mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,322 @@
|
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
RURI_V3_PROMPTS = {
|
|
5
|
+
"Retrieval-query": "検索クエリ: ",
|
|
6
|
+
"Retrieval-document": "検索文書: ",
|
|
7
|
+
"Reranking-query": "検索クエリ: ",
|
|
8
|
+
"Reranking-document": "検索文書: ",
|
|
9
|
+
"Classification": "トピック: ",
|
|
10
|
+
"Clustering": "トピック: ",
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
RURI_V1_V2_PROMPTS = {
|
|
14
|
+
"query": "クエリ: ",
|
|
15
|
+
"document": "文章: ",
|
|
16
|
+
}
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
RURI_CITATION = r"""@misc{Ruri,
|
|
20
|
+
title={{Ruri: Japanese General Text Embeddings}},
|
|
21
|
+
author={Hayato Tsukagoshi and Ryohei Sasano},
|
|
22
|
+
year={2024},
|
|
23
|
+
eprint={2409.07737},
|
|
24
|
+
archivePrefix={arXiv},
|
|
25
|
+
primaryClass={cs.CL},
|
|
26
|
+
url={https://arxiv.org/abs/2409.07737},
|
|
27
|
+
}"""
|
|
28
|
+
|
|
29
|
+
cl_nagoya_ruri_v3_30m = ModelMeta(
|
|
30
|
+
loader=sentence_transformers_loader,
|
|
31
|
+
loader_kwargs=dict(
|
|
32
|
+
model_prompts=RURI_V3_PROMPTS,
|
|
33
|
+
),
|
|
34
|
+
name="cl-nagoya/ruri-v3-30m",
|
|
35
|
+
model_type=["dense"],
|
|
36
|
+
languages=["jpn-Jpan"],
|
|
37
|
+
open_weights=True,
|
|
38
|
+
revision="24899e5de370b56d179604a007c0d727bf144504",
|
|
39
|
+
release_date="2025-04-07",
|
|
40
|
+
n_parameters=36_705_536,
|
|
41
|
+
memory_usage_mb=140,
|
|
42
|
+
embed_dim=256,
|
|
43
|
+
license="apache-2.0",
|
|
44
|
+
max_tokens=8192,
|
|
45
|
+
reference="https://huggingface.co/cl-nagoya/ruri-v3-30m",
|
|
46
|
+
similarity_fn_name="cosine",
|
|
47
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
48
|
+
use_instructions=True,
|
|
49
|
+
superseded_by=None,
|
|
50
|
+
training_datasets={
|
|
51
|
+
"cl-nagoya/ruri-v3-dataset-ft",
|
|
52
|
+
},
|
|
53
|
+
adapted_from="sbintuitions/modernbert-ja-30m",
|
|
54
|
+
public_training_code=None,
|
|
55
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-v3-dataset-ft",
|
|
56
|
+
citation=RURI_CITATION,
|
|
57
|
+
contacts=["hpprc"],
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
cl_nagoya_ruri_v3_70m = ModelMeta(
|
|
61
|
+
loader=sentence_transformers_loader,
|
|
62
|
+
loader_kwargs=dict(
|
|
63
|
+
model_prompts=RURI_V3_PROMPTS,
|
|
64
|
+
),
|
|
65
|
+
name="cl-nagoya/ruri-v3-70m",
|
|
66
|
+
model_type=["dense"],
|
|
67
|
+
languages=["jpn-Jpan"],
|
|
68
|
+
open_weights=True,
|
|
69
|
+
revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
|
|
70
|
+
release_date="2025-04-09",
|
|
71
|
+
n_parameters=36_705_536,
|
|
72
|
+
memory_usage_mb=140,
|
|
73
|
+
embed_dim=256,
|
|
74
|
+
license="apache-2.0",
|
|
75
|
+
max_tokens=8192,
|
|
76
|
+
reference="https://huggingface.co/cl-nagoya/ruri-v3-70m",
|
|
77
|
+
similarity_fn_name="cosine",
|
|
78
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
79
|
+
use_instructions=True,
|
|
80
|
+
superseded_by=None,
|
|
81
|
+
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
82
|
+
adapted_from="sbintuitions/modernbert-ja-70m",
|
|
83
|
+
public_training_code=None,
|
|
84
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-v3-dataset-ft",
|
|
85
|
+
citation=RURI_CITATION,
|
|
86
|
+
contacts=["hpprc"],
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
cl_nagoya_ruri_v3_130m = ModelMeta(
|
|
90
|
+
loader=sentence_transformers_loader,
|
|
91
|
+
loader_kwargs=dict(
|
|
92
|
+
model_prompts=RURI_V3_PROMPTS,
|
|
93
|
+
),
|
|
94
|
+
name="cl-nagoya/ruri-v3-130m",
|
|
95
|
+
model_type=["dense"],
|
|
96
|
+
languages=["jpn-Jpan"],
|
|
97
|
+
open_weights=True,
|
|
98
|
+
revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
|
|
99
|
+
release_date="2025-04-09",
|
|
100
|
+
n_parameters=132_140_544,
|
|
101
|
+
memory_usage_mb=504,
|
|
102
|
+
embed_dim=512,
|
|
103
|
+
license="apache-2.0",
|
|
104
|
+
max_tokens=8192,
|
|
105
|
+
reference="https://huggingface.co/cl-nagoya/ruri-v3-130m",
|
|
106
|
+
similarity_fn_name="cosine",
|
|
107
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
108
|
+
use_instructions=True,
|
|
109
|
+
superseded_by=None,
|
|
110
|
+
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
111
|
+
adapted_from="sbintuitions/modernbert-ja-130m",
|
|
112
|
+
public_training_code=None,
|
|
113
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-v3-dataset-ft",
|
|
114
|
+
citation=RURI_CITATION,
|
|
115
|
+
contacts=["hpprc"],
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
cl_nagoya_ruri_v3_310m = ModelMeta(
|
|
119
|
+
loader=sentence_transformers_loader,
|
|
120
|
+
loader_kwargs=dict(
|
|
121
|
+
model_prompts=RURI_V3_PROMPTS,
|
|
122
|
+
),
|
|
123
|
+
name="cl-nagoya/ruri-v3-310m",
|
|
124
|
+
model_type=["dense"],
|
|
125
|
+
languages=["jpn-Jpan"],
|
|
126
|
+
open_weights=True,
|
|
127
|
+
revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
|
|
128
|
+
release_date="2025-04-09",
|
|
129
|
+
n_parameters=314_611_968,
|
|
130
|
+
memory_usage_mb=1200,
|
|
131
|
+
embed_dim=768,
|
|
132
|
+
license="apache-2.0",
|
|
133
|
+
max_tokens=8192,
|
|
134
|
+
reference="https://huggingface.co/cl-nagoya/ruri-v3-310m",
|
|
135
|
+
similarity_fn_name="cosine",
|
|
136
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
137
|
+
use_instructions=True,
|
|
138
|
+
superseded_by=None,
|
|
139
|
+
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
140
|
+
adapted_from="sbintuitions/modernbert-ja-310m",
|
|
141
|
+
public_training_code=None,
|
|
142
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-v3-dataset-ft",
|
|
143
|
+
citation=RURI_CITATION,
|
|
144
|
+
contacts=["hpprc"],
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
cl_nagoya_ruri_small_v2 = ModelMeta(
|
|
148
|
+
loader=sentence_transformers_loader,
|
|
149
|
+
loader_kwargs=dict(
|
|
150
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
151
|
+
trust_remote_code=True,
|
|
152
|
+
),
|
|
153
|
+
name="cl-nagoya/ruri-small-v2",
|
|
154
|
+
model_type=["dense"],
|
|
155
|
+
languages=["jpn-Jpan"],
|
|
156
|
+
open_weights=True,
|
|
157
|
+
revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
|
|
158
|
+
release_date="2024-12-05",
|
|
159
|
+
n_parameters=68_087_808,
|
|
160
|
+
memory_usage_mb=260,
|
|
161
|
+
embed_dim=768,
|
|
162
|
+
license="apache-2.0",
|
|
163
|
+
max_tokens=512,
|
|
164
|
+
reference="https://huggingface.co/cl-nagoya/ruri-small-v2",
|
|
165
|
+
similarity_fn_name="cosine",
|
|
166
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
167
|
+
use_instructions=True,
|
|
168
|
+
adapted_from="line-corporation/line-distilbert-base-japanese",
|
|
169
|
+
superseded_by=None,
|
|
170
|
+
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
171
|
+
public_training_code=None,
|
|
172
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-v2-ft",
|
|
173
|
+
citation=RURI_CITATION,
|
|
174
|
+
contacts=["hpprc"],
|
|
175
|
+
)
|
|
176
|
+
|
|
177
|
+
cl_nagoya_ruri_base_v2 = ModelMeta(
|
|
178
|
+
loader=sentence_transformers_loader,
|
|
179
|
+
loader_kwargs=dict(
|
|
180
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
181
|
+
),
|
|
182
|
+
name="cl-nagoya/ruri-base-v2",
|
|
183
|
+
model_type=["dense"],
|
|
184
|
+
languages=["jpn-Jpan"],
|
|
185
|
+
open_weights=True,
|
|
186
|
+
revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
|
|
187
|
+
release_date="2024-12-05",
|
|
188
|
+
n_parameters=111_207_168,
|
|
189
|
+
memory_usage_mb=424,
|
|
190
|
+
embed_dim=768,
|
|
191
|
+
license="apache-2.0",
|
|
192
|
+
max_tokens=512,
|
|
193
|
+
reference="https://huggingface.co/cl-nagoya/ruri-base-v2",
|
|
194
|
+
similarity_fn_name="cosine",
|
|
195
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
196
|
+
use_instructions=True,
|
|
197
|
+
adapted_from="tohoku-nlp/bert-base-japanese-v3",
|
|
198
|
+
superseded_by=None,
|
|
199
|
+
training_datasets=None,
|
|
200
|
+
public_training_code=None,
|
|
201
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-v2-ft",
|
|
202
|
+
citation=RURI_CITATION,
|
|
203
|
+
contacts=["hpprc"],
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
cl_nagoya_ruri_large_v2 = ModelMeta(
|
|
207
|
+
loader=sentence_transformers_loader,
|
|
208
|
+
loader_kwargs=dict(
|
|
209
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
210
|
+
),
|
|
211
|
+
name="cl-nagoya/ruri-large-v2",
|
|
212
|
+
model_type=["dense"],
|
|
213
|
+
languages=["jpn-Jpan"],
|
|
214
|
+
open_weights=True,
|
|
215
|
+
revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
|
|
216
|
+
release_date="2024-12-06",
|
|
217
|
+
n_parameters=337_441_792,
|
|
218
|
+
memory_usage_mb=1287,
|
|
219
|
+
embed_dim=1024,
|
|
220
|
+
license="apache-2.0",
|
|
221
|
+
max_tokens=512,
|
|
222
|
+
reference="https://huggingface.co/cl-nagoya/ruri-large-v2",
|
|
223
|
+
similarity_fn_name="cosine",
|
|
224
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
225
|
+
use_instructions=True,
|
|
226
|
+
adapted_from="tohoku-nlp/bert-large-japanese-v2",
|
|
227
|
+
superseded_by=None,
|
|
228
|
+
training_datasets=None,
|
|
229
|
+
public_training_code=None,
|
|
230
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-v2-ft",
|
|
231
|
+
citation=RURI_CITATION,
|
|
232
|
+
contacts=["hpprc"],
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
cl_nagoya_ruri_small_v1 = ModelMeta(
|
|
236
|
+
loader=sentence_transformers_loader,
|
|
237
|
+
loader_kwargs=dict(
|
|
238
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
239
|
+
trust_remote_code=True,
|
|
240
|
+
),
|
|
241
|
+
name="cl-nagoya/ruri-small",
|
|
242
|
+
model_type=["dense"],
|
|
243
|
+
languages=["jpn-Jpan"],
|
|
244
|
+
open_weights=True,
|
|
245
|
+
revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
|
|
246
|
+
release_date="2024-08-28",
|
|
247
|
+
n_parameters=68_087_808,
|
|
248
|
+
memory_usage_mb=130,
|
|
249
|
+
embed_dim=768,
|
|
250
|
+
license="apache-2.0",
|
|
251
|
+
max_tokens=512,
|
|
252
|
+
reference="https://huggingface.co/cl-nagoya/ruri-small",
|
|
253
|
+
similarity_fn_name="cosine",
|
|
254
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
255
|
+
use_instructions=True,
|
|
256
|
+
adapted_from="line-corporation/line-distilbert-base-japanese",
|
|
257
|
+
superseded_by="cl-nagoya/ruri-small-v2",
|
|
258
|
+
training_datasets=None,
|
|
259
|
+
public_training_code=None,
|
|
260
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-ft",
|
|
261
|
+
citation=RURI_CITATION,
|
|
262
|
+
contacts=["hpprc"],
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
cl_nagoya_ruri_base_v1 = ModelMeta(
|
|
266
|
+
loader=sentence_transformers_loader,
|
|
267
|
+
loader_kwargs=dict(
|
|
268
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
269
|
+
),
|
|
270
|
+
name="cl-nagoya/ruri-base",
|
|
271
|
+
model_type=["dense"],
|
|
272
|
+
languages=["jpn-Jpan"],
|
|
273
|
+
open_weights=True,
|
|
274
|
+
revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
|
|
275
|
+
release_date="2024-08-28",
|
|
276
|
+
n_parameters=111_207_168,
|
|
277
|
+
memory_usage_mb=212,
|
|
278
|
+
embed_dim=768,
|
|
279
|
+
license="apache-2.0",
|
|
280
|
+
max_tokens=512,
|
|
281
|
+
reference="https://huggingface.co/cl-nagoya/ruri-base",
|
|
282
|
+
similarity_fn_name="cosine",
|
|
283
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
284
|
+
use_instructions=True,
|
|
285
|
+
adapted_from="tohoku-nlp/bert-base-japanese-v3",
|
|
286
|
+
superseded_by="cl-nagoya/ruri-base-v2",
|
|
287
|
+
training_datasets=None,
|
|
288
|
+
public_training_code=None,
|
|
289
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-ft",
|
|
290
|
+
citation=RURI_CITATION,
|
|
291
|
+
contacts=["hpprc"],
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
cl_nagoya_ruri_large_v1 = ModelMeta(
|
|
296
|
+
loader=sentence_transformers_loader,
|
|
297
|
+
loader_kwargs=dict(
|
|
298
|
+
model_prompts=RURI_V1_V2_PROMPTS,
|
|
299
|
+
),
|
|
300
|
+
name="cl-nagoya/ruri-large",
|
|
301
|
+
model_type=["dense"],
|
|
302
|
+
languages=["jpn-Jpan"],
|
|
303
|
+
open_weights=True,
|
|
304
|
+
revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
|
|
305
|
+
release_date="2024-08-28",
|
|
306
|
+
n_parameters=337_441_792,
|
|
307
|
+
memory_usage_mb=644,
|
|
308
|
+
embed_dim=1024,
|
|
309
|
+
license="apache-2.0",
|
|
310
|
+
max_tokens=512,
|
|
311
|
+
reference="https://huggingface.co/cl-nagoya/ruri-large",
|
|
312
|
+
similarity_fn_name="cosine",
|
|
313
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
314
|
+
use_instructions=True,
|
|
315
|
+
adapted_from="tohoku-nlp/bert-large-japanese-v2",
|
|
316
|
+
superseded_by="cl-nagoya/ruri-large-v2",
|
|
317
|
+
training_datasets=None,
|
|
318
|
+
public_training_code=None,
|
|
319
|
+
public_training_data="https://huggingface.co/datasets/cl-nagoya/ruri-dataset-ft",
|
|
320
|
+
citation=RURI_CITATION,
|
|
321
|
+
contacts=["hpprc"],
|
|
322
|
+
)
|
|
@@ -46,6 +46,7 @@ SFR_Embedding_2_R = ModelMeta(
|
|
|
46
46
|
normalized=True,
|
|
47
47
|
),
|
|
48
48
|
name="Salesforce/SFR-Embedding-2_R",
|
|
49
|
+
model_type=["dense"],
|
|
49
50
|
languages=["eng-Latn"],
|
|
50
51
|
open_weights=True,
|
|
51
52
|
revision="91762139d94ed4371a9fa31db5551272e0b83818",
|
|
@@ -83,6 +84,7 @@ SFR_Embedding_Code_2B_R = ModelMeta(
|
|
|
83
84
|
normalized=True,
|
|
84
85
|
),
|
|
85
86
|
name="Salesforce/SFR-Embedding-Code-2B_R",
|
|
87
|
+
model_type=["dense"],
|
|
86
88
|
languages=["eng-Latn"],
|
|
87
89
|
open_weights=True,
|
|
88
90
|
revision="c73d8631a005876ed5abde34db514b1fb6566973",
|
|
@@ -120,6 +122,7 @@ SFR_Embedding_Mistral = ModelMeta(
|
|
|
120
122
|
normalized=True,
|
|
121
123
|
),
|
|
122
124
|
name="Salesforce/SFR-Embedding-Mistral",
|
|
125
|
+
model_type=["dense"],
|
|
123
126
|
languages=["eng-Latn"],
|
|
124
127
|
open_weights=True,
|
|
125
128
|
revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
|
+
from mteb.models.model_meta import ModelMeta
|
|
3
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
4
|
+
from mteb.types import PromptType
|
|
5
|
+
|
|
6
|
+
SARASHINA_V2_INSTRUCTIONS = {
|
|
7
|
+
"Retrieval": {
|
|
8
|
+
"query": "クエリを与えるので、もっともクエリに意味が似ている一節を探してください。",
|
|
9
|
+
"document": "text: ",
|
|
10
|
+
},
|
|
11
|
+
"Reranking": {
|
|
12
|
+
"query": "クエリを与えるので、もっともクエリに意味が似ている一節を探してください。",
|
|
13
|
+
"document": "text: ",
|
|
14
|
+
},
|
|
15
|
+
"Classification": "与えられたドキュメントを適切なカテゴリに分類してください。",
|
|
16
|
+
"Clustering": "与えられたドキュメントのトピックまたはテーマを特定してください。",
|
|
17
|
+
# optimization regarding JMTEB
|
|
18
|
+
"LivedoorNewsClustering.v2": "与えられたニュース記事のトピックを特定してください。",
|
|
19
|
+
"MewsC16JaClustering": "与えられたニュース記事のトピックを特定してください。",
|
|
20
|
+
"SIB200ClusteringS2S": "与えられたテキストのトピックを特定してください。",
|
|
21
|
+
"AmazonReviewsClassification": "与えられたAmazonレビューを適切な評価カテゴリに分類してください。",
|
|
22
|
+
"AmazonCounterfactualClassification": "与えられたAmazonのカスタマーレビューのテキストを反事実か反事実でないかに分類してください。",
|
|
23
|
+
"MassiveIntentClassification": "ユーザーの発話をクエリとして与えるので、ユーザーの意図を見つけてください。",
|
|
24
|
+
"MassiveScenarioClassification": "ユーザーの発話をクエリとして与えるので、ユーザーシナリオを見つけてください。",
|
|
25
|
+
"JapaneseSentimentClassification": "与えられたテキストの感情極性をポジティブ(1)かネガティブか(0)に分類してください。",
|
|
26
|
+
"SIB200Classification": "与えられたテキストのトピックを特定してください。",
|
|
27
|
+
"WRIMEClassification": "与えられたテキストの感情極性(-2:強いネガティブ、-1:ネガティブ、0:ニュートラル、1:ポジティブ、2:強いポジティブ)を分類してください。",
|
|
28
|
+
"JSTS": "クエリを与えるので,もっともクエリに意味が似ている一節を探してください。",
|
|
29
|
+
"JSICK": "クエリを与えるので,もっともクエリに意味が似ている一節を探してください。",
|
|
30
|
+
"JaqketRetrieval": {
|
|
31
|
+
"query": "質問を与えるので、その質問に答えるのに役立つWikipediaの文章を検索してください。",
|
|
32
|
+
"document": "text: ",
|
|
33
|
+
},
|
|
34
|
+
"MrTidyRetrieval": {
|
|
35
|
+
"query": "質問を与えるので、その質問に答えるWikipediaの文章を検索するしてください。",
|
|
36
|
+
"document": "text: ",
|
|
37
|
+
},
|
|
38
|
+
"JaGovFaqsRetrieval": {
|
|
39
|
+
"query": "質問を与えるので、その質問に答えるのに役立つ関連文書を検索してください。",
|
|
40
|
+
"document": "text: ",
|
|
41
|
+
},
|
|
42
|
+
"NLPJournalTitleAbsRetrieval.V2": {
|
|
43
|
+
"query": "論文のタイトルを与えるので、タイトルに対応する要約を検索してください。",
|
|
44
|
+
"document": "text: ",
|
|
45
|
+
},
|
|
46
|
+
"NLPJournalTitleIntroRetrieval.V2": {
|
|
47
|
+
"query": "論文のタイトルを与えるので、タイトルに対応する要約を検索してください。",
|
|
48
|
+
"document": "text: ",
|
|
49
|
+
},
|
|
50
|
+
"NLPJournalAbsIntroRetrieval.V2": {
|
|
51
|
+
"query": "論文の序論を与えるので、序論に対応する全文を検索してください。",
|
|
52
|
+
"document": "text: ",
|
|
53
|
+
},
|
|
54
|
+
"NLPJournalAbsArticleRetrieval.V2": {
|
|
55
|
+
"query": "論文の序論を与えるので、序論に対応する全文を検索してください。",
|
|
56
|
+
"document": "text: ",
|
|
57
|
+
},
|
|
58
|
+
"JaCWIRRetrieval": {
|
|
59
|
+
"query": "記事のタイトルを与えるので、そのタイトルと合っている記事の中身を検索してください。",
|
|
60
|
+
"document": "text: ",
|
|
61
|
+
},
|
|
62
|
+
"MIRACLRetrieval": {
|
|
63
|
+
"query": "質問を与えるので、その質問に答えるのに役立つ関連文書を検索してください。",
|
|
64
|
+
"document": "text: ",
|
|
65
|
+
},
|
|
66
|
+
"MintakaRetrieval": {
|
|
67
|
+
"query": "質問を与えるので、その質問に答えられるテキストを検索してください。",
|
|
68
|
+
"document": "text: ",
|
|
69
|
+
},
|
|
70
|
+
"MultiLongDocRetrieval": {
|
|
71
|
+
"query": "質問を与えるので、その質問に答えるのに役立つWikipediaの文章を検索してください。",
|
|
72
|
+
"document": "text: ",
|
|
73
|
+
},
|
|
74
|
+
"ESCIReranking": {
|
|
75
|
+
"query": "クエリを与えるので、与えられたWeb検索クエリに答える関連文章を検索してください。",
|
|
76
|
+
"document": "text: ",
|
|
77
|
+
},
|
|
78
|
+
"JQaRAReranking": {
|
|
79
|
+
"query": "質問を与えるので、その質問に答えるのに役立つWikipediaの文章を検索してください。",
|
|
80
|
+
"document": "text: ",
|
|
81
|
+
},
|
|
82
|
+
"JaCWIRReranking": {
|
|
83
|
+
"query": "記事のタイトルを与えるので、そのタイトルと合っている記事の中身を検索してください。",
|
|
84
|
+
"document": "text: ",
|
|
85
|
+
},
|
|
86
|
+
"MIRACLReranking": {
|
|
87
|
+
"query": "質問を与えるので、その質問に答えるのに役立つ関連文書を検索してください。",
|
|
88
|
+
"document": "text: ",
|
|
89
|
+
},
|
|
90
|
+
"MultiLongDocReranking": {
|
|
91
|
+
"query": "質問を与えるので、その質問に答えるのに役立つWikipediaの文章を検索してください。",
|
|
92
|
+
"document": "text: ",
|
|
93
|
+
},
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def sarashina_instruction_template(
|
|
98
|
+
instruction: str, prompt_type: PromptType | None = None
|
|
99
|
+
) -> str:
|
|
100
|
+
"""Instruction template for Sarashina v2 model.
|
|
101
|
+
|
|
102
|
+
Returns the instruction as-is since the prompts already contain the full format.
|
|
103
|
+
For document prompts, returns the instruction directly (e.g., "text: ").
|
|
104
|
+
"""
|
|
105
|
+
if not instruction:
|
|
106
|
+
return ""
|
|
107
|
+
if prompt_type == PromptType.document:
|
|
108
|
+
return "text: "
|
|
109
|
+
return f"task: {instruction}\nquery: "
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
113
|
+
loader=InstructSentenceTransformerModel,
|
|
114
|
+
loader_kwargs=dict(
|
|
115
|
+
instruction_template=sarashina_instruction_template,
|
|
116
|
+
apply_instruction_to_passages=True,
|
|
117
|
+
prompts_dict=SARASHINA_V2_INSTRUCTIONS,
|
|
118
|
+
max_seq_length=8192,
|
|
119
|
+
),
|
|
120
|
+
name="sbintuitions/sarashina-embedding-v2-1b",
|
|
121
|
+
model_type=["dense"],
|
|
122
|
+
languages=["jpn-Jpan"],
|
|
123
|
+
open_weights=True,
|
|
124
|
+
revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
|
|
125
|
+
release_date="2025-07-30",
|
|
126
|
+
n_parameters=1_224_038_144,
|
|
127
|
+
memory_usage_mb=4669,
|
|
128
|
+
embed_dim=1792,
|
|
129
|
+
license="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE",
|
|
130
|
+
max_tokens=8192,
|
|
131
|
+
reference="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b",
|
|
132
|
+
similarity_fn_name="cosine",
|
|
133
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
134
|
+
use_instructions=True,
|
|
135
|
+
adapted_from="sbintuitions/sarashina2.2-1b",
|
|
136
|
+
superseded_by=None,
|
|
137
|
+
training_datasets={"NQ", "MrTidyRetrieval"},
|
|
138
|
+
public_training_code=None,
|
|
139
|
+
public_training_data="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b",
|
|
140
|
+
citation=None,
|
|
141
|
+
contacts=["Sraym1217", "akiFQC", "lsz05"],
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
|
|
145
|
+
loader=sentence_transformers_loader,
|
|
146
|
+
name="sbintuitions/sarashina-embedding-v1-1b",
|
|
147
|
+
model_type=["dense"],
|
|
148
|
+
languages=["jpn-Jpan"],
|
|
149
|
+
open_weights=True,
|
|
150
|
+
revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
|
|
151
|
+
release_date="2024-11-22",
|
|
152
|
+
n_parameters=1_224_038_144,
|
|
153
|
+
memory_usage_mb=4669,
|
|
154
|
+
embed_dim=1792,
|
|
155
|
+
license="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE",
|
|
156
|
+
max_tokens=8192,
|
|
157
|
+
reference="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b",
|
|
158
|
+
similarity_fn_name="cosine",
|
|
159
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
160
|
+
use_instructions=False,
|
|
161
|
+
adapted_from="sbintuitions/sarashina2.1-1b",
|
|
162
|
+
superseded_by="sbintuitions/sarashina-embedding-v2-1b",
|
|
163
|
+
training_datasets={"NQ", "MrTidyRetrieval"},
|
|
164
|
+
public_training_code=None,
|
|
165
|
+
public_training_data="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b",
|
|
166
|
+
citation=None,
|
|
167
|
+
contacts=["akiFQC", "lsz05"],
|
|
168
|
+
)
|
|
@@ -1,14 +1,15 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import base64
|
|
2
4
|
import logging
|
|
3
5
|
import os
|
|
4
6
|
import time
|
|
5
7
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
6
8
|
from io import BytesIO
|
|
7
|
-
from typing import Any
|
|
9
|
+
from typing import TYPE_CHECKING, Any
|
|
8
10
|
|
|
9
11
|
import requests
|
|
10
12
|
import torch
|
|
11
|
-
from PIL import Image
|
|
12
13
|
from torch.utils.data import DataLoader
|
|
13
14
|
|
|
14
15
|
from mteb._requires_package import requires_package
|
|
@@ -19,6 +20,10 @@ from mteb.models.model_implementations.nvidia_models import nvidia_training_data
|
|
|
19
20
|
from mteb.models.model_meta import ModelMeta
|
|
20
21
|
from mteb.types import Array, BatchedInput, PromptType
|
|
21
22
|
|
|
23
|
+
if TYPE_CHECKING:
|
|
24
|
+
from PIL import Image
|
|
25
|
+
|
|
26
|
+
|
|
22
27
|
logger = logging.getLogger(__name__)
|
|
23
28
|
|
|
24
29
|
|
|
@@ -408,6 +413,7 @@ TASK_NAME_TO_INSTRUCTION = {
|
|
|
408
413
|
|
|
409
414
|
seed_embedding = ModelMeta(
|
|
410
415
|
name="Bytedance/Seed1.6-embedding",
|
|
416
|
+
model_type=["dense"],
|
|
411
417
|
revision="1",
|
|
412
418
|
release_date="2025-06-18",
|
|
413
419
|
languages=[
|