mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -10,6 +10,14 @@ from mteb.models.abs_encoder import AbsEncoder
|
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
11
|
from mteb.types import Array, BatchedInput, PromptType
|
|
12
12
|
|
|
13
|
+
OPENCLIP_CITATION = """@inproceedings{cherti2023reproducible,
|
|
14
|
+
title={Reproducible scaling laws for contrastive language-image learning},
|
|
15
|
+
author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
|
|
16
|
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
|
17
|
+
pages={2818--2829},
|
|
18
|
+
year={2023}
|
|
19
|
+
}"""
|
|
20
|
+
|
|
13
21
|
|
|
14
22
|
def openclip_loader(model_name, **kwargs):
|
|
15
23
|
requires_package(
|
|
@@ -114,6 +122,7 @@ def openclip_loader(model_name, **kwargs):
|
|
|
114
122
|
CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
115
123
|
loader=openclip_loader, # type: ignore
|
|
116
124
|
name="laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K",
|
|
125
|
+
model_type=["dense"],
|
|
117
126
|
languages=["eng-Latn"],
|
|
118
127
|
revision="84c9828e63dc9a9351d1fe637c346d4c1c4db341",
|
|
119
128
|
release_date="2023-04-26",
|
|
@@ -133,11 +142,13 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
133
142
|
training_datasets=set(
|
|
134
143
|
# DataComp-1B
|
|
135
144
|
),
|
|
145
|
+
citation=OPENCLIP_CITATION,
|
|
136
146
|
)
|
|
137
147
|
|
|
138
148
|
CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
139
149
|
loader=openclip_loader, # type: ignore
|
|
140
150
|
name="laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K",
|
|
151
|
+
model_type=["dense"],
|
|
141
152
|
languages=["eng-Latn"],
|
|
142
153
|
revision="f0e2ffa09cbadab3db6a261ec1ec56407ce42912",
|
|
143
154
|
release_date="2023-04-26",
|
|
@@ -157,11 +168,13 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
157
168
|
training_datasets=set(
|
|
158
169
|
# DataComp-1B
|
|
159
170
|
),
|
|
171
|
+
citation=OPENCLIP_CITATION,
|
|
160
172
|
)
|
|
161
173
|
|
|
162
174
|
CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
163
175
|
loader=openclip_loader, # type: ignore
|
|
164
176
|
name="laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K",
|
|
177
|
+
model_type=["dense"],
|
|
165
178
|
languages=["eng-Latn"],
|
|
166
179
|
revision="d110532e8d4ff91c574ee60a342323f28468b287",
|
|
167
180
|
release_date="2023-04-26",
|
|
@@ -181,11 +194,13 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
181
194
|
training_datasets=set(
|
|
182
195
|
# DataComp-1B
|
|
183
196
|
),
|
|
197
|
+
citation=OPENCLIP_CITATION,
|
|
184
198
|
)
|
|
185
199
|
|
|
186
200
|
CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
187
201
|
loader=openclip_loader, # type: ignore
|
|
188
202
|
name="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
203
|
+
model_type=["dense"],
|
|
189
204
|
languages=["eng-Latn"],
|
|
190
205
|
revision="bc7788f151930d91b58474715fdce5524ad9a189",
|
|
191
206
|
release_date="2023-01-23",
|
|
@@ -205,11 +220,13 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
205
220
|
training_datasets=set(
|
|
206
221
|
# 2 Billion sample English subset of LAION-5B
|
|
207
222
|
),
|
|
223
|
+
citation=OPENCLIP_CITATION,
|
|
208
224
|
)
|
|
209
225
|
|
|
210
226
|
CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
211
227
|
loader=openclip_loader, # type: ignore
|
|
212
228
|
name="laion/CLIP-ViT-g-14-laion2B-s34B-b88K",
|
|
229
|
+
model_type=["dense"],
|
|
213
230
|
languages=["eng-Latn"],
|
|
214
231
|
revision="15efd0f6ac0c40c0f9da7becca03c974d7012604",
|
|
215
232
|
release_date="2023-03-06",
|
|
@@ -229,11 +246,13 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
229
246
|
training_datasets=set(
|
|
230
247
|
# 2 Billion sample English subset of LAION-5B
|
|
231
248
|
),
|
|
249
|
+
citation=OPENCLIP_CITATION,
|
|
232
250
|
)
|
|
233
251
|
|
|
234
252
|
CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
235
253
|
loader=openclip_loader, # type: ignore
|
|
236
254
|
name="laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
|
255
|
+
model_type=["dense"],
|
|
237
256
|
languages=["eng-Latn"],
|
|
238
257
|
revision="de081ac0a0ca8dc9d1533eed1ae884bb8ae1404b",
|
|
239
258
|
release_date="2022-09-15",
|
|
@@ -253,11 +272,13 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
253
272
|
training_datasets=set(
|
|
254
273
|
# 2 Billion sample English subset of LAION-5B
|
|
255
274
|
),
|
|
275
|
+
citation=OPENCLIP_CITATION,
|
|
256
276
|
)
|
|
257
277
|
|
|
258
278
|
CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
259
279
|
loader=openclip_loader, # type: ignore
|
|
260
280
|
name="laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
|
|
281
|
+
model_type=["dense"],
|
|
261
282
|
languages=["eng-Latn"],
|
|
262
283
|
revision="1627032197142fbe2a7cfec626f4ced3ae60d07a",
|
|
263
284
|
release_date="2022-09-15",
|
|
@@ -277,11 +298,13 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
277
298
|
training_datasets=set(
|
|
278
299
|
# 2 Billion sample English subset of LAION-5B
|
|
279
300
|
),
|
|
301
|
+
citation=OPENCLIP_CITATION,
|
|
280
302
|
)
|
|
281
303
|
|
|
282
304
|
CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
283
305
|
loader=openclip_loader,
|
|
284
306
|
name="laion/CLIP-ViT-B-32-laion2B-s34B-b79K",
|
|
307
|
+
model_type=["dense"],
|
|
285
308
|
languages=["eng-Latn"],
|
|
286
309
|
revision="08f73555f1b2fb7c82058aebbd492887a94968ef",
|
|
287
310
|
release_date="2022-09-15",
|
|
@@ -301,4 +324,5 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
301
324
|
training_datasets=set(
|
|
302
325
|
# 2 Billion sample English subset of LAION-5B
|
|
303
326
|
),
|
|
327
|
+
citation=OPENCLIP_CITATION,
|
|
304
328
|
)
|
|
@@ -128,6 +128,7 @@ class SparseEncoderWrapper(AbsEncoder):
|
|
|
128
128
|
|
|
129
129
|
opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
130
130
|
name="opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte",
|
|
131
|
+
model_type=["dense"],
|
|
131
132
|
languages=["eng-Latn"],
|
|
132
133
|
open_weights=True,
|
|
133
134
|
revision="a8abaa916125ee512a7a8f4d706d07eb0128a8e6",
|
|
@@ -153,6 +154,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
|
153
154
|
|
|
154
155
|
opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
155
156
|
name="opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill",
|
|
157
|
+
model_type=["dense"],
|
|
156
158
|
languages=["eng-Latn"],
|
|
157
159
|
open_weights=True,
|
|
158
160
|
revision="babf71f3c48695e2e53a978208e8aba48335e3c0",
|
|
@@ -174,6 +176,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
|
174
176
|
|
|
175
177
|
opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
176
178
|
name="opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill",
|
|
179
|
+
model_type=["dense"],
|
|
177
180
|
languages=["eng-Latn"],
|
|
178
181
|
open_weights=True,
|
|
179
182
|
revision="8921a26c78b8559d6604eb1f5c0b74c079bee38f",
|
|
@@ -196,6 +199,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
|
196
199
|
|
|
197
200
|
opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
198
201
|
name="opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini",
|
|
202
|
+
model_type=["dense"],
|
|
199
203
|
languages=["eng-Latn"],
|
|
200
204
|
open_weights=True,
|
|
201
205
|
revision="4af867a426867dfdd744097531046f4289a32fdd",
|
|
@@ -217,6 +221,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
|
217
221
|
|
|
218
222
|
opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
|
|
219
223
|
name="opensearch-project/opensearch-neural-sparse-encoding-doc-v1",
|
|
224
|
+
model_type=["dense"],
|
|
220
225
|
languages=["eng-Latn"],
|
|
221
226
|
open_weights=True,
|
|
222
227
|
revision="98cdcbd72867c547f72f2b7b7bed9cdf9f09922d",
|
|
@@ -22,12 +22,13 @@ class OPSWrapper(AbsEncoder):
|
|
|
22
22
|
|
|
23
23
|
ops_moa_conan_embedding = ModelMeta(
|
|
24
24
|
name="OpenSearch-AI/Ops-MoA-Conan-embedding-v1",
|
|
25
|
+
model_type=["dense"],
|
|
25
26
|
revision="46dcd58753f3daa920c66f89e47086a534089350",
|
|
26
27
|
release_date="2025-03-26",
|
|
27
28
|
languages=["zho-Hans"],
|
|
28
29
|
loader=OPSWrapper,
|
|
29
30
|
n_parameters=int(343 * 1e6),
|
|
30
|
-
memory_usage_mb=
|
|
31
|
+
memory_usage_mb=1308,
|
|
31
32
|
max_tokens=512,
|
|
32
33
|
embed_dim=1536,
|
|
33
34
|
license="cc-by-nc-4.0",
|
|
@@ -53,12 +54,13 @@ ops_moa_conan_embedding = ModelMeta(
|
|
|
53
54
|
|
|
54
55
|
ops_moa_yuan_embedding = ModelMeta(
|
|
55
56
|
name="OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0",
|
|
57
|
+
model_type=["dense"],
|
|
56
58
|
revision="23712d0766417b0eb88a2513c6e212a58b543268",
|
|
57
59
|
release_date="2025-03-26",
|
|
58
60
|
languages=["zho-Hans"],
|
|
59
61
|
loader=OPSWrapper,
|
|
60
62
|
n_parameters=int(343 * 1e6),
|
|
61
|
-
memory_usage_mb=
|
|
63
|
+
memory_usage_mb=1242,
|
|
62
64
|
max_tokens=512,
|
|
63
65
|
embed_dim=1536,
|
|
64
66
|
license="cc-by-nc-4.0",
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
from mteb.models.model_meta import (
|
|
2
|
+
ModelMeta,
|
|
3
|
+
ScoringFunction,
|
|
4
|
+
)
|
|
5
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
6
|
+
|
|
7
|
+
PAWAN_EMBD_CITATION = """@misc{medhi2025pawanembd,
|
|
8
|
+
title={PawanEmbd-68M: Distilled Embedding Model},
|
|
9
|
+
author={Medhi, D.},
|
|
10
|
+
year={2025},
|
|
11
|
+
url={https://huggingface.co/dmedhi/PawanEmbd-68M}
|
|
12
|
+
}"""
|
|
13
|
+
|
|
14
|
+
pawan_embd_68m = ModelMeta(
|
|
15
|
+
loader=sentence_transformers_loader,
|
|
16
|
+
name="dmedhi/PawanEmbd-68M",
|
|
17
|
+
model_type=["dense"],
|
|
18
|
+
languages=["eng-Latn"],
|
|
19
|
+
open_weights=True,
|
|
20
|
+
revision="32f295145802bdbd65699ad65fd27d2a5b69a909",
|
|
21
|
+
release_date="2025-12-08",
|
|
22
|
+
n_parameters=68_000_000,
|
|
23
|
+
memory_usage_mb=260,
|
|
24
|
+
embed_dim=768,
|
|
25
|
+
license="apache-2.0",
|
|
26
|
+
max_tokens=512,
|
|
27
|
+
reference="https://huggingface.co/dmedhi/PawanEmbd-68M",
|
|
28
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
29
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
30
|
+
adapted_from="ibm-granite/granite-embedding-278m-multilingual",
|
|
31
|
+
superseded_by=None,
|
|
32
|
+
public_training_code=None,
|
|
33
|
+
public_training_data=None,
|
|
34
|
+
use_instructions=False,
|
|
35
|
+
training_datasets={
|
|
36
|
+
"AllNLI",
|
|
37
|
+
},
|
|
38
|
+
citation=PAWAN_EMBD_CITATION,
|
|
39
|
+
)
|
|
@@ -6,6 +6,7 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
6
6
|
piccolo_base_zh = ModelMeta(
|
|
7
7
|
loader=sentence_transformers_loader,
|
|
8
8
|
name="sensenova/piccolo-base-zh",
|
|
9
|
+
model_type=["dense"],
|
|
9
10
|
languages=["zho-Hans"],
|
|
10
11
|
open_weights=True,
|
|
11
12
|
revision="47c0a63b8f667c3482e05b2fd45577bb19252196",
|
|
@@ -29,6 +30,7 @@ piccolo_base_zh = ModelMeta(
|
|
|
29
30
|
piccolo_large_zh_v2 = ModelMeta(
|
|
30
31
|
loader=sentence_transformers_loader,
|
|
31
32
|
name="sensenova/piccolo-large-zh-v2",
|
|
33
|
+
model_type=["dense"],
|
|
32
34
|
languages=["zho-Hans"],
|
|
33
35
|
open_weights=False, # They "temporarily" removed it in may last year
|
|
34
36
|
# "Due to certain internal company considerations"
|
|
@@ -48,4 +50,10 @@ piccolo_large_zh_v2 = ModelMeta(
|
|
|
48
50
|
public_training_code=None,
|
|
49
51
|
public_training_data=None,
|
|
50
52
|
training_datasets=None, # They don't say
|
|
53
|
+
citation="""@misc{2405.06932,
|
|
54
|
+
Author = {Junqin Huang and Zhongjie Hu and Zihao Jing and Mengya Gao and Yichao Wu},
|
|
55
|
+
Title = {Piccolo2: General Text Embedding with Multi-task Hybrid Loss Training},
|
|
56
|
+
Year = {2024},
|
|
57
|
+
Eprint = {arXiv:2405.06932},
|
|
58
|
+
}""",
|
|
51
59
|
)
|
|
@@ -75,12 +75,13 @@ promptriever_llama2 = ModelMeta(
|
|
|
75
75
|
model_prompts=model_prompts,
|
|
76
76
|
),
|
|
77
77
|
name="samaya-ai/promptriever-llama2-7b-v1",
|
|
78
|
+
model_type=["dense"],
|
|
78
79
|
languages=["eng-Latn"],
|
|
79
80
|
open_weights=True,
|
|
80
81
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-30b14e3813c0fa45facfd01a594580c3fe5ecf23", # base-peft revision
|
|
81
82
|
release_date="2024-09-15",
|
|
82
83
|
n_parameters=7_000_000_000,
|
|
83
|
-
memory_usage_mb=
|
|
84
|
+
memory_usage_mb=26703,
|
|
84
85
|
max_tokens=4096,
|
|
85
86
|
embed_dim=4096,
|
|
86
87
|
license="apache-2.0",
|
|
@@ -106,6 +107,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
106
107
|
model_prompts=model_prompts,
|
|
107
108
|
),
|
|
108
109
|
name="samaya-ai/promptriever-llama3.1-8b-v1",
|
|
110
|
+
model_type=["dense"],
|
|
109
111
|
languages=["eng-Latn"],
|
|
110
112
|
open_weights=True,
|
|
111
113
|
revision="48d6d0fc4e02fb1269b36940650a1b7233035cbb-2ead22cfb1b0e0c519c371c63c2ab90ffc511b8a", # base-peft revision
|
|
@@ -115,7 +117,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
115
117
|
},
|
|
116
118
|
release_date="2024-09-15",
|
|
117
119
|
n_parameters=8_000_000_000,
|
|
118
|
-
memory_usage_mb=
|
|
120
|
+
memory_usage_mb=30518,
|
|
119
121
|
max_tokens=8192,
|
|
120
122
|
embed_dim=4096,
|
|
121
123
|
license="apache-2.0",
|
|
@@ -138,12 +140,13 @@ promptriever_llama3_instruct = ModelMeta(
|
|
|
138
140
|
model_prompts=model_prompts,
|
|
139
141
|
),
|
|
140
142
|
name="samaya-ai/promptriever-llama3.1-8b-instruct-v1",
|
|
143
|
+
model_type=["dense"],
|
|
141
144
|
languages=["eng-Latn"],
|
|
142
145
|
open_weights=True,
|
|
143
146
|
revision="5206a32e0bd3067aef1ce90f5528ade7d866253f-8b677258615625122c2eb7329292b8c402612c21", # base-peft revision
|
|
144
147
|
release_date="2024-09-15",
|
|
145
148
|
n_parameters=8_000_000_000,
|
|
146
|
-
memory_usage_mb=
|
|
149
|
+
memory_usage_mb=30518,
|
|
147
150
|
max_tokens=8192,
|
|
148
151
|
embed_dim=4096,
|
|
149
152
|
training_datasets={
|
|
@@ -170,12 +173,13 @@ promptriever_mistral_v1 = ModelMeta(
|
|
|
170
173
|
model_prompts=model_prompts,
|
|
171
174
|
),
|
|
172
175
|
name="samaya-ai/promptriever-mistral-v0.1-7b-v1",
|
|
176
|
+
model_type=["dense"],
|
|
173
177
|
languages=["eng-Latn"],
|
|
174
178
|
open_weights=True,
|
|
175
179
|
revision="7231864981174d9bee8c7687c24c8344414eae6b-876d63e49b6115ecb6839893a56298fadee7e8f5", # base-peft revision
|
|
176
180
|
release_date="2024-09-15",
|
|
177
181
|
n_parameters=7_000_000_000,
|
|
178
|
-
memory_usage_mb=
|
|
182
|
+
memory_usage_mb=26703,
|
|
179
183
|
training_datasets={
|
|
180
184
|
# "samaya-ai/msmarco-w-instructions",
|
|
181
185
|
"mMARCO-NL", # translation not trained on
|
|
@@ -328,18 +328,16 @@ class MultiVectorModel(AbsEncoder, PylateSearchEncoder):
|
|
|
328
328
|
inputs,
|
|
329
329
|
prompt_name=prompt_name,
|
|
330
330
|
is_query=prompt_type == PromptType.query,
|
|
331
|
-
convert_to_tensor=True,
|
|
332
331
|
**kwargs,
|
|
333
332
|
)
|
|
334
333
|
|
|
335
|
-
|
|
336
|
-
pred = torch.nn.utils.rnn.pad_sequence(pred, batch_first=True, padding_value=0)
|
|
337
|
-
return pred.cpu().numpy()
|
|
334
|
+
return pred
|
|
338
335
|
|
|
339
336
|
|
|
340
337
|
colbert_v2 = ModelMeta(
|
|
341
338
|
loader=MultiVectorModel,
|
|
342
339
|
name="colbert-ir/colbertv2.0",
|
|
340
|
+
model_type=["late-interaction"],
|
|
343
341
|
languages=["eng-Latn"],
|
|
344
342
|
open_weights=True,
|
|
345
343
|
revision="c1e84128e85ef755c096a95bdb06b47793b13acf",
|
|
@@ -372,6 +370,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
372
370
|
trust_remote_code=True,
|
|
373
371
|
),
|
|
374
372
|
name="jinaai/jina-colbert-v2",
|
|
373
|
+
model_type=["late-interaction"],
|
|
375
374
|
languages=[
|
|
376
375
|
"ara-Arab",
|
|
377
376
|
"ben-Beng",
|
|
@@ -418,12 +417,37 @@ jina_colbert_v2 = ModelMeta(
|
|
|
418
417
|
"DuRetrieval",
|
|
419
418
|
"MIRACL",
|
|
420
419
|
},
|
|
420
|
+
citation="""@inproceedings{xiao-etal-2024-jina,
|
|
421
|
+
title = "{J}ina-{C}ol{BERT}-v2: A General-Purpose Multilingual Late Interaction Retriever",
|
|
422
|
+
author = {Jha, Rohan and
|
|
423
|
+
Wang, Bo and
|
|
424
|
+
G{\"u}nther, Michael and
|
|
425
|
+
Mastrapas, Georgios and
|
|
426
|
+
Sturua, Saba and
|
|
427
|
+
Mohr, Isabelle and
|
|
428
|
+
Koukounas, Andreas and
|
|
429
|
+
Wang, Mohammad Kalim and
|
|
430
|
+
Wang, Nan and
|
|
431
|
+
Xiao, Han},
|
|
432
|
+
editor = {S{\"a}lev{\"a}, Jonne and
|
|
433
|
+
Owodunni, Abraham},
|
|
434
|
+
booktitle = "Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)",
|
|
435
|
+
month = nov,
|
|
436
|
+
year = "2024",
|
|
437
|
+
address = "Miami, Florida, USA",
|
|
438
|
+
publisher = "Association for Computational Linguistics",
|
|
439
|
+
url = "https://aclanthology.org/2024.mrl-1.11/",
|
|
440
|
+
doi = "10.18653/v1/2024.mrl-1.11",
|
|
441
|
+
pages = "159--166",
|
|
442
|
+
abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
|
|
443
|
+
}""",
|
|
421
444
|
)
|
|
422
445
|
|
|
423
446
|
|
|
424
447
|
lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
425
448
|
loader=MultiVectorModel,
|
|
426
449
|
name="lightonai/GTE-ModernColBERT-v1",
|
|
450
|
+
model_type=["late-interaction"],
|
|
427
451
|
languages=[
|
|
428
452
|
"eng-Latn",
|
|
429
453
|
],
|
|
@@ -447,4 +471,13 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
447
471
|
"MSMARCO",
|
|
448
472
|
"mMARCO-NL",
|
|
449
473
|
},
|
|
474
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
475
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
476
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
477
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
478
|
+
month = "11",
|
|
479
|
+
year = "2019",
|
|
480
|
+
publisher = "Association for Computational Linguistics",
|
|
481
|
+
url = "https://arxiv.org/abs/1908.10084"
|
|
482
|
+
}""",
|
|
450
483
|
)
|
|
@@ -30,6 +30,7 @@ qodo_languages = [
|
|
|
30
30
|
Qodo_Embed_1_1_5B = ModelMeta(
|
|
31
31
|
loader=sentence_transformers_loader,
|
|
32
32
|
name="Qodo/Qodo-Embed-1-1.5B",
|
|
33
|
+
model_type=["dense"],
|
|
33
34
|
languages=qodo_languages,
|
|
34
35
|
open_weights=True,
|
|
35
36
|
revision="84bbef079b32e8823ec226d4e9e92902706b0eb6",
|
|
@@ -52,6 +53,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
52
53
|
Qodo_Embed_1_7B = ModelMeta(
|
|
53
54
|
loader=sentence_transformers_loader,
|
|
54
55
|
name="Qodo/Qodo-Embed-1-7B",
|
|
56
|
+
model_type=["dense"],
|
|
55
57
|
languages=qodo_languages,
|
|
56
58
|
open_weights=True,
|
|
57
59
|
revision="f9edd9bf7f687c0e832424058e265120f603cd81",
|
|
@@ -134,12 +134,13 @@ def q3e_instruct_loader(
|
|
|
134
134
|
Qwen3_Embedding_0B6 = ModelMeta(
|
|
135
135
|
loader=q3e_instruct_loader,
|
|
136
136
|
name="Qwen/Qwen3-Embedding-0.6B",
|
|
137
|
+
model_type=["dense"],
|
|
137
138
|
languages=multilingual_langs,
|
|
138
139
|
open_weights=True,
|
|
139
140
|
revision="b22da495047858cce924d27d76261e96be6febc0", # Commit of @tomaarsen
|
|
140
141
|
release_date="2025-06-05",
|
|
141
142
|
n_parameters=595776512,
|
|
142
|
-
memory_usage_mb=
|
|
143
|
+
memory_usage_mb=1136,
|
|
143
144
|
embed_dim=1024,
|
|
144
145
|
max_tokens=32768,
|
|
145
146
|
license="apache-2.0",
|
|
@@ -156,12 +157,13 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
156
157
|
Qwen3_Embedding_4B = ModelMeta(
|
|
157
158
|
loader=q3e_instruct_loader,
|
|
158
159
|
name="Qwen/Qwen3-Embedding-4B",
|
|
160
|
+
model_type=["dense"],
|
|
159
161
|
languages=multilingual_langs,
|
|
160
162
|
open_weights=True,
|
|
161
163
|
revision="636cd9bf47d976946cdbb2b0c3ca0cb2f8eea5ff", # Commit of @tomaarsen
|
|
162
164
|
release_date="2025-06-05",
|
|
163
165
|
n_parameters=4021774336,
|
|
164
|
-
memory_usage_mb=
|
|
166
|
+
memory_usage_mb=7671,
|
|
165
167
|
embed_dim=2560,
|
|
166
168
|
max_tokens=32768,
|
|
167
169
|
license="apache-2.0",
|
|
@@ -178,12 +180,13 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
178
180
|
Qwen3_Embedding_8B = ModelMeta(
|
|
179
181
|
loader=q3e_instruct_loader,
|
|
180
182
|
name="Qwen/Qwen3-Embedding-8B",
|
|
183
|
+
model_type=["dense"],
|
|
181
184
|
languages=multilingual_langs,
|
|
182
185
|
open_weights=True,
|
|
183
186
|
revision="4e423935c619ae4df87b646a3ce949610c66241c", # Commit of @tomaarsen
|
|
184
187
|
release_date="2025-06-05",
|
|
185
188
|
n_parameters=7567295488,
|
|
186
|
-
memory_usage_mb=
|
|
189
|
+
memory_usage_mb=14433,
|
|
187
190
|
embed_dim=4096,
|
|
188
191
|
max_tokens=32768,
|
|
189
192
|
license="apache-2.0",
|
|
@@ -58,12 +58,13 @@ QZhou_Embedding = ModelMeta(
|
|
|
58
58
|
apply_instruction_to_passages=False,
|
|
59
59
|
),
|
|
60
60
|
name="Kingsoft-LLM/QZhou-Embedding",
|
|
61
|
+
model_type=["dense"],
|
|
61
62
|
languages=["eng-Latn", "zho-Hans"],
|
|
62
63
|
open_weights=True,
|
|
63
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
64
65
|
release_date="2025-08-24",
|
|
65
66
|
n_parameters=7_070_619_136,
|
|
66
|
-
memory_usage_mb=
|
|
67
|
+
memory_usage_mb=14436,
|
|
67
68
|
embed_dim=3584,
|
|
68
69
|
license="apache-2.0",
|
|
69
70
|
max_tokens=8192,
|
|
@@ -91,6 +92,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
91
92
|
apply_instruction_to_passages=False,
|
|
92
93
|
),
|
|
93
94
|
name="Kingsoft-LLM/QZhou-Embedding-Zh",
|
|
95
|
+
model_type=["dense"],
|
|
94
96
|
languages=["zho-Hans"],
|
|
95
97
|
open_weights=True,
|
|
96
98
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
@@ -1,15 +1,23 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import hashlib
|
|
2
|
-
from typing import Any, Literal
|
|
4
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
7
|
import torch
|
|
6
|
-
from PIL import Image
|
|
7
8
|
from torch.utils.data import DataLoader
|
|
8
9
|
|
|
9
10
|
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
11
|
from mteb.models.model_meta import ModelMeta
|
|
12
|
+
from mteb.similarity_functions import (
|
|
13
|
+
select_pairwise_similarity,
|
|
14
|
+
select_similarity,
|
|
15
|
+
)
|
|
11
16
|
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from PIL import Image
|
|
20
|
+
|
|
13
21
|
|
|
14
22
|
def _string_to_vector(text: str | None, size: int) -> np.ndarray:
|
|
15
23
|
"""Generate a deterministic random vector based on a string.
|
|
@@ -155,15 +163,9 @@ class RandomEncoderBaseline:
|
|
|
155
163
|
Returns:
|
|
156
164
|
Cosine similarity matrix between the two sets of embeddings
|
|
157
165
|
"""
|
|
158
|
-
|
|
159
|
-
embeddings1
|
|
166
|
+
return select_similarity(
|
|
167
|
+
embeddings1, embeddings2, self.mteb_model_meta.similarity_fn_name
|
|
160
168
|
)
|
|
161
|
-
norm2 = np.linalg.norm(
|
|
162
|
-
embeddings2.reshape(-1, self.embedding_dim), axis=1, keepdims=True
|
|
163
|
-
)
|
|
164
|
-
normalized1 = embeddings1 / (norm1 + 1e-10)
|
|
165
|
-
normalized2 = embeddings2 / (norm2 + 1e-10)
|
|
166
|
-
return np.dot(normalized1, normalized2.T)
|
|
167
169
|
|
|
168
170
|
def similarity_pairwise(
|
|
169
171
|
self,
|
|
@@ -179,22 +181,15 @@ class RandomEncoderBaseline:
|
|
|
179
181
|
Returns:
|
|
180
182
|
Cosine similarity for each pair of embeddings
|
|
181
183
|
"""
|
|
182
|
-
|
|
183
|
-
embeddings1
|
|
184
|
-
)
|
|
185
|
-
norm2 = np.linalg.norm(
|
|
186
|
-
embeddings2.reshape(-1, self.embedding_dim), axis=1, keepdims=True
|
|
184
|
+
return select_pairwise_similarity(
|
|
185
|
+
embeddings1, embeddings2, self.mteb_model_meta.similarity_fn_name
|
|
187
186
|
)
|
|
188
|
-
normalized1 = embeddings1 / (norm1 + 1e-10)
|
|
189
|
-
normalized2 = embeddings2 / (norm2 + 1e-10)
|
|
190
|
-
normalized1 = np.asarray(normalized1)
|
|
191
|
-
normalized2 = np.asarray(normalized2)
|
|
192
|
-
return np.sum(normalized1 * normalized2, axis=1)
|
|
193
187
|
|
|
194
188
|
|
|
195
189
|
random_encoder_baseline = ModelMeta(
|
|
196
190
|
loader=RandomEncoderBaseline, # type: ignore
|
|
197
191
|
name="baseline/random-encoder-baseline",
|
|
192
|
+
model_type=["dense"],
|
|
198
193
|
modalities=["text", "image"],
|
|
199
194
|
**_common_mock_metadata,
|
|
200
195
|
)
|
|
@@ -239,7 +234,7 @@ class RandomCrossEncoderBaseline:
|
|
|
239
234
|
random_cross_encoder_baseline = ModelMeta(
|
|
240
235
|
loader=RandomCrossEncoderBaseline, # type: ignore
|
|
241
236
|
name="baseline/random-cross-encoder-baseline",
|
|
237
|
+
model_type=["cross-encoder"],
|
|
242
238
|
modalities=["text", "image"],
|
|
243
|
-
is_cross_encoder=True,
|
|
244
239
|
**_common_mock_metadata,
|
|
245
240
|
)
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from mteb.models.model_implementations.model2vec_models import Model2VecModel
|
|
4
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
5
|
+
|
|
6
|
+
potion_base_8m = ModelMeta(
|
|
7
|
+
loader=Model2VecModel, # type: ignore
|
|
8
|
+
name="rasgaard/m2v-dfm-large",
|
|
9
|
+
model_type=["dense"],
|
|
10
|
+
languages=["dan-Latn"],
|
|
11
|
+
open_weights=True,
|
|
12
|
+
revision="387897cfb09992e6d45ea9cd7b28b9fcf119e23a",
|
|
13
|
+
release_date="2025-10-08",
|
|
14
|
+
n_parameters=22893312,
|
|
15
|
+
memory_usage_mb=87,
|
|
16
|
+
max_tokens=np.inf,
|
|
17
|
+
embed_dim=256,
|
|
18
|
+
license="mit",
|
|
19
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
20
|
+
framework=["NumPy", "Sentence Transformers"],
|
|
21
|
+
reference="https://huggingface.co/rasgaard/m2v-dfm-large",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
|
|
24
|
+
superseded_by=None,
|
|
25
|
+
training_datasets=set(), # distilled
|
|
26
|
+
public_training_code="https://github.com/MinishLab/model2vec",
|
|
27
|
+
public_training_data="https://huggingface.co/datasets/HuggingFaceFW/fineweb-2", # distilled on this
|
|
28
|
+
citation="""@article{minishlab2024model2vec,
|
|
29
|
+
author = {Tulkens, Stephan and {van Dongen}, Thomas},
|
|
30
|
+
title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
|
|
31
|
+
year = {2024},
|
|
32
|
+
url = {https://github.com/MinishLab/model2vec}
|
|
33
|
+
}""",
|
|
34
|
+
)
|
|
@@ -162,6 +162,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
162
162
|
model_prompts=model_prompts,
|
|
163
163
|
),
|
|
164
164
|
name="castorini/repllama-v1-7b-lora-passage",
|
|
165
|
+
model_type=["dense"],
|
|
165
166
|
languages=["eng-Latn"],
|
|
166
167
|
open_weights=True,
|
|
167
168
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-6097554dfe6e7d93e92f55010b678bcca1e233a8", # base-peft revision
|
|
@@ -194,6 +195,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
194
195
|
model_prompts=model_prompts,
|
|
195
196
|
),
|
|
196
197
|
name="samaya-ai/RepLLaMA-reproduced",
|
|
198
|
+
model_type=["dense"],
|
|
197
199
|
languages=["eng-Latn"],
|
|
198
200
|
open_weights=True,
|
|
199
201
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision
|