mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -47,8 +47,7 @@ class SDSGlovesClassification(AbsTaskClassification):
|
|
|
47
47
|
class SDSGlovesClassificationV2(AbsTaskClassification):
|
|
48
48
|
metadata = TaskMetadata(
|
|
49
49
|
name="SDSGlovesClassification.v2",
|
|
50
|
-
description="
|
|
51
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
50
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
52
51
|
reference="https://arxiv.org/abs/2412.00532",
|
|
53
52
|
dataset={
|
|
54
53
|
"path": "mteb/sds_gloves",
|
|
@@ -7,15 +7,7 @@ _EVAL_SPLITS = ["test"]
|
|
|
7
7
|
class ToxicChatClassification(AbsTaskClassification):
|
|
8
8
|
metadata = TaskMetadata(
|
|
9
9
|
name="ToxicChatClassification",
|
|
10
|
-
description="
|
|
11
|
-
prompts collected from the Vicuna online demo. We utilize a human-AI
|
|
12
|
-
collaborative annotation framework to guarantee the quality of annotation
|
|
13
|
-
while maintaining a feasible annotation workload. The details of data
|
|
14
|
-
collection, pre-processing, and annotation can be found in our paper.
|
|
15
|
-
We believe that ToxicChat can be a valuable resource to drive further
|
|
16
|
-
advancements toward building a safe and healthy environment for user-AI
|
|
17
|
-
interactions.
|
|
18
|
-
Only human annotated samples are selected here.""",
|
|
10
|
+
description="This dataset contains toxicity annotations on 10K user prompts collected from the Vicuna online demo. We utilize a human-AI collaborative annotation framework to guarantee the quality of annotation while maintaining a feasible annotation workload. The details of data collection, pre-processing, and annotation can be found in our paper. We believe that ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions. Only human annotated samples are selected here.",
|
|
19
11
|
reference="https://aclanthology.org/2023.findings-emnlp.311/",
|
|
20
12
|
dataset={
|
|
21
13
|
"path": "lmsys/toxic-chat",
|
|
@@ -68,16 +60,7 @@ class ToxicChatClassification(AbsTaskClassification):
|
|
|
68
60
|
class ToxicChatClassificationV2(AbsTaskClassification):
|
|
69
61
|
metadata = TaskMetadata(
|
|
70
62
|
name="ToxicChatClassification.v2",
|
|
71
|
-
description="
|
|
72
|
-
prompts collected from the Vicuna online demo. We utilize a human-AI
|
|
73
|
-
collaborative annotation framework to guarantee the quality of annotation
|
|
74
|
-
while maintaining a feasible annotation workload. The details of data
|
|
75
|
-
collection, pre-processing, and annotation can be found in our paper.
|
|
76
|
-
We believe that ToxicChat can be a valuable resource to drive further
|
|
77
|
-
advancements toward building a safe and healthy environment for user-AI
|
|
78
|
-
interactions.
|
|
79
|
-
Only human annotated samples are selected here.
|
|
80
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
63
|
+
description="This dataset contains toxicity annotations on 10K user prompts collected from the Vicuna online demo. We utilize a human-AI collaborative annotation framework to guarantee the quality of annotation while maintaining a feasible annotation workload. The details of data collection, pre-processing, and annotation can be found in our paper. We believe that ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions. Only human annotated samples are selected here. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
81
64
|
reference="https://aclanthology.org/2023.findings-emnlp.311/",
|
|
82
65
|
dataset={
|
|
83
66
|
"path": "mteb/toxic_chat",
|
|
@@ -51,8 +51,7 @@ class ToxicConversationsClassification(AbsTaskClassification):
|
|
|
51
51
|
class ToxicConversationsClassificationV2(AbsTaskClassification):
|
|
52
52
|
metadata = TaskMetadata(
|
|
53
53
|
name="ToxicConversationsClassification.v2",
|
|
54
|
-
description="
|
|
55
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
54
|
+
description="Collection of comments from the Civil Comments platform together with annotations if the comment is toxic or not. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
56
55
|
reference="https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/overview",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "mteb/toxic_conversations",
|
|
@@ -46,8 +46,7 @@ class TweetSentimentExtractionClassification(AbsTaskClassification):
|
|
|
46
46
|
class TweetSentimentExtractionClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="TweetSentimentExtractionClassification.v2",
|
|
49
|
-
description=""
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://www.kaggle.com/competitions/tweet-sentiment-extraction/overview",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/tweet_sentiment_extraction",
|
|
@@ -5,12 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class TweetTopicSingleClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="TweetTopicSingleClassification",
|
|
8
|
-
description="
|
|
9
|
-
TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
|
|
10
|
-
Tweets were preprocessed before the annotation to normalize some artifacts, converting
|
|
11
|
-
URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified
|
|
12
|
-
usernames, we replace its display name (or account name) with symbols {@}.
|
|
13
|
-
""",
|
|
8
|
+
description="Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}.",
|
|
14
9
|
dataset={
|
|
15
10
|
"path": "mteb/TweetTopicSingleClassification",
|
|
16
11
|
"revision": "b4280e921a2760ce34d2dd80a9e5dc8bcbf61785",
|
|
@@ -55,13 +50,7 @@ Barbieri, Francesco},
|
|
|
55
50
|
class TweetTopicSingleClassificationV2(AbsTaskClassification):
|
|
56
51
|
metadata = TaskMetadata(
|
|
57
52
|
name="TweetTopicSingleClassification.v2",
|
|
58
|
-
description="
|
|
59
|
-
TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
|
|
60
|
-
Tweets were preprocessed before the annotation to normalize some artifacts, converting
|
|
61
|
-
URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified
|
|
62
|
-
usernames, we replace its display name (or account name) with symbols {@}.
|
|
63
|
-
|
|
64
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
53
|
+
description="Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
65
54
|
dataset={
|
|
66
55
|
"path": "mteb/tweet_topic_single",
|
|
67
56
|
"revision": "a7904e26081f987da81ad2cc063e09e714e875d0",
|
|
@@ -9,11 +9,7 @@ class UCF101Classification(AbsTaskClassification):
|
|
|
9
9
|
|
|
10
10
|
metadata = TaskMetadata(
|
|
11
11
|
name="UCF101",
|
|
12
|
-
description="
|
|
13
|
-
action videos collected from YouTube, having 101 action categories. This
|
|
14
|
-
version of the dataset does not contain images but images saved frame by
|
|
15
|
-
frame. Train and test splits are generated based on the authors' first
|
|
16
|
-
version train/test list.""",
|
|
12
|
+
description="UCF101 is an action recognition data set of realistic action videos collected from YouTube, having 101 action categories. This version of the dataset does not contain images but images saved frame by frame. Train and test splits are generated based on the authors' first version train/test list.",
|
|
17
13
|
reference="https://huggingface.co/datasets/flwrlabs/ucf101",
|
|
18
14
|
dataset={
|
|
19
15
|
"path": "flwrlabs/ucf101",
|
|
@@ -39,8 +39,7 @@ class WikipediaBioMetChemClassification(AbsTaskClassification):
|
|
|
39
39
|
class WikipediaBioMetChemClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="WikipediaBioMetChemClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2412.00532",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/wikipedia_bio_met_chem",
|
|
@@ -39,8 +39,7 @@ class WikipediaChemFieldsClassification(AbsTaskClassification):
|
|
|
39
39
|
class WikipediaChemFieldsClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="WikipediaChemFieldsClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2412.00532",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/wikipedia_chem_fields",
|
|
@@ -39,8 +39,7 @@ class WikipediaCompChemSpectroscopyClassification(AbsTaskClassification):
|
|
|
39
39
|
class WikipediaCompChemSpectroscopyClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="WikipediaCompChemSpectroscopyClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2412.00532",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/wikipedia_comp_chem_spectroscopy",
|
|
@@ -39,8 +39,7 @@ class WikipediaCrystallographyAnalyticalClassification(AbsTaskClassification):
|
|
|
39
39
|
class WikipediaCrystallographyAnalyticalClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="WikipediaCrystallographyAnalyticalClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2412.00532",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/wikipedia_crystallography_analytical",
|
|
@@ -39,8 +39,7 @@ class WikipediaTheoreticalAppliedClassification(AbsTaskClassification):
|
|
|
39
39
|
class WikipediaTheoreticalAppliedClassificationV2(AbsTaskClassification):
|
|
40
40
|
metadata = TaskMetadata(
|
|
41
41
|
name="WikipediaTheoreticalAppliedClassification.v2",
|
|
42
|
-
description="
|
|
43
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
42
|
+
description="ChemTEB evaluates the performance of text embedding models on chemical domain data. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
44
43
|
reference="https://arxiv.org/abs/2412.00532",
|
|
45
44
|
dataset={
|
|
46
45
|
"path": "mteb/wikipedia_theoretical_applied",
|
|
@@ -46,8 +46,7 @@ class YahooAnswersTopicsClassification(AbsTaskClassification):
|
|
|
46
46
|
class YahooAnswersTopicsClassificationV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="YahooAnswersTopicsClassification.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Dataset composed of questions and answers from Yahoo Answers, categorized into topics. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://huggingface.co/datasets/yahoo_answers_topics",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/yahoo_answers_topics",
|
|
@@ -51,8 +51,7 @@ class YelpReviewFullClassification(AbsTaskClassification):
|
|
|
51
51
|
class YelpReviewFullClassificationV2(AbsTaskClassification):
|
|
52
52
|
metadata = TaskMetadata(
|
|
53
53
|
name="YelpReviewFullClassification.v2",
|
|
54
|
-
description="
|
|
55
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
54
|
+
description="Yelp Review Full is a dataset for sentiment analysis, containing 5 classes corresponding to ratings 1-5. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
56
55
|
reference="https://arxiv.org/abs/1509.01626",
|
|
57
56
|
dataset={
|
|
58
57
|
"path": "mteb/yelp_review_full",
|
|
@@ -61,8 +61,7 @@ class EstonianValenceClassificationV2(AbsTaskClassification):
|
|
|
61
61
|
"path": "mteb/estonian_valence",
|
|
62
62
|
"revision": "8795961e2af5b83bcb8a6928636845ac2b92f92e",
|
|
63
63
|
},
|
|
64
|
-
description="
|
|
65
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
64
|
+
description="Dataset containing annotated Estonian news data from the Postimees and Õhtuleht newspapers. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
66
65
|
reference="https://figshare.com/articles/dataset/Estonian_Valence_Corpus_Eesti_valentsikorpus/24517054",
|
|
67
66
|
type="Classification",
|
|
68
67
|
category="t2c",
|
|
@@ -465,8 +465,7 @@ class SynPerTextToneClassification(AbsTaskClassification):
|
|
|
465
465
|
class SynPerTextToneClassificationV2(AbsTaskClassification):
|
|
466
466
|
metadata = TaskMetadata(
|
|
467
467
|
name="SynPerTextToneClassification.v2",
|
|
468
|
-
description="
|
|
469
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
468
|
+
description="Persian Text Tone This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
470
469
|
reference="https://mcinext.com/",
|
|
471
470
|
dataset={
|
|
472
471
|
"path": "mteb/syn_per_text_tone",
|
|
@@ -495,8 +494,7 @@ class SynPerTextToneClassificationV2(AbsTaskClassification):
|
|
|
495
494
|
class SynPerTextToneClassificationV3(AbsTaskClassification):
|
|
496
495
|
metadata = TaskMetadata(
|
|
497
496
|
name="SynPerTextToneClassification.v3",
|
|
498
|
-
description="
|
|
499
|
-
It excludes several classes identified as having low-quality data, leading to a more reliable benchmark.""",
|
|
497
|
+
description="This version of the Persian text tone classification dataset is an improved version of its predecessors. It excludes several classes identified as having low-quality data, leading to a more reliable benchmark.",
|
|
500
498
|
reference="https://mcinext.com/",
|
|
501
499
|
dataset={
|
|
502
500
|
"path": "MCINext/synthetic-persian-text-tone-classification-v3",
|
|
@@ -552,8 +550,7 @@ class SIDClassification(AbsTaskClassification):
|
|
|
552
550
|
class SIDClassificationV2(AbsTaskClassification):
|
|
553
551
|
metadata = TaskMetadata(
|
|
554
552
|
name="SIDClassification.v2",
|
|
555
|
-
description="
|
|
556
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
553
|
+
description="SID Classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
557
554
|
reference="https://mcinext.com/",
|
|
558
555
|
dataset={
|
|
559
556
|
"path": "mteb/sid",
|
|
@@ -612,8 +609,7 @@ class DeepSentiPers(AbsTaskClassification):
|
|
|
612
609
|
class DeepSentiPersV2(AbsTaskClassification):
|
|
613
610
|
metadata = TaskMetadata(
|
|
614
611
|
name="DeepSentiPers.v2",
|
|
615
|
-
description="
|
|
616
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
612
|
+
description="Persian Sentiment Analysis Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
617
613
|
reference="https://github.com/JoyeBright/DeepSentiPers",
|
|
618
614
|
dataset={
|
|
619
615
|
"path": "mteb/deep_senti_pers",
|
|
@@ -669,8 +665,7 @@ class PersianTextEmotion(AbsTaskClassification):
|
|
|
669
665
|
class PersianTextEmotionV2(AbsTaskClassification):
|
|
670
666
|
metadata = TaskMetadata(
|
|
671
667
|
name="PersianTextEmotion.v2",
|
|
672
|
-
description="
|
|
673
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
668
|
+
description="Emotion is a Persian dataset with six basic emotions: anger, fear, joy, love, sadness, and surprise. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
674
669
|
reference="https://huggingface.co/datasets/SeyedAli/Persian-Text-Emotion",
|
|
675
670
|
dataset={
|
|
676
671
|
"path": "mteb/persian_text_emotion",
|
|
@@ -726,8 +721,7 @@ class SentimentDKSF(AbsTaskClassification):
|
|
|
726
721
|
class SentimentDKSFV2(AbsTaskClassification):
|
|
727
722
|
metadata = TaskMetadata(
|
|
728
723
|
name="SentimentDKSF.v2",
|
|
729
|
-
description="
|
|
730
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
724
|
+
description="The Sentiment DKSF (Digikala/Snappfood comments) is a dataset for sentiment analysis. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
731
725
|
reference="https://github.com/hezarai/hezar",
|
|
732
726
|
dataset={
|
|
733
727
|
"path": "mteb/sentiment_dksf",
|
|
@@ -786,8 +780,7 @@ class NLPTwitterAnalysisClassification(AbsTaskClassification):
|
|
|
786
780
|
class NLPTwitterAnalysisClassificationV2(AbsTaskClassification):
|
|
787
781
|
metadata = TaskMetadata(
|
|
788
782
|
name="NLPTwitterAnalysisClassification.v2",
|
|
789
|
-
description="
|
|
790
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
783
|
+
description="Twitter Analysis Classification This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
791
784
|
reference="https://huggingface.co/datasets/hamedhf/nlp_twitter_analysis/tree/main",
|
|
792
785
|
dataset={
|
|
793
786
|
"path": "mteb/nlp_twitter_analysis",
|
|
@@ -44,8 +44,7 @@ class FilipinoHateSpeechClassification(AbsTaskClassification):
|
|
|
44
44
|
class FilipinoHateSpeechClassificationV2(AbsTaskClassification):
|
|
45
45
|
metadata = TaskMetadata(
|
|
46
46
|
name="FilipinoHateSpeechClassification.v2",
|
|
47
|
-
description="
|
|
48
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
47
|
+
description="Filipino Twitter dataset for sentiment classification. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
49
48
|
reference="https://pcj.csp.org.ph/index.php/pcj/issue/download/29/PCJ%20V14%20N1%20pp1-14%202019",
|
|
50
49
|
dataset={
|
|
51
50
|
"path": "mteb/filipino_hate_speech",
|
|
@@ -5,11 +5,7 @@ from mteb.abstasks.task_metadata import TaskMetadata
|
|
|
5
5
|
class FinToxicityClassification(AbsTaskClassification):
|
|
6
6
|
metadata = TaskMetadata(
|
|
7
7
|
name="FinToxicityClassification",
|
|
8
|
-
description=""
|
|
9
|
-
This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data.
|
|
10
|
-
The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity.
|
|
11
|
-
Here adapted for toxicity classification, which is the most represented class.
|
|
12
|
-
""",
|
|
8
|
+
description="This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data. The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity. Here adapted for toxicity classification, which is the most represented class.",
|
|
13
9
|
dataset={
|
|
14
10
|
"path": "TurkuNLP/jigsaw_toxicity_pred_fi",
|
|
15
11
|
"revision": "6e7340e6be87124f319e25290778760c14df64d3",
|
|
@@ -57,12 +53,7 @@ Laippala, Veronika},
|
|
|
57
53
|
class FinToxicityClassificationV2(AbsTaskClassification):
|
|
58
54
|
metadata = TaskMetadata(
|
|
59
55
|
name="FinToxicityClassification.v2",
|
|
60
|
-
description=""
|
|
61
|
-
This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data.
|
|
62
|
-
The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity.
|
|
63
|
-
Here adapted for toxicity classification, which is the most represented class.
|
|
64
|
-
|
|
65
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
56
|
+
description="This dataset is a DeepL -based machine translated version of the Jigsaw toxicity dataset for Finnish. The dataset is originally from a Kaggle competition https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data. The original dataset poses a multi-label text classification problem and includes the labels identity_attack, insult, obscene, severe_toxicity, threat and toxicity. Here adapted for toxicity classification, which is the most represented class. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
66
57
|
dataset={
|
|
67
58
|
"path": "mteb/fin_toxicity",
|
|
68
59
|
"revision": "1deba6e874be1d5632a4ac0d1fb71f4bc3dea0d6",
|
|
@@ -43,8 +43,7 @@ class FrenchBookReviewsV2(AbsTaskClassification):
|
|
|
43
43
|
"path": "mteb/french_book_reviews",
|
|
44
44
|
"revision": "71d755fd76073533c3d0c262f6b542eb0fa7ce96",
|
|
45
45
|
},
|
|
46
|
-
description="
|
|
47
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
46
|
+
description="It is a French book reviews dataset containing a huge number of reader reviews on French books. Each review is pared with a rating that ranges from 0.5 to 5 (with 0.5 increment). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
48
47
|
reference="https://huggingface.co/datasets/Abirate/french_book_reviews",
|
|
49
48
|
type="Classification",
|
|
50
49
|
category="t2c",
|
|
@@ -49,8 +49,7 @@ class MovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
49
49
|
"path": "mteb/movie_review_sentiment",
|
|
50
50
|
"revision": "4e182033cbfe75ae0556cd640d028986be82afd8",
|
|
51
51
|
},
|
|
52
|
-
description="
|
|
53
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
52
|
+
description="The Allociné dataset is a French-language dataset for sentiment analysis that contains movie reviews produced by the online community of the Allociné.fr website. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
54
53
|
reference="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert",
|
|
55
54
|
type="Classification",
|
|
56
55
|
category="t2c",
|
|
@@ -35,8 +35,7 @@ class GujaratiNewsClassification(AbsTaskClassification):
|
|
|
35
35
|
class GujaratiNewsClassificationV2(AbsTaskClassification):
|
|
36
36
|
metadata = TaskMetadata(
|
|
37
37
|
name="GujaratiNewsClassification.v2",
|
|
38
|
-
description="
|
|
39
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
38
|
+
description="A Gujarati dataset for 3-class classification of Gujarati news articles This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
40
39
|
reference="https://github.com/goru001/nlp-for-gujarati",
|
|
41
40
|
dataset={
|
|
42
41
|
"path": "mteb/gujarati_news",
|
|
@@ -1,6 +1,11 @@
|
|
|
1
1
|
from .hebrew_sentiment_analysis import (
|
|
2
2
|
HebrewSentimentAnalysis,
|
|
3
3
|
HebrewSentimentAnalysisV2,
|
|
4
|
+
HebrewSentimentAnalysisV3,
|
|
4
5
|
)
|
|
5
6
|
|
|
6
|
-
__all__ = [
|
|
7
|
+
__all__ = [
|
|
8
|
+
"HebrewSentimentAnalysis",
|
|
9
|
+
"HebrewSentimentAnalysisV2",
|
|
10
|
+
"HebrewSentimentAnalysisV3",
|
|
11
|
+
]
|
|
@@ -9,7 +9,12 @@ class HebrewSentimentAnalysis(AbsTaskClassification):
|
|
|
9
9
|
"path": "mteb/HebrewSentimentAnalysis",
|
|
10
10
|
"revision": "03eb0996c8234e0d8cd7206bf4763815deda12ed",
|
|
11
11
|
},
|
|
12
|
-
description=
|
|
12
|
+
description=(
|
|
13
|
+
"HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
|
|
14
|
+
"In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
|
|
15
|
+
"the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
|
|
16
|
+
"the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
|
|
17
|
+
),
|
|
13
18
|
reference="https://huggingface.co/datasets/hebrew_sentiment",
|
|
14
19
|
type="Classification",
|
|
15
20
|
category="t2c",
|
|
@@ -37,7 +42,7 @@ class HebrewSentimentAnalysis(AbsTaskClassification):
|
|
|
37
42
|
year = {2018},
|
|
38
43
|
}
|
|
39
44
|
""",
|
|
40
|
-
superseded_by="HebrewSentimentAnalysis.
|
|
45
|
+
superseded_by="HebrewSentimentAnalysis.v3",
|
|
41
46
|
)
|
|
42
47
|
|
|
43
48
|
|
|
@@ -49,8 +54,61 @@ class HebrewSentimentAnalysisV2(AbsTaskClassification):
|
|
|
49
54
|
"revision": "7ecd049fc8ac0d6f0a0121c8ff9fe44ea5bd935b",
|
|
50
55
|
"name": "morph",
|
|
51
56
|
},
|
|
52
|
-
description=
|
|
53
|
-
|
|
57
|
+
description=(
|
|
58
|
+
"HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
|
|
59
|
+
"In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
|
|
60
|
+
"the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
|
|
61
|
+
"the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
|
|
62
|
+
"This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)"
|
|
63
|
+
),
|
|
64
|
+
reference="https://huggingface.co/datasets/hebrew_sentiment",
|
|
65
|
+
type="Classification",
|
|
66
|
+
category="t2c",
|
|
67
|
+
modalities=["text"],
|
|
68
|
+
eval_splits=["test"],
|
|
69
|
+
eval_langs=["heb-Hebr"],
|
|
70
|
+
main_score="accuracy",
|
|
71
|
+
date=("2015-10-01", "2015-10-31"),
|
|
72
|
+
domains=["Reviews", "Written"],
|
|
73
|
+
task_subtypes=["Sentiment/Hate speech"],
|
|
74
|
+
license="mit",
|
|
75
|
+
annotations_creators="expert-annotated",
|
|
76
|
+
dialect=[],
|
|
77
|
+
sample_creation="found",
|
|
78
|
+
bibtex_citation=r"""
|
|
79
|
+
@inproceedings{amram-etal-2018-representations,
|
|
80
|
+
address = {Santa Fe, New Mexico, USA},
|
|
81
|
+
author = {Amram, Adam and Ben David, Anat and Tsarfaty, Reut},
|
|
82
|
+
booktitle = {Proceedings of the 27th International Conference on Computational Linguistics},
|
|
83
|
+
month = aug,
|
|
84
|
+
pages = {2242--2252},
|
|
85
|
+
publisher = {Association for Computational Linguistics},
|
|
86
|
+
title = {Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from {M}odern {H}ebrew},
|
|
87
|
+
url = {https://www.aclweb.org/anthology/C18-1190},
|
|
88
|
+
year = {2018},
|
|
89
|
+
}
|
|
90
|
+
""",
|
|
91
|
+
adapted_from=["HebrewSentimentAnalysis"],
|
|
92
|
+
superseded_by="HebrewSentimentAnalysis.v3",
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class HebrewSentimentAnalysisV3(AbsTaskClassification):
|
|
97
|
+
label_column_name = "labels"
|
|
98
|
+
metadata = TaskMetadata(
|
|
99
|
+
name="HebrewSentimentAnalysis.v3",
|
|
100
|
+
dataset={
|
|
101
|
+
"path": "mteb/HebrewSentimentAnalysisV4",
|
|
102
|
+
"revision": "aa0b83c4b16cd28daf7c41ef3402e3ffe9c70c59",
|
|
103
|
+
},
|
|
104
|
+
description=(
|
|
105
|
+
"HebrewSentiment is a data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s president, Mr. Reuven Rivlin. "
|
|
106
|
+
"In October 2015, we used the open software application Netvizz (Rieder, 2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014, "
|
|
107
|
+
"the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions and called for tolerance and empathy, "
|
|
108
|
+
"the sentiment expressed in the comments to the president’s posts was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his policy. "
|
|
109
|
+
"This version corrects texts (took pre-tokenized) [more details in this thread](https://huggingface.co/datasets/mteb/HebrewSentimentAnalysis/discussions/2). "
|
|
110
|
+
"This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)"
|
|
111
|
+
),
|
|
54
112
|
reference="https://huggingface.co/datasets/hebrew_sentiment",
|
|
55
113
|
type="Classification",
|
|
56
114
|
category="t2c",
|
|
@@ -59,8 +59,7 @@ class HindiDiscourseClassificationV2(AbsTaskClassification):
|
|
|
59
59
|
"path": "mteb/hindi_discourse",
|
|
60
60
|
"revision": "9d10173a3df9858adc90711d8da9abf3df0a1259",
|
|
61
61
|
},
|
|
62
|
-
description="
|
|
63
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
62
|
+
description="A Hindi Discourse dataset in Hindi with values for coherence. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
64
63
|
reference="https://aclanthology.org/2020.lrec-1.149/",
|
|
65
64
|
type="Classification",
|
|
66
65
|
category="t2c",
|
|
@@ -46,8 +46,7 @@ class SentimentAnalysisHindi(AbsTaskClassification):
|
|
|
46
46
|
class SentimentAnalysisHindiV2(AbsTaskClassification):
|
|
47
47
|
metadata = TaskMetadata(
|
|
48
48
|
name="SentimentAnalysisHindi.v2",
|
|
49
|
-
description="
|
|
50
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
49
|
+
description="Hindi Sentiment Analysis Dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
51
50
|
reference="https://huggingface.co/datasets/OdiaGenAI/sentiment_analysis_hindi",
|
|
52
51
|
dataset={
|
|
53
52
|
"path": "mteb/sentiment_analysis_hindi",
|
|
@@ -42,8 +42,7 @@ class FrenkHrClassification(AbsTaskClassification):
|
|
|
42
42
|
class FrenkHrClassificationV2(AbsTaskClassification):
|
|
43
43
|
metadata = TaskMetadata(
|
|
44
44
|
name="FrenkHrClassification.v2",
|
|
45
|
-
description="
|
|
46
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
45
|
+
description="Croatian subset of the FRENK dataset This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/frenk_hr",
|
|
49
48
|
"revision": "09f90d0bee34d5e703caed26737166591a8f12b9",
|
|
@@ -57,8 +57,7 @@ class IndonesianIdClickbaitClassificationV2(AbsTaskClassification):
|
|
|
57
57
|
"path": "mteb/indonesian_id_clickbait",
|
|
58
58
|
"revision": "a54158a1b437a85e1982a70d0c57a69c69d0a5b8",
|
|
59
59
|
},
|
|
60
|
-
description="
|
|
61
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
60
|
+
description="The CLICK-ID dataset is a collection of Indonesian news headlines that was collected from 12 local online news publishers. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
62
61
|
reference="http://www.sciencedirect.com/science/article/pii/S2352340920311252",
|
|
63
62
|
type="Classification",
|
|
64
63
|
category="t2c",
|
|
@@ -104,8 +104,7 @@ Purwarianti, Ayu},
|
|
|
104
104
|
class IndonesianMongabayConservationClassificationV2(AbsTaskClassification):
|
|
105
105
|
metadata = TaskMetadata(
|
|
106
106
|
name="IndonesianMongabayConservationClassification.v2",
|
|
107
|
-
description="
|
|
108
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
107
|
+
description="Conservation dataset that was collected from mongabay.co.id contains topic-classification task (multi-label format) and sentiment classification. This task only covers sentiment analysis (positive, neutral negative) This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
109
108
|
reference="https://aclanthology.org/2023.sealp-1.4/",
|
|
110
109
|
dataset={
|
|
111
110
|
"path": "mteb/indonesian_mongabay_conservation",
|
|
@@ -52,8 +52,7 @@ class ItalianLinguisticAcceptabilityClassificationV2(AbsTaskClassification):
|
|
|
52
52
|
"path": "mteb/italian_linguistic_acceptability",
|
|
53
53
|
"revision": "4550151a0f0433e65df172c088427063e376ce81",
|
|
54
54
|
},
|
|
55
|
-
description="
|
|
56
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
55
|
+
description="An Italian Corpus of Linguistic Acceptability taken from linguistic literature with a binary annotation made by the original authors themselves. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
57
56
|
reference="https://aclanthology.org/2021.findings-emnlp.250/",
|
|
58
57
|
type="Classification",
|
|
59
58
|
category="t2c",
|
|
@@ -41,8 +41,7 @@ class JavaneseIMDBClassification(AbsTaskClassification):
|
|
|
41
41
|
class JavaneseIMDBClassificationV2(AbsTaskClassification):
|
|
42
42
|
metadata = TaskMetadata(
|
|
43
43
|
name="JavaneseIMDBClassification.v2",
|
|
44
|
-
description="
|
|
45
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
44
|
+
description="Large Movie Review Dataset translated to Javanese. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
46
45
|
reference="https://github.com/w11wo/nlp-datasets#javanese-imdb",
|
|
47
46
|
dataset={
|
|
48
47
|
"path": "mteb/javanese_imdb",
|
|
@@ -63,8 +63,7 @@ class WRIMEClassificationV2(AbsTaskClassification):
|
|
|
63
63
|
"revision": "6687c3bd031a0b144189958bad57db0b95a48dec",
|
|
64
64
|
"name": "ver2",
|
|
65
65
|
},
|
|
66
|
-
description="
|
|
67
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
66
|
+
description="A dataset of Japanese social network rated for sentiment This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
68
67
|
reference="https://aclanthology.org/2021.naacl-main.169/",
|
|
69
68
|
type="Classification",
|
|
70
69
|
category="t2c",
|
|
@@ -45,8 +45,7 @@ class KannadaNewsClassification(AbsTaskClassification):
|
|
|
45
45
|
class KannadaNewsClassificationV2(AbsTaskClassification):
|
|
46
46
|
metadata = TaskMetadata(
|
|
47
47
|
name="KannadaNewsClassification.v2",
|
|
48
|
-
description="
|
|
49
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
48
|
+
description="The Kannada news dataset contains only the headlines of news article in three categories: Entertainment, Tech, and Sports. The data set contains around 6300 news article headlines which are collected from Kannada news websites. The data set has been cleaned and contains train and test set using which can be used to benchmark topic classification models in Kannada. This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
50
49
|
dataset={
|
|
51
50
|
"path": "mteb/kannada_news",
|
|
52
51
|
"revision": "bf9c88b5bd4e5b349a39492e5298a928ab509a92",
|
|
@@ -62,8 +62,7 @@ class KlueTCV2(AbsTaskClassification):
|
|
|
62
62
|
"name": "ynat",
|
|
63
63
|
"revision": "c0e3d82ac01def9bfd92dffb1e7dde619b50d0a2",
|
|
64
64
|
},
|
|
65
|
-
description="
|
|
66
|
-
This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)""",
|
|
65
|
+
description="Topic classification dataset of human-annotated news headlines. Part of the Korean Language Understanding Evaluation (KLUE). This version corrects errors found in the original data. For details, see [pull request](https://github.com/embeddings-benchmark/mteb/pull/2900)",
|
|
67
66
|
reference="https://arxiv.org/abs/2105.09680",
|
|
68
67
|
type="Classification",
|
|
69
68
|
category="t2c",
|