mteb 2.1.4__py3-none-any.whl → 2.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +4 -0
- mteb/_create_dataloaders.py +6 -3
- mteb/_evaluators/any_sts_evaluator.py +21 -12
- mteb/_evaluators/classification_metrics.py +54 -0
- mteb/_evaluators/clustering_evaluator.py +1 -1
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +9 -4
- mteb/_evaluators/pair_classification_evaluator.py +30 -38
- mteb/_evaluators/sklearn_evaluator.py +15 -28
- mteb/_evaluators/text/bitext_mining_evaluator.py +4 -1
- mteb/_evaluators/text/summarization_evaluator.py +4 -2
- mteb/_evaluators/zeroshot_classification_evaluator.py +2 -2
- mteb/abstasks/_data_filter/__init__.py +0 -0
- mteb/abstasks/_data_filter/filters.py +125 -0
- mteb/abstasks/_data_filter/task_pipelines.py +102 -0
- mteb/abstasks/_statistics_calculation.py +6 -2
- mteb/abstasks/classification.py +0 -2
- mteb/abstasks/clustering.py +1 -1
- mteb/abstasks/clustering_legacy.py +3 -0
- mteb/abstasks/multilabel_classification.py +10 -3
- mteb/abstasks/pair_classification.py +8 -1
- mteb/abstasks/sts.py +7 -0
- mteb/abstasks/task_metadata.py +1 -0
- mteb/benchmarks/_create_table.py +84 -37
- mteb/benchmarks/benchmark.py +74 -15
- mteb/benchmarks/benchmarks/__init__.py +8 -0
- mteb/benchmarks/benchmarks/benchmarks.py +259 -15
- mteb/benchmarks/get_benchmark.py +2 -0
- mteb/cache.py +47 -10
- mteb/deprecated_evaluator.py +8 -13
- mteb/descriptive_stats/BitextMining/RuSciBenchBitextMining.v2.json +61 -0
- mteb/descriptive_stats/Classification/HebrewSentimentAnalysis.v3.json +60 -0
- mteb/descriptive_stats/Classification/TurkishConstitutionalCourtViolation.json +54 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3ComputerScienceRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3EnergyRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceEnRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3FinanceFrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3HrRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3IndustrialRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3NuclearRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PharmaceuticalsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3PhysicsRetrieval.json +214 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/Vidore3TelecomRetrieval.json +214 -0
- mteb/descriptive_stats/PairClassification/TERRa.V2.json +35 -0
- mteb/descriptive_stats/Reranking/JQaRARerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/JaCWIRRerankingLite.json +35 -0
- mteb/descriptive_stats/Reranking/MultiLongDocReranking.json +466 -0
- mteb/descriptive_stats/Retrieval/ArguAna-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/JaCWIRRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/JaqketRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MIRACLJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/MrTyDiJaRetrievalLite.json +30 -0
- mteb/descriptive_stats/Retrieval/NFCorpus-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SCIDOCS-NL.v2.json +30 -0
- mteb/descriptive_stats/Retrieval/SQuADKorV1Retrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/SciFact-NL.v2.json +30 -0
- mteb/evaluate.py +65 -45
- mteb/leaderboard/app.py +268 -133
- mteb/leaderboard/benchmark_selector.py +14 -5
- mteb/leaderboard/figures.py +13 -15
- mteb/leaderboard/table.py +82 -17
- mteb/models/__init__.py +4 -1
- mteb/models/abs_encoder.py +21 -17
- mteb/models/cache_wrappers/__init__.py +2 -1
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +2 -2
- mteb/models/cache_wrappers/cache_wrapper.py +1 -1
- mteb/models/get_model_meta.py +3 -114
- mteb/models/instruct_wrapper.py +5 -1
- mteb/models/model_implementations/align_models.py +7 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +65 -0
- mteb/models/model_implementations/ara_models.py +8 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +60 -0
- mteb/models/model_implementations/bica_model.py +35 -0
- mteb/models/model_implementations/blip2_models.py +11 -0
- mteb/models/model_implementations/blip_models.py +27 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +9 -0
- mteb/models/model_implementations/cde_models.py +14 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +100 -0
- mteb/models/model_implementations/codefuse_models.py +162 -0
- mteb/models/model_implementations/codesage_models.py +15 -0
- mteb/models/model_implementations/cohere_models.py +8 -1
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +14 -6
- mteb/models/model_implementations/colqwen_models.py +271 -1
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +171 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +12 -101
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +164 -0
- mteb/models/model_implementations/emillykkejensen_models.py +91 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +32 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +58 -0
- mteb/models/model_implementations/facebookai.py +193 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +11 -5
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -2
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +78 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +255 -2
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +209 -5
- mteb/models/model_implementations/kalm_models.py +203 -25
- mteb/models/model_implementations/kblab.py +31 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +74 -0
- mteb/models/model_implementations/kfst.py +25 -0
- mteb/models/model_implementations/kowshik24_models.py +32 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +3 -2
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +362 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +11 -0
- mteb/models/model_implementations/mod_models.py +191 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +9 -0
- mteb/models/model_implementations/nbailab.py +70 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +156 -4
- mteb/models/model_implementations/nomic_models_vision.py +7 -2
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +23 -16
- mteb/models/model_implementations/nvidia_models.py +4 -1
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +20 -16
- mteb/models/model_implementations/openclip_models.py +24 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +4 -2
- mteb/models/model_implementations/pawan_models.py +39 -0
- mteb/models/model_implementations/piccolo_models.py +8 -0
- mteb/models/model_implementations/promptriever_models.py +8 -4
- mteb/models/model_implementations/pylate_models.py +37 -4
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +6 -3
- mteb/models/model_implementations/qzhou_models.py +3 -1
- mteb/models/model_implementations/random_baseline.py +16 -21
- mteb/models/model_implementations/rasgaard_models.py +34 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +51 -0
- mteb/models/model_implementations/ruri_models.py +322 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +168 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +8 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +658 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +57 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +34 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +376 -0
- mteb/models/model_implementations/ua_sentence_models.py +10 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +2 -0
- mteb/models/model_implementations/vi_vn_models.py +39 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +8 -2
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +34 -0
- mteb/models/model_implementations/yuan_models_en.py +58 -0
- mteb/models/model_meta.py +442 -22
- mteb/models/search_encoder_index/__init__.py +7 -0
- mteb/models/search_encoder_index/search_backend_protocol.py +50 -0
- mteb/models/search_encoder_index/search_indexes/__init__.py +5 -0
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +157 -0
- mteb/models/search_wrappers.py +165 -48
- mteb/models/sentence_transformer_wrapper.py +2 -7
- mteb/results/benchmark_results.py +88 -47
- mteb/results/model_result.py +11 -4
- mteb/results/task_result.py +37 -19
- mteb/similarity_functions.py +49 -0
- mteb/tasks/bitext_mining/multilingual/__init__.py +2 -1
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +4 -2
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ru_sci_bench_bitext_mining.py +47 -5
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -6
- mteb/tasks/classification/ara/ajgt.py +1 -2
- mteb/tasks/classification/ara/hotel_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_emotion_classification.py +1 -2
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_document_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -2
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -2
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -2
- mteb/tasks/classification/dan/angry_tweets_classification.py +1 -2
- mteb/tasks/classification/dan/danish_political_comments_classification.py +1 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -2
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -2
- mteb/tasks/classification/deu/ten_k_gnad_classification.py +1 -2
- mteb/tasks/classification/eng/amazon_polarity_classification.py +1 -2
- mteb/tasks/classification/eng/arxiv_classification.py +1 -2
- mteb/tasks/classification/eng/banking77_classification.py +1 -2
- mteb/tasks/classification/eng/dbpedia_classification.py +1 -2
- mteb/tasks/classification/eng/emotion_classification.py +1 -2
- mteb/tasks/classification/eng/financial_phrasebank_classification.py +1 -2
- mteb/tasks/classification/eng/frenk_en_classification.py +1 -2
- mteb/tasks/classification/eng/gtsrb_classification.py +1 -1
- mteb/tasks/classification/eng/imdb_classification.py +1 -2
- mteb/tasks/classification/eng/legal_bench_classification.py +14 -120
- mteb/tasks/classification/eng/news_classification.py +1 -2
- mteb/tasks/classification/eng/patch_camelyon_classification.py +1 -1
- mteb/tasks/classification/eng/patent_classification.py +1 -2
- mteb/tasks/classification/eng/poem_sentiment_classification.py +1 -2
- mteb/tasks/classification/eng/sds_eye_protection_classification.py +1 -2
- mteb/tasks/classification/eng/sds_gloves_classification.py +1 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -19
- mteb/tasks/classification/eng/toxic_conversations_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_sentiment_extraction_classification.py +1 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +2 -13
- mteb/tasks/classification/eng/ucf101_classification.py +1 -5
- mteb/tasks/classification/eng/wikipedia_bio_met_chem_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_chem_fields_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_comp_chem_spectroscopy_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_crystallography_analytical_classification.py +1 -2
- mteb/tasks/classification/eng/wikipedia_theoretical_applied_classification.py +1 -2
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -2
- mteb/tasks/classification/eng/yelp_review_full_classification.py +1 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +7 -14
- mteb/tasks/classification/fil/filipino_hate_speech_classification.py +1 -2
- mteb/tasks/classification/fin/fin_toxicity_classification.py +2 -11
- mteb/tasks/classification/fra/french_book_reviews.py +1 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -2
- mteb/tasks/classification/heb/__init__.py +6 -1
- mteb/tasks/classification/heb/hebrew_sentiment_analysis.py +62 -4
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -2
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -2
- mteb/tasks/classification/hrv/frenk_hr_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +1 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -2
- mteb/tasks/classification/ita/italian_linguist_acceptability_classification.py +1 -2
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -2
- mteb/tasks/classification/jpn/wrime_classification.py +1 -2
- mteb/tasks/classification/kan/kannada_news_classification.py +1 -2
- mteb/tasks/classification/kor/klue_tc.py +1 -2
- mteb/tasks/classification/kor/kor_hate_classification.py +2 -17
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +2 -19
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +1 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -2
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -2
- mteb/tasks/classification/mkd/macedonian_tweet_sentiment_classification.py +1 -2
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -6
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -4
- mteb/tasks/classification/multilingual/ru_sci_bench_classification.py +4 -23
- mteb/tasks/classification/multilingual/scala_classification.py +1 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -6
- mteb/tasks/classification/mya/myanmar_news.py +1 -2
- mteb/tasks/classification/nep/nepali_news_classification.py +1 -2
- mteb/tasks/classification/nld/dutch_book_review_sentiment_classification.py +4 -2
- mteb/tasks/classification/nld/dutch_cola_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_government_bias_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_news_articles_classification.py +3 -0
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +3 -0
- mteb/tasks/classification/nld/iconclass_classification.py +3 -0
- mteb/tasks/classification/nld/open_tender_classification.py +3 -0
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +3 -0
- mteb/tasks/classification/nob/no_rec_classification.py +1 -2
- mteb/tasks/classification/nob/norwegian_parliament_classification.py +1 -2
- mteb/tasks/classification/ory/odia_news_classification.py +1 -2
- mteb/tasks/classification/pol/polish_classification.py +3 -6
- mteb/tasks/classification/ron/moroco.py +1 -2
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -2
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -2
- mteb/tasks/classification/rus/georeview_classification.py +1 -2
- mteb/tasks/classification/rus/headline_classification.py +1 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +1 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +1 -2
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -2
- mteb/tasks/classification/rus/senti_ru_eval.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_classification.py +1 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +1 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_hate_speech_classification.py +1 -2
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +1 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_news_classification.py +1 -2
- mteb/tasks/classification/spa/spanish_sentiment_classification.py +1 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +1 -2
- mteb/tasks/classification/swe/dalaj_classification.py +1 -2
- mteb/tasks/classification/swe/swe_rec_classification.py +1 -2
- mteb/tasks/classification/swe/swedish_sentiment_classification.py +1 -2
- mteb/tasks/classification/tam/tamil_news_classification.py +1 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +1 -2
- mteb/tasks/classification/tha/wisesight_sentiment_classification.py +1 -2
- mteb/tasks/classification/tsn/tswana_news_classification.py +1 -2
- mteb/tasks/classification/tur/__init__.py +4 -0
- mteb/tasks/classification/tur/turkish_constitutional_court.py +41 -0
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +1 -2
- mteb/tasks/classification/tur/turkish_product_sentiment_classification.py +1 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -15
- mteb/tasks/classification/urd/urdu_roman_sentiment_classification.py +1 -2
- mteb/tasks/classification/vie/amazon_counterfactual_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_polarity_vn_classification.py +1 -6
- mteb/tasks/classification/vie/amazon_reviews_vn_classification.py +1 -5
- mteb/tasks/classification/vie/banking77_vn_classification.py +1 -5
- mteb/tasks/classification/vie/emotion_vn_classification.py +1 -5
- mteb/tasks/classification/vie/imdb_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/massive_scenario_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_domain_vn_classification.py +1 -5
- mteb/tasks/classification/vie/mtop_intent_vn_classification.py +1 -5
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -5
- mteb/tasks/classification/vie/tweet_sentiment_extraction_vn_classification.py +1 -5
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -2
- mteb/tasks/classification/zho/cmteb_classification.py +5 -10
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +1 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -2
- mteb/tasks/clustering/jpn/mews_c16_ja_clustering.py +1 -3
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -6
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/open_tender_clustering_s2s.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +3 -0
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +3 -0
- mteb/tasks/clustering/vie/reddit_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/reddit_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py +1 -5
- mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py +1 -5
- mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py +1 -5
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -5
- mteb/tasks/multilabel_classification/kor/kor_hate_speech_ml_classification.py +1 -9
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -6
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py +3 -0
- mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py +1 -6
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -2
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -6
- mteb/tasks/pair_classification/eng/legal_bench_pc.py +1 -9
- mteb/tasks/pair_classification/nld/sick_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/nld/xlwic_nl_pair_classification.py +3 -0
- mteb/tasks/pair_classification/rus/__init__.py +2 -2
- mteb/tasks/pair_classification/rus/terra.py +51 -25
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -5
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -5
- mteb/tasks/regression/multilingual/ru_sci_bench_regression.py +2 -6
- mteb/tasks/reranking/jpn/__init__.py +9 -1
- mteb/tasks/reranking/jpn/j_qa_ra_reranking_lite.py +49 -0
- mteb/tasks/reranking/jpn/ja_cwir_reranking_lite.py +47 -0
- mteb/tasks/reranking/multilingual/__init__.py +2 -0
- mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py +70 -0
- mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py +1 -2
- mteb/tasks/reranking/vie/ask_ubuntu_dup_questions_vn.py +1 -5
- mteb/tasks/reranking/vie/sci_docs_reranking_vn.py +1 -5
- mteb/tasks/reranking/vie/stack_overflow_dup_questions_vn.py +1 -5
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +8 -5
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -8
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +4 -0
- mteb/tasks/retrieval/jpn/__init__.py +8 -0
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval.py +1 -4
- mteb/tasks/retrieval/jpn/ja_cwir_retrieval_lite.py +47 -0
- mteb/tasks/retrieval/jpn/jaqket_retrieval_lite.py +50 -0
- mteb/tasks/retrieval/jpn/miracl_ja_retrieval_lite.py +52 -0
- mteb/tasks/retrieval/jpn/mr_tydi_ja_retrieval_lite.py +48 -0
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +11 -4
- mteb/tasks/retrieval/kor/__init__.py +2 -1
- mteb/tasks/retrieval/kor/squad_kor_v1_retrieval.py +47 -0
- mteb/tasks/retrieval/multilingual/__init__.py +22 -0
- mteb/tasks/retrieval/multilingual/belebele_retrieval.py +5 -4
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +56 -42
- mteb/tasks/retrieval/multilingual/mkqa_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/mlqa_retrieval.py +1 -4
- mteb/tasks/retrieval/multilingual/multi_long_doc_retrieval.py +1 -2
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +9 -4
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +2 -12
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +4 -2
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +399 -0
- mteb/tasks/retrieval/nld/__init__.py +8 -4
- mteb/tasks/retrieval/nld/argu_ana_nl_retrieval.py +46 -27
- mteb/tasks/retrieval/nld/bbsard_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/dutch_news_articles_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/legal_qa_nl_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/nf_corpus_nl_retrieval.py +42 -25
- mteb/tasks/retrieval/nld/open_tender_retrieval.py +3 -0
- mteb/tasks/retrieval/nld/sci_fact_nl_retrieval.py +42 -24
- mteb/tasks/retrieval/nld/scidocsnl_retrieval.py +44 -27
- mteb/tasks/retrieval/nld/vabb_retrieval.py +3 -0
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/argu_ana_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_android_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_gis_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_mathematica_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_physics_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_programmers_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_stats_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_tex_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_unix_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_webmasters_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/cqa_dupstack_wordpress_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +1 -7
- mteb/tasks/retrieval/vie/fi_qa2018_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/green_node_table_markdown_retrieval.py +16 -1
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nf_corpus_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/quora_vn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/sci_fact_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/scidocsvn_retrieval.py +1 -6
- mteb/tasks/retrieval/vie/touche2020_vn_retrieval.py +1 -5
- mteb/tasks/retrieval/vie/treccovidvn_retrieval.py +1 -5
- mteb/tasks/sts/nld/sick_nl_sts.py +1 -0
- mteb/tasks/sts/vie/biosses_stsvn.py +1 -5
- mteb/tasks/sts/vie/sickr_stsvn.py +1 -5
- mteb/tasks/sts/vie/sts_benchmark_stsvn.py +1 -5
- mteb/tasks/zeroshot_classification/eng/gtsrb.py +1 -1
- mteb/tasks/zeroshot_classification/eng/patch_camelyon.py +1 -1
- mteb/tasks/zeroshot_classification/eng/ucf101.py +1 -5
- mteb/types/_encoder_io.py +7 -2
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/METADATA +11 -5
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/RECORD +457 -391
- mteb/models/model_implementations/nb_sbert.py +0 -25
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/WHEEL +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/entry_points.txt +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.1.4.dist-info → mteb-2.5.2.dist-info}/top_level.txt +0 -0
|
@@ -219,6 +219,7 @@ monobert_large = ModelMeta(
|
|
|
219
219
|
fp_options="float16",
|
|
220
220
|
),
|
|
221
221
|
name="castorini/monobert-large-msmarco",
|
|
222
|
+
model_type=["cross-encoder"],
|
|
222
223
|
languages=["eng-Latn"],
|
|
223
224
|
open_weights=True,
|
|
224
225
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
@@ -234,7 +235,6 @@ monobert_large = ModelMeta(
|
|
|
234
235
|
use_instructions=None,
|
|
235
236
|
training_datasets=None,
|
|
236
237
|
framework=["Sentence Transformers", "PyTorch"],
|
|
237
|
-
is_cross_encoder=True,
|
|
238
238
|
)
|
|
239
239
|
|
|
240
240
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
@@ -244,6 +244,7 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
244
244
|
fp_options="float16",
|
|
245
245
|
),
|
|
246
246
|
name="jinaai/jina-reranker-v2-base-multilingual",
|
|
247
|
+
model_type=["cross-encoder"],
|
|
247
248
|
languages=["eng-Latn"],
|
|
248
249
|
open_weights=True,
|
|
249
250
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
@@ -259,7 +260,6 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
259
260
|
use_instructions=None,
|
|
260
261
|
training_datasets=None,
|
|
261
262
|
framework=["Sentence Transformers", "PyTorch"],
|
|
262
|
-
is_cross_encoder=True,
|
|
263
263
|
)
|
|
264
264
|
|
|
265
265
|
bge_reranker_v2_m3 = ModelMeta(
|
|
@@ -268,6 +268,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
268
268
|
fp_options="float16",
|
|
269
269
|
),
|
|
270
270
|
name="BAAI/bge-reranker-v2-m3",
|
|
271
|
+
model_type=["cross-encoder"],
|
|
271
272
|
languages=[
|
|
272
273
|
"eng-Latn",
|
|
273
274
|
"ara-Arab",
|
|
@@ -316,7 +317,6 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
316
317
|
use_instructions=None,
|
|
317
318
|
training_datasets=bge_m3_training_data,
|
|
318
319
|
framework=["Sentence Transformers", "PyTorch"],
|
|
319
|
-
is_cross_encoder=True,
|
|
320
320
|
citation="""
|
|
321
321
|
@misc{li2023making,
|
|
322
322
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
|
@@ -315,6 +315,7 @@ monot5_small = ModelMeta(
|
|
|
315
315
|
fp_options="float16",
|
|
316
316
|
),
|
|
317
317
|
name="castorini/monot5-small-msmarco-10k",
|
|
318
|
+
model_type=["cross-encoder"],
|
|
318
319
|
languages=["eng-Latn"],
|
|
319
320
|
open_weights=True,
|
|
320
321
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
@@ -330,7 +331,6 @@ monot5_small = ModelMeta(
|
|
|
330
331
|
use_instructions=None,
|
|
331
332
|
training_datasets=None,
|
|
332
333
|
framework=["PyTorch"],
|
|
333
|
-
is_cross_encoder=True,
|
|
334
334
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
335
335
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
336
336
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -348,6 +348,7 @@ monot5_base = ModelMeta(
|
|
|
348
348
|
fp_options="float16",
|
|
349
349
|
),
|
|
350
350
|
name="castorini/monot5-base-msmarco-10k",
|
|
351
|
+
model_type=["cross-encoder"],
|
|
351
352
|
languages=["eng-Latn"],
|
|
352
353
|
open_weights=True,
|
|
353
354
|
revision="f15657ab3d2a5dd0b9a30c8c0b6a0a73c9cb5884",
|
|
@@ -372,7 +373,6 @@ monot5_base = ModelMeta(
|
|
|
372
373
|
use_instructions=None,
|
|
373
374
|
training_datasets=None,
|
|
374
375
|
framework=["PyTorch"],
|
|
375
|
-
is_cross_encoder=True,
|
|
376
376
|
)
|
|
377
377
|
|
|
378
378
|
monot5_large = ModelMeta(
|
|
@@ -381,6 +381,7 @@ monot5_large = ModelMeta(
|
|
|
381
381
|
fp_options="float16",
|
|
382
382
|
),
|
|
383
383
|
name="castorini/monot5-large-msmarco-10k",
|
|
384
|
+
model_type=["cross-encoder"],
|
|
384
385
|
languages=["eng-Latn"],
|
|
385
386
|
open_weights=True,
|
|
386
387
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
@@ -396,7 +397,6 @@ monot5_large = ModelMeta(
|
|
|
396
397
|
use_instructions=None,
|
|
397
398
|
training_datasets=None,
|
|
398
399
|
framework=["PyTorch"],
|
|
399
|
-
is_cross_encoder=True,
|
|
400
400
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
401
401
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
402
402
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -414,6 +414,7 @@ monot5_3b = ModelMeta(
|
|
|
414
414
|
fp_options="float16",
|
|
415
415
|
),
|
|
416
416
|
name="castorini/monot5-3b-msmarco-10k",
|
|
417
|
+
model_type=["cross-encoder"],
|
|
417
418
|
languages=["eng-Latn"],
|
|
418
419
|
open_weights=True,
|
|
419
420
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
@@ -429,7 +430,6 @@ monot5_3b = ModelMeta(
|
|
|
429
430
|
use_instructions=None,
|
|
430
431
|
training_datasets=None,
|
|
431
432
|
framework=["PyTorch"],
|
|
432
|
-
is_cross_encoder=True,
|
|
433
433
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
434
434
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
435
435
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -447,6 +447,7 @@ flant5_base = ModelMeta(
|
|
|
447
447
|
fp_options="float16",
|
|
448
448
|
),
|
|
449
449
|
name="google/flan-t5-base",
|
|
450
|
+
model_type=["cross-encoder"],
|
|
450
451
|
languages=["eng-Latn"],
|
|
451
452
|
open_weights=True,
|
|
452
453
|
revision="7bcac572ce56db69c1ea7c8af255c5d7c9672fc2",
|
|
@@ -484,7 +485,6 @@ flant5_base = ModelMeta(
|
|
|
484
485
|
similarity_fn_name=None,
|
|
485
486
|
use_instructions=None,
|
|
486
487
|
framework=["PyTorch"],
|
|
487
|
-
is_cross_encoder=True,
|
|
488
488
|
)
|
|
489
489
|
|
|
490
490
|
flant5_large = ModelMeta(
|
|
@@ -493,6 +493,7 @@ flant5_large = ModelMeta(
|
|
|
493
493
|
fp_options="float16",
|
|
494
494
|
),
|
|
495
495
|
name="google/flan-t5-large",
|
|
496
|
+
model_type=["cross-encoder"],
|
|
496
497
|
languages=["eng-Latn"],
|
|
497
498
|
open_weights=True,
|
|
498
499
|
revision="0613663d0d48ea86ba8cb3d7a44f0f65dc596a2a",
|
|
@@ -530,7 +531,6 @@ flant5_large = ModelMeta(
|
|
|
530
531
|
similarity_fn_name=None,
|
|
531
532
|
use_instructions=None,
|
|
532
533
|
framework=["PyTorch"],
|
|
533
|
-
is_cross_encoder=True,
|
|
534
534
|
)
|
|
535
535
|
|
|
536
536
|
flant5_xl = ModelMeta(
|
|
@@ -539,6 +539,7 @@ flant5_xl = ModelMeta(
|
|
|
539
539
|
fp_options="float16",
|
|
540
540
|
),
|
|
541
541
|
name="google/flan-t5-xl",
|
|
542
|
+
model_type=["cross-encoder"],
|
|
542
543
|
languages=["eng-Latn"],
|
|
543
544
|
open_weights=True,
|
|
544
545
|
revision="7d6315df2c2fb742f0f5b556879d730926ca9001",
|
|
@@ -576,7 +577,6 @@ flant5_xl = ModelMeta(
|
|
|
576
577
|
similarity_fn_name=None,
|
|
577
578
|
use_instructions=None,
|
|
578
579
|
framework=["PyTorch"],
|
|
579
|
-
is_cross_encoder=True,
|
|
580
580
|
)
|
|
581
581
|
|
|
582
582
|
flant5_xxl = ModelMeta(
|
|
@@ -585,6 +585,7 @@ flant5_xxl = ModelMeta(
|
|
|
585
585
|
fp_options="float16",
|
|
586
586
|
),
|
|
587
587
|
name="google/flan-t5-xxl",
|
|
588
|
+
model_type=["cross-encoder"],
|
|
588
589
|
languages=["eng-Latn"],
|
|
589
590
|
open_weights=True,
|
|
590
591
|
revision="ae7c9136adc7555eeccc78cdd960dfd60fb346ce",
|
|
@@ -622,7 +623,6 @@ flant5_xxl = ModelMeta(
|
|
|
622
623
|
similarity_fn_name=None,
|
|
623
624
|
use_instructions=None,
|
|
624
625
|
framework=["PyTorch"],
|
|
625
|
-
is_cross_encoder=True,
|
|
626
626
|
)
|
|
627
627
|
|
|
628
628
|
|
|
@@ -632,6 +632,7 @@ llama2_7b = ModelMeta(
|
|
|
632
632
|
fp_options="float16",
|
|
633
633
|
),
|
|
634
634
|
name="meta-llama/Llama-2-7b-hf",
|
|
635
|
+
model_type=["cross-encoder"],
|
|
635
636
|
languages=["eng-Latn"],
|
|
636
637
|
open_weights=True,
|
|
637
638
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
@@ -656,7 +657,6 @@ llama2_7b = ModelMeta(
|
|
|
656
657
|
primaryClass={cs.CL},
|
|
657
658
|
url={https://arxiv.org/abs/2307.09288},
|
|
658
659
|
}""",
|
|
659
|
-
is_cross_encoder=True,
|
|
660
660
|
)
|
|
661
661
|
|
|
662
662
|
llama2_7b_chat = ModelMeta(
|
|
@@ -665,6 +665,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
665
665
|
fp_options="float16",
|
|
666
666
|
),
|
|
667
667
|
name="meta-llama/Llama-2-7b-chat-hf",
|
|
668
|
+
model_type=["cross-encoder"],
|
|
668
669
|
languages=["eng-Latn"],
|
|
669
670
|
open_weights=True,
|
|
670
671
|
revision="f5db02db724555f92da89c216ac04704f23d4590",
|
|
@@ -689,7 +690,6 @@ llama2_7b_chat = ModelMeta(
|
|
|
689
690
|
use_instructions=None,
|
|
690
691
|
training_datasets=None,
|
|
691
692
|
framework=["PyTorch"],
|
|
692
|
-
is_cross_encoder=True,
|
|
693
693
|
)
|
|
694
694
|
|
|
695
695
|
mistral_7b = ModelMeta(
|
|
@@ -698,6 +698,7 @@ mistral_7b = ModelMeta(
|
|
|
698
698
|
fp_options="float16",
|
|
699
699
|
),
|
|
700
700
|
name="mistralai/Mistral-7B-Instruct-v0.2",
|
|
701
|
+
model_type=["cross-encoder"],
|
|
701
702
|
languages=["eng-Latn"],
|
|
702
703
|
open_weights=True,
|
|
703
704
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
@@ -722,7 +723,6 @@ mistral_7b = ModelMeta(
|
|
|
722
723
|
primaryClass={cs.CL},
|
|
723
724
|
url={https://arxiv.org/abs/2310.06825},
|
|
724
725
|
}""",
|
|
725
|
-
is_cross_encoder=True,
|
|
726
726
|
)
|
|
727
727
|
|
|
728
728
|
followir_7b = ModelMeta(
|
|
@@ -731,6 +731,7 @@ followir_7b = ModelMeta(
|
|
|
731
731
|
fp_options="float16",
|
|
732
732
|
),
|
|
733
733
|
name="jhu-clsp/FollowIR-7B",
|
|
734
|
+
model_type=["cross-encoder"],
|
|
734
735
|
languages=["eng-Latn"],
|
|
735
736
|
open_weights=True,
|
|
736
737
|
revision="4d25d437e38b510c01852070c0731e8f6e1875d1",
|
|
@@ -758,7 +759,6 @@ followir_7b = ModelMeta(
|
|
|
758
759
|
primaryClass={cs.IR}
|
|
759
760
|
}
|
|
760
761
|
""",
|
|
761
|
-
is_cross_encoder=True,
|
|
762
762
|
)
|
|
763
763
|
|
|
764
764
|
|
|
@@ -874,6 +874,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
874
874
|
fp_options="float16",
|
|
875
875
|
),
|
|
876
876
|
name="unicamp-dl/mt5-base-mmarco-v2",
|
|
877
|
+
model_type=["cross-encoder"],
|
|
877
878
|
languages=mt5_languages,
|
|
878
879
|
open_weights=True,
|
|
879
880
|
revision="cc0a949b9f21efcaba45c8cabb998ad02ce8d4e7",
|
|
@@ -898,7 +899,6 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
898
899
|
similarity_fn_name=None,
|
|
899
900
|
use_instructions=None,
|
|
900
901
|
framework=["PyTorch"],
|
|
901
|
-
is_cross_encoder=True,
|
|
902
902
|
)
|
|
903
903
|
|
|
904
904
|
mt5_13b_mmarco_100k = ModelMeta(
|
|
@@ -907,6 +907,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
907
907
|
fp_options="float16",
|
|
908
908
|
),
|
|
909
909
|
name="unicamp-dl/mt5-13b-mmarco-100k",
|
|
910
|
+
model_type=["cross-encoder"],
|
|
910
911
|
languages=mt5_languages,
|
|
911
912
|
open_weights=True,
|
|
912
913
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
@@ -922,5 +923,4 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
922
923
|
use_instructions=None,
|
|
923
924
|
training_datasets=None,
|
|
924
925
|
framework=["PyTorch"],
|
|
925
|
-
is_cross_encoder=True,
|
|
926
926
|
)
|
|
@@ -9,6 +9,7 @@ from .stella_models import stella_zh_datasets
|
|
|
9
9
|
ritrieve_zh_v1 = ModelMeta(
|
|
10
10
|
loader=SentenceTransformerEncoderWrapper,
|
|
11
11
|
name="richinfoai/ritrieve_zh_v1",
|
|
12
|
+
model_type=["dense"],
|
|
12
13
|
languages=["zho-Hans"],
|
|
13
14
|
open_weights=True,
|
|
14
15
|
revision="f8d5a707656c55705027678e311f9202c8ced12c",
|
|
@@ -43,6 +43,10 @@ GIGA_task_prompts = {
|
|
|
43
43
|
"query": "Given a news title, retrieve relevant news article",
|
|
44
44
|
"document": "",
|
|
45
45
|
},
|
|
46
|
+
"RiaNewsRetrievalHardNegatives.v2": {
|
|
47
|
+
"query": "Given a news title, retrieve relevant news article",
|
|
48
|
+
"document": "",
|
|
49
|
+
},
|
|
46
50
|
"MIRACLReranking": {
|
|
47
51
|
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
48
52
|
"document": "",
|
|
@@ -51,6 +55,10 @@ GIGA_task_prompts = {
|
|
|
51
55
|
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
52
56
|
"document": "",
|
|
53
57
|
},
|
|
58
|
+
"MIRACLRetrievalHardNegatives.v2": {
|
|
59
|
+
"query": "Given a question, retrieve Wikipedia passages that answer the question",
|
|
60
|
+
"document": "",
|
|
61
|
+
},
|
|
54
62
|
"ArguAna": {
|
|
55
63
|
"query": "Given a search query, retrieve passages that answer the question",
|
|
56
64
|
"document": "Given a search query, retrieve passages that answer the question",
|
|
@@ -230,6 +238,7 @@ GIGA_task_prompts = {
|
|
|
230
238
|
rubert_tiny = ModelMeta(
|
|
231
239
|
loader=sentence_transformers_loader,
|
|
232
240
|
name="cointegrated/rubert-tiny",
|
|
241
|
+
model_type=["dense"],
|
|
233
242
|
languages=["rus-Cyrl"],
|
|
234
243
|
open_weights=True,
|
|
235
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
@@ -255,6 +264,7 @@ rubert_tiny = ModelMeta(
|
|
|
255
264
|
rubert_tiny2 = ModelMeta(
|
|
256
265
|
loader=sentence_transformers_loader,
|
|
257
266
|
name="cointegrated/rubert-tiny2",
|
|
267
|
+
model_type=["dense"],
|
|
258
268
|
languages=["rus-Cyrl"],
|
|
259
269
|
open_weights=True,
|
|
260
270
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
@@ -281,6 +291,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
281
291
|
sbert_large_nlu_ru = ModelMeta(
|
|
282
292
|
loader=sentence_transformers_loader,
|
|
283
293
|
name="ai-forever/sbert_large_nlu_ru",
|
|
294
|
+
model_type=["dense"],
|
|
284
295
|
languages=["rus-Cyrl"],
|
|
285
296
|
open_weights=True,
|
|
286
297
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
@@ -306,6 +317,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
306
317
|
sbert_large_mt_nlu_ru = ModelMeta(
|
|
307
318
|
loader=sentence_transformers_loader,
|
|
308
319
|
name="ai-forever/sbert_large_mt_nlu_ru",
|
|
320
|
+
model_type=["dense"],
|
|
309
321
|
languages=["rus-Cyrl"],
|
|
310
322
|
open_weights=True,
|
|
311
323
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
@@ -333,6 +345,7 @@ user_base_ru = ModelMeta(
|
|
|
333
345
|
model_prompts={"query": "query: ", "document": "passage: "},
|
|
334
346
|
),
|
|
335
347
|
name="deepvk/USER-base",
|
|
348
|
+
model_type=["dense"],
|
|
336
349
|
languages=["rus-Cyrl"],
|
|
337
350
|
open_weights=True,
|
|
338
351
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
@@ -393,6 +406,7 @@ user_base_ru = ModelMeta(
|
|
|
393
406
|
user_bge_m3 = ModelMeta(
|
|
394
407
|
loader=sentence_transformers_loader,
|
|
395
408
|
name="deepvk/USER-bge-m3",
|
|
409
|
+
model_type=["dense"],
|
|
396
410
|
languages=["rus-Cyrl"],
|
|
397
411
|
open_weights=True,
|
|
398
412
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
@@ -431,11 +445,19 @@ user_bge_m3 = ModelMeta(
|
|
|
431
445
|
},
|
|
432
446
|
public_training_code=None,
|
|
433
447
|
public_training_data=None,
|
|
448
|
+
citation="""@misc{deepvk2024user,
|
|
449
|
+
title={USER: Universal Sentence Encoder for Russian},
|
|
450
|
+
author={Malashenko, Boris and Zemerov, Anton and Spirin, Egor},
|
|
451
|
+
url={https://huggingface.co/datasets/deepvk/USER-base},
|
|
452
|
+
publisher={Hugging Face},
|
|
453
|
+
year={2024},
|
|
454
|
+
}""",
|
|
434
455
|
)
|
|
435
456
|
|
|
436
457
|
deberta_v1_ru = ModelMeta(
|
|
437
458
|
loader=sentence_transformers_loader,
|
|
438
459
|
name="deepvk/deberta-v1-base",
|
|
460
|
+
model_type=["dense"],
|
|
439
461
|
languages=["rus-Cyrl"],
|
|
440
462
|
open_weights=True,
|
|
441
463
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
@@ -466,6 +488,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
466
488
|
rubert_base_cased = ModelMeta(
|
|
467
489
|
loader=sentence_transformers_loader,
|
|
468
490
|
name="DeepPavlov/rubert-base-cased",
|
|
491
|
+
model_type=["dense"],
|
|
469
492
|
languages=["rus-Cyrl"],
|
|
470
493
|
open_weights=True,
|
|
471
494
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
@@ -501,6 +524,7 @@ rubert_base_cased = ModelMeta(
|
|
|
501
524
|
distilrubert_small_cased_conversational = ModelMeta(
|
|
502
525
|
loader=sentence_transformers_loader,
|
|
503
526
|
name="DeepPavlov/distilrubert-small-cased-conversational",
|
|
527
|
+
model_type=["dense"],
|
|
504
528
|
languages=["rus-Cyrl"],
|
|
505
529
|
open_weights=True,
|
|
506
530
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
@@ -535,6 +559,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
535
559
|
rubert_base_cased_sentence = ModelMeta(
|
|
536
560
|
loader=sentence_transformers_loader,
|
|
537
561
|
name="DeepPavlov/rubert-base-cased-sentence",
|
|
562
|
+
model_type=["dense"],
|
|
538
563
|
languages=["rus-Cyrl"],
|
|
539
564
|
open_weights=True,
|
|
540
565
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
@@ -559,6 +584,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
559
584
|
labse_en_ru = ModelMeta(
|
|
560
585
|
loader=sentence_transformers_loader,
|
|
561
586
|
name="cointegrated/LaBSE-en-ru",
|
|
587
|
+
model_type=["dense"],
|
|
562
588
|
languages=["rus-Cyrl"],
|
|
563
589
|
open_weights=True,
|
|
564
590
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
@@ -586,6 +612,7 @@ turbo_models_datasets = set(
|
|
|
586
612
|
rubert_tiny_turbo = ModelMeta(
|
|
587
613
|
loader=sentence_transformers_loader,
|
|
588
614
|
name="sergeyzh/rubert-tiny-turbo",
|
|
615
|
+
model_type=["dense"],
|
|
589
616
|
languages=["rus-Cyrl"],
|
|
590
617
|
open_weights=True,
|
|
591
618
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
@@ -608,6 +635,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
608
635
|
rubert_mini_frida = ModelMeta(
|
|
609
636
|
loader=sentence_transformers_loader,
|
|
610
637
|
name="sergeyzh/rubert-mini-frida",
|
|
638
|
+
model_type=["dense"],
|
|
611
639
|
languages=["rus-Cyrl"],
|
|
612
640
|
open_weights=True,
|
|
613
641
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
@@ -635,6 +663,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
635
663
|
labse_ru_turbo = ModelMeta(
|
|
636
664
|
loader=sentence_transformers_loader,
|
|
637
665
|
name="sergeyzh/LaBSE-ru-turbo",
|
|
666
|
+
model_type=["dense"],
|
|
638
667
|
languages=["rus-Cyrl"],
|
|
639
668
|
open_weights=True,
|
|
640
669
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
@@ -683,6 +712,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
683
712
|
model_prompts=rosberta_prompts,
|
|
684
713
|
),
|
|
685
714
|
name="ai-forever/ru-en-RoSBERTa",
|
|
715
|
+
model_type=["dense"],
|
|
686
716
|
languages=["rus-Cyrl"],
|
|
687
717
|
open_weights=True,
|
|
688
718
|
revision="89fb1651989adbb1cfcfdedafd7d102951ad0555",
|
|
@@ -755,6 +785,7 @@ frida_prompts = {
|
|
|
755
785
|
"SensitiveTopicsClassification": "categorize_topic: ",
|
|
756
786
|
"TERRa": "categorize_entailment: ",
|
|
757
787
|
"RiaNewsRetrieval": "categorize: ",
|
|
788
|
+
"RiaNewsRetrievalHardNegatives.v2": "",
|
|
758
789
|
}
|
|
759
790
|
|
|
760
791
|
frida_training_datasets = {
|
|
@@ -847,6 +878,7 @@ frida = ModelMeta(
|
|
|
847
878
|
model_prompts=frida_prompts,
|
|
848
879
|
),
|
|
849
880
|
name="ai-forever/FRIDA",
|
|
881
|
+
model_type=["dense"],
|
|
850
882
|
languages=["rus-Cyrl"],
|
|
851
883
|
open_weights=True,
|
|
852
884
|
revision="7292217af9a9e6dbf07048f76b434ad1e2aa8b76",
|
|
@@ -864,6 +896,7 @@ frida = ModelMeta(
|
|
|
864
896
|
public_training_data=None,
|
|
865
897
|
public_training_code=None,
|
|
866
898
|
framework=["Sentence Transformers", "PyTorch"],
|
|
899
|
+
citation=None,
|
|
867
900
|
)
|
|
868
901
|
|
|
869
902
|
giga_embeddings = ModelMeta(
|
|
@@ -879,6 +912,7 @@ giga_embeddings = ModelMeta(
|
|
|
879
912
|
},
|
|
880
913
|
),
|
|
881
914
|
name="ai-sage/Giga-Embeddings-instruct",
|
|
915
|
+
model_type=["dense"],
|
|
882
916
|
languages=["eng-Latn", "rus-Cyrl"],
|
|
883
917
|
open_weights=True,
|
|
884
918
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
@@ -910,6 +944,7 @@ berta_training_datasets = (
|
|
|
910
944
|
berta = ModelMeta(
|
|
911
945
|
loader=sentence_transformers_loader,
|
|
912
946
|
name="sergeyzh/BERTA",
|
|
947
|
+
model_type=["dense"],
|
|
913
948
|
languages=["rus-Cyrl"],
|
|
914
949
|
open_weights=True,
|
|
915
950
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
@@ -982,6 +1017,7 @@ user2_small = ModelMeta(
|
|
|
982
1017
|
model_prompts=user2_prompts,
|
|
983
1018
|
),
|
|
984
1019
|
name="deepvk/USER2-small",
|
|
1020
|
+
model_type=["dense"],
|
|
985
1021
|
languages=["rus-Cyrl"],
|
|
986
1022
|
open_weights=True,
|
|
987
1023
|
revision="23f65b34cf7632032061f5cc66c14714e6d4cee4",
|
|
@@ -999,6 +1035,13 @@ user2_small = ModelMeta(
|
|
|
999
1035
|
public_training_data=None,
|
|
1000
1036
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1001
1037
|
framework=["Sentence Transformers", "PyTorch"],
|
|
1038
|
+
citation="""@misc{deepvk2025user,
|
|
1039
|
+
title={USER2},
|
|
1040
|
+
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
1041
|
+
url={https://huggingface.co/deepvk/USER2-small},
|
|
1042
|
+
publisher={Hugging Face},
|
|
1043
|
+
year={2025},
|
|
1044
|
+
}""",
|
|
1002
1045
|
)
|
|
1003
1046
|
|
|
1004
1047
|
user2_base = ModelMeta(
|
|
@@ -1007,6 +1050,7 @@ user2_base = ModelMeta(
|
|
|
1007
1050
|
model_prompts=user2_prompts,
|
|
1008
1051
|
),
|
|
1009
1052
|
name="deepvk/USER2-base",
|
|
1053
|
+
model_type=["dense"],
|
|
1010
1054
|
languages=["rus-Cyrl"],
|
|
1011
1055
|
open_weights=True,
|
|
1012
1056
|
revision="0942cf96909b6d52e61f79a01e2d30c7be640b27",
|
|
@@ -1024,4 +1068,11 @@ user2_base = ModelMeta(
|
|
|
1024
1068
|
public_training_data=None,
|
|
1025
1069
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1026
1070
|
framework=["Sentence Transformers", "PyTorch"],
|
|
1071
|
+
citation="""@misc{deepvk2025user,
|
|
1072
|
+
title={USER2},
|
|
1073
|
+
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
1074
|
+
url={https://huggingface.co/deepvk/USER2-base},
|
|
1075
|
+
publisher={Hugging Face},
|
|
1076
|
+
year={2025},
|
|
1077
|
+
}""",
|
|
1027
1078
|
)
|