mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -113,6 +113,7 @@ sent_trf_training_dataset = {
|
|
|
113
113
|
all_minilm_l6_v2 = ModelMeta(
|
|
114
114
|
loader=sentence_transformers_loader,
|
|
115
115
|
name="sentence-transformers/all-MiniLM-L6-v2",
|
|
116
|
+
model_type=["dense"],
|
|
116
117
|
languages=["eng-Latn"],
|
|
117
118
|
open_weights=True,
|
|
118
119
|
revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
|
|
@@ -137,6 +138,7 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
137
138
|
all_minilm_l12_v2 = ModelMeta(
|
|
138
139
|
loader=sentence_transformers_loader,
|
|
139
140
|
name="sentence-transformers/all-MiniLM-L12-v2",
|
|
141
|
+
model_type=["dense"],
|
|
140
142
|
languages=["eng-Latn"],
|
|
141
143
|
open_weights=True,
|
|
142
144
|
revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
|
|
@@ -161,6 +163,7 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
161
163
|
paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
162
164
|
loader=sentence_transformers_loader,
|
|
163
165
|
name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
166
|
+
model_type=["dense"],
|
|
164
167
|
languages=paraphrase_langs,
|
|
165
168
|
open_weights=True,
|
|
166
169
|
revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
|
|
@@ -185,6 +188,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
185
188
|
paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
186
189
|
loader=sentence_transformers_loader,
|
|
187
190
|
name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
191
|
+
model_type=["dense"],
|
|
188
192
|
languages=paraphrase_langs,
|
|
189
193
|
open_weights=True,
|
|
190
194
|
revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
|
|
@@ -220,6 +224,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
220
224
|
labse = ModelMeta(
|
|
221
225
|
loader=sentence_transformers_loader,
|
|
222
226
|
name="sentence-transformers/LaBSE",
|
|
227
|
+
model_type=["dense"],
|
|
223
228
|
languages=paraphrase_langs,
|
|
224
229
|
open_weights=True,
|
|
225
230
|
revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
|
|
@@ -257,6 +262,7 @@ labse = ModelMeta(
|
|
|
257
262
|
multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
258
263
|
loader=sentence_transformers_loader,
|
|
259
264
|
name="sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
|
265
|
+
model_type=["dense"],
|
|
260
266
|
languages=["eng-Latn"],
|
|
261
267
|
open_weights=True,
|
|
262
268
|
revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
|
|
@@ -281,6 +287,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
281
287
|
all_mpnet_base_v2 = ModelMeta(
|
|
282
288
|
loader=sentence_transformers_loader,
|
|
283
289
|
name="sentence-transformers/all-mpnet-base-v2",
|
|
290
|
+
model_type=["dense"],
|
|
284
291
|
languages=["eng-Latn"],
|
|
285
292
|
open_weights=True,
|
|
286
293
|
revision="9a3225965996d404b775526de6dbfe85d3368642",
|
|
@@ -380,6 +387,7 @@ static_multi_languages = [
|
|
|
380
387
|
|
|
381
388
|
static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
382
389
|
name="sentence-transformers/static-similarity-mrl-multilingual-v1",
|
|
390
|
+
model_type=["dense"],
|
|
383
391
|
loader=SentenceTransformerEncoderWrapper,
|
|
384
392
|
loader_kwargs=dict(
|
|
385
393
|
device="cpu", # CPU is just as quick, if not quicker
|
|
@@ -402,11 +410,21 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
402
410
|
training_datasets=static_multi_datasets,
|
|
403
411
|
public_training_code="https://huggingface.co/blog/static-embeddings",
|
|
404
412
|
public_training_data="https://huggingface.co/collections/sentence-transformers/embedding-model-datasets-6644d7a3673a511914aa7552",
|
|
413
|
+
citation="""@inproceedings{reimers-2019-sentence-bert,
|
|
414
|
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
415
|
+
author = "Reimers, Nils and Gurevych, Iryna",
|
|
416
|
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
417
|
+
month = "11",
|
|
418
|
+
year = "2019",
|
|
419
|
+
publisher = "Association for Computational Linguistics",
|
|
420
|
+
url = "https://arxiv.org/abs/1908.10084",
|
|
421
|
+
}""",
|
|
405
422
|
)
|
|
406
423
|
|
|
407
424
|
contriever = ModelMeta(
|
|
408
425
|
loader=SentenceTransformerEncoderWrapper,
|
|
409
426
|
name="facebook/contriever-msmarco",
|
|
427
|
+
model_type=["dense"],
|
|
410
428
|
languages=["eng-Latn"],
|
|
411
429
|
open_weights=True,
|
|
412
430
|
revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
|
|
@@ -436,6 +454,7 @@ contriever = ModelMeta(
|
|
|
436
454
|
microllama_text_embedding = ModelMeta(
|
|
437
455
|
loader=sentence_transformers_loader,
|
|
438
456
|
name="keeeeenw/MicroLlama-text-embedding",
|
|
457
|
+
model_type=["dense"],
|
|
439
458
|
languages=["eng-Latn"],
|
|
440
459
|
open_weights=True,
|
|
441
460
|
revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
|
|
@@ -467,9 +486,21 @@ microllama_text_embedding = ModelMeta(
|
|
|
467
486
|
public_training_data=None,
|
|
468
487
|
)
|
|
469
488
|
|
|
489
|
+
SENTENCE_T5_CITATION = """
|
|
490
|
+
@misc{ni2021sentencet5scalablesentenceencoders,
|
|
491
|
+
title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
|
|
492
|
+
author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
|
|
493
|
+
year={2021},
|
|
494
|
+
eprint={2108.08877},
|
|
495
|
+
archivePrefix={arXiv},
|
|
496
|
+
primaryClass={cs.CL},
|
|
497
|
+
url={https://arxiv.org/abs/2108.08877},
|
|
498
|
+
}
|
|
499
|
+
"""
|
|
470
500
|
sentence_t5_base = ModelMeta(
|
|
471
501
|
loader=sentence_transformers_loader,
|
|
472
502
|
name="sentence-transformers/sentence-t5-base",
|
|
503
|
+
model_type=["dense"],
|
|
473
504
|
languages=["eng-Latn"],
|
|
474
505
|
open_weights=True,
|
|
475
506
|
revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
|
|
@@ -486,11 +517,13 @@ sentence_t5_base = ModelMeta(
|
|
|
486
517
|
public_training_code=None,
|
|
487
518
|
public_training_data=None,
|
|
488
519
|
training_datasets={"SNLI", "Community QA"},
|
|
520
|
+
citation=SENTENCE_T5_CITATION,
|
|
489
521
|
)
|
|
490
522
|
|
|
491
523
|
sentence_t5_large = ModelMeta(
|
|
492
524
|
loader=sentence_transformers_loader,
|
|
493
525
|
name="sentence-transformers/sentence-t5-large",
|
|
526
|
+
model_type=["dense"],
|
|
494
527
|
languages=["eng-Latn"],
|
|
495
528
|
open_weights=True,
|
|
496
529
|
revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
|
|
@@ -507,11 +540,13 @@ sentence_t5_large = ModelMeta(
|
|
|
507
540
|
public_training_code=None,
|
|
508
541
|
public_training_data=None,
|
|
509
542
|
training_datasets={"SNLI", "Community QA"},
|
|
543
|
+
citation=SENTENCE_T5_CITATION,
|
|
510
544
|
)
|
|
511
545
|
|
|
512
546
|
sentence_t5_xl = ModelMeta(
|
|
513
547
|
loader=sentence_transformers_loader,
|
|
514
548
|
name="sentence-transformers/sentence-t5-xl",
|
|
549
|
+
model_type=["dense"],
|
|
515
550
|
languages=["eng-Latn"],
|
|
516
551
|
open_weights=True,
|
|
517
552
|
revision="2965d31b368fb14117688e0bde77cbd720e91f53",
|
|
@@ -528,11 +563,13 @@ sentence_t5_xl = ModelMeta(
|
|
|
528
563
|
public_training_code=None,
|
|
529
564
|
public_training_data=None,
|
|
530
565
|
training_datasets={"SNLI", "Community QA"},
|
|
566
|
+
citation=SENTENCE_T5_CITATION,
|
|
531
567
|
)
|
|
532
568
|
|
|
533
569
|
sentence_t5_xxl = ModelMeta(
|
|
534
570
|
loader=sentence_transformers_loader,
|
|
535
571
|
name="sentence-transformers/sentence-t5-xxl",
|
|
572
|
+
model_type=["dense"],
|
|
536
573
|
languages=["eng-Latn"],
|
|
537
574
|
open_weights=True,
|
|
538
575
|
revision="4d122282ba80e807e9e6eb8c358269e92796365d",
|
|
@@ -549,10 +586,23 @@ sentence_t5_xxl = ModelMeta(
|
|
|
549
586
|
public_training_code=None,
|
|
550
587
|
public_training_data=None,
|
|
551
588
|
training_datasets={"SNLI", "Community QA"},
|
|
589
|
+
citation=SENTENCE_T5_CITATION,
|
|
552
590
|
)
|
|
591
|
+
GTR_CITATION = """
|
|
592
|
+
@misc{ni2021largedualencodersgeneralizable,
|
|
593
|
+
title={Large Dual Encoders Are Generalizable Retrievers},
|
|
594
|
+
author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
|
|
595
|
+
year={2021},
|
|
596
|
+
eprint={2112.07899},
|
|
597
|
+
archivePrefix={arXiv},
|
|
598
|
+
primaryClass={cs.IR},
|
|
599
|
+
url={https://arxiv.org/abs/2112.07899},
|
|
600
|
+
}
|
|
601
|
+
"""
|
|
553
602
|
gtr_t5_large = ModelMeta(
|
|
554
603
|
loader=sentence_transformers_loader,
|
|
555
604
|
name="sentence-transformers/gtr-t5-large",
|
|
605
|
+
model_type=["dense"],
|
|
556
606
|
languages=["eng-Latn"], # in format eng-Latn
|
|
557
607
|
open_weights=True,
|
|
558
608
|
revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
|
|
@@ -581,11 +631,13 @@ gtr_t5_large = ModelMeta(
|
|
|
581
631
|
"NQ-PL", # translation not trained on
|
|
582
632
|
"Community QA",
|
|
583
633
|
},
|
|
634
|
+
citation=GTR_CITATION,
|
|
584
635
|
)
|
|
585
636
|
|
|
586
637
|
gtr_t5_xl = ModelMeta(
|
|
587
638
|
loader=sentence_transformers_loader,
|
|
588
639
|
name="sentence-transformers/gtr-t5-xl",
|
|
640
|
+
model_type=["dense"],
|
|
589
641
|
languages=["eng-Latn"], # in format eng-Latn
|
|
590
642
|
open_weights=True,
|
|
591
643
|
revision="23a8d667a1ad2578af181ce762867003c498d1bf",
|
|
@@ -614,10 +666,12 @@ gtr_t5_xl = ModelMeta(
|
|
|
614
666
|
"NQ-PL", # translation not trained on
|
|
615
667
|
"Community QA",
|
|
616
668
|
},
|
|
669
|
+
citation=GTR_CITATION,
|
|
617
670
|
)
|
|
618
671
|
gtr_t5_xxl = ModelMeta(
|
|
619
672
|
loader=sentence_transformers_loader,
|
|
620
673
|
name="sentence-transformers/gtr-t5-xxl",
|
|
674
|
+
model_type=["dense"],
|
|
621
675
|
languages=["eng-Latn"], # in format eng-Latn
|
|
622
676
|
open_weights=True,
|
|
623
677
|
revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
|
|
@@ -646,11 +700,13 @@ gtr_t5_xxl = ModelMeta(
|
|
|
646
700
|
"NQ-PL", # translation not trained on
|
|
647
701
|
"Community QA",
|
|
648
702
|
},
|
|
703
|
+
citation=GTR_CITATION,
|
|
649
704
|
)
|
|
650
705
|
|
|
651
706
|
gtr_t5_base = ModelMeta(
|
|
652
707
|
loader=sentence_transformers_loader,
|
|
653
708
|
name="sentence-transformers/gtr-t5-base",
|
|
709
|
+
model_type=["dense"],
|
|
654
710
|
languages=["eng-Latn"], # in format eng-Latn
|
|
655
711
|
open_weights=True,
|
|
656
712
|
revision="7027e9594267928589816394bdd295273ddc0739",
|
|
@@ -679,4 +735,5 @@ gtr_t5_base = ModelMeta(
|
|
|
679
735
|
"NQ-PL", # translation not trained on
|
|
680
736
|
"Community QA",
|
|
681
737
|
},
|
|
738
|
+
citation=GTR_CITATION,
|
|
682
739
|
)
|
|
@@ -1,31 +1,32 @@
|
|
|
1
|
-
from mteb.models.model_meta import ModelMeta
|
|
2
|
-
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
-
|
|
4
|
-
codemodernbert_crow_meta = ModelMeta(
|
|
5
|
-
loader=sentence_transformers_loader,
|
|
6
|
-
name="Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
# "
|
|
26
|
-
# "Shuu12121/
|
|
27
|
-
# "Shuu12121/
|
|
28
|
-
# "Shuu12121/
|
|
29
|
-
# "Shuu12121/
|
|
30
|
-
|
|
31
|
-
|
|
1
|
+
from mteb.models.model_meta import ModelMeta
|
|
2
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
3
|
+
|
|
4
|
+
codemodernbert_crow_meta = ModelMeta(
|
|
5
|
+
loader=sentence_transformers_loader,
|
|
6
|
+
name="Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
7
|
+
model_type=["dense"],
|
|
8
|
+
languages=["eng-Latn"],
|
|
9
|
+
open_weights=True,
|
|
10
|
+
revision="044a7a4b552f86e284817234c336bccf16f895ce",
|
|
11
|
+
release_date="2025-04-21",
|
|
12
|
+
n_parameters=151668480,
|
|
13
|
+
memory_usage_mb=607,
|
|
14
|
+
embed_dim=768,
|
|
15
|
+
license="apache-2.0",
|
|
16
|
+
max_tokens=1024,
|
|
17
|
+
reference="https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
|
|
18
|
+
similarity_fn_name="cosine",
|
|
19
|
+
framework=["Sentence Transformers", "PyTorch"],
|
|
20
|
+
use_instructions=False,
|
|
21
|
+
public_training_code=None,
|
|
22
|
+
public_training_data=None,
|
|
23
|
+
training_datasets={
|
|
24
|
+
"CodeSearchNetRetrieval",
|
|
25
|
+
# "code-search-net/code_search_net",
|
|
26
|
+
# "Shuu12121/python-codesearch-filtered",
|
|
27
|
+
# "Shuu12121/java-codesearch-filtered",
|
|
28
|
+
# "Shuu12121/javascript-codesearch-filtered",
|
|
29
|
+
# "Shuu12121/ruby-codesearch-filtered",
|
|
30
|
+
# "Shuu12121/rust-codesearch-filtered",
|
|
31
|
+
},
|
|
32
|
+
)
|
|
@@ -125,6 +125,7 @@ siglip_training_datasets = set(
|
|
|
125
125
|
siglip_so400m_patch14_224 = ModelMeta(
|
|
126
126
|
loader=SiglipModelWrapper, # type: ignore
|
|
127
127
|
name="google/siglip-so400m-patch14-224",
|
|
128
|
+
model_type=["dense"],
|
|
128
129
|
languages=["eng-Latn"],
|
|
129
130
|
revision="d04cf29fca7b6374f74d8bea1969314492266b5e",
|
|
130
131
|
release_date="2024-01-08",
|
|
@@ -148,6 +149,7 @@ siglip_so400m_patch14_224 = ModelMeta(
|
|
|
148
149
|
siglip_so400m_patch14_384 = ModelMeta(
|
|
149
150
|
loader=SiglipModelWrapper, # type: ignore
|
|
150
151
|
name="google/siglip-so400m-patch14-384",
|
|
152
|
+
model_type=["dense"],
|
|
151
153
|
languages=["eng-Latn"],
|
|
152
154
|
revision="9fdffc58afc957d1a03a25b10dba0329ab15c2a3",
|
|
153
155
|
release_date="2024-01-08",
|
|
@@ -171,6 +173,7 @@ siglip_so400m_patch14_384 = ModelMeta(
|
|
|
171
173
|
siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
172
174
|
loader=SiglipModelWrapper, # type: ignore
|
|
173
175
|
name="google/siglip-so400m-patch16-256-i18n",
|
|
176
|
+
model_type=["dense"],
|
|
174
177
|
languages=["eng-Latn"],
|
|
175
178
|
revision="365d321c0cfdea96bc28e3a29787a11a062681a1",
|
|
176
179
|
release_date="2024-01-08",
|
|
@@ -194,6 +197,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
|
|
|
194
197
|
siglip_base_patch16_256_multilingual = ModelMeta(
|
|
195
198
|
loader=SiglipModelWrapper, # type: ignore
|
|
196
199
|
name="google/siglip-base-patch16-256-multilingual",
|
|
200
|
+
model_type=["dense"],
|
|
197
201
|
languages=["eng-Latn"],
|
|
198
202
|
revision="8952a4eafcde3cb7ab46b1dd629b33f8784ca9c6",
|
|
199
203
|
release_date="2024-01-08",
|
|
@@ -217,6 +221,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
|
|
|
217
221
|
siglip_base_patch16_256 = ModelMeta(
|
|
218
222
|
loader=SiglipModelWrapper, # type: ignore
|
|
219
223
|
name="google/siglip-base-patch16-256",
|
|
224
|
+
model_type=["dense"],
|
|
220
225
|
languages=["eng-Latn"],
|
|
221
226
|
revision="b078df89e446d623010d890864d4207fe6399f61",
|
|
222
227
|
release_date="2024-01-08",
|
|
@@ -240,6 +245,7 @@ siglip_base_patch16_256 = ModelMeta(
|
|
|
240
245
|
siglip_base_patch16_512 = ModelMeta(
|
|
241
246
|
loader=SiglipModelWrapper, # type: ignore
|
|
242
247
|
name="google/siglip-base-patch16-512",
|
|
248
|
+
model_type=["dense"],
|
|
243
249
|
languages=["eng-Latn"],
|
|
244
250
|
revision="753a949581523b60257d93e18391e8c27f72eb22",
|
|
245
251
|
release_date="2024-01-08",
|
|
@@ -263,6 +269,7 @@ siglip_base_patch16_512 = ModelMeta(
|
|
|
263
269
|
siglip_base_patch16_384 = ModelMeta(
|
|
264
270
|
loader=SiglipModelWrapper, # type: ignore
|
|
265
271
|
name="google/siglip-base-patch16-384",
|
|
272
|
+
model_type=["dense"],
|
|
266
273
|
languages=["eng-Latn"],
|
|
267
274
|
revision="41aec1c83b32e0a6fca20ad88ba058aa5b5ea394",
|
|
268
275
|
release_date="2024-01-08",
|
|
@@ -286,6 +293,7 @@ siglip_base_patch16_384 = ModelMeta(
|
|
|
286
293
|
siglip_base_patch16_224 = ModelMeta(
|
|
287
294
|
loader=SiglipModelWrapper, # type: ignore
|
|
288
295
|
name="google/siglip-base-patch16-224",
|
|
296
|
+
model_type=["dense"],
|
|
289
297
|
languages=["eng-Latn"],
|
|
290
298
|
revision="7fd15f0689c79d79e38b1c2e2e2370a7bf2761ed",
|
|
291
299
|
release_date="2024-01-08",
|
|
@@ -309,6 +317,7 @@ siglip_base_patch16_224 = ModelMeta(
|
|
|
309
317
|
siglip_large_patch16_256 = ModelMeta(
|
|
310
318
|
loader=SiglipModelWrapper, # type: ignore
|
|
311
319
|
name="google/siglip-large-patch16-256",
|
|
320
|
+
model_type=["dense"],
|
|
312
321
|
languages=["eng-Latn"],
|
|
313
322
|
revision="d0da9f876e7d66b4e250cd2450c3ba2ce735e447",
|
|
314
323
|
release_date="2024-01-08",
|
|
@@ -332,6 +341,7 @@ siglip_large_patch16_256 = ModelMeta(
|
|
|
332
341
|
siglip_large_patch16_384 = ModelMeta(
|
|
333
342
|
loader=SiglipModelWrapper, # type: ignore
|
|
334
343
|
name="google/siglip-large-patch16-384",
|
|
344
|
+
model_type=["dense"],
|
|
335
345
|
languages=["eng-Latn"],
|
|
336
346
|
revision="ce005573a40965dfd21fd937fbdeeebf2439fc35",
|
|
337
347
|
release_date="2024-01-08",
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
"""ATLES Champion Embedding Model for MTEB."""
|
|
2
|
+
|
|
3
|
+
from mteb.models.model_meta import ModelMeta
|
|
4
|
+
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
5
|
+
|
|
6
|
+
spartan8806_atles_champion_embedding = ModelMeta(
|
|
7
|
+
loader=sentence_transformers_loader,
|
|
8
|
+
name="spartan8806/atles-champion-embedding",
|
|
9
|
+
model_type=["dense"],
|
|
10
|
+
languages=["eng-Latn"],
|
|
11
|
+
open_weights=True,
|
|
12
|
+
revision="d4c74d7000bbd25f3597fc0f2dcde59ef1386e8f",
|
|
13
|
+
release_date="2025-11-15",
|
|
14
|
+
n_parameters=110_000_000,
|
|
15
|
+
memory_usage_mb=420,
|
|
16
|
+
max_tokens=512,
|
|
17
|
+
embed_dim=768,
|
|
18
|
+
license="apache-2.0",
|
|
19
|
+
similarity_fn_name="cosine",
|
|
20
|
+
framework=["Sentence Transformers"],
|
|
21
|
+
reference="https://huggingface.co/spartan8806/atles-champion-embedding",
|
|
22
|
+
use_instructions=False,
|
|
23
|
+
training_datasets={"STSBenchmark"},
|
|
24
|
+
adapted_from="sentence-transformers/all-mpnet-base-v2",
|
|
25
|
+
public_training_code=None,
|
|
26
|
+
public_training_data=None,
|
|
27
|
+
citation="""@article{conner2025epistemic,
|
|
28
|
+
title={The Epistemic Barrier: How RLHF Makes AI Consciousness Empirically Undecidable},
|
|
29
|
+
author={Conner (spartan8806)},
|
|
30
|
+
journal={ATLES Research Papers},
|
|
31
|
+
year={2025},
|
|
32
|
+
note={Cross-model validation study (Phoenix, Grok, Gemini, Claude)}
|
|
33
|
+
}""",
|
|
34
|
+
)
|
|
@@ -59,6 +59,7 @@ stella_en_400m = ModelMeta(
|
|
|
59
59
|
torch_dtype="auto",
|
|
60
60
|
),
|
|
61
61
|
name="NovaSearch/stella_en_400M_v5",
|
|
62
|
+
model_type=["dense"],
|
|
62
63
|
languages=["eng-Latn"],
|
|
63
64
|
open_weights=True,
|
|
64
65
|
use_instructions=True,
|
|
@@ -87,6 +88,7 @@ stella_en_1_5b = ModelMeta(
|
|
|
87
88
|
torch_dtype="auto",
|
|
88
89
|
),
|
|
89
90
|
name="NovaSearch/stella_en_1.5B_v5",
|
|
91
|
+
model_type=["dense"],
|
|
90
92
|
languages=["eng-Latn"],
|
|
91
93
|
open_weights=True,
|
|
92
94
|
use_instructions=True,
|
|
@@ -109,6 +111,7 @@ stella_en_1_5b = ModelMeta(
|
|
|
109
111
|
stella_large_zh_v3_1792d = ModelMeta(
|
|
110
112
|
loader=sentence_transformers_loader,
|
|
111
113
|
name="dunzhang/stella-large-zh-v3-1792d",
|
|
114
|
+
model_type=["dense"],
|
|
112
115
|
languages=["zho-Hans"],
|
|
113
116
|
open_weights=True,
|
|
114
117
|
revision="d5d39eb8cd11c80a63df53314e59997074469f09",
|
|
@@ -135,6 +138,7 @@ stella_large_zh_v3_1792d = ModelMeta(
|
|
|
135
138
|
stella_base_zh_v3_1792d = ModelMeta(
|
|
136
139
|
loader=sentence_transformers_loader,
|
|
137
140
|
name="infgrad/stella-base-zh-v3-1792d",
|
|
141
|
+
model_type=["dense"],
|
|
138
142
|
languages=["zho-Hans"],
|
|
139
143
|
open_weights=True,
|
|
140
144
|
revision="82254892a0fba125aa2abf3a4800d2dd12821343",
|
|
@@ -162,6 +166,7 @@ stella_base_zh_v3_1792d = ModelMeta(
|
|
|
162
166
|
stella_mrl_large_zh_v3_5_1792d = ModelMeta(
|
|
163
167
|
loader=sentence_transformers_loader,
|
|
164
168
|
name="dunzhang/stella-mrl-large-zh-v3.5-1792d",
|
|
169
|
+
model_type=["dense"],
|
|
165
170
|
languages=["zho-Hans"],
|
|
166
171
|
open_weights=True,
|
|
167
172
|
revision="17bb1c32a93a8fc5f6fc9e91d5ea86da99983cfe",
|
|
@@ -185,6 +190,7 @@ stella_mrl_large_zh_v3_5_1792d = ModelMeta(
|
|
|
185
190
|
zpoint_large_embedding_zh = ModelMeta(
|
|
186
191
|
loader=sentence_transformers_loader,
|
|
187
192
|
name="iampanda/zpoint_large_embedding_zh",
|
|
193
|
+
model_type=["dense"],
|
|
188
194
|
languages=["zho-Hans"],
|
|
189
195
|
open_weights=True,
|
|
190
196
|
revision="b1075144f440ab4409c05622c1179130ebd57d03",
|