mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (458) hide show
  1. mteb/__init__.py +4 -0
  2. mteb/_create_dataloaders.py +6 -3
  3. mteb/_evaluators/any_sts_evaluator.py +21 -12
  4. mteb/_evaluators/classification_metrics.py +54 -0
  5. mteb/_evaluators/clustering_evaluator.py +1 -1
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
  7. mteb/_evaluators/pair_classification_evaluator.py +30 -38
  8. mteb/_evaluators/sklearn_evaluator.py +15 -28
  9. mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
  10. mteb/_evaluators/text/summarization_evaluator.py +4 -2
  11. mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
  12. mteb/abstasks/_data_filter/__init__.py +0 -0
  13. mteb/abstasks/_data_filter/filters.py +125 -0
  14. mteb/abstasks/_data_filter/task_pipelines.py +102 -0
  15. mteb/abstasks/_statistics_calculation.py +6 -2
  16. mteb/abstasks/classification.py +0 -2
  17. mteb/abstasks/clustering.py +1 -1
  18. mteb/abstasks/clustering_legacy.py +3 -0
  19. mteb/abstasks/multilabel_classification.py +10 -3
  20. mteb/abstasks/pair_classification.py +8 -1
  21. mteb/abstasks/sts.py +7 -0
  22. mteb/abstasks/task_metadata.py +1 -0
  23. mteb/benchmarks/_create_table.py +84 -37
  24. mteb/benchmarks/benchmark.py +74 -15
  25. mteb/benchmarks/benchmarks/__init__.py +8 -0
  26. mteb/benchmarks/benchmarks/benchmarks.py +259 -15
  27. mteb/benchmarks/get_benchmark.py +2 -0
  28. mteb/cache.py +47 -10
  29. mteb/deprecated_evaluator.py +8 -13
  30. mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
  31. mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
  32. mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
  33. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
  34. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
  35. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
  36. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
  37. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
  38. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
  39. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
  40. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
  41. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
  42. mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
  43. mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
  44. mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
  45. mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
  46. mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
  47. mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
  48. mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
  49. mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
  50. mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
  51. mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
  52. mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
  53. mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
  54. mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
  55. mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
  56. mteb/evaluate.py +65 -45
  57. mteb/leaderboard/app.py +268 -133
  58. mteb/leaderboard/benchmark_selector.py +14 -5
  59. mteb/leaderboard/figures.py +13 -15
  60. mteb/leaderboard/table.py +82 -17
  61. mteb/models/__init__.py +4 -1
  62. mteb/models/abs_encoder.py +21 -17
  63. mteb/models/cache_wrappers/__init__.py +2 -1
  64. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
  65. mteb/models/cache_wrappers/cache_wrapper.py +1 -1
  66. mteb/models/get_model_meta.py +3 -114
  67. mteb/models/instruct_wrapper.py +5 -1
  68. mteb/models/model_implementations/align_models.py +7 -0
  69. mteb/models/model_implementations/amazon_models.py +1 -0
  70. mteb/models/model_implementations/andersborges.py +65 -0
  71. mteb/models/model_implementations/ara_models.py +8 -0
  72. mteb/models/model_implementations/arctic_models.py +8 -0
  73. mteb/models/model_implementations/b1ade_models.py +1 -0
  74. mteb/models/model_implementations/bedrock_models.py +4 -0
  75. mteb/models/model_implementations/bge_models.py +60 -0
  76. mteb/models/model_implementations/bica_model.py +35 -0
  77. mteb/models/model_implementations/blip2_models.py +11 -0
  78. mteb/models/model_implementations/blip_models.py +27 -0
  79. mteb/models/model_implementations/bm25.py +1 -0
  80. mteb/models/model_implementations/bmretriever_models.py +4 -0
  81. mteb/models/model_implementations/cadet_models.py +9 -0
  82. mteb/models/model_implementations/cde_models.py +14 -0
  83. mteb/models/model_implementations/clip_models.py +3 -0
  84. mteb/models/model_implementations/clips_models.py +100 -0
  85. mteb/models/model_implementations/codefuse_models.py +162 -0
  86. mteb/models/model_implementations/codesage_models.py +15 -0
  87. mteb/models/model_implementations/cohere_models.py +8 -1
  88. mteb/models/model_implementations/cohere_v.py +5 -0
  89. mteb/models/model_implementations/colpali_models.py +14 -6
  90. mteb/models/model_implementations/colqwen_models.py +271 -1
  91. mteb/models/model_implementations/colsmol_models.py +2 -0
  92. mteb/models/model_implementations/conan_models.py +1 -0
  93. mteb/models/model_implementations/dino_models.py +171 -0
  94. mteb/models/model_implementations/e5_instruct.py +4 -0
  95. mteb/models/model_implementations/e5_models.py +12 -101
  96. mteb/models/model_implementations/e5_v.py +1 -0
  97. mteb/models/model_implementations/eagerworks_models.py +164 -0
  98. mteb/models/model_implementations/emillykkejensen_models.py +91 -0
  99. mteb/models/model_implementations/en_code_retriever.py +1 -0
  100. mteb/models/model_implementations/euler_models.py +32 -0
  101. mteb/models/model_implementations/evaclip_models.py +4 -0
  102. mteb/models/model_implementations/fa_models.py +58 -0
  103. mteb/models/model_implementations/facebookai.py +193 -0
  104. mteb/models/model_implementations/geogpt_models.py +1 -0
  105. mteb/models/model_implementations/gme_v_models.py +11 -5
  106. mteb/models/model_implementations/google_models.py +16 -5
  107. mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
  108. mteb/models/model_implementations/gritlm_models.py +2 -0
  109. mteb/models/model_implementations/gte_models.py +78 -0
  110. mteb/models/model_implementations/hinvec_models.py +1 -0
  111. mteb/models/model_implementations/human.py +1 -0
  112. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  113. mteb/models/model_implementations/inf_models.py +2 -0
  114. mteb/models/model_implementations/jasper_models.py +255 -2
  115. mteb/models/model_implementations/jina_clip.py +1 -0
  116. mteb/models/model_implementations/jina_models.py +209 -5
  117. mteb/models/model_implementations/kalm_models.py +203 -25
  118. mteb/models/model_implementations/kblab.py +31 -0
  119. mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
  120. mteb/models/model_implementations/kfst.py +25 -0
  121. mteb/models/model_implementations/kowshik24_models.py +32 -0
  122. mteb/models/model_implementations/lens_models.py +2 -0
  123. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  124. mteb/models/model_implementations/linq_models.py +3 -2
  125. mteb/models/model_implementations/listconranker.py +1 -1
  126. mteb/models/model_implementations/llm2clip_models.py +3 -0
  127. mteb/models/model_implementations/llm2vec_models.py +8 -0
  128. mteb/models/model_implementations/mcinext_models.py +3 -0
  129. mteb/models/model_implementations/mdbr_models.py +2 -0
  130. mteb/models/model_implementations/misc_models.py +362 -0
  131. mteb/models/model_implementations/mme5_models.py +1 -0
  132. mteb/models/model_implementations/moco_models.py +11 -0
  133. mteb/models/model_implementations/mod_models.py +191 -0
  134. mteb/models/model_implementations/model2vec_models.py +13 -0
  135. mteb/models/model_implementations/moka_models.py +3 -0
  136. mteb/models/model_implementations/mxbai_models.py +9 -0
  137. mteb/models/model_implementations/nbailab.py +70 -0
  138. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  139. mteb/models/model_implementations/nomic_models.py +156 -4
  140. mteb/models/model_implementations/nomic_models_vision.py +7 -2
  141. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
  142. mteb/models/model_implementations/nvidia_models.py +4 -1
  143. mteb/models/model_implementations/octen_models.py +195 -0
  144. mteb/models/model_implementations/openai_models.py +20 -16
  145. mteb/models/model_implementations/openclip_models.py +24 -0
  146. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  147. mteb/models/model_implementations/ops_moa_models.py +4 -2
  148. mteb/models/model_implementations/pawan_models.py +39 -0
  149. mteb/models/model_implementations/piccolo_models.py +8 -0
  150. mteb/models/model_implementations/promptriever_models.py +8 -4
  151. mteb/models/model_implementations/pylate_models.py +37 -4
  152. mteb/models/model_implementations/qodo_models.py +2 -0
  153. mteb/models/model_implementations/qtack_models.py +1 -0
  154. mteb/models/model_implementations/qwen3_models.py +6 -3
  155. mteb/models/model_implementations/qzhou_models.py +3 -1
  156. mteb/models/model_implementations/random_baseline.py +16 -21
  157. mteb/models/model_implementations/rasgaard_models.py +34 -0
  158. mteb/models/model_implementations/reasonir_model.py +1 -0
  159. mteb/models/model_implementations/repllama_models.py +2 -0
  160. mteb/models/model_implementations/rerankers_custom.py +3 -3
  161. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  162. mteb/models/model_implementations/richinfoai_models.py +1 -0
  163. mteb/models/model_implementations/ru_sentence_models.py +51 -0
  164. mteb/models/model_implementations/ruri_models.py +322 -0
  165. mteb/models/model_implementations/salesforce_models.py +3 -0
  166. mteb/models/model_implementations/samilpwc_models.py +1 -0
  167. mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
  168. mteb/models/model_implementations/searchmap_models.py +1 -0
  169. mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
  170. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
  171. mteb/models/model_implementations/seed_models.py +1 -0
  172. mteb/models/model_implementations/sentence_transformers_models.py +57 -0
  173. mteb/models/model_implementations/shuu_model.py +32 -31
  174. mteb/models/model_implementations/siglip_models.py +10 -0
  175. mteb/models/model_implementations/sonar_models.py +1 -0
  176. mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
  177. mteb/models/model_implementations/stella_models.py +6 -0
  178. mteb/models/model_implementations/tarka_models.py +376 -0
  179. mteb/models/model_implementations/ua_sentence_models.py +10 -0
  180. mteb/models/model_implementations/uae_models.py +1 -0
  181. mteb/models/model_implementations/vdr_models.py +2 -0
  182. mteb/models/model_implementations/vi_vn_models.py +39 -0
  183. mteb/models/model_implementations/vista_models.py +2 -0
  184. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  185. mteb/models/model_implementations/voyage_models.py +15 -0
  186. mteb/models/model_implementations/voyage_v.py +8 -2
  187. mteb/models/model_implementations/xyz_models.py +1 -0
  188. mteb/models/model_implementations/youtu_models.py +1 -0
  189. mteb/models/model_implementations/yuan_models.py +34 -0
  190. mteb/models/model_implementations/yuan_models_en.py +58 -0
  191. mteb/models/model_meta.py +442 -22
  192. mteb/models/search_encoder_index/__init__.py +7 -0
  193. mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
  194. mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
  195. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
  196. mteb/models/search_wrappers.py +165 -48
  197. mteb/models/sentence_transformer_wrapper.py +2 -7
  198. mteb/results/benchmark_results.py +88 -47
  199. mteb/results/model_result.py +11 -4
  200. mteb/results/task_result.py +37 -19
  201. mteb/similarity_functions.py +49 -0
  202. mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
  203. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
  204. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
  205. mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
  206. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
  207. mteb/tasks/classification/ara/ajgt.py +1 -2
  208. mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
  209. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
  210. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
  211. mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
  212. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
  213. mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
  214. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
  215. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
  216. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
  217. mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
  218. mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
  219. mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
  220. mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
  221. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
  222. mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
  223. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
  224. mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
  225. mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
  226. mteb/tasks/classification/eng/arxiv_classification.py +1 -2
  227. mteb/tasks/classification/eng/banking77_classification.py +1 -2
  228. mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
  229. mteb/tasks/classification/eng/emotion_classification.py +1 -2
  230. mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
  231. mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
  232. mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
  233. mteb/tasks/classification/eng/imdb_classification.py +1 -2
  234. mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
  235. mteb/tasks/classification/eng/news_classification.py +1 -2
  236. mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
  237. mteb/tasks/classification/eng/patent_classification.py +1 -2
  238. mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
  239. mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
  240. mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
  241. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
  242. mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
  243. mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
  244. mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
  245. mteb/tasks/classification/eng/ucf101_classification.py +1 -5
  246. mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
  247. mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
  248. mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
  249. mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
  250. mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
  251. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
  252. mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
  253. mteb/tasks/classification/est/estonian_valence.py +1 -2
  254. mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
  255. mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
  256. mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
  257. mteb/tasks/classification/fra/french_book_reviews.py +1 -2
  258. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
  259. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
  260. mteb/tasks/classification/heb/__init__.py +6 -1
  261. mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
  262. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
  263. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
  264. mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
  265. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
  266. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
  267. mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
  268. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
  269. mteb/tasks/classification/jpn/wrime_classification.py +1 -2
  270. mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
  271. mteb/tasks/classification/kor/klue_tc.py +1 -2
  272. mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
  273. mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
  274. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
  275. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
  276. mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
  277. mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
  278. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
  279. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
  280. mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
  281. mteb/tasks/classification/multilingual/scala_classification.py +1 -2
  282. mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
  283. mteb/tasks/classification/mya/myanmar_news.py +1 -2
  284. mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
  285. mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
  286. mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
  287. mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
  288. mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
  289. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
  290. mteb/tasks/classification/nld/iconclass_classification.py +3 -0
  291. mteb/tasks/classification/nld/open_tender_classification.py +3 -0
  292. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
  293. mteb/tasks/classification/nob/no_rec_classification.py +1 -2
  294. mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
  295. mteb/tasks/classification/ory/odia_news_classification.py +1 -2
  296. mteb/tasks/classification/pol/polish_classification.py +3 -6
  297. mteb/tasks/classification/ron/moroco.py +1 -2
  298. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
  299. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
  300. mteb/tasks/classification/rus/georeview_classification.py +1 -2
  301. mteb/tasks/classification/rus/headline_classification.py +1 -2
  302. mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
  303. mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
  304. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
  305. mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
  306. mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
  307. mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
  308. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
  309. mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
  310. mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
  311. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
  312. mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
  313. mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
  314. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
  315. mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
  316. mteb/tasks/classification/swe/dalaj_classification.py +1 -2
  317. mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
  318. mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
  319. mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
  320. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
  321. mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
  322. mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
  323. mteb/tasks/classification/tur/__init__.py +4 -0
  324. mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
  325. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
  326. mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
  327. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
  328. mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
  329. mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
  330. mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
  331. mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
  332. mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
  333. mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
  334. mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
  335. mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
  336. mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
  337. mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
  338. mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
  339. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
  340. mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
  341. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
  342. mteb/tasks/classification/zho/cmteb_classification.py +5 -10
  343. mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
  344. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
  345. mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
  346. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
  347. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
  348. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
  349. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
  350. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
  351. mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
  352. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
  353. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
  354. mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
  355. mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
  356. mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
  357. mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
  358. mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
  359. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
  360. mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
  361. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
  362. mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
  363. mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
  364. mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
  365. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  366. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
  367. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
  368. mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
  369. mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
  370. mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
  371. mteb/tasks/pair_classification/rus/__init__.py +2 -2
  372. mteb/tasks/pair_classification/rus/terra.py +51 -25
  373. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
  374. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
  375. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
  376. mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
  377. mteb/tasks/reranking/jpn/__init__.py +9 -1
  378. mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
  379. mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
  380. mteb/tasks/reranking/multilingual/__init__.py +2 -0
  381. mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
  382. mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
  383. mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
  384. mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
  385. mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
  386. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
  387. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
  388. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
  389. mteb/tasks/retrieval/jpn/__init__.py +8 -0
  390. mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
  391. mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
  392. mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
  393. mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
  394. mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
  395. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
  396. mteb/tasks/retrieval/kor/__init__.py +2 -1
  397. mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
  398. mteb/tasks/retrieval/multilingual/__init__.py +22 -0
  399. mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
  400. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
  401. mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
  402. mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
  403. mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
  404. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
  405. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
  406. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
  407. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
  408. mteb/tasks/retrieval/nld/__init__.py +8 -4
  409. mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
  410. mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
  411. mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
  412. mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
  413. mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
  414. mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
  415. mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
  416. mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
  417. mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
  418. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
  419. mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
  420. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
  421. mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
  422. mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
  423. mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
  424. mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
  425. mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
  426. mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
  427. mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
  428. mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
  429. mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
  430. mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
  431. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
  432. mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
  433. mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
  434. mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
  435. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
  436. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
  437. mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
  438. mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
  439. mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
  440. mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
  441. mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
  442. mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
  443. mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
  444. mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
  445. mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
  446. mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
  447. mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
  448. mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
  449. mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
  450. mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
  451. mteb/types/_encoder_io.py +7 -2
  452. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
  453. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
  454. mteb/models/model_implementations/nb_sbert.py +0 -25
  455. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
  456. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
  457. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
  458. {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,214 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 11856,
4
+ "number_of_characters": 220508,
5
+ "documents_text_statistics": null,
6
+ "documents_image_statistics": {
7
+ "min_image_width": 2667,
8
+ "average_image_width": 2667.0,
9
+ "max_image_width": 2667,
10
+ "min_image_height": 1500,
11
+ "average_image_height": 1500.0,
12
+ "max_image_height": 1500,
13
+ "unique_images": 1674
14
+ },
15
+ "queries_text_statistics": {
16
+ "total_text_length": 220508,
17
+ "min_text_length": 37,
18
+ "average_text_length": 121.69315673289184,
19
+ "max_text_length": 286,
20
+ "unique_texts": 1812
21
+ },
22
+ "queries_image_statistics": null,
23
+ "relevant_docs_statistics": {
24
+ "num_relevant_docs": 78408,
25
+ "min_relevant_docs_per_query": 1,
26
+ "average_relevant_docs_per_query": 7.211920529801325,
27
+ "max_relevant_docs_per_query": 28,
28
+ "unique_relevant_docs": 5772
29
+ },
30
+ "top_ranked_statistics": null,
31
+ "hf_subset_descriptive_stats": {
32
+ "french": {
33
+ "num_samples": 1976,
34
+ "number_of_characters": 38216,
35
+ "documents_text_statistics": null,
36
+ "documents_image_statistics": {
37
+ "min_image_width": 2667,
38
+ "average_image_width": 2667.0,
39
+ "max_image_width": 2667,
40
+ "min_image_height": 1500,
41
+ "average_image_height": 1500.0,
42
+ "max_image_height": 1500,
43
+ "unique_images": 1674
44
+ },
45
+ "queries_text_statistics": {
46
+ "total_text_length": 38216,
47
+ "min_text_length": 40,
48
+ "average_text_length": 126.54304635761589,
49
+ "max_text_length": 267,
50
+ "unique_texts": 302
51
+ },
52
+ "queries_image_statistics": null,
53
+ "relevant_docs_statistics": {
54
+ "num_relevant_docs": 13068,
55
+ "min_relevant_docs_per_query": 1,
56
+ "average_relevant_docs_per_query": 7.211920529801325,
57
+ "max_relevant_docs_per_query": 28,
58
+ "unique_relevant_docs": 962
59
+ },
60
+ "top_ranked_statistics": null
61
+ },
62
+ "spanish": {
63
+ "num_samples": 1976,
64
+ "number_of_characters": 37169,
65
+ "documents_text_statistics": null,
66
+ "documents_image_statistics": {
67
+ "min_image_width": 2667,
68
+ "average_image_width": 2667.0,
69
+ "max_image_width": 2667,
70
+ "min_image_height": 1500,
71
+ "average_image_height": 1500.0,
72
+ "max_image_height": 1500,
73
+ "unique_images": 1674
74
+ },
75
+ "queries_text_statistics": {
76
+ "total_text_length": 37169,
77
+ "min_text_length": 39,
78
+ "average_text_length": 123.07615894039735,
79
+ "max_text_length": 263,
80
+ "unique_texts": 302
81
+ },
82
+ "queries_image_statistics": null,
83
+ "relevant_docs_statistics": {
84
+ "num_relevant_docs": 13068,
85
+ "min_relevant_docs_per_query": 1,
86
+ "average_relevant_docs_per_query": 7.211920529801325,
87
+ "max_relevant_docs_per_query": 28,
88
+ "unique_relevant_docs": 962
89
+ },
90
+ "top_ranked_statistics": null
91
+ },
92
+ "english": {
93
+ "num_samples": 1976,
94
+ "number_of_characters": 34092,
95
+ "documents_text_statistics": null,
96
+ "documents_image_statistics": {
97
+ "min_image_width": 2667,
98
+ "average_image_width": 2667.0,
99
+ "max_image_width": 2667,
100
+ "min_image_height": 1500,
101
+ "average_image_height": 1500.0,
102
+ "max_image_height": 1500,
103
+ "unique_images": 1674
104
+ },
105
+ "queries_text_statistics": {
106
+ "total_text_length": 34092,
107
+ "min_text_length": 38,
108
+ "average_text_length": 112.88741721854305,
109
+ "max_text_length": 244,
110
+ "unique_texts": 302
111
+ },
112
+ "queries_image_statistics": null,
113
+ "relevant_docs_statistics": {
114
+ "num_relevant_docs": 13068,
115
+ "min_relevant_docs_per_query": 1,
116
+ "average_relevant_docs_per_query": 7.211920529801325,
117
+ "max_relevant_docs_per_query": 28,
118
+ "unique_relevant_docs": 962
119
+ },
120
+ "top_ranked_statistics": null
121
+ },
122
+ "german": {
123
+ "num_samples": 1976,
124
+ "number_of_characters": 39603,
125
+ "documents_text_statistics": null,
126
+ "documents_image_statistics": {
127
+ "min_image_width": 2667,
128
+ "average_image_width": 2667.0,
129
+ "max_image_width": 2667,
130
+ "min_image_height": 1500,
131
+ "average_image_height": 1500.0,
132
+ "max_image_height": 1500,
133
+ "unique_images": 1674
134
+ },
135
+ "queries_text_statistics": {
136
+ "total_text_length": 39603,
137
+ "min_text_length": 37,
138
+ "average_text_length": 131.13576158940398,
139
+ "max_text_length": 286,
140
+ "unique_texts": 302
141
+ },
142
+ "queries_image_statistics": null,
143
+ "relevant_docs_statistics": {
144
+ "num_relevant_docs": 13068,
145
+ "min_relevant_docs_per_query": 1,
146
+ "average_relevant_docs_per_query": 7.211920529801325,
147
+ "max_relevant_docs_per_query": 28,
148
+ "unique_relevant_docs": 962
149
+ },
150
+ "top_ranked_statistics": null
151
+ },
152
+ "italian": {
153
+ "num_samples": 1976,
154
+ "number_of_characters": 36485,
155
+ "documents_text_statistics": null,
156
+ "documents_image_statistics": {
157
+ "min_image_width": 2667,
158
+ "average_image_width": 2667.0,
159
+ "max_image_width": 2667,
160
+ "min_image_height": 1500,
161
+ "average_image_height": 1500.0,
162
+ "max_image_height": 1500,
163
+ "unique_images": 1674
164
+ },
165
+ "queries_text_statistics": {
166
+ "total_text_length": 36485,
167
+ "min_text_length": 39,
168
+ "average_text_length": 120.8112582781457,
169
+ "max_text_length": 253,
170
+ "unique_texts": 302
171
+ },
172
+ "queries_image_statistics": null,
173
+ "relevant_docs_statistics": {
174
+ "num_relevant_docs": 13068,
175
+ "min_relevant_docs_per_query": 1,
176
+ "average_relevant_docs_per_query": 7.211920529801325,
177
+ "max_relevant_docs_per_query": 28,
178
+ "unique_relevant_docs": 962
179
+ },
180
+ "top_ranked_statistics": null
181
+ },
182
+ "portuguese": {
183
+ "num_samples": 1976,
184
+ "number_of_characters": 34943,
185
+ "documents_text_statistics": null,
186
+ "documents_image_statistics": {
187
+ "min_image_width": 2667,
188
+ "average_image_width": 2667.0,
189
+ "max_image_width": 2667,
190
+ "min_image_height": 1500,
191
+ "average_image_height": 1500.0,
192
+ "max_image_height": 1500,
193
+ "unique_images": 1674
194
+ },
195
+ "queries_text_statistics": {
196
+ "total_text_length": 34943,
197
+ "min_text_length": 38,
198
+ "average_text_length": 115.70529801324503,
199
+ "max_text_length": 240,
200
+ "unique_texts": 302
201
+ },
202
+ "queries_image_statistics": null,
203
+ "relevant_docs_statistics": {
204
+ "num_relevant_docs": 13068,
205
+ "min_relevant_docs_per_query": 1,
206
+ "average_relevant_docs_per_query": 7.211920529801325,
207
+ "max_relevant_docs_per_query": 28,
208
+ "unique_relevant_docs": 962
209
+ },
210
+ "top_ranked_statistics": null
211
+ }
212
+ }
213
+ }
214
+ }
@@ -0,0 +1,214 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 29850,
4
+ "number_of_characters": 259999,
5
+ "documents_text_statistics": null,
6
+ "documents_image_statistics": {
7
+ "min_image_width": 1653,
8
+ "average_image_width": 1692.308839420791,
9
+ "max_image_width": 1700,
10
+ "min_image_height": 2197,
11
+ "average_image_height": 2222.7112599956777,
12
+ "max_image_height": 2339,
13
+ "unique_images": 4624
14
+ },
15
+ "queries_text_statistics": {
16
+ "total_text_length": 259999,
17
+ "min_text_length": 17,
18
+ "average_text_length": 124.5205938697318,
19
+ "max_text_length": 326,
20
+ "unique_texts": 2088
21
+ },
22
+ "queries_image_statistics": null,
23
+ "relevant_docs_statistics": {
24
+ "num_relevant_docs": 56196,
25
+ "min_relevant_docs_per_query": 1,
26
+ "average_relevant_docs_per_query": 4.485632183908046,
27
+ "max_relevant_docs_per_query": 24,
28
+ "unique_relevant_docs": 6510
29
+ },
30
+ "top_ranked_statistics": null,
31
+ "hf_subset_descriptive_stats": {
32
+ "french": {
33
+ "num_samples": 4975,
34
+ "number_of_characters": 46656,
35
+ "documents_text_statistics": null,
36
+ "documents_image_statistics": {
37
+ "min_image_width": 1653,
38
+ "average_image_width": 1692.308839420791,
39
+ "max_image_width": 1700,
40
+ "min_image_height": 2197,
41
+ "average_image_height": 2222.7112599956777,
42
+ "max_image_height": 2339,
43
+ "unique_images": 4624
44
+ },
45
+ "queries_text_statistics": {
46
+ "total_text_length": 46656,
47
+ "min_text_length": 20,
48
+ "average_text_length": 134.06896551724137,
49
+ "max_text_length": 323,
50
+ "unique_texts": 348
51
+ },
52
+ "queries_image_statistics": null,
53
+ "relevant_docs_statistics": {
54
+ "num_relevant_docs": 9366,
55
+ "min_relevant_docs_per_query": 1,
56
+ "average_relevant_docs_per_query": 4.485632183908046,
57
+ "max_relevant_docs_per_query": 24,
58
+ "unique_relevant_docs": 1085
59
+ },
60
+ "top_ranked_statistics": null
61
+ },
62
+ "spanish": {
63
+ "num_samples": 4975,
64
+ "number_of_characters": 44339,
65
+ "documents_text_statistics": null,
66
+ "documents_image_statistics": {
67
+ "min_image_width": 1653,
68
+ "average_image_width": 1692.308839420791,
69
+ "max_image_width": 1700,
70
+ "min_image_height": 2197,
71
+ "average_image_height": 2222.7112599956777,
72
+ "max_image_height": 2339,
73
+ "unique_images": 4624
74
+ },
75
+ "queries_text_statistics": {
76
+ "total_text_length": 44339,
77
+ "min_text_length": 21,
78
+ "average_text_length": 127.41091954022988,
79
+ "max_text_length": 301,
80
+ "unique_texts": 348
81
+ },
82
+ "queries_image_statistics": null,
83
+ "relevant_docs_statistics": {
84
+ "num_relevant_docs": 9366,
85
+ "min_relevant_docs_per_query": 1,
86
+ "average_relevant_docs_per_query": 4.485632183908046,
87
+ "max_relevant_docs_per_query": 24,
88
+ "unique_relevant_docs": 1085
89
+ },
90
+ "top_ranked_statistics": null
91
+ },
92
+ "english": {
93
+ "num_samples": 4975,
94
+ "number_of_characters": 38411,
95
+ "documents_text_statistics": null,
96
+ "documents_image_statistics": {
97
+ "min_image_width": 1653,
98
+ "average_image_width": 1692.308839420791,
99
+ "max_image_width": 1700,
100
+ "min_image_height": 2197,
101
+ "average_image_height": 2222.7112599956777,
102
+ "max_image_height": 2339,
103
+ "unique_images": 4624
104
+ },
105
+ "queries_text_statistics": {
106
+ "total_text_length": 38411,
107
+ "min_text_length": 18,
108
+ "average_text_length": 110.3764367816092,
109
+ "max_text_length": 252,
110
+ "unique_texts": 348
111
+ },
112
+ "queries_image_statistics": null,
113
+ "relevant_docs_statistics": {
114
+ "num_relevant_docs": 9366,
115
+ "min_relevant_docs_per_query": 1,
116
+ "average_relevant_docs_per_query": 4.485632183908046,
117
+ "max_relevant_docs_per_query": 24,
118
+ "unique_relevant_docs": 1085
119
+ },
120
+ "top_ranked_statistics": null
121
+ },
122
+ "german": {
123
+ "num_samples": 4975,
124
+ "number_of_characters": 44640,
125
+ "documents_text_statistics": null,
126
+ "documents_image_statistics": {
127
+ "min_image_width": 1653,
128
+ "average_image_width": 1692.308839420791,
129
+ "max_image_width": 1700,
130
+ "min_image_height": 2197,
131
+ "average_image_height": 2222.7112599956777,
132
+ "max_image_height": 2339,
133
+ "unique_images": 4624
134
+ },
135
+ "queries_text_statistics": {
136
+ "total_text_length": 44640,
137
+ "min_text_length": 17,
138
+ "average_text_length": 128.27586206896552,
139
+ "max_text_length": 326,
140
+ "unique_texts": 348
141
+ },
142
+ "queries_image_statistics": null,
143
+ "relevant_docs_statistics": {
144
+ "num_relevant_docs": 9366,
145
+ "min_relevant_docs_per_query": 1,
146
+ "average_relevant_docs_per_query": 4.485632183908046,
147
+ "max_relevant_docs_per_query": 24,
148
+ "unique_relevant_docs": 1085
149
+ },
150
+ "top_ranked_statistics": null
151
+ },
152
+ "italian": {
153
+ "num_samples": 4975,
154
+ "number_of_characters": 44058,
155
+ "documents_text_statistics": null,
156
+ "documents_image_statistics": {
157
+ "min_image_width": 1653,
158
+ "average_image_width": 1692.308839420791,
159
+ "max_image_width": 1700,
160
+ "min_image_height": 2197,
161
+ "average_image_height": 2222.7112599956777,
162
+ "max_image_height": 2339,
163
+ "unique_images": 4624
164
+ },
165
+ "queries_text_statistics": {
166
+ "total_text_length": 44058,
167
+ "min_text_length": 17,
168
+ "average_text_length": 126.60344827586206,
169
+ "max_text_length": 290,
170
+ "unique_texts": 348
171
+ },
172
+ "queries_image_statistics": null,
173
+ "relevant_docs_statistics": {
174
+ "num_relevant_docs": 9366,
175
+ "min_relevant_docs_per_query": 1,
176
+ "average_relevant_docs_per_query": 4.485632183908046,
177
+ "max_relevant_docs_per_query": 24,
178
+ "unique_relevant_docs": 1085
179
+ },
180
+ "top_ranked_statistics": null
181
+ },
182
+ "portuguese": {
183
+ "num_samples": 4975,
184
+ "number_of_characters": 41895,
185
+ "documents_text_statistics": null,
186
+ "documents_image_statistics": {
187
+ "min_image_width": 1653,
188
+ "average_image_width": 1692.308839420791,
189
+ "max_image_width": 1700,
190
+ "min_image_height": 2197,
191
+ "average_image_height": 2222.7112599956777,
192
+ "max_image_height": 2339,
193
+ "unique_images": 4624
194
+ },
195
+ "queries_text_statistics": {
196
+ "total_text_length": 41895,
197
+ "min_text_length": 21,
198
+ "average_text_length": 120.38793103448276,
199
+ "max_text_length": 283,
200
+ "unique_texts": 348
201
+ },
202
+ "queries_image_statistics": null,
203
+ "relevant_docs_statistics": {
204
+ "num_relevant_docs": 9366,
205
+ "min_relevant_docs_per_query": 1,
206
+ "average_relevant_docs_per_query": 4.485632183908046,
207
+ "max_relevant_docs_per_query": 24,
208
+ "unique_relevant_docs": 1085
209
+ },
210
+ "top_ranked_statistics": null
211
+ }
212
+ }
213
+ }
214
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "dev": {
3
+ "num_samples": 307,
4
+ "number_of_characters": 84848,
5
+ "unique_pairs": 307,
6
+ "text1_statistics": {
7
+ "total_text_length": 70844,
8
+ "min_text_length": 39,
9
+ "average_text_length": 230.76221498371336,
10
+ "max_text_length": 717,
11
+ "unique_texts": 282
12
+ },
13
+ "text2_statistics": {
14
+ "total_text_length": 14004,
15
+ "min_text_length": 12,
16
+ "average_text_length": 45.615635179153095,
17
+ "max_text_length": 129,
18
+ "unique_texts": 307
19
+ },
20
+ "labels_statistics": {
21
+ "min_labels_per_text": 1,
22
+ "average_label_per_text": 1.0,
23
+ "max_labels_per_text": 1,
24
+ "unique_labels": 2,
25
+ "labels": {
26
+ "1": {
27
+ "count": 153
28
+ },
29
+ "0": {
30
+ "count": 154
31
+ }
32
+ }
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 91353,
4
+ "number_of_characters": 21318247,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 21231812,
7
+ "min_text_length": 14,
8
+ "average_text_length": 236.73496420846064,
9
+ "max_text_length": 438,
10
+ "unique_texts": 89683
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 86435,
15
+ "min_text_length": 16,
16
+ "average_text_length": 51.850629874025195,
17
+ "max_text_length": 118,
18
+ "unique_texts": 1667
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 16204,
23
+ "min_relevant_docs_per_query": 51,
24
+ "average_relevant_docs_per_query": 9.720455908818236,
25
+ "max_relevant_docs_per_query": 78,
26
+ "unique_relevant_docs": 89686
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 98941,
30
+ "min_top_ranked_per_query": 51,
31
+ "average_top_ranked_per_query": 59.35272945410918,
32
+ "max_top_ranked_per_query": 78
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "test": {
3
+ "num_samples": 161744,
4
+ "number_of_characters": 29754484,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 29612965,
7
+ "min_text_length": 142,
8
+ "average_text_length": 187.72799599350847,
9
+ "max_text_length": 252,
10
+ "unique_texts": 156741
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 141519,
15
+ "min_text_length": 9,
16
+ "average_text_length": 35.37975,
17
+ "max_text_length": 176,
18
+ "unique_texts": 3993
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 3998,
23
+ "min_relevant_docs_per_query": 50,
24
+ "average_relevant_docs_per_query": 0.9995,
25
+ "max_relevant_docs_per_query": 51,
26
+ "unique_relevant_docs": 157744
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 204000,
30
+ "min_top_ranked_per_query": 51,
31
+ "average_top_ranked_per_query": 51.0,
32
+ "max_top_ranked_per_query": 51
33
+ }
34
+ }
35
+ }