mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -39,8 +39,7 @@ class SpanishNewsClassification(AbsTaskClassification):
|
|
|
39
39
|
class SpanishNewsClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="SpanishNewsClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="A Spanish dataset for news classification. The dataset includes articles from reputable Spanish news sources spanning 12 different categories. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://huggingface.co/datasets/MarcOrfilaCarreras/spanish-news",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/spanish_news",
|
|
@@ -56,8 +56,7 @@ Vylomova, Ekaterina},
|
|
|
56
56
|
class SpanishSentimentClassificationV2(AbsTaskClassification):
|
|
57
57
|
metadata = TaskMetadata(
|
|
58
58
|
name="SpanishSentimentClassification.v2",
|
|
59
|
-
description="
|
|
60
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
59
|
+
description="A Spanish dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
61
60
|
reference="https://huggingface.co/datasets/sepidmnorozy/Spanish_sentiment",
|
|
62
61
|
dataset={
|
|
63
62
|
"path": "mteb/spanish_sentiment",
|
|
@@ -45,8 +45,7 @@ class SiswatiNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class SiswatiNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="SiswatiNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="Siswati News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/siswati_news",
|
|
@@ -49,8 +49,7 @@ class SwahiliNewsClassification(AbsTaskClassification):
|
|
|
49
49
|
class SwahiliNewsClassificationV2(AbsTaskClassification):
|
|
50
50
|
metadata = TaskMetadata(
|
|
51
51
|
name="SwahiliNewsClassification.v2",
|
|
52
|
-
description="
|
|
53
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
52
|
+
description="Dataset for Swahili News Classification, categorized with 6 domains (Local News (Kitaifa), International News (Kimataifa), Finance News (Uchumi), Health News (Afya), Sports News (Michezo), and Entertainment News (Burudani)). Building and Optimizing Swahili Language Models: Techniques, Embeddings, and Datasets This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
54
53
|
reference="https://huggingface.co/datasets/Mollel/SwahiliNewsClassification",
|
|
55
54
|
dataset={
|
|
56
55
|
"path": "mteb/swahili_news",
|
|
@@ -50,8 +50,7 @@ class DalajClassificationV2(AbsTaskClassification):
|
|
|
50
50
|
"revision": "ecf6f2d83e8e85816ec3974896557a4aafce4f3e",
|
|
51
51
|
"name": "dalaj",
|
|
52
52
|
},
|
|
53
|
-
description="
|
|
54
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
53
|
+
description="A Swedish dataset for linguistic acceptability. Available as a part of Superlim. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
55
54
|
reference="https://spraakbanken.gu.se/en/resources/superlim",
|
|
56
55
|
type="Classification",
|
|
57
56
|
category="t2c",
|
|
@@ -47,8 +47,7 @@ Fishel, Mark},
|
|
|
47
47
|
class SweRecClassificationV2(AbsTaskClassification):
|
|
48
48
|
metadata = TaskMetadata(
|
|
49
49
|
name="SweRecClassification.v2",
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="A Swedish dataset for sentiment classification on review This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://aclanthology.org/2023.nodalida-1.20/",
|
|
53
52
|
dataset={
|
|
54
53
|
"path": "mteb/swe_rec",
|
|
@@ -32,8 +32,7 @@ class SwedishSentimentClassification(AbsTaskClassification):
|
|
|
32
32
|
class SwedishSentimentClassificationV2(AbsTaskClassification):
|
|
33
33
|
metadata = TaskMetadata(
|
|
34
34
|
name="SwedishSentimentClassification.v2",
|
|
35
|
-
description="
|
|
36
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
35
|
+
description="Dataset of Swedish reviews scarped from various public available websites This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
37
36
|
reference="https://huggingface.co/datasets/swedish_reviews",
|
|
38
37
|
dataset={
|
|
39
38
|
"path": "mteb/swedish_sentiment",
|
|
@@ -45,8 +45,7 @@ class TamilNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class TamilNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="TamilNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="A Tamil dataset for 6-class classification of Tamil news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://github.com/vanangamudi/tamil-news-classification",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/tamil_news",
|
|
@@ -36,8 +36,7 @@ class TeluguAndhraJyotiNewsClassification(AbsTaskClassification):
|
|
|
36
36
|
class TeluguAndhraJyotiNewsClassificationV2(AbsTaskClassification):
|
|
37
37
|
metadata = TaskMetadata(
|
|
38
38
|
name="TeluguAndhraJyotiNewsClassification.v2",
|
|
39
|
-
description="
|
|
40
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
39
|
+
description="A Telugu dataset for 5-class classification of Telugu news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
41
40
|
reference="https://github.com/AnushaMotamarri/Telugu-Newspaper-Article-Dataset",
|
|
42
41
|
dataset={
|
|
43
42
|
"path": "mteb/telugu_andhra_jyoti_news",
|
|
@@ -46,8 +46,7 @@ Polpanumas, Charin},
|
|
|
46
46
|
class WisesightSentimentClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="WisesightSentimentClassification.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment label (positive, neutral, negative, question) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://github.com/PyThaiNLP/wisesight-sentiment",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/wisesight_sentiment",
|
|
@@ -43,8 +43,7 @@ class TswanaNewsClassification(AbsTaskClassification):
|
|
|
43
43
|
class TswanaNewsClassificationV2(AbsTaskClassification):
|
|
44
44
|
metadata = TaskMetadata(
|
|
45
45
|
name="TswanaNewsClassification.v2",
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="Tswana News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17",
|
|
49
48
|
dataset={
|
|
50
49
|
"path": "mteb/tswana_news",
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from .turkish_constitutional_court import (
|
|
2
|
+
TurkishConstitutionalCourtViolation,
|
|
3
|
+
)
|
|
1
4
|
from .turkish_movie_sentiment_classification import (
|
|
2
5
|
TurkishMovieSentimentClassification,
|
|
3
6
|
TurkishMovieSentimentClassificationV2,
|
|
@@ -8,6 +11,7 @@ from .turkish_product_sentiment_classification import (
|
|
|
8
11
|
)
|
|
9
12
|
|
|
10
13
|
__all__ = [
|
|
14
|
+
"TurkishConstitutionalCourtViolation",
|
|
11
15
|
"TurkishMovieSentimentClassification",
|
|
12
16
|
"TurkishMovieSentimentClassificationV2",
|
|
13
17
|
"TurkishProductSentimentClassification",
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
from mteb.abstasks.classification import AbsTaskClassification
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class TurkishConstitutionalCourtViolation(AbsTaskClassification):
|
|
6
|
+
# Normalize column names after load_data renames them.
|
|
7
|
+
label_column_name = "label"
|
|
8
|
+
input_column_name = "text"
|
|
9
|
+
|
|
10
|
+
metadata = TaskMetadata(
|
|
11
|
+
name="TurkishConstitutionalCourtViolation",
|
|
12
|
+
description="Binary classification of Turkish constitutional court decisions: Violation vs No violation.",
|
|
13
|
+
reference="https://huggingface.co/datasets/KocLab-Bilkent/turkish-constitutional-court",
|
|
14
|
+
type="Classification",
|
|
15
|
+
category="t2c",
|
|
16
|
+
modalities=["text"],
|
|
17
|
+
eval_splits=["test"],
|
|
18
|
+
eval_langs=["tur-Latn"],
|
|
19
|
+
main_score="f1",
|
|
20
|
+
dataset={
|
|
21
|
+
"path": "denizgulal/turkish-constitutional-court-violation-clean",
|
|
22
|
+
"revision": "333f49b7ddc72fa4a86ec5bd756a28c585311c74",
|
|
23
|
+
},
|
|
24
|
+
date=("2000-01-01", "2023-02-20"), # dataset card last updated Feb 20, 2023
|
|
25
|
+
domains=["Legal", "Non-fiction"],
|
|
26
|
+
task_subtypes=["Political classification"],
|
|
27
|
+
license="cc-by-4.0",
|
|
28
|
+
annotations_creators="human-annotated",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation=r"""
|
|
32
|
+
@article{mumcuoglu2021natural,
|
|
33
|
+
author = {Mumcuoglu, Emre and Ozturk, Ceyhun E. and Ozaktas, Haldun M. and Koc, Aykut},
|
|
34
|
+
journal = {Information Processing and Management},
|
|
35
|
+
number = {5},
|
|
36
|
+
title = {Natural language processing in law: Prediction of outcomes in the higher courts of Turkey},
|
|
37
|
+
volume = {58},
|
|
38
|
+
year = {2021},
|
|
39
|
+
}
|
|
40
|
+
""",
|
|
41
|
+
)
|
|
@@ -45,8 +45,7 @@ class TurkishMovieSentimentClassification(AbsTaskClassification):
|
|
|
45
45
|
class TurkishMovieSentimentClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="TurkishMovieSentimentClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="Turkish Movie Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/turkish_movie_sentiment",
|
|
@@ -40,8 +40,7 @@ class TurkishProductSentimentClassification(AbsTaskClassification):
|
|
|
40
40
|
class TurkishProductSentimentClassificationV2(AbsTaskClassification):
|
|
41
41
|
metadata = TaskMetadata(
|
|
42
42
|
name="TurkishProductSentimentClassification.v2",
|
|
43
|
-
description="
|
|
44
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
43
|
+
description="Turkish Product Review Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
45
44
|
reference="https://www.win.tue.nl/~mpechen/publications/pubs/MT_WISDOM2013.pdf",
|
|
46
45
|
dataset={
|
|
47
46
|
"path": "mteb/turkish_product_sentiment",
|
|
@@ -5,13 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class UkrFormalityClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="UkrFormalityClassification",
|
|
8
|
-
description=""
|
|
9
|
-
This dataset contains Ukrainian Formality Classification dataset obtained by
|
|
10
|
-
trainslating English GYAFC data.
|
|
11
|
-
English data source: https://aclanthology.org/N18-1012/
|
|
12
|
-
Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
|
|
13
|
-
Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.
|
|
14
|
-
""",
|
|
8
|
+
description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.",
|
|
15
9
|
dataset={
|
|
16
10
|
"path": "ukr-detect/ukr-formality-dataset-translated-gyafc",
|
|
17
11
|
"revision": "671d1e6bbf45a74ef21af351fd4ef7b32b7856f8",
|
|
@@ -56,14 +50,7 @@ Tetreault, Joel},
|
|
|
56
50
|
class UkrFormalityClassificationV2(AbsTaskClassification):
|
|
57
51
|
metadata = TaskMetadata(
|
|
58
52
|
name="UkrFormalityClassification.v2",
|
|
59
|
-
description=""
|
|
60
|
-
This dataset contains Ukrainian Formality Classification dataset obtained by
|
|
61
|
-
trainslating English GYAFC data.
|
|
62
|
-
English data source: https://aclanthology.org/N18-1012/
|
|
63
|
-
Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M
|
|
64
|
-
Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal.
|
|
65
|
-
|
|
66
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
53
|
+
description="This dataset contains Ukrainian Formality Classification dataset obtained by trainslating English GYAFC data. English data source: https://aclanthology.org/N18-1012/ Translation into Ukrainian language using model: https://huggingface.co/facebook/nllb-200-distilled-600M Additionally, the dataset was balanced, with labels: 0 - informal, 1 - formal. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
67
54
|
dataset={
|
|
68
55
|
"path": "mteb/ukr_formality",
|
|
69
56
|
"revision": "e0b2dfa57d505f207deb571e58b0bd0b81180bd4",
|
|
@@ -40,8 +40,7 @@ class UrduRomanSentimentClassification(AbsTaskClassification):
|
|
|
40
40
|
class UrduRomanSentimentClassificationV2(AbsTaskClassification):
|
|
41
41
|
metadata = TaskMetadata(
|
|
42
42
|
name="UrduRomanSentimentClassification.v2",
|
|
43
|
-
description="
|
|
44
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
43
|
+
description="The Roman Urdu dataset is a data corpus comprising of more than 20000 records tagged for sentiment (Positive, Negative, Neutral) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
45
44
|
reference="https://archive.ics.uci.edu/dataset/458/roman+urdu+data+set",
|
|
46
45
|
dataset={
|
|
47
46
|
"path": "mteb/urdu_roman_sentiment",
|
|
@@ -11,12 +11,7 @@ class AmazonCounterfactualVNClassification(AbsTaskClassification):
|
|
|
11
11
|
"path": "GreenNode/amazon-counterfactual-vn",
|
|
12
12
|
"revision": "b48bc27d383cfca5b6a47135a52390fa5f66b253",
|
|
13
13
|
},
|
|
14
|
-
description="
|
|
15
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
16
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
17
|
-
- Applies advanced embedding models to filter the translations.
|
|
18
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
|
|
19
|
-
""",
|
|
14
|
+
description="A collection of translated Amazon customer reviews annotated for counterfactual detection pair classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
20
15
|
reference="https://arxiv.org/abs/2104.06893",
|
|
21
16
|
category="t2c",
|
|
22
17
|
type="Classification",
|
|
@@ -5,12 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class AmazonPolarityVNClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="AmazonPolarityVNClassification",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.
|
|
13
|
-
""",
|
|
8
|
+
description="A collection of translated Amazon customer reviews annotated for polarity classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
14
9
|
reference="https://huggingface.co/datasets/amazon_polarity",
|
|
15
10
|
dataset={
|
|
16
11
|
"path": "GreenNode/amazon-polarity-vn",
|
|
@@ -9,11 +9,7 @@ class AmazonReviewsVNClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "GreenNode/amazon-reviews-multi-vn",
|
|
10
10
|
"revision": "27da94deb6d4f44af789a3d70750fa506b79f189",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A collection of translated Amazon reviews specifically designed to aid research in multilingual text classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://arxiv.org/abs/2010.02573",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="Classification",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class Banking77VNClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="Banking77VNClassification",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset composed of online banking queries annotated with their corresponding intents. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
reference="https://arxiv.org/abs/2003.04807",
|
|
14
10
|
dataset={
|
|
15
11
|
"path": "GreenNode/banking77-vn",
|
|
@@ -7,11 +7,7 @@ class EmotionVNClassification(AbsTaskClassification):
|
|
|
7
7
|
|
|
8
8
|
metadata = TaskMetadata(
|
|
9
9
|
name="EmotionVNClassification",
|
|
10
|
-
description="
|
|
11
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
12
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
13
|
-
- Applies advanced embedding models to filter the translations.
|
|
14
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
10
|
+
description="Emotion is a translated dataset of Vietnamese from English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
15
11
|
reference="https://www.aclweb.org/anthology/D18-1404",
|
|
16
12
|
dataset={
|
|
17
13
|
"path": "GreenNode/emotion-vn",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class ImdbVNClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="ImdbVNClassification",
|
|
8
|
-
description="
|
|
9
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
10
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
11
|
-
- Applies advanced embedding models to filter the translations.
|
|
12
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
8
|
+
description="A translated dataset of large movie reviews annotated for sentiment classification. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
13
9
|
dataset={
|
|
14
10
|
"path": "GreenNode/imdb-vn",
|
|
15
11
|
"revision": "0dccb383ee26c90c99d03c8674cf40de642f099a",
|
|
@@ -9,11 +9,7 @@ class MassiveIntentVNClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "GreenNode/amazon-massive-intent-vn",
|
|
10
10
|
"revision": "35c7ced69f958dbbaa24f792db4a9250e461866d",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="Classification",
|
|
@@ -9,11 +9,7 @@ class MassiveScenarioVNClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "GreenNode/amazon-massive-scenario-vn",
|
|
10
10
|
"revision": "a82e282d9f5aec1a8cf7d868ce40f70669c16b89",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://arxiv.org/abs/2204.08582#:~:text=MASSIVE%20contains%201M%20realistic%2C%20parallel,diverse%20languages%20from%2029%20genera.",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="Classification",
|
|
@@ -9,11 +9,7 @@ class MTOPDomainVNClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "GreenNode/mtop-domain-vn",
|
|
10
10
|
"revision": "6e1ec8c54c018151c77472d94b1c0765230cf6ca",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://arxiv.org/pdf/2008.09335.pdf",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="Classification",
|
|
@@ -9,11 +9,7 @@ class MTOPIntentVNClassification(AbsTaskClassification):
|
|
|
9
9
|
"path": "GreenNode/mtop-intent-vn",
|
|
10
10
|
"revision": "c4e81a5c9a813a0142d905e261e5a446cc6fbc4a",
|
|
11
11
|
},
|
|
12
|
-
description="
|
|
13
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
14
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
15
|
-
- Applies advanced embedding models to filter the translations.
|
|
16
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
12
|
+
description="A translated dataset from MTOP: Multilingual Task-Oriented Semantic Parsing The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
17
13
|
reference="https://arxiv.org/pdf/2008.09335.pdf",
|
|
18
14
|
category="t2c",
|
|
19
15
|
type="Classification",
|
|
@@ -7,11 +7,7 @@ class ToxicConversationsVNClassification(AbsTaskClassification):
|
|
|
7
7
|
|
|
8
8
|
metadata = TaskMetadata(
|
|
9
9
|
name="ToxicConversationsVNClassification",
|
|
10
|
-
description="
|
|
11
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
12
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
13
|
-
- Applies advanced embedding models to filter the translations.
|
|
14
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
10
|
+
description="A translated dataset from Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
15
11
|
reference="https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview",
|
|
16
12
|
dataset={
|
|
17
13
|
"path": "GreenNode/toxic-conversations-50k-vn",
|
|
@@ -7,11 +7,7 @@ class TweetSentimentExtractionVNClassification(AbsTaskClassification):
|
|
|
7
7
|
|
|
8
8
|
metadata = TaskMetadata(
|
|
9
9
|
name="TweetSentimentExtractionVNClassification",
|
|
10
|
-
description="
|
|
11
|
-
The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system:
|
|
12
|
-
- The system uses large language models (LLMs), specifically Coherence's Aya model, for translation.
|
|
13
|
-
- Applies advanced embedding models to filter the translations.
|
|
14
|
-
- Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.""",
|
|
10
|
+
description="A collection of translated tweets annotated for sentiment extraction. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
15
11
|
reference="https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview",
|
|
16
12
|
dataset={
|
|
17
13
|
"path": "GreenNode/tweet-sentiment-extraction-vn",
|
|
@@ -45,8 +45,7 @@ class VieStudentFeedbackClassification(AbsTaskClassification):
|
|
|
45
45
|
class VieStudentFeedbackClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="VieStudentFeedbackClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="A Vietnamese dataset for classification of student feedback This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://ieeexplore.ieee.org/document/8573337",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/vie_student_feedback",
|
|
@@ -79,8 +79,7 @@ Lan, Zhenzhong },
|
|
|
79
79
|
class TNewsV2(AbsTaskClassification):
|
|
80
80
|
metadata = TaskMetadata(
|
|
81
81
|
name="TNews.v2",
|
|
82
|
-
description="
|
|
83
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
82
|
+
description="Short Text Classification for News This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
84
83
|
reference="https://www.cluebenchmarks.com/introduce.html",
|
|
85
84
|
dataset={
|
|
86
85
|
"path": "mteb/t_news",
|
|
@@ -229,8 +228,7 @@ Lan, Zhenzhong },
|
|
|
229
228
|
class IFlyTekV2(AbsTaskClassification):
|
|
230
229
|
metadata = TaskMetadata(
|
|
231
230
|
name="IFlyTek.v2",
|
|
232
|
-
description="
|
|
233
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
231
|
+
description="Long Text classification for the description of Apps This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
234
232
|
reference="https://www.cluebenchmarks.com/introduce.html",
|
|
235
233
|
dataset={
|
|
236
234
|
"path": "mteb/i_fly_tek",
|
|
@@ -335,8 +333,7 @@ class MultilingualSentiment(AbsTaskClassification):
|
|
|
335
333
|
class MultilingualSentimentV2(AbsTaskClassification):
|
|
336
334
|
metadata = TaskMetadata(
|
|
337
335
|
name="MultilingualSentiment.v2",
|
|
338
|
-
description="
|
|
339
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
336
|
+
description="A collection of multilingual sentiments datasets grouped into 3 classes -- positive, neutral, negative This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
340
337
|
reference="https://github.com/tyqiangz/multilingual-sentiment-datasets",
|
|
341
338
|
dataset={
|
|
342
339
|
"path": "mteb/multilingual_sentiment",
|
|
@@ -403,8 +400,7 @@ class JDReview(AbsTaskClassification):
|
|
|
403
400
|
class JDReviewV2(AbsTaskClassification):
|
|
404
401
|
metadata = TaskMetadata(
|
|
405
402
|
name="JDReview.v2",
|
|
406
|
-
description="
|
|
407
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
403
|
+
description="review for iphone This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
408
404
|
reference="https://aclanthology.org/2023.nodalida-1.20/",
|
|
409
405
|
dataset={
|
|
410
406
|
"path": "mteb/jd_review",
|
|
@@ -514,8 +510,7 @@ class Waimai(AbsTaskClassification):
|
|
|
514
510
|
class WaimaiV2(AbsTaskClassification):
|
|
515
511
|
metadata = TaskMetadata(
|
|
516
512
|
name="Waimai.v2",
|
|
517
|
-
description="
|
|
518
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
513
|
+
description="Sentiment Analysis of user reviews on takeaway platforms This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
519
514
|
reference="https://aclanthology.org/2023.nodalida-1.20/",
|
|
520
515
|
dataset={
|
|
521
516
|
"path": "mteb/waimai",
|
|
@@ -48,8 +48,7 @@ class YueOpenriceReviewClassification(AbsTaskClassification):
|
|
|
48
48
|
class YueOpenriceReviewClassificationV2(AbsTaskClassification):
|
|
49
49
|
metadata = TaskMetadata(
|
|
50
50
|
name="YueOpenriceReviewClassification.v2",
|
|
51
|
-
description="
|
|
52
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
51
|
+
description="A Cantonese dataset for review classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
53
52
|
reference="https://github.com/Christainx/Dataset_Cantonese_Openrice",
|
|
54
53
|
dataset={
|
|
55
54
|
"path": "mteb/yue_openrice_review",
|
|
@@ -45,8 +45,7 @@ class IsiZuluNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class IsiZuluNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="IsiZuluNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="isiZulu News Classification Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
reference="https://huggingface.co/datasets/dsfsi/za-isizulu-siswati-news",
|
|
51
50
|
dataset={
|
|
52
51
|
"path": "mteb/isi_zulu_news",
|
|
@@ -8,9 +8,7 @@ class MewsC16JaClustering(AbsTaskClustering):
|
|
|
8
8
|
|
|
9
9
|
metadata = TaskMetadata(
|
|
10
10
|
name="MewsC16JaClustering",
|
|
11
|
-
description="
|
|
12
|
-
This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories.
|
|
13
|
-
More detailed information is available in the Appendix E of the citation.""",
|
|
11
|
+
description="MewsC-16 (Multilingual Short Text Clustering Dataset for News in 16 languages) is constructed from Wikinews. This dataset is the Japanese split of MewsC-16, containing topic sentences from Wikinews articles in 12 categories. More detailed information is available in the Appendix E of the citation.",
|
|
14
12
|
reference="https://github.com/sbintuitions/JMTEB",
|
|
15
13
|
dataset={
|
|
16
14
|
"path": "mteb/MewsC16JaClustering",
|
|
@@ -210,12 +210,7 @@ class SIB200ClusteringFast(AbsTaskClustering):
|
|
|
210
210
|
|
|
211
211
|
metadata = TaskMetadata(
|
|
212
212
|
name="SIB200ClusteringS2S",
|
|
213
|
-
description="
|
|
214
|
-
dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is
|
|
215
|
-
annotated in English for the topics, science/technology, travel, politics, sports,
|
|
216
|
-
health, entertainment, and geography. The labels are then transferred to the other languages
|
|
217
|
-
in Flores-200 which are human-translated.
|
|
218
|
-
""",
|
|
213
|
+
description="SIB-200 is the largest publicly available topic classification dataset based on Flores-200 covering 205 languages and dialects annotated. The dataset is annotated in English for the topics, science/technology, travel, politics, sports, health, entertainment, and geography. The labels are then transferred to the other languages in Flores-200 which are human-translated.",
|
|
219
214
|
reference="https://arxiv.org/abs/2309.07445",
|
|
220
215
|
dataset={
|
|
221
216
|
"path": "mteb/sib200",
|
|
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringP2P(AbsTaskClustering):
|
|
|
28
28
|
dialect=[],
|
|
29
29
|
sample_creation="found",
|
|
30
30
|
bibtex_citation="",
|
|
31
|
+
prompt={
|
|
32
|
+
"query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels en de inhoud"
|
|
33
|
+
},
|
|
31
34
|
)
|
|
32
35
|
|
|
33
36
|
def dataset_transform(self):
|
|
@@ -28,6 +28,9 @@ class DutchNewsArticlesClusteringS2S(AbsTaskClustering):
|
|
|
28
28
|
dialect=[],
|
|
29
29
|
sample_creation="found",
|
|
30
30
|
bibtex_citation="",
|
|
31
|
+
prompt={
|
|
32
|
+
"query": "Identificeer de hoofdcategorie van nieuwsartikelen op basis van de titels"
|
|
33
|
+
},
|
|
31
34
|
)
|
|
32
35
|
|
|
33
36
|
def dataset_transform(self):
|