyer Consent Requirement Ordinary Course: Given an excerpt from a merger agreement and the task is to answer: in case the Buyer's consent for the acquired company's ordinary business operations is required, are there any limitations on the Buyer's right to condition, withhold, or delay their consent, amongst the multiple choice options. 8. MAUD Change In Law Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in law that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 9. MAUD Changes In GAAP Or Other Accounting Principles Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes in GAAP or other accounting principles that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 10. MAUD COR Permitted In Response To Intervening Event: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted in response to an intervening event, amongst the multiple choice options. 11. MAUD COR Permitted With Board Fiduciary Determination Only: Given an excerpt from a merger agreement and the task is to answer: is Change of Recommendation permitted as long as the board determines that such change is required to fulfill its fiduciary obligations, amongst the multiple choice options. 12. MAUD COR Standard Intervening Event: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in response to an intervening event, amongst the multiple choice options. 13. MAUD COR Standard Superior Offer: Given an excerpt from a merger agreement and the task is to answer: what standard should the board follow when determining whether to change its recommendation in connection with a superior offer, amongst the multiple choice options. 14. MAUD Definition Contains Knowledge Requirement Answer: Given an excerpt from a merger agreement and the task is to answer: what is the knowledge requirement in the definition of “Intervening Event”, amongst the multiple choice options. 15. MAUD Definition Includes Asset Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of asset deals, amongst the multiple choice options. 16. MAUD Definition Includes Stock Deals: Given an excerpt from a merger agreement and the task is to answer: what qualifies as a superior offer in terms of stock deals, amongst the multiple choice options. 17. MAUD Fiduciary Exception Board Determination Standard: Given an excerpt from a merger agreement and the task is to answer: under what circumstances could the Board take actions on a different acquisition proposal notwithstanding the no-shop provision, amongst the multiple choice options. 18. MAUD Fiduciary Exception Board Determination Trigger No Shop: Given an excerpt from a merger agreement and the task is to answer: what type of offer could the Board take actions on notwithstanding the no-shop provision, amongst the multiple choice options. 19. MAUD Financial Point Of View Is The Sole Consideration: Given an excerpt from a merger agreement and the task is to answer: is “financial point of view” the sole consideration when determining whether an offer is superior, amongst the multiple choice options. 20. MAUD FLS MAE Standard: Given an excerpt from a merger agreement and the task is to answer: what is the Forward Looking Standard (FLS) with respect to Material Adverse Effect (MAE), amongst the multiple choice options. 21. MAUD General Economic and Financial Conditions Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do changes caused by general economic and financial conditions that have disproportionate impact qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 22. MAUD Includes Consistent With Past Practice: Given an excerpt from a merger agreement and the task is to answer: does the wording of the Efforts Covenant clause include “consistent with past practice”, amongst the multiple choice options. 23. MAUD Initial Matching Rights Period COR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in case the board changes its recommendation, amongst the multiple choice options. 24. MAUD Initial Matching Rights Period FTR: Given an excerpt from a merger agreement and the task is to answer: how long is the initial matching rights period in connection with the Fiduciary Termination Right (FTR), amongst the multiple choice options. 25. MAUDInterveningEventRequiredToOccurAfterSigningAnswer: Given an excerpt from a merger agreement and the task is to answer: is an “Intervening Event” required to occur after signing, amongst the multiple choice options. 26. MAUD Knowledge Definition: Given an excerpt from a merger agreement and the task is to answer: what counts as Knowledge, amongst the multiple choice options. 27. MAUDLiabilityStandardForNoShopBreachByTargetNonDORepresentatives: Given an excerpt from a merger agreement and the task is to answer: what is the liability standard for no-shop breach by Target Non-D&O Representatives, amongst the multiple choice options. 28. MAUD Ordinary Course Efforts Standard: Given an excerpt from a merger agreement and the task is to answer: what is the efforts standard, amongst the multiple choice options. 29. MAUD Pandemic Or Other Public Health Event Subject To Disproportionate Impact Modifier: Given an excerpt from a merger agreement and the task is to answer: do pandemics or other public health events have to have disproportionate impact to qualify for Material Adverse Effect (MAE), amongst the multiple choice options. 30. MAUD Pandemic Or Other Public Health Event Specific Reference To Pandemic Related Governmental Responses Or Measures: Given an excerpt from a merger agreement and the task is to answer: is there specific reference to pandemic-related governmental responses or measures in the clause that qualifies pandemics or other public health events for Material Adverse Effect (MAE), amongst the multiple choice options. 31. MAUD Relational Language MAE Applies To: Given an excerpt from a merger agreement and the task is to answer: what carveouts pertaining to Material Adverse Effect (MAE) does the relational language apply to?, amongst the multiple choice options. 32. MAUD Specific Performance: Given an excerpt from a merger agreement and the task is to answer: what is the wording of the Specific Performance clause regarding the parties' entitlement in the event of a contractual breach, amongst the multiple choice options. 33. MAUD Tail Period Length: Given an excerpt from a merger agreement and the task is to answer: how long is the Tail Period, amongst the multiple choice options. 34. MAUD Type Of Consideration: Given an excerpt from a merger agreement and the task is to answer: what type of consideration is specified in this agreement, amongst the multiple choice options. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
3721
3636
  reference="https://huggingface.co/datasets/nguha/legalbench",
3722
3637
  dataset={
3723
3638
  "path": "mteb/maud_legal_bench",
@@ -3882,8 +3797,7 @@ class OPP115DataSecurityLegalBenchClassification(AbsTaskClassification):
3882
3797
  class OPP115DataSecurityLegalBenchClassificationV2(AbsTaskClassification):
3883
3798
  metadata = TaskMetadata(
3884
3799
  name="OPP115DataSecurityLegalBenchClassification.v2",
3885
- description="""Given a clause from a privacy policy, classify if the clause describes how user information is protected.
3886
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
3800
+ description="Given a clause from a privacy policy, classify if the clause describes how user information is protected. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
3887
3801
  reference="https://huggingface.co/datasets/nguha/legalbench",
3888
3802
  dataset={
3889
3803
  "path": "mteb/opp115_data_security_legal_bench",
@@ -3971,8 +3885,7 @@ class OPP115DoNotTrackLegalBenchClassification(AbsTaskClassification):
3971
3885
  class OPP115DoNotTrackLegalBenchClassificationV2(AbsTaskClassification):
3972
3886
  metadata = TaskMetadata(
3973
3887
  name="OPP115DoNotTrackLegalBenchClassification.v2",
3974
- description="""Given a clause from a privacy policy, classify if the clause describes if and how Do Not Track signals for online tracking and advertising are honored.
3975
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
3888
+ description="Given a clause from a privacy policy, classify if the clause describes if and how Do Not Track signals for online tracking and advertising are honored. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
3976
3889
  reference="https://huggingface.co/datasets/nguha/legalbench",
3977
3890
  dataset={
3978
3891
  "path": "mteb/opp115_do_not_track_legal_bench",
@@ -4277,8 +4190,7 @@ class OPP115UserChoiceControlLegalBenchClassification(AbsTaskClassification):
4277
4190
  class OPP115UserChoiceControlLegalBenchClassificationV2(AbsTaskClassification):
4278
4191
  metadata = TaskMetadata(
4279
4192
  name="OPP115UserChoiceControlLegalBenchClassification.v2",
4280
- description="""Given a clause fro ma privacy policy, classify if the clause describes the choices and control options available to users.
4281
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
4193
+ description="Given a clause fro ma privacy policy, classify if the clause describes the choices and control options available to users. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
4282
4194
  reference="https://huggingface.co/datasets/nguha/legalbench",
4283
4195
  dataset={
4284
4196
  "path": "mteb/opp115_user_choice_control_legal_bench",
@@ -4322,15 +4234,7 @@ class OPP115UserChoiceControlLegalBenchClassificationV2(AbsTaskClassification):
4322
4234
  class OralArgumentQuestionPurposeLegalBenchClassification(AbsTaskClassification):
4323
4235
  metadata = TaskMetadata(
4324
4236
  name="OralArgumentQuestionPurposeLegalBenchClassification",
4325
- description="""This task classifies questions asked by Supreme Court justices at oral argument into seven categories:
4326
- 1. Background - questions seeking factual or procedural information that is missing or not clear in the briefing
4327
- 2. Clarification - questions seeking to get an advocate to clarify her position or the scope of the rule being advocated for
4328
- 3. Implications - questions about the limits of a rule or its implications for future cases
4329
- 4. Support - questions offering support for the advocate’s position
4330
- 5. Criticism - questions criticizing an advocate’s position
4331
- 6. Communicate - question designed primarily to communicate with other justices
4332
- 7. Humor - questions designed to interject humor into the argument and relieve tension
4333
- """,
4237
+ description="This task classifies questions asked by Supreme Court justices at oral argument into seven categories: 1. Background - questions seeking factual or procedural information that is missing or not clear in the briefing 2. Clarification - questions seeking to get an advocate to clarify her position or the scope of the rule being advocated for 3. Implications - questions about the limits of a rule or its implications for future cases 4. Support - questions offering support for the advocate’s position 5. Criticism - questions criticizing an advocate’s position 6. Communicate - question designed primarily to communicate with other justices 7. Humor - questions designed to interject humor into the argument and relieve tension",
4334
4238
  reference="https://huggingface.co/datasets/nguha/legalbench",
4335
4239
  dataset={
4336
4240
  "path": "mteb/OralArgumentQuestionPurposeLegalBenchClassification",
@@ -4366,16 +4270,7 @@ class OralArgumentQuestionPurposeLegalBenchClassification(AbsTaskClassification)
4366
4270
  class OralArgumentQuestionPurposeLegalBenchClassificationV2(AbsTaskClassification):
4367
4271
  metadata = TaskMetadata(
4368
4272
  name="OralArgumentQuestionPurposeLegalBenchClassification.v2",
4369
- description="""This task classifies questions asked by Supreme Court justices at oral argument into seven categories:
4370
- 1. Background - questions seeking factual or procedural information that is missing or not clear in the briefing
4371
- 2. Clarification - questions seeking to get an advocate to clarify her position or the scope of the rule being advocated for
4372
- 3. Implications - questions about the limits of a rule or its implications for future cases
4373
- 4. Support - questions offering support for the advocate’s position
4374
- 5. Criticism - questions criticizing an advocate’s position
4375
- 6. Communicate - question designed primarily to communicate with other justices
4376
- 7. Humor - questions designed to interject humor into the argument and relieve tension
4377
-
4378
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
4273
+ description="This task classifies questions asked by Supreme Court justices at oral argument into seven categories: 1. Background - questions seeking factual or procedural information that is missing or not clear in the briefing 2. Clarification - questions seeking to get an advocate to clarify her position or the scope of the rule being advocated for 3. Implications - questions about the limits of a rule or its implications for future cases 4. Support - questions offering support for the advocate’s position 5. Criticism - questions criticizing an advocate’s position 6. Communicate - question designed primarily to communicate with other justices 7. Humor - questions designed to interject humor into the argument and relieve tension This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
4379
4274
  reference="https://huggingface.co/datasets/nguha/legalbench",
4380
4275
  dataset={
4381
4276
  "path": "mteb/oral_argument_question_purpose_legal_bench",
@@ -4411,7 +4306,7 @@ class OralArgumentQuestionPurposeLegalBenchClassificationV2(AbsTaskClassificatio
4411
4306
  class OverrulingLegalBenchClassification(AbsTaskClassification):
4412
4307
  metadata = TaskMetadata(
4413
4308
  name="OverrulingLegalBenchClassification",
4414
- description="""This task consists of classifying whether or not a particular sentence of case law overturns the decision of a previous case.""",
4309
+ description="This task consists of classifying whether or not a particular sentence of case law overturns the decision of a previous case.",
4415
4310
  reference="https://huggingface.co/datasets/nguha/legalbench",
4416
4311
  dataset={
4417
4312
  "path": "mteb/OverrulingLegalBenchClassification",
@@ -4455,8 +4350,7 @@ class OverrulingLegalBenchClassification(AbsTaskClassification):
4455
4350
  class OverrulingLegalBenchClassificationV2(AbsTaskClassification):
4456
4351
  metadata = TaskMetadata(
4457
4352
  name="OverrulingLegalBenchClassification.v2",
4458
- description="""This task consists of classifying whether or not a particular sentence of case law overturns the decision of a previous case.
4459
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
4353
+ description="This task consists of classifying whether or not a particular sentence of case law overturns the decision of a previous case. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
4460
4354
  reference="https://huggingface.co/datasets/nguha/legalbench",
4461
4355
  dataset={
4462
4356
  "path": "mteb/overruling_legal_bench",
@@ -4500,7 +4394,7 @@ class OverrulingLegalBenchClassificationV2(AbsTaskClassification):
4500
4394
  class PersonalJurisdictionLegalBenchClassification(AbsTaskClassification):
4501
4395
  metadata = TaskMetadata(
4502
4396
  name="PersonalJurisdictionLegalBenchClassification",
4503
- description="""Given a fact pattern describing the set of contacts between a plaintiff, defendant, and forum, determine if a court in that forum could exercise personal jurisdiction over the defendant.""",
4397
+ description="Given a fact pattern describing the set of contacts between a plaintiff, defendant, and forum, determine if a court in that forum could exercise personal jurisdiction over the defendant.",
4504
4398
  reference="https://huggingface.co/datasets/nguha/legalbench",
4505
4399
  dataset={
4506
4400
  "path": "mteb/PersonalJurisdictionLegalBenchClassification",
@@ -4535,7 +4429,7 @@ class PersonalJurisdictionLegalBenchClassification(AbsTaskClassification):
4535
4429
  class PROALegalBenchClassification(AbsTaskClassification):
4536
4430
  metadata = TaskMetadata(
4537
4431
  name="PROALegalBenchClassification",
4538
- description="""Given a statute, determine if the text contains an explicit private right of action. Given a privacy policy clause and a description of the clause, determine if the description is correct. A private right of action (PROA) exists when a statute empowers an ordinary individual (i.e., a private person) to legally enforce their rights by bringing an action in court. In short, a PROA creates the ability for an individual to sue someone in order to recover damages or halt some offending conduct. PROAs are ubiquitous in antitrust law (in which individuals harmed by anti-competitive behavior can sue offending firms for compensation) and environmental law (in which individuals can sue entities which release hazardous substances for damages).""",
4432
+ description="Given a statute, determine if the text contains an explicit private right of action. Given a privacy policy clause and a description of the clause, determine if the description is correct. A private right of action (PROA) exists when a statute empowers an ordinary individual (i.e., a private person) to legally enforce their rights by bringing an action in court. In short, a PROA creates the ability for an individual to sue someone in order to recover damages or halt some offending conduct. PROAs are ubiquitous in antitrust law (in which individuals harmed by anti-competitive behavior can sue offending firms for compensation) and environmental law (in which individuals can sue entities which release hazardous substances for damages).",
4539
4433
  reference="https://huggingface.co/datasets/nguha/legalbench",
4540
4434
  dataset={
4541
4435
  "path": "mteb/PROALegalBenchClassification",
@@ -47,8 +47,7 @@ class NewsClassification(AbsTaskClassification):
47
47
  class NewsClassificationV2(AbsTaskClassification):
48
48
  metadata = TaskMetadata(
49
49
  name="NewsClassification.v2",
50
- description="""Large News Classification Dataset
51
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
50
+ description="Large News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
52
51
  dataset={
53
52
  "path": "mteb/news",
54
53
  "revision": "7c1f485c1f43d6aef852c5df6db23b047991a8e7",
@@ -10,7 +10,7 @@ class PatchCamelyonClassification(AbsTaskClassification):
10
10
 
11
11
  metadata = TaskMetadata(
12
12
  name="PatchCamelyon",
13
- description="""Histopathology diagnosis classification dataset.""",
13
+ description="Histopathology diagnosis classification dataset.",
14
14
  reference="https://link.springer.com/chapter/10.1007/978-3-030-00934-2_24",
15
15
  dataset={
16
16
  "path": "clip-benchmark/wds_vtab-pcam",
@@ -50,8 +50,7 @@ M{\`a}rquez, Llu{\'\i}s},
50
50
  class PatentClassificationV2(AbsTaskClassification):
51
51
  metadata = TaskMetadata(
52
52
  name="PatentClassification.v2",
53
- description="""Classification Dataset of Patents and Abstract
54
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="Classification Dataset of Patents and Abstract This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
55
54
  dataset={
56
55
  "path": "mteb/patent",
57
56
  "revision": "f5e5c81286448c68264300fe1e6f3de599922890",
@@ -41,8 +41,7 @@ class PoemSentimentClassification(AbsTaskClassification):
41
41
  class PoemSentimentClassificationV2(AbsTaskClassification):
42
42
  metadata = TaskMetadata(
43
43
  name="PoemSentimentClassification.v2",
44
- description="""Poem Sentiment is a sentiment dataset of poem verses from Project Gutenberg.
45
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
44
+ description="Poem Sentiment is a sentiment dataset of poem verses from Project Gutenberg. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
46
45
  reference="https://arxiv.org/abs/2011.02686",
47
46
  dataset={
48
47
  "path": "mteb/poem_sentiment",
@@ -47,8 +47,7 @@ class SDSEyeProtectionClassification(AbsTaskClassification):
47
47
  class SDSEyeProtectionClassificationV2(AbsTaskClassification):
48
48
  metadata = TaskMetadata(
49
49
  name="SDSEyeProtectionClassification.v2",
50
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
51
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
50
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
52
51
  reference="https://arxiv.org/abs/2412.00532",
53
52
  dataset={
54
53
  "path": "mteb/sds_eye_protection",