mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -1,11 +1,18 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
from typing import Any
|
|
2
3
|
|
|
3
4
|
import torch
|
|
5
|
+
from torch.utils.data import DataLoader
|
|
6
|
+
from tqdm.auto import tqdm
|
|
4
7
|
|
|
5
8
|
from mteb._requires_package import (
|
|
9
|
+
requires_image_dependencies,
|
|
6
10
|
requires_package,
|
|
7
11
|
)
|
|
8
|
-
from mteb.
|
|
12
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
14
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
9
16
|
|
|
10
17
|
from .colpali_models import (
|
|
11
18
|
COLPALI_CITATION,
|
|
@@ -73,12 +80,140 @@ class ColQwen2_5Wrapper(ColPaliEngineWrapper): # noqa: N801
|
|
|
73
80
|
)
|
|
74
81
|
|
|
75
82
|
|
|
83
|
+
class ColQwen3Wrapper(AbsEncoder):
|
|
84
|
+
"""Wrapper for the ColQwen3 vision-language retrieval model."""
|
|
85
|
+
|
|
86
|
+
def __init__(
|
|
87
|
+
self,
|
|
88
|
+
model_name: str,
|
|
89
|
+
*,
|
|
90
|
+
revision: str | None = None,
|
|
91
|
+
device: str | None = None,
|
|
92
|
+
dtype: torch.dtype | str | None = torch.bfloat16,
|
|
93
|
+
**kwargs: Any,
|
|
94
|
+
):
|
|
95
|
+
requires_image_dependencies()
|
|
96
|
+
requires_package(self, "transformers", model_name, "pip install mteb[colqwen3]")
|
|
97
|
+
from transformers import AutoModel, AutoProcessor
|
|
98
|
+
|
|
99
|
+
self.device = device or (
|
|
100
|
+
"cuda"
|
|
101
|
+
if torch.cuda.is_available()
|
|
102
|
+
else "mps"
|
|
103
|
+
if torch.backends.mps.is_available()
|
|
104
|
+
else "cpu"
|
|
105
|
+
)
|
|
106
|
+
self.model = AutoModel.from_pretrained(
|
|
107
|
+
model_name,
|
|
108
|
+
revision=revision,
|
|
109
|
+
dtype=dtype,
|
|
110
|
+
trust_remote_code=True,
|
|
111
|
+
**kwargs,
|
|
112
|
+
).to(self.device)
|
|
113
|
+
self.model.eval()
|
|
114
|
+
|
|
115
|
+
self.processor = AutoProcessor.from_pretrained(
|
|
116
|
+
model_name,
|
|
117
|
+
revision=revision,
|
|
118
|
+
trust_remote_code=True,
|
|
119
|
+
max_num_visual_tokens=1280,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
def encode(
|
|
123
|
+
self,
|
|
124
|
+
inputs: DataLoader[BatchedInput],
|
|
125
|
+
*,
|
|
126
|
+
task_metadata: TaskMetadata,
|
|
127
|
+
hf_split: str,
|
|
128
|
+
hf_subset: str,
|
|
129
|
+
prompt_type: PromptType | None = None,
|
|
130
|
+
**kwargs: Any,
|
|
131
|
+
) -> Array:
|
|
132
|
+
if (
|
|
133
|
+
"text" not in inputs.dataset.features
|
|
134
|
+
and "image" not in inputs.dataset.features
|
|
135
|
+
):
|
|
136
|
+
raise ValueError("No text or image features found in inputs.")
|
|
137
|
+
return self.get_fused_embeddings(inputs, **kwargs)
|
|
138
|
+
|
|
139
|
+
def _encode_inputs(self, encoded_inputs: dict[str, torch.Tensor]) -> torch.Tensor:
|
|
140
|
+
outputs = self.model(**encoded_inputs)
|
|
141
|
+
# Avoid boolean casting of tensors when checking for custom attributes.
|
|
142
|
+
embeddings = getattr(outputs, "embeddings", None)
|
|
143
|
+
if embeddings is None:
|
|
144
|
+
embeddings = outputs[0]
|
|
145
|
+
return embeddings
|
|
146
|
+
|
|
147
|
+
def get_fused_embeddings(
|
|
148
|
+
self,
|
|
149
|
+
image_texts_pairs: DataLoader[BatchedInput] | None = None,
|
|
150
|
+
batch_size: int = 32,
|
|
151
|
+
show_progress_bar: bool = True,
|
|
152
|
+
fusion_mode="concat",
|
|
153
|
+
**kwargs: Any,
|
|
154
|
+
):
|
|
155
|
+
import torchvision.transforms.functional as F
|
|
156
|
+
from PIL import Image
|
|
157
|
+
|
|
158
|
+
contains_image = "image" in image_texts_pairs.dataset.features
|
|
159
|
+
contains_text = "text" in image_texts_pairs.dataset.features
|
|
160
|
+
contains_both = contains_image and contains_text
|
|
161
|
+
|
|
162
|
+
if contains_both:
|
|
163
|
+
progress_desc = "Encoding images+texts"
|
|
164
|
+
elif contains_image:
|
|
165
|
+
progress_desc = "Encoding images"
|
|
166
|
+
elif contains_text:
|
|
167
|
+
progress_desc = "Encoding texts"
|
|
168
|
+
else:
|
|
169
|
+
raise ValueError("No text or image features found in inputs.")
|
|
170
|
+
|
|
171
|
+
all_embeds: list[torch.Tensor] = []
|
|
172
|
+
with torch.no_grad():
|
|
173
|
+
for batch in tqdm(
|
|
174
|
+
image_texts_pairs,
|
|
175
|
+
disable=not show_progress_bar,
|
|
176
|
+
desc=progress_desc,
|
|
177
|
+
):
|
|
178
|
+
if contains_image:
|
|
179
|
+
imgs = [
|
|
180
|
+
F.to_pil_image(b.to(self.device))
|
|
181
|
+
if not isinstance(b, Image.Image)
|
|
182
|
+
else b
|
|
183
|
+
for b in batch["image"]
|
|
184
|
+
]
|
|
185
|
+
else:
|
|
186
|
+
imgs = None
|
|
187
|
+
if contains_text:
|
|
188
|
+
texts = batch["text"]
|
|
189
|
+
else:
|
|
190
|
+
texts = None
|
|
191
|
+
if contains_both:
|
|
192
|
+
assert len(imgs) == len(texts), (
|
|
193
|
+
f"The number of texts and images must have the same length, got {len(imgs)} and {len(texts)}"
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
inputs = self.processor(images=imgs, text=texts)
|
|
197
|
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
198
|
+
outs = self._encode_inputs(inputs)
|
|
199
|
+
all_embeds.extend(outs.cpu().to(torch.float32))
|
|
200
|
+
|
|
201
|
+
padded = torch.nn.utils.rnn.pad_sequence(
|
|
202
|
+
all_embeds, batch_first=True, padding_value=0
|
|
203
|
+
)
|
|
204
|
+
return padded
|
|
205
|
+
|
|
206
|
+
def similarity(self, a, b):
|
|
207
|
+
return self.processor.score_multi_vector(a, b, device=self.device)
|
|
208
|
+
|
|
209
|
+
|
|
76
210
|
colqwen2 = ModelMeta(
|
|
77
211
|
loader=ColQwen2Wrapper,
|
|
78
212
|
loader_kwargs=dict(
|
|
79
213
|
torch_dtype=torch.float16,
|
|
80
214
|
),
|
|
81
215
|
name="vidore/colqwen2-v1.0",
|
|
216
|
+
model_type=["late-interaction"],
|
|
82
217
|
languages=["eng-Latn"],
|
|
83
218
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
84
219
|
release_date="2025-11-03",
|
|
@@ -105,6 +240,7 @@ colqwen2_5 = ModelMeta(
|
|
|
105
240
|
torch_dtype=torch.float16,
|
|
106
241
|
),
|
|
107
242
|
name="vidore/colqwen2.5-v0.2",
|
|
243
|
+
model_type=["late-interaction"],
|
|
108
244
|
languages=["eng-Latn"],
|
|
109
245
|
revision="6f6fcdfd1a114dfe365f529701b33d66b9349014",
|
|
110
246
|
release_date="2025-01-31",
|
|
@@ -125,12 +261,81 @@ colqwen2_5 = ModelMeta(
|
|
|
125
261
|
citation=COLPALI_CITATION,
|
|
126
262
|
)
|
|
127
263
|
|
|
264
|
+
TOMORO_TRAINING_DATA = {
|
|
265
|
+
"VDRMultilingualRetrieval",
|
|
266
|
+
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
267
|
+
"VidoreDocVQARetrieval",
|
|
268
|
+
"VidoreInfoVQARetrieval",
|
|
269
|
+
"VidoreTatdqaRetrieval",
|
|
270
|
+
"VidoreArxivQARetrieval",
|
|
271
|
+
"VisRAG-Ret-Train-Synthetic-data",
|
|
272
|
+
"VisRAG-Ret-Train-In-domain-data",
|
|
273
|
+
}
|
|
274
|
+
|
|
275
|
+
TOMORO_CITATION = """
|
|
276
|
+
@misc{huang2025tomoro_colqwen3_embed,
|
|
277
|
+
title={TomoroAI/tomoro-colqwen3-embed},
|
|
278
|
+
author={Xin Huang and Kye Min Tan and Albert Phelps},
|
|
279
|
+
year={2025},
|
|
280
|
+
url={https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b}
|
|
281
|
+
}
|
|
282
|
+
"""
|
|
283
|
+
|
|
284
|
+
colqwen3_8b = ModelMeta(
|
|
285
|
+
loader=ColQwen3Wrapper,
|
|
286
|
+
name="TomoroAI/tomoro-colqwen3-embed-8b",
|
|
287
|
+
model_type=["late-interaction"],
|
|
288
|
+
languages=["eng-Latn"],
|
|
289
|
+
revision="0b9fe28142910e209bbac15b1efe85507c27644f",
|
|
290
|
+
release_date="2025-11-26",
|
|
291
|
+
modalities=["image", "text"],
|
|
292
|
+
n_parameters=8_000_000_000,
|
|
293
|
+
memory_usage_mb=16724,
|
|
294
|
+
max_tokens=262144,
|
|
295
|
+
embed_dim=320,
|
|
296
|
+
license="apache-2.0",
|
|
297
|
+
open_weights=True,
|
|
298
|
+
public_training_code="https://github.com/illuin-tech/colpali",
|
|
299
|
+
public_training_data=None,
|
|
300
|
+
framework=["PyTorch"],
|
|
301
|
+
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b",
|
|
302
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
303
|
+
use_instructions=True,
|
|
304
|
+
training_datasets=TOMORO_TRAINING_DATA,
|
|
305
|
+
citation=TOMORO_CITATION,
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
colqwen3_4b = ModelMeta(
|
|
309
|
+
loader=ColQwen3Wrapper,
|
|
310
|
+
name="TomoroAI/tomoro-colqwen3-embed-4b",
|
|
311
|
+
model_type=["late-interaction"],
|
|
312
|
+
languages=["eng-Latn"],
|
|
313
|
+
revision="6a32fb68598730bf5620fbf18d832c784235c59c",
|
|
314
|
+
release_date="2025-11-26",
|
|
315
|
+
modalities=["image", "text"],
|
|
316
|
+
n_parameters=4_000_000_000,
|
|
317
|
+
memory_usage_mb=8466,
|
|
318
|
+
max_tokens=262144,
|
|
319
|
+
embed_dim=320,
|
|
320
|
+
license="apache-2.0",
|
|
321
|
+
open_weights=True,
|
|
322
|
+
public_training_code="https://github.com/illuin-tech/colpali",
|
|
323
|
+
public_training_data=None,
|
|
324
|
+
framework=["PyTorch"],
|
|
325
|
+
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b",
|
|
326
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
327
|
+
use_instructions=True,
|
|
328
|
+
training_datasets=TOMORO_TRAINING_DATA,
|
|
329
|
+
citation=TOMORO_CITATION,
|
|
330
|
+
)
|
|
331
|
+
|
|
128
332
|
colnomic_7b = ModelMeta(
|
|
129
333
|
loader=ColQwen2_5Wrapper,
|
|
130
334
|
loader_kwargs=dict(
|
|
131
335
|
torch_dtype=torch.float16,
|
|
132
336
|
),
|
|
133
337
|
name="nomic-ai/colnomic-embed-multimodal-7b",
|
|
338
|
+
model_type=["late-interaction"],
|
|
134
339
|
languages=["eng-Latn"],
|
|
135
340
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
136
341
|
release_date="2025-03-31",
|
|
@@ -175,6 +380,7 @@ colnomic_3b = ModelMeta(
|
|
|
175
380
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
176
381
|
),
|
|
177
382
|
name="nomic-ai/colnomic-embed-multimodal-3b",
|
|
383
|
+
model_type=["late-interaction"],
|
|
178
384
|
languages=COLNOMIC_LANGUAGES,
|
|
179
385
|
revision="86627b4a9b0cade577851a70afa469084f9863a4",
|
|
180
386
|
release_date="2025-03-31",
|
|
@@ -201,6 +407,7 @@ colnomic_7b = ModelMeta(
|
|
|
201
407
|
torch_dtype=torch.float16,
|
|
202
408
|
),
|
|
203
409
|
name="nomic-ai/colnomic-embed-multimodal-7b",
|
|
410
|
+
model_type=["late-interaction"],
|
|
204
411
|
languages=COLNOMIC_LANGUAGES,
|
|
205
412
|
revision="09dbc9502b66605d5be56d2226019b49c9fd3293",
|
|
206
413
|
release_date="2025-03-31",
|
|
@@ -220,3 +427,66 @@ colnomic_7b = ModelMeta(
|
|
|
220
427
|
training_datasets=COLNOMIC_TRAINING_DATA,
|
|
221
428
|
citation=COLNOMIC_CITATION,
|
|
222
429
|
)
|
|
430
|
+
|
|
431
|
+
|
|
432
|
+
EVOQWEN_TRAINING_DATA = {
|
|
433
|
+
# "colpali_train_set",
|
|
434
|
+
"VidoreDocVQARetrieval",
|
|
435
|
+
"VidoreInfoVQARetrieval",
|
|
436
|
+
"VidoreTatdqaRetrieval",
|
|
437
|
+
"VidoreArxivQARetrieval",
|
|
438
|
+
"VisRAG-Ret-Train-Synthetic-data",
|
|
439
|
+
"VisRAG-Ret-Train-In-domain-data",
|
|
440
|
+
}
|
|
441
|
+
|
|
442
|
+
evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
443
|
+
loader=ColQwen2_5Wrapper,
|
|
444
|
+
loader_kwargs=dict(
|
|
445
|
+
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
446
|
+
),
|
|
447
|
+
name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
448
|
+
model_type=["late-interaction"],
|
|
449
|
+
languages=["eng-Latn"],
|
|
450
|
+
revision="aeacaa2775f2758d82721eb1cf2f5daf1a392da9",
|
|
451
|
+
release_date="2025-11-04",
|
|
452
|
+
modalities=["image", "text"],
|
|
453
|
+
n_parameters=3_000_000_000,
|
|
454
|
+
memory_usage_mb=7200,
|
|
455
|
+
max_tokens=128000,
|
|
456
|
+
embed_dim=128,
|
|
457
|
+
license="apache-2.0",
|
|
458
|
+
open_weights=True,
|
|
459
|
+
public_training_code="https://github.com/illuin-tech/colpali",
|
|
460
|
+
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
461
|
+
framework=["ColPali"],
|
|
462
|
+
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
463
|
+
similarity_fn_name="MaxSim",
|
|
464
|
+
use_instructions=True,
|
|
465
|
+
training_datasets=EVOQWEN_TRAINING_DATA,
|
|
466
|
+
)
|
|
467
|
+
|
|
468
|
+
evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
469
|
+
loader=ColQwen2_5Wrapper,
|
|
470
|
+
loader_kwargs=dict(
|
|
471
|
+
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
472
|
+
),
|
|
473
|
+
name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
474
|
+
model_type=["late-interaction"],
|
|
475
|
+
languages=["eng-Latn"],
|
|
476
|
+
revision="8952ac6ee0e7de2e9211b165921518caf9202110",
|
|
477
|
+
release_date="2025-11-04",
|
|
478
|
+
modalities=["image", "text"],
|
|
479
|
+
n_parameters=7_000_000_000,
|
|
480
|
+
memory_usage_mb=14400,
|
|
481
|
+
max_tokens=128000,
|
|
482
|
+
embed_dim=128,
|
|
483
|
+
license="apache-2.0",
|
|
484
|
+
open_weights=True,
|
|
485
|
+
public_training_code="https://github.com/illuin-tech/colpali",
|
|
486
|
+
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
487
|
+
framework=["ColPali"],
|
|
488
|
+
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
489
|
+
similarity_fn_name="MaxSim",
|
|
490
|
+
use_instructions=True,
|
|
491
|
+
training_datasets=EVOQWEN_TRAINING_DATA,
|
|
492
|
+
)
|
|
@@ -54,6 +54,7 @@ colsmol_256m = ModelMeta(
|
|
|
54
54
|
torch_dtype=torch.float16,
|
|
55
55
|
),
|
|
56
56
|
name="vidore/colSmol-256M",
|
|
57
|
+
model_type=["late-interaction"],
|
|
57
58
|
languages=["eng-Latn"],
|
|
58
59
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
59
60
|
release_date="2025-01-22",
|
|
@@ -80,6 +81,7 @@ colsmol_500m = ModelMeta(
|
|
|
80
81
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
81
82
|
),
|
|
82
83
|
name="vidore/colSmol-500M",
|
|
84
|
+
model_type=["late-interaction"],
|
|
83
85
|
languages=["eng-Latn"],
|
|
84
86
|
revision="1aa9325cba7ed2b3b9b97ede4d55026322504902",
|
|
85
87
|
release_date="2025-01-22",
|