mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (458) hide show
  1. mteb/__init__.py +4 -0
  2. mteb/_create_dataloaders.py +6 -3
  3. mteb/_evaluators/any_sts_evaluator.py +21 -12
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +1 -1
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
  7. mteb/_evaluators/pair_classification_evaluator.py +30 -38
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_data_filter/__init__.py +0 -0
  13. mteb/abstasks/_data_filter/filters.py +125 -0
  14. mteb/abstasks/_data_filter/task_pipelines.py +102 -0
  15. mteb/abstasks/_statistics_calculation.py +6 -2
  16. mteb/abstasks/classification.py +0 -2
  17. mteb/abstasks/clustering.py +1 -1
  18. mteb/abstasks/clustering_legacy.py +3 -0
  19. mteb/abstasks/multilabel_classification.py +10 -3
  20. mteb/abstasks/pair_classification.py +8 -1
  21. mteb/abstasks/sts.py +7 -0
  22. mteb/abstasks/task_metadata.py +1 -0
  23. mteb/benchmarks/_create_table.py +84 -37
  24. mteb/benchmarks/benchmark.py +74 -15
  25. mteb/benchmarks/benchmarks/__init__.py +8 -0
  26. mteb/benchmarks/benchmarks/benchmarks.py +259 -15
  27. mteb/benchmarks/get_benchmark.py +2 -0
  28. mteb/cache.py +47 -10
  29. mteb/deprecated_evaluator.py +8 -13
  30. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  31. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  32. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  33. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  34. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  35. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  36. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  37. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  38. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  39. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  40. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  41. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  42. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  43. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  44. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  45. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  46. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  47. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  48. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  49. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  50. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  51. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  53. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  54. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  55. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  56. mteb/evaluate.py +65 -45
  57. mteb/leaderboard/app.py +268 -133
  58. mteb/leaderboard/benchmark_selector.py +14 -5
  59. mteb/leaderboard/figures.py +13 -15
  60. mteb/leaderboard/table.py +82 -17
  61. mteb/models/__init__.py +4 -1
  62. mteb/models/abs_encoder.py +21 -17
  63. mteb/models/cache_wrappers/__init__.py +2 -1
  64. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
  65. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  66. mteb/models/get_model_meta.py +3 -114
  67. mteb/models/instruct_wrapper.py +5 -1
  68. mteb/models/model_implementations/align_models.py +7 -0
  69. mteb/models/model_implementations/amazon_models.py +1 -0
  70. mteb/models/model_implementations/andersborges.py +65 -0
  71. mteb/models/model_implementations/ara_models.py +8 -0
  72. mteb/models/model_implementations/arctic_models.py +8 -0
  73. mteb/models/model_implementations/b1ade_models.py +1 -0
  74. mteb/models/model_implementations/bedrock_models.py +4 -0
  75. mteb/models/model_implementations/bge_models.py +60 -0
  76. mteb/models/model_implementations/bica_model.py +35 -0
  77. mteb/models/model_implementations/blip2_models.py +11 -0
  78. mteb/models/model_implementations/blip_models.py +27 -0
  79. mteb/models/model_implementations/bm25.py +1 -0
  80. mteb/models/model_implementations/bmretriever_models.py +4 -0
  81. mteb/models/model_implementations/cadet_models.py +9 -0
  82. mteb/models/model_implementations/cde_models.py +14 -0
  83. mteb/models/model_implementations/clip_models.py +3 -0
  84. mteb/models/model_implementations/clips_models.py +100 -0
  85. mteb/models/model_implementations/codefuse_models.py +162 -0
  86. mteb/models/model_implementations/codesage_models.py +15 -0
  87. mteb/models/model_implementations/cohere_models.py +8 -1
  88. mteb/models/model_implementations/cohere_v.py +5 -0
  89. mteb/models/model_implementations/colpali_models.py +14 -6
  90. mteb/models/model_implementations/colqwen_models.py +271 -1
  91. mteb/models/model_implementations/colsmol_models.py +2 -0
  92. mteb/models/model_implementations/conan_models.py +1 -0
  93. mteb/models/model_implementations/dino_models.py +171 -0
  94. mteb/models/model_implementations/e5_instruct.py +4 -0
  95. mteb/models/model_implementations/e5_models.py +12 -101
  96. mteb/models/model_implementations/e5_v.py +1 -0
  97. mteb/models/model_implementations/eagerworks_models.py +164 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  99. mteb/models/model_implementations/en_code_retriever.py +1 -0
  100. mteb/models/model_implementations/euler_models.py +32 -0
  101. mteb/models/model_implementations/evaclip_models.py +4 -0
  102. mteb/models/model_implementations/fa_models.py +58 -0
  103. mteb/models/model_implementations/facebookai.py +193 -0
  104. mteb/models/model_implementations/geogpt_models.py +1 -0
  105. mteb/models/model_implementations/gme_v_models.py +11 -5
  106. mteb/models/model_implementations/google_models.py +16 -5
  107. mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
  108. mteb/models/model_implementations/gritlm_models.py +2 -0
  109. mteb/models/model_implementations/gte_models.py +78 -0
  110. mteb/models/model_implementations/hinvec_models.py +1 -0
  111. mteb/models/model_implementations/human.py +1 -0
  112. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  113. mteb/models/model_implementations/inf_models.py +2 -0
  114. mteb/models/model_implementations/jasper_models.py +255 -2
  115. mteb/models/model_implementations/jina_clip.py +1 -0
  116. mteb/models/model_implementations/jina_models.py +209 -5
  117. mteb/models/model_implementations/kalm_models.py +203 -25
  118. mteb/models/model_implementations/kblab.py +31 -0
  119. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  120. mteb/models/model_implementations/kfst.py +25 -0
  121. mteb/models/model_implementations/kowshik24_models.py +32 -0
  122. mteb/models/model_implementations/lens_models.py +2 -0
  123. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  124. mteb/models/model_implementations/linq_models.py +3 -2
  125. mteb/models/model_implementations/listconranker.py +1 -1
  126. mteb/models/model_implementations/llm2clip_models.py +3 -0
  127. mteb/models/model_implementations/llm2vec_models.py +8 -0
  128. mteb/models/model_implementations/mcinext_models.py +3 -0
  129. mteb/models/model_implementations/mdbr_models.py +2 -0
  130. mteb/models/model_implementations/misc_models.py +362 -0
  131. mteb/models/model_implementations/mme5_models.py +1 -0
  132. mteb/models/model_implementations/moco_models.py +11 -0
  133. mteb/models/model_implementations/mod_models.py +191 -0
  134. mteb/models/model_implementations/model2vec_models.py +13 -0
  135. mteb/models/model_implementations/moka_models.py +3 -0
  136. mteb/models/model_implementations/mxbai_models.py +9 -0
  137. mteb/models/model_implementations/nbailab.py +70 -0
  138. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  139. mteb/models/model_implementations/nomic_models.py +156 -4
  140. mteb/models/model_implementations/nomic_models_vision.py +7 -2
  141. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
  142. mteb/models/model_implementations/nvidia_models.py +4 -1
  143. mteb/models/model_implementations/octen_models.py +195 -0
  144. mteb/models/model_implementations/openai_models.py +20 -16
  145. mteb/models/model_implementations/openclip_models.py +24 -0
  146. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  147. mteb/models/model_implementations/ops_moa_models.py +4 -2
  148. mteb/models/model_implementations/pawan_models.py +39 -0
  149. mteb/models/model_implementations/piccolo_models.py +8 -0
  150. mteb/models/model_implementations/promptriever_models.py +8 -4
  151. mteb/models/model_implementations/pylate_models.py +37 -4
  152. mteb/models/model_implementations/qodo_models.py +2 -0
  153. mteb/models/model_implementations/qtack_models.py +1 -0
  154. mteb/models/model_implementations/qwen3_models.py +6 -3
  155. mteb/models/model_implementations/qzhou_models.py +3 -1
  156. mteb/models/model_implementations/random_baseline.py +16 -21
  157. mteb/models/model_implementations/rasgaard_models.py +34 -0
  158. mteb/models/model_implementations/reasonir_model.py +1 -0
  159. mteb/models/model_implementations/repllama_models.py +2 -0
  160. mteb/models/model_implementations/rerankers_custom.py +3 -3
  161. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  162. mteb/models/model_implementations/richinfoai_models.py +1 -0
  163. mteb/models/model_implementations/ru_sentence_models.py +51 -0
  164. mteb/models/model_implementations/ruri_models.py +322 -0
  165. mteb/models/model_implementations/salesforce_models.py +3 -0
  166. mteb/models/model_implementations/samilpwc_models.py +1 -0
  167. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  168. mteb/models/model_implementations/searchmap_models.py +1 -0
  169. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  170. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
  171. mteb/models/model_implementations/seed_models.py +1 -0
  172. mteb/models/model_implementations/sentence_transformers_models.py +57 -0
  173. mteb/models/model_implementations/shuu_model.py +32 -31
  174. mteb/models/model_implementations/siglip_models.py +10 -0
  175. mteb/models/model_implementations/sonar_models.py +1 -0
  176. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  177. mteb/models/model_implementations/stella_models.py +6 -0
  178. mteb/models/model_implementations/tarka_models.py +376 -0
  179. mteb/models/model_implementations/ua_sentence_models.py +10 -0
  180. mteb/models/model_implementations/uae_models.py +1 -0
  181. mteb/models/model_implementations/vdr_models.py +2 -0
  182. mteb/models/model_implementations/vi_vn_models.py +39 -0
  183. mteb/models/model_implementations/vista_models.py +2 -0
  184. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  185. mteb/models/model_implementations/voyage_models.py +15 -0
  186. mteb/models/model_implementations/voyage_v.py +8 -2
  187. mteb/models/model_implementations/xyz_models.py +1 -0
  188. mteb/models/model_implementations/youtu_models.py +1 -0
  189. mteb/models/model_implementations/yuan_models.py +34 -0
  190. mteb/models/model_implementations/yuan_models_en.py +58 -0
  191. mteb/models/model_meta.py +442 -22
  192. mteb/models/search_encoder_index/__init__.py +7 -0
  193. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  194. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  195. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
  196. mteb/models/search_wrappers.py +165 -48
  197. mteb/models/sentence_transformer_wrapper.py +2 -7
  198. mteb/results/benchmark_results.py +88 -47
  199. mteb/results/model_result.py +11 -4
  200. mteb/results/task_result.py +37 -19
  201. mteb/similarity_functions.py +49 -0
  202. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  203. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  204. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  205. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  206. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  207. mteb/tasks/classification/ara/ajgt.py +1 -2
  208. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  209. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  210. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  211. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  212. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  213. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  214. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  215. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  216. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  217. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  218. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  220. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  221. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  222. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  223. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  224. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  225. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  226. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  227. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  228. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  229. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  230. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  231. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  232. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  233. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  234. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  235. mteb/tasks/classification/eng/news_classification.py +1 -2
  236. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  237. mteb/tasks/classification/eng/patent_classification.py +1 -2
  238. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  239. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  240. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  241. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  242. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  243. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  244. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  245. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  246. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  247. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  248. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  249. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  250. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  251. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  252. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  253. mteb/tasks/classification/est/estonian_valence.py +1 -2
  254. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  255. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  256. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  257. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  258. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  259. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  260. mteb/tasks/classification/heb/__init__.py +6 -1
  261. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  262. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  263. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  264. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  265. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  266. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  267. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  268. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  269. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  270. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  271. mteb/tasks/classification/kor/klue_tc.py +1 -2
  272. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  273. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  274. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  275. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  276. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  277. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  278. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  279. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  280. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  281. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  282. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  283. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  284. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  285. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  286. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  287. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  288. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  289. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  290. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  291. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  292. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  293. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  294. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  295. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  296. mteb/tasks/classification/pol/polish_classification.py +3 -6
  297. mteb/tasks/classification/ron/moroco.py +1 -2
  298. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  299. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  300. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  301. mteb/tasks/classification/rus/headline_classification.py +1 -2
  302. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  303. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  304. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  305. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  306. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  307. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  308. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  309. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  310. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  311. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  312. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  313. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  314. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  315. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  316. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  317. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  318. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  319. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  320. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  321. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  322. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  323. mteb/tasks/classification/tur/__init__.py +4 -0
  324. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  325. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  326. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  327. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  328. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  329. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  330. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  331. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  332. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  333. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  334. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  335. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  336. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  337. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  338. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  339. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  340. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  341. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  342. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  343. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  344. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  345. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  346. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  347. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  348. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  349. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  350. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  351. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  352. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  353. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  354. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  355. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  356. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  357. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  358. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  359. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  360. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  361. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  362. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  363. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  364. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  365. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  366. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  367. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  368. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  369. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  370. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  371. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  372. mteb/tasks/pair_classification/rus/terra.py +51 -25
  373. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  374. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  375. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  376. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  377. mteb/tasks/reranking/jpn/__init__.py +9 -1
  378. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  379. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  380. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  381. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  382. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  383. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  384. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  385. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  386. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  387. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  388. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  389. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  390. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  391. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  392. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  393. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  394. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  395. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  396. mteb/tasks/retrieval/kor/__init__.py +2 -1
  397. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  398. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  399. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  400. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  401. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  402. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  403. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  404. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  405. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  406. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  407. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  408. mteb/tasks/retrieval/nld/__init__.py +8 -4
  409. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  410. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  411. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  412. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  413. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  414. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  415. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  416. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  417. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  418. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  419. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  420. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  421. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  422. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  423. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  424. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  425. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  426. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  427. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  428. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  429. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  430. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  431. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  432. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  433. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  434. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  435. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  436. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  437. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  438. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  439. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  440. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  441. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  442. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  443. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  444. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  445. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  446. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  447. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  448. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  449. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  450. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  451. mteb/types/_encoder_io.py +7 -2
  452. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
  453. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
  454. mteb/models/model_implementations/nb_sbert.py +0 -25
  455. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
  456. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
  457. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
  458. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
@@ -47,8 +47,7 @@ class SDSGlovesClassification(AbsTaskClassification):
47
47
  class SDSGlovesClassificationV2(AbsTaskClassification):
48
48
  metadata = TaskMetadata(
49
49
  name="SDSGlovesClassification.v2",
50
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
51
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
50
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
52
51
  reference="https://arxiv.org/abs/2412.00532",
53
52
  dataset={
54
53
  "path": "mteb/sds_gloves",
@@ -7,15 +7,7 @@ _EVAL_SPLITS = ["test"]
7
7
  class ToxicChatClassification(AbsTaskClassification):
8
8
  metadata = TaskMetadata(
9
9
  name="ToxicChatClassification",
10
- description="""This dataset contains toxicity annotations on 10K user
11
- prompts collected from the Vicuna online demo. We utilize a human-AI
12
- collaborative annotation framework to guarantee the quality of annotation
13
- while maintaining a feasible annotation workload. The details of data
14
- collection, pre-processing, and annotation can be found in our paper.
15
- We believe that ToxicChat can be a valuable resource to drive further
16
- advancements toward building a safe and healthy environment for user-AI
17
- interactions.
18
- Only human annotated samples are selected here.""",
10
+ description="This dataset contains toxicity annotations on 10K user prompts collected from the Vicuna online demo. We utilize a human-AI collaborative annotation framework to guarantee the quality of annotation while maintaining a feasible annotation workload. The details of data collection, pre-processing, and annotation can be found in our paper. We believe that ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions. Only human annotated samples are selected here.",
19
11
  reference="https://aclanthology.org/2023.findings-emnlp.311/",
20
12
  dataset={
21
13
  "path": "lmsys/toxic-chat",
@@ -68,16 +60,7 @@ class ToxicChatClassification(AbsTaskClassification):
68
60
  class ToxicChatClassificationV2(AbsTaskClassification):
69
61
  metadata = TaskMetadata(
70
62
  name="ToxicChatClassification.v2",
71
- description="""This dataset contains toxicity annotations on 10K user
72
- prompts collected from the Vicuna online demo. We utilize a human-AI
73
- collaborative annotation framework to guarantee the quality of annotation
74
- while maintaining a feasible annotation workload. The details of data
75
- collection, pre-processing, and annotation can be found in our paper.
76
- We believe that ToxicChat can be a valuable resource to drive further
77
- advancements toward building a safe and healthy environment for user-AI
78
- interactions.
79
- Only human annotated samples are selected here.
80
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
63
+ description="This dataset contains toxicity annotations on 10K user prompts collected from the Vicuna online demo. We utilize a human-AI collaborative annotation framework to guarantee the quality of annotation while maintaining a feasible annotation workload. The details of data collection, pre-processing, and annotation can be found in our paper. We believe that ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions. Only human annotated samples are selected here. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
81
64
  reference="https://aclanthology.org/2023.findings-emnlp.311/",
82
65
  dataset={
83
66
  "path": "mteb/toxic_chat",
@@ -51,8 +51,7 @@ class ToxicConversationsClassification(AbsTaskClassification):
51
51
  class ToxicConversationsClassificationV2(AbsTaskClassification):
52
52
  metadata = TaskMetadata(
53
53
  name="ToxicConversationsClassification.v2",
54
- description="""Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not.
55
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
54
+ description="Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
56
55
  reference="https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview",
57
56
  dataset={
58
57
  "path": "mteb/toxic_conversations",
@@ -46,8 +46,7 @@ class TweetSentimentExtractionClassification(AbsTaskClassification):
46
46
  class TweetSentimentExtractionClassificationV2(AbsTaskClassification):
47
47
  metadata = TaskMetadata(
48
48
  name="TweetSentimentExtractionClassification.v2",
49
- description="""
50
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
49
+ description="This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
51
50
  reference="https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview",
52
51
  dataset={
53
52
  "path": "mteb/tweet_sentiment_extraction",
@@ -5,12 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class TweetTopicSingleClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="TweetTopicSingleClassification",
8
- description="""Topic classification dataset on Twitter with 6 labels. Each instance of
9
- TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
10
- Tweets were preprocessed before the annotation to normalize some artifacts, converting
11
- URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified
12
- usernames, we replace its display name (or account name) with symbols {@}.
13
- """,
8
+ description="Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}.",
14
9
  dataset={
15
10
  "path": "mteb/TweetTopicSingleClassification",
16
11
  "revision": "b4280e921a2760ce34d2dd80a9e5dc8bcbf61785",
@@ -55,13 +50,7 @@ Barbieri, Francesco},
55
50
  class TweetTopicSingleClassificationV2(AbsTaskClassification):
56
51
  metadata = TaskMetadata(
57
52
  name="TweetTopicSingleClassification.v2",
58
- description="""Topic classification dataset on Twitter with 6 labels. Each instance of
59
- TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
60
- Tweets were preprocessed before the annotation to normalize some artifacts, converting
61
- URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified
62
- usernames, we replace its display name (or account name) with symbols {@}.
63
-
64
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
53
+ description="Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
65
54
  dataset={
66
55
  "path": "mteb/tweet_topic_single",
67
56
  "revision": "a7904e26081f987da81ad2cc063e09e714e875d0",
@@ -9,11 +9,7 @@ class UCF101Classification(AbsTaskClassification):
9
9
 
10
10
  metadata = TaskMetadata(
11
11
  name="UCF101",
12
- description="""UCF101 is an action recognition data set of realistic
13
- action videos collected from YouTube, having 101 action categories. This
14
- version of the dataset does not contain images but images saved frame by
15
- frame. Train and test splits are generated based on the authors' first
16
- version train/test list.""",
12
+ description="UCF101 is an action recognition data set of realistic action videos collected from YouTube, having 101 action categories. This version of the dataset does not contain images but images saved frame by frame. Train and test splits are generated based on the authors' first version train/test list.",
17
13
  reference="https://huggingface.co/datasets/flwrlabs/ucf101",
18
14
  dataset={
19
15
  "path": "flwrlabs/ucf101",
@@ -39,8 +39,7 @@ class WikipediaBioMetChemClassification(AbsTaskClassification):
39
39
  class WikipediaBioMetChemClassificationV2(AbsTaskClassification):
40
40
  metadata = TaskMetadata(
41
41
  name="WikipediaBioMetChemClassification.v2",
42
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
43
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
42
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
44
43
  reference="https://arxiv.org/abs/2412.00532",
45
44
  dataset={
46
45
  "path": "mteb/wikipedia_bio_met_chem",
@@ -39,8 +39,7 @@ class WikipediaChemFieldsClassification(AbsTaskClassification):
39
39
  class WikipediaChemFieldsClassificationV2(AbsTaskClassification):
40
40
  metadata = TaskMetadata(
41
41
  name="WikipediaChemFieldsClassification.v2",
42
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
43
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
42
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
44
43
  reference="https://arxiv.org/abs/2412.00532",
45
44
  dataset={
46
45
  "path": "mteb/wikipedia_chem_fields",
@@ -39,8 +39,7 @@ class WikipediaCompChemSpectroscopyClassification(AbsTaskClassification):
39
39
  class WikipediaCompChemSpectroscopyClassificationV2(AbsTaskClassification):
40
40
  metadata = TaskMetadata(
41
41
  name="WikipediaCompChemSpectroscopyClassification.v2",
42
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
43
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
42
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
44
43
  reference="https://arxiv.org/abs/2412.00532",
45
44
  dataset={
46
45
  "path": "mteb/wikipedia_comp_chem_spectroscopy",
@@ -39,8 +39,7 @@ class WikipediaCrystallographyAnalyticalClassification(AbsTaskClassification):
39
39
  class WikipediaCrystallographyAnalyticalClassificationV2(AbsTaskClassification):
40
40
  metadata = TaskMetadata(
41
41
  name="WikipediaCrystallographyAnalyticalClassification.v2",
42
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
43
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
42
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
44
43
  reference="https://arxiv.org/abs/2412.00532",
45
44
  dataset={
46
45
  "path": "mteb/wikipedia_crystallography_analytical",
@@ -39,8 +39,7 @@ class WikipediaTheoreticalAppliedClassification(AbsTaskClassification):
39
39
  class WikipediaTheoreticalAppliedClassificationV2(AbsTaskClassification):
40
40
  metadata = TaskMetadata(
41
41
  name="WikipediaTheoreticalAppliedClassification.v2",
42
- description="""ChemTEB evaluates the performance of text embedding models on chemical domain data.
43
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
42
+ description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
44
43
  reference="https://arxiv.org/abs/2412.00532",
45
44
  dataset={
46
45
  "path": "mteb/wikipedia_theoretical_applied",
@@ -46,8 +46,7 @@ class YahooAnswersTopicsClassification(AbsTaskClassification):
46
46
  class YahooAnswersTopicsClassificationV2(AbsTaskClassification):
47
47
  metadata = TaskMetadata(
48
48
  name="YahooAnswersTopicsClassification.v2",
49
- description="""Dataset composed of questions and answers from Yahoo Answers, categorized into topics.
50
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
49
+ description="Dataset composed of questions and answers from Yahoo Answers, categorized into topics. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
51
50
  reference="https://huggingface.co/datasets/yahoo_answers_topics",
52
51
  dataset={
53
52
  "path": "mteb/yahoo_answers_topics",
@@ -51,8 +51,7 @@ class YelpReviewFullClassification(AbsTaskClassification):
51
51
  class YelpReviewFullClassificationV2(AbsTaskClassification):
52
52
  metadata = TaskMetadata(
53
53
  name="YelpReviewFullClassification.v2",
54
- description="""Yelp Review Full is a dataset for sentiment analysis, containing 5 classes corresponding to ratings 1-5.
55
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
54
+ description="Yelp Review Full is a dataset for sentiment analysis, containing 5 classes corresponding to ratings 1-5. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
56
55
  reference="https://arxiv.org/abs/1509.01626",
57
56
  dataset={
58
57
  "path": "mteb/yelp_review_full",
@@ -61,8 +61,7 @@ class EstonianValenceClassificationV2(AbsTaskClassification):
61
61
  "path": "mteb/estonian_valence",
62
62
  "revision": "8795961e2af5b83bcb8a6928636845ac2b92f92e",
63
63
  },
64
- description="""Dataset containing annotated Estonian news data from the Postimees and Õhtuleht newspapers.
65
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
64
+ description="Dataset containing annotated Estonian news data from the Postimees and Õhtuleht newspapers. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
66
65
  reference="https://figshare.com/articles/dataset/Estonian_Valence_Corpus_Eesti_valentsikorpus/24517054",
67
66
  type="Classification",
68
67
  category="t2c",
@@ -465,8 +465,7 @@ class SynPerTextToneClassification(AbsTaskClassification):
465
465
  class SynPerTextToneClassificationV2(AbsTaskClassification):
466
466
  metadata = TaskMetadata(
467
467
  name="SynPerTextToneClassification.v2",
468
- description="""Persian Text Tone
469
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
468
+ description="Persian Text Tone This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
470
469
  reference="https://mcinext.com/",
471
470
  dataset={
472
471
  "path": "mteb/syn_per_text_tone",
@@ -495,8 +494,7 @@ class SynPerTextToneClassificationV2(AbsTaskClassification):
495
494
  class SynPerTextToneClassificationV3(AbsTaskClassification):
496
495
  metadata = TaskMetadata(
497
496
  name="SynPerTextToneClassification.v3",
498
- description="""This version of the Persian text tone classification dataset is an improved version of its predecessors.
499
- It excludes several classes identified as having low-quality data, leading to a more reliable benchmark.""",
497
+ description="This version of the Persian text tone classification dataset is an improved version of its predecessors. It excludes several classes identified as having low-quality data, leading to a more reliable benchmark.",
500
498
  reference="https://mcinext.com/",
501
499
  dataset={
502
500
  "path": "MCINext/synthetic-persian-text-tone-classification-v3",
@@ -552,8 +550,7 @@ class SIDClassification(AbsTaskClassification):
552
550
  class SIDClassificationV2(AbsTaskClassification):
553
551
  metadata = TaskMetadata(
554
552
  name="SIDClassification.v2",
555
- description="""SID Classification
556
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
553
+ description="SID Classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
557
554
  reference="https://mcinext.com/",
558
555
  dataset={
559
556
  "path": "mteb/sid",
@@ -612,8 +609,7 @@ class DeepSentiPers(AbsTaskClassification):
612
609
  class DeepSentiPersV2(AbsTaskClassification):
613
610
  metadata = TaskMetadata(
614
611
  name="DeepSentiPers.v2",
615
- description="""Persian Sentiment Analysis Dataset
616
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
612
+ description="Persian Sentiment Analysis Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
617
613
  reference="https://github.com/JoyeBright/DeepSentiPers",
618
614
  dataset={
619
615
  "path": "mteb/deep_senti_pers",
@@ -669,8 +665,7 @@ class PersianTextEmotion(AbsTaskClassification):
669
665
  class PersianTextEmotionV2(AbsTaskClassification):
670
666
  metadata = TaskMetadata(
671
667
  name="PersianTextEmotion.v2",
672
- description="""Emotion is a Persian dataset with six basic emotions: anger, fear, joy, love, sadness, and surprise.
673
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
668
+ description="Emotion is a Persian dataset with six basic emotions: anger, fear, joy, love, sadness, and surprise. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
674
669
  reference="https://huggingface.co/datasets/SeyedAli/Persian-Text-Emotion",
675
670
  dataset={
676
671
  "path": "mteb/persian_text_emotion",
@@ -726,8 +721,7 @@ class SentimentDKSF(AbsTaskClassification):
726
721
  class SentimentDKSFV2(AbsTaskClassification):
727
722
  metadata = TaskMetadata(
728
723
  name="SentimentDKSF.v2",
729
- description="""The Sentiment DKSF (Digikala/Snappfood comments) is a dataset for sentiment analysis.
730
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
724
+ description="The Sentiment DKSF (Digikala/Snappfood comments) is a dataset for sentiment analysis. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
731
725
  reference="https://github.com/hezarai/hezar",
732
726
  dataset={
733
727
  "path": "mteb/sentiment_dksf",
@@ -786,8 +780,7 @@ class NLPTwitterAnalysisClassification(AbsTaskClassification):
786
780
  class NLPTwitterAnalysisClassificationV2(AbsTaskClassification):
787
781
  metadata = TaskMetadata(
788
782
  name="NLPTwitterAnalysisClassification.v2",
789
- description="""Twitter Analysis Classification
790
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
783
+ description="Twitter Analysis Classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
791
784
  reference="https://huggingface.co/datasets/hamedhf/nlp_twitter_analysis/tree/main",
792
785
  dataset={
793
786
  "path": "mteb/nlp_twitter_analysis",
@@ -44,8 +44,7 @@ class FilipinoHateSpeechClassification(AbsTaskClassification):
44
44
  class FilipinoHateSpeechClassificationV2(AbsTaskClassification):
45
45
  metadata = TaskMetadata(
46
46
  name="FilipinoHateSpeechClassification.v2",
47
- description="""Filipino Twitter dataset for sentiment classification.
48
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
47
+ description="Filipino Twitter dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
49
48
  reference="https://pcj.csp.org.ph/index.php/pcj/issue/download/29/PCJ%20V14%20N1%20pp1-14%202019",
50
49
  dataset={
51
50
  "path": "mteb/filipino_hate_speech",
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
5
5
  class FinToxicityClassification(AbsTaskClassification):
6
6
  metadata = TaskMetadata(
7
7
  name="FinToxicityClassification",
8
- description="""
9
- This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data.
10
- The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity.
11
- Here adapted for toxicity classification, which is the most represented class.
12
- """,
8
+ description="This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data. The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity. Here adapted for toxicity classification, which is the most represented class.",
13
9
  dataset={
14
10
  "path": "TurkuNLP/jigsaw_toxicity_pred_fi",
15
11
  "revision": "6e7340e6be87124f319e25290778760c14df64d3",
@@ -57,12 +53,7 @@ Laippala, Veronika},
57
53
  class FinToxicityClassificationV2(AbsTaskClassification):
58
54
  metadata = TaskMetadata(
59
55
  name="FinToxicityClassification.v2",
60
- description="""
61
- This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data.
62
- The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity.
63
- Here adapted for toxicity classification, which is the most represented class.
64
-
65
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
56
+ description="This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data. The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity. Here adapted for toxicity classification, which is the most represented class. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
66
57
  dataset={
67
58
  "path": "mteb/fin_toxicity",
68
59
  "revision": "1deba6e874be1d5632a4ac0d1fb71f4bc3dea0d6",
@@ -43,8 +43,7 @@ class FrenchBookReviewsV2(AbsTaskClassification):
43
43
  "path": "mteb/french_book_reviews",
44
44
  "revision": "71d755fd76073533c3d0c262f6b542eb0fa7ce96",
45
45
  },
46
- description="""It is a French book reviews dataset containing a huge number of reader reviews on French books. Each review is pared with a rating that ranges from 0.5 to 5 (with 0.5 increment).
47
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
46
+ description="It is a French book reviews dataset containing a huge number of reader reviews on French books. Each review is pared with a rating that ranges from 0.5 to 5 (with 0.5 increment). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
48
47
  reference="https://huggingface.co/datasets/Abirate/french_book_reviews",
49
48
  type="Classification",
50
49
  category="t2c",
@@ -49,8 +49,7 @@ class MovieReviewSentimentClassificationV2(AbsTaskClassification):
49
49
  "path": "mteb/movie_review_sentiment",
50
50
  "revision": "4e182033cbfe75ae0556cd640d028986be82afd8",
51
51
  },
52
- description="""The Allociné dataset is a French-language dataset for sentiment analysis that contains movie reviews produced by the online community of the Allociné.fr website.
53
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
52
+ description="The Allociné dataset is a French-language dataset for sentiment analysis that contains movie reviews produced by the online community of the Allociné.fr website. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
54
53
  reference="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert",
55
54
  type="Classification",
56
55
  category="t2c",
@@ -35,8 +35,7 @@ class GujaratiNewsClassification(AbsTaskClassification):
35
35
  class GujaratiNewsClassificationV2(AbsTaskClassification):
36
36
  metadata = TaskMetadata(
37
37
  name="GujaratiNewsClassification.v2",
38
- description="""A Gujarati dataset for 3-class classification of Gujarati news articles
39
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
38
+ description="A Gujarati dataset for 3-class classification of Gujarati news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
40
39
  reference="https://github.com/goru001/nlp-for-gujarati",
41
40
  dataset={
42
41
  "path": "mteb/gujarati_news",
@@ -1,6 +1,11 @@
1
1
  from .hebrew_sentiment_analysis import (
2
2
  HebrewSentimentAnalysis,
3
3
  HebrewSentimentAnalysisV2,
4
+ HebrewSentimentAnalysisV3,
4
5
  )
5
6
 
6
- __all__ = ["HebrewSentimentAnalysis", "HebrewSentimentAnalysisV2"]
7
+ __all__ = [
8
+ "HebrewSentimentAnalysis",
9
+ "HebrewSentimentAnalysisV2",
10
+ "HebrewSentimentAnalysisV3",
11
+ ]
@@ -9,7 +9,12 @@ class HebrewSentimentAnalysis(AbsTaskClassification):
9
9
  "path": "mteb/HebrewSentimentAnalysis",
10
10
  "revision": "03eb0996c8234e0d8cd7206bf4763815deda12ed",
11
11
  },
12
- description="HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy.",
12
+ description=(
13
+ "HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
14
+ "In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
15
+ "the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
16
+ "the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
17
+ ),
13
18
  reference="https://huggingface.co/datasets/hebrew_sentiment",
14
19
  type="Classification",
15
20
  category="t2c",
@@ -37,7 +42,7 @@ class HebrewSentimentAnalysis(AbsTaskClassification):
37
42
  year = {2018},
38
43
  }
39
44
  """,
40
- superseded_by="HebrewSentimentAnalysis.v2",
45
+ superseded_by="HebrewSentimentAnalysis.v3",
41
46
  )
42
47
 
43
48
 
@@ -49,8 +54,61 @@ class HebrewSentimentAnalysisV2(AbsTaskClassification):
49
54
  "revision": "7ecd049fc8ac0d6f0a0121c8ff9fe44ea5bd935b",
50
55
  "name": "morph",
51
56
  },
52
- description="""HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy.
53
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
57
+ description=(
58
+ "HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
59
+ "In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
60
+ "the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
61
+ "the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
62
+ "This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)"
63
+ ),
64
+ reference="https://huggingface.co/datasets/hebrew_sentiment",
65
+ type="Classification",
66
+ category="t2c",
67
+ modalities=["text"],
68
+ eval_splits=["test"],
69
+ eval_langs=["heb-Hebr"],
70
+ main_score="accuracy",
71
+ date=("2015-10-01", "2015-10-31"),
72
+ domains=["Reviews", "Written"],
73
+ task_subtypes=["Sentiment/Hate speech"],
74
+ license="mit",
75
+ annotations_creators="expert-annotated",
76
+ dialect=[],
77
+ sample_creation="found",
78
+ bibtex_citation=r"""
79
+ @inproceedings{amram-etal-2018-representations,
80
+ address = {Santa Fe, New Mexico, USA},
81
+ author = {Amram, Adam and Ben David, Anat and Tsarfaty, Reut},
82
+ booktitle = {Proceedings of the 27th International Conference on Computational Linguistics},
83
+ month = aug,
84
+ pages = {2242--2252},
85
+ publisher = {Association for Computational Linguistics},
86
+ title = {Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from {M}odern {H}ebrew},
87
+ url = {https://www.aclweb.org/anthology/C18-1190},
88
+ year = {2018},
89
+ }
90
+ """,
91
+ adapted_from=["HebrewSentimentAnalysis"],
92
+ superseded_by="HebrewSentimentAnalysis.v3",
93
+ )
94
+
95
+
96
+ class HebrewSentimentAnalysisV3(AbsTaskClassification):
97
+ label_column_name = "labels"
98
+ metadata = TaskMetadata(
99
+ name="HebrewSentimentAnalysis.v3",
100
+ dataset={
101
+ "path": "mteb/HebrewSentimentAnalysisV4",
102
+ "revision": "aa0b83c4b16cd28daf7c41ef3402e3ffe9c70c59",
103
+ },
104
+ description=(
105
+ "HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
106
+ "In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
107
+ "the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
108
+ "the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
109
+ "This version corrects texts (took pre-tokenized) [more details in this thread](https://huggingface.co/datasets/mteb/HebrewSentimentAnalysis/discussions/2). "
110
+ "This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)"
111
+ ),
54
112
  reference="https://huggingface.co/datasets/hebrew_sentiment",
55
113
  type="Classification",
56
114
  category="t2c",
@@ -59,8 +59,7 @@ class HindiDiscourseClassificationV2(AbsTaskClassification):
59
59
  "path": "mteb/hindi_discourse",
60
60
  "revision": "9d10173a3df9858adc90711d8da9abf3df0a1259",
61
61
  },
62
- description="""A Hindi Discourse dataset in Hindi with values for coherence.
63
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
62
+ description="A Hindi Discourse dataset in Hindi with values for coherence. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
64
63
  reference="https://aclanthology.org/2020.lrec-1.149/",
65
64
  type="Classification",
66
65
  category="t2c",
@@ -46,8 +46,7 @@ class SentimentAnalysisHindi(AbsTaskClassification):
46
46
  class SentimentAnalysisHindiV2(AbsTaskClassification):
47
47
  metadata = TaskMetadata(
48
48
  name="SentimentAnalysisHindi.v2",
49
- description="""Hindi Sentiment Analysis Dataset
50
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
49
+ description="Hindi Sentiment Analysis Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
51
50
  reference="https://huggingface.co/datasets/OdiaGenAI/sentiment_analysis_hindi",
52
51
  dataset={
53
52
  "path": "mteb/sentiment_analysis_hindi",
@@ -42,8 +42,7 @@ class FrenkHrClassification(AbsTaskClassification):
42
42
  class FrenkHrClassificationV2(AbsTaskClassification):
43
43
  metadata = TaskMetadata(
44
44
  name="FrenkHrClassification.v2",
45
- description="""Croatian subset of the FRENK dataset
46
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
45
+ description="Croatian subset of the FRENK dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
47
46
  dataset={
48
47
  "path": "mteb/frenk_hr",
49
48
  "revision": "09f90d0bee34d5e703caed26737166591a8f12b9",
@@ -57,8 +57,7 @@ class IndonesianIdClickbaitClassificationV2(AbsTaskClassification):
57
57
  "path": "mteb/indonesian_id_clickbait",
58
58
  "revision": "a54158a1b437a85e1982a70d0c57a69c69d0a5b8",
59
59
  },
60
- description="""The CLICK-ID dataset is a collection of Indonesian news headlines that was collected from 12 local online news publishers.
61
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
60
+ description="The CLICK-ID dataset is a collection of Indonesian news headlines that was collected from 12 local online news publishers. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
62
61
  reference="http://www.sciencedirect.com/science/article/pii/S2352340920311252",
63
62
  type="Classification",
64
63
  category="t2c",
@@ -104,8 +104,7 @@ Purwarianti, Ayu},
104
104
  class IndonesianMongabayConservationClassificationV2(AbsTaskClassification):
105
105
  metadata = TaskMetadata(
106
106
  name="IndonesianMongabayConservationClassification.v2",
107
- description="""Conservation dataset that was collected from mongabay.co.id contains topic-classification task (multi-label format) and sentiment classification. This task only covers sentiment analysis (positive, neutral negative)
108
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
107
+ description="Conservation dataset that was collected from mongabay.co.id contains topic-classification task (multi-label format) and sentiment classification. This task only covers sentiment analysis (positive, neutral negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
109
108
  reference="https://aclanthology.org/2023.sealp-1.4/",
110
109
  dataset={
111
110
  "path": "mteb/indonesian_mongabay_conservation",
@@ -52,8 +52,7 @@ class ItalianLinguisticAcceptabilityClassificationV2(AbsTaskClassification):
52
52
  "path": "mteb/italian_linguistic_acceptability",
53
53
  "revision": "4550151a0f0433e65df172c088427063e376ce81",
54
54
  },
55
- description="""An Italian Corpus of Linguistic Acceptability taken from linguistic literature with a binary annotation made by the original authors themselves.
56
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
55
+ description="An Italian Corpus of Linguistic Acceptability taken from linguistic literature with a binary annotation made by the original authors themselves. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
57
56
  reference="https://aclanthology.org/2021.findings-emnlp.250/",
58
57
  type="Classification",
59
58
  category="t2c",
@@ -41,8 +41,7 @@ class JavaneseIMDBClassification(AbsTaskClassification):
41
41
  class JavaneseIMDBClassificationV2(AbsTaskClassification):
42
42
  metadata = TaskMetadata(
43
43
  name="JavaneseIMDBClassification.v2",
44
- description="""Large Movie Review Dataset translated to Javanese. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets.
45
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
44
+ description="Large Movie Review Dataset translated to Javanese. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
46
45
  reference="https://github.com/w11wo/nlp-datasets#javanese-imdb",
47
46
  dataset={
48
47
  "path": "mteb/javanese_imdb",
@@ -63,8 +63,7 @@ class WRIMEClassificationV2(AbsTaskClassification):
63
63
  "revision": "6687c3bd031a0b144189958bad57db0b95a48dec",
64
64
  "name": "ver2",
65
65
  },
66
- description="""A dataset of Japanese social network rated for sentiment
67
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
66
+ description="A dataset of Japanese social network rated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
68
67
  reference="https://aclanthology.org/2021.naacl-main.169/",
69
68
  type="Classification",
70
69
  category="t2c",
@@ -45,8 +45,7 @@ class KannadaNewsClassification(AbsTaskClassification):
45
45
  class KannadaNewsClassificationV2(AbsTaskClassification):
46
46
  metadata = TaskMetadata(
47
47
  name="KannadaNewsClassification.v2",
48
- description="""The Kannada news dataset contains only the headlines of news article in three categories: Entertainment, Tech, and Sports. The data set contains around 6300 news article headlines which are collected from Kannada news websites. The data set has been cleaned and contains train and test set using which can be used to benchmark topic classification models in Kannada.
49
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
48
+ description="The Kannada news dataset contains only the headlines of news article in three categories: Entertainment, Tech, and Sports. The data set contains around 6300 news article headlines which are collected from Kannada news websites. The data set has been cleaned and contains train and test set using which can be used to benchmark topic classification models in Kannada. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
50
49
  dataset={
51
50
  "path": "mteb/kannada_news",
52
51
  "revision": "bf9c88b5bd4e5b349a39492e5298a928ab509a92",
@@ -62,8 +62,7 @@ class KlueTCV2(AbsTaskClassification):
62
62
  "name": "ynat",
63
63
  "revision": "c0e3d82ac01def9bfd92dffb1e7dde619b50d0a2",
64
64
  },
65
- description="""Topic classification dataset of human-annotated news headlines. Part of the Korean Language Understanding Evaluation (KLUE).
66
- This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
65
+ description="Topic classification dataset of human-annotated news headlines. Part of the Korean Language Understanding Evaluation (KLUE). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
67
66
  reference="https://arxiv.org/abs/2105.09680",
68
67
  type="Classification",
69
68
  category="t2c",