fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
name: clip_concrete_task_wise_adamerging
|
|
2
|
+
# batch size per gpu
|
|
3
|
+
# if you have multiple gpus, the total batch size will be `batch_size * num_gpus`
|
|
4
|
+
batch_size: 16
|
|
5
|
+
num_workers: 8
|
|
6
|
+
|
|
7
|
+
merge_dtype: null
|
|
8
|
+
optimizer: adam
|
|
9
|
+
lr: 1e-3
|
|
10
|
+
base_lr: 1
|
|
11
|
+
adamerging_lr: 1e-3
|
|
12
|
+
scaling_factor: 0.3
|
|
13
|
+
max_steps: 1000
|
|
14
|
+
max_adamerging_steps: 1000
|
|
15
|
+
save_interval: 500
|
|
16
|
+
initial_logits: 0
|
|
17
|
+
temperature: 0.5
|
|
18
|
+
# "discrete" or "continuous", this is the mask applied for evaluation, not during training
|
|
19
|
+
# the performance of final model are expected to be similar
|
|
20
|
+
eval_mask_type: continuous
|
|
21
|
+
mask_checkpoint: null
|
|
22
|
+
# if `clamp_weights` is true, the weights will be clamped to [0, 1]
|
|
23
|
+
clamp_weights: false
|
|
24
|
+
# arguments of `functional_call`
|
|
25
|
+
tie_weights: true
|
|
26
|
+
strict: false
|
|
27
|
+
cache_dir: outputs
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
_target_: fusion_bench.method.dare.DareTiesMerging
|
|
2
|
+
|
|
3
|
+
# === DARE parameters ===
|
|
4
|
+
sparsity_ratio: 0.5
|
|
5
|
+
only_on_linear_weights: false
|
|
6
|
+
rescale: true
|
|
7
|
+
|
|
8
|
+
# === Ties merging parameters ===
|
|
9
|
+
# Scaling factor $\lambda$
|
|
10
|
+
scaling_factor: 0.5
|
|
11
|
+
threshold: 20
|
|
12
|
+
# List of keys to remove from the state dict, default is empty
|
|
13
|
+
remove_keys: []
|
|
14
|
+
# Function to merge the models, default is sum. Options are 'sum', 'mean', and 'max'
|
|
15
|
+
merge_func: sum
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
_target_: fusion_bench.method.DataAdaptiveWeightEnsemblingForCLIP
|
|
2
|
+
_recursive_: false
|
|
3
|
+
merge_mode: task_wise
|
|
4
|
+
init_lambda: 0.3
|
|
5
|
+
batch_reduce: true
|
|
6
|
+
eval_batch_reduce: false
|
|
7
|
+
|
|
8
|
+
_dict_feature_extractor_path: microsoft/resnet-18
|
|
9
|
+
dict_processor:
|
|
10
|
+
_target_: fusion_bench.method.dawe.dawe_for_clip.load_resnet_processor
|
|
11
|
+
pretrained_model_name_or_path: ${.._dict_feature_extractor_path}
|
|
12
|
+
dict_feature_extractor:
|
|
13
|
+
_target_: fusion_bench.method.dawe.dawe_for_clip.load_resnet_feature_extractor
|
|
14
|
+
pretrained_model_name_or_path: ${.._dict_feature_extractor_path}
|
|
15
|
+
# dimension of the extracted embeddings, if this None, try to infer from the feature extractor model
|
|
16
|
+
hidden_size: null
|
|
17
|
+
gate_hidden_layers: 1
|
|
18
|
+
# if task_vector_dtype is null, the task vector will have the same dtype as pretrained model
|
|
19
|
+
task_vector_dtype: null
|
|
20
|
+
task_vector_sparsity: 0
|
|
21
|
+
|
|
22
|
+
# training & logging args
|
|
23
|
+
max_steps: 1000
|
|
24
|
+
save_interval: 200
|
|
25
|
+
learning_rate: 1e-5
|
|
26
|
+
resume_checkpoint_path: null
|
|
27
|
+
skip_training: false
|
|
28
|
+
|
|
29
|
+
# dataloader args
|
|
30
|
+
batch_size: 1
|
|
31
|
+
num_workers: 0
|
|
32
|
+
pin_memory: true
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
_target_: DepthUpscalingAlgorithm
|
|
2
|
+
# this should be a list of integers or string, indicating the sequence of layers. If the entry is an integer, it will use the n-th layer of the model. If the entry is a string, it will use the layers specified by the string. The string should be a valid python expression that evaluates to a list of integers.
|
|
3
|
+
# for example, ["range(0,12)", "range(6,12)"] will use the first 12 layers and the last 6 layers of the model to construct the new model
|
|
4
|
+
# [0, 2, 4, "range(6,12)"] will use the 1st, 3rd, 5th, and the 7th to 12th layers of the model to construct the new model
|
|
5
|
+
layer_indices: null
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
_target_: fusion_bench.method.DummyAlgorithm
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
_target_: fusion_bench.method.MaxModelPredictorAlgorithm
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
_target_: fusion_bench.method.WeightedEnsembleAlgorithm
|
|
2
|
+
|
|
3
|
+
normalize: true
|
|
4
|
+
# this should be a list of floats, one for each model in the ensemble
|
|
5
|
+
# If weights is null, the ensemble will use the default weights, which are equal weights for all models.
|
|
6
|
+
weights: null
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
_target_: fusion_bench.method.FisherMergingForCLIPVisionModel
|
|
2
|
+
# this should be a list of strings, regular expressions that match the names of the parameters that should be excluded from the fisher merging
|
|
3
|
+
exclude_param_names_regex: []
|
|
4
|
+
# boolean, whether to normalize fisher weights (L2 norm) or not
|
|
5
|
+
normalize_fisher_weight: true
|
|
6
|
+
# float, the minimal value in fisher weights, used for tackling the potential numerical issues
|
|
7
|
+
minimal_fisher_weight: 1e-6
|
|
8
|
+
# common choices: 256, 512, 1024, 2048
|
|
9
|
+
num_fisher_examples: 256
|
|
10
|
+
zeroshot_weights_cache_dir: outputs/cache/clip_zeroshot_weights
|
|
11
|
+
dataloader_kwargs:
|
|
12
|
+
batch_size: 32
|
|
13
|
+
num_workers: 0
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
name: fisher_merging
|
|
2
|
+
# this should be a list of strings, regular expressions that match the names of the parameters that should be excluded from the fisher merging
|
|
3
|
+
exclude_param_names_regex: []
|
|
4
|
+
# boolean, whether to normalize fisher weights (L2 norm) or not
|
|
5
|
+
normalize_fisher_weight: true
|
|
6
|
+
# float, the minimal value in fisher weights, used for tackling the potential numerical issues
|
|
7
|
+
minimal_fisher_weight: 1e-6
|
|
8
|
+
# common choices: 256, 512, 1024, 2048
|
|
9
|
+
num_fisher_examples: 256
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: fusion_bench.method.FisherMergingAlgorithmForGPT2
|
|
2
|
+
# this should be a list of strings, regular expressions that match the names of the parameters that should be excluded from the fisher merging
|
|
3
|
+
exclude_param_names_regex: []
|
|
4
|
+
# boolean, whether to normalize fisher weights (L2 norm) or not
|
|
5
|
+
normalize_fisher_weight: true
|
|
6
|
+
# float, the minimal value in fisher weights, used for tackling the potential numerical issues
|
|
7
|
+
minimal_fisher_weight: 1e-6
|
|
8
|
+
# common choices: 256, 512, 1024, 2048
|
|
9
|
+
num_fisher_examples: 256
|
|
10
|
+
cache_dir: outputs
|
|
11
|
+
batch_size: 32
|
|
12
|
+
num_workers: 0
|
|
@@ -0,0 +1,8 @@
|
|
|
1
|
+
# This algorithm merges a pretrained model with a finetuned model.
|
|
2
|
+
#
|
|
3
|
+
# $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
|
|
4
|
+
#
|
|
5
|
+
# where $\theta_{merged}$ is the merged model, $\theta_{ft}$ is the finetuned model (medium-aligned model),
|
|
6
|
+
# $\theta_{pre}$ is the pretrained model (base model), and $\alpha$ is the extrapolation factor.
|
|
7
|
+
_target_: fusion_bench.method.ExPOAlgorithm
|
|
8
|
+
extrapolation_factor: 0.1
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# This algorithm merges a pretrained model with a finetuned model.
|
|
2
|
+
#
|
|
3
|
+
# $$\theta_{merged} = \theta_{ft} + \alpha (\theta_{ft} - \theta_{pre})$$
|
|
4
|
+
#
|
|
5
|
+
# where $\theta_{merged}$ is the merged model, $\theta_{ft}$ is the finetuned model (medium-aligned model),
|
|
6
|
+
# $\theta_{pre}$ is the pretrained model (base model), and $\alpha$ is the extrapolation factor.
|
|
7
|
+
_target_: fusion_bench.method.ExPOAlgorithmForLlama
|
|
8
|
+
extrapolation_factor: 0.1
|
|
9
|
+
attention_scaling_factor: 1.0
|
|
10
|
+
|
|
11
|
+
only_on_backbone: true
|
|
12
|
+
on_linear_weights: true
|
|
13
|
+
on_linear_bias: false
|
|
14
|
+
on_embedding: false
|
|
15
|
+
|
|
16
|
+
fix_last_n_layers: 0
|
|
17
|
+
fix_first_n_layers: 0
|
|
18
|
+
|
|
19
|
+
magnitude_sparsity_ratio: null
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
_target_: fusion_bench.method.linear.llama_expo.ExPOWithDareForLLama
|
|
2
|
+
|
|
3
|
+
extrapolation_factor: 0.1
|
|
4
|
+
attention_scaling_factor: 1.0
|
|
5
|
+
|
|
6
|
+
only_on_backbone: true
|
|
7
|
+
on_linear_weights: true
|
|
8
|
+
on_linear_bias: false
|
|
9
|
+
on_embedding: false
|
|
10
|
+
|
|
11
|
+
fix_last_n_layers: 0
|
|
12
|
+
fix_first_n_layers: 0
|
|
13
|
+
|
|
14
|
+
magnitude_sparsity_ratio: null
|
|
15
|
+
|
|
16
|
+
# dare arguments
|
|
17
|
+
dare_sparsity_ratio: 0.5
|
|
18
|
+
dare_only_on_linear_weights: true
|
|
19
|
+
dare_rescale: true
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
_target_: fusion_bench.method.SimpleAverageForLlama
|
|
2
|
+
# set `merge_backbone` to true if you has a base model and only want to merge the backbone of the experts
|
|
3
|
+
# if `merge_backbone` is False, this is equivalent to `SimpleAverageAlgorithm`
|
|
4
|
+
merge_backbone: true
|
|
5
|
+
model_save_path: null
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: WeightedAverageForLLama
|
|
2
|
+
|
|
3
|
+
normalize: true # if true, the weights will be normalized before merging
|
|
4
|
+
weights: # List of weights for each model
|
|
5
|
+
- 0.5
|
|
6
|
+
- 0.5
|
|
7
|
+
# if true, only the backbone of the model will be merged and the head will be keeped as the pre-trained model (if the pre-trained model is provided, otherwise the head of the first model will be used)
|
|
8
|
+
# if false, the whole model will be merged
|
|
9
|
+
backbone_only: true
|
|
10
|
+
merged_model_save_path: null
|
|
11
|
+
save_tokenizer: true
|
|
12
|
+
push_to_hub: false
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
_target_: fusion_bench.method.BradleyTerryRewardModeling
|
|
2
|
+
_recursive_: False
|
|
3
|
+
|
|
4
|
+
optimizer:
|
|
5
|
+
_target_: torch.optim.AdamW
|
|
6
|
+
lr: 1e-5
|
|
7
|
+
weight_decay: 0.01
|
|
8
|
+
fused: null
|
|
9
|
+
|
|
10
|
+
lr_scheduler:
|
|
11
|
+
_target_: fusion_bench.optim.lr_scheduler.CosineDecayWithWarmup
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
init_lr: 0
|
|
14
|
+
warmup_steps: 100
|
|
15
|
+
max_lr: ${..optimizer.lr}
|
|
16
|
+
min_lr: 1e-6
|
|
17
|
+
|
|
18
|
+
dataloader_kwargs:
|
|
19
|
+
# per-gpu batch size
|
|
20
|
+
batch_size: 1
|
|
21
|
+
num_workers: 0
|
|
22
|
+
pin_memory: True
|
|
23
|
+
|
|
24
|
+
# Training hyperparameters
|
|
25
|
+
# if max_epochs=-1, max_steps will be used to determine the number of training steps
|
|
26
|
+
max_epochs: 3
|
|
27
|
+
max_steps: -1
|
|
28
|
+
max_steps_per_epoch: -1
|
|
29
|
+
accumulate_grad_batches: 1
|
|
30
|
+
lr_scheduler_interval: step
|
|
31
|
+
lr_scheduler_frequency: 1
|
|
32
|
+
# Checkpointing may be done by epoch or step, and at the end of training
|
|
33
|
+
# `checkpoint_save_interval` can be 'epoch' or 'step'
|
|
34
|
+
checkpoint_save_interval: epoch
|
|
35
|
+
checkpoint_save_frequency: 1
|
|
36
|
+
# Whether to use gradient clipping, and if so, the value and algorithm
|
|
37
|
+
gradient_clip_val: null
|
|
38
|
+
gradient_clip_algorithm: norm
|
|
39
|
+
save_optimizer_state: false
|
|
40
|
+
# save_full_model must be true when using shared FSDP
|
|
41
|
+
save_full_model: true
|
|
42
|
+
# save_ckpt_type can be 'hf' or 'lightning'
|
|
43
|
+
save_ckpt_type: lightning
|
|
44
|
+
# Path to checkpoint to load from, used for resuming training
|
|
45
|
+
ckpt_path: null
|
|
46
|
+
max_length: 4096
|
|
47
|
+
fix_token_embedding: true
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
_target_: fusion_bench.method.FullFinetuneSFT
|
|
2
|
+
_recursive_: False
|
|
3
|
+
|
|
4
|
+
optimizer:
|
|
5
|
+
_target_: torch.optim.AdamW
|
|
6
|
+
lr: 1e-5
|
|
7
|
+
weight_decay: 0.01
|
|
8
|
+
fused: null
|
|
9
|
+
|
|
10
|
+
lr_scheduler:
|
|
11
|
+
_target_: fusion_bench.optim.lr_scheduler.CosineDecayWithWarmup
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
init_lr: 0
|
|
14
|
+
warmup_steps: 100
|
|
15
|
+
max_lr: ${..optimizer.lr}
|
|
16
|
+
min_lr: 1e-6
|
|
17
|
+
|
|
18
|
+
dataloader_kwargs:
|
|
19
|
+
# per-gpu batch size
|
|
20
|
+
batch_size: 1
|
|
21
|
+
num_workers: 0
|
|
22
|
+
pin_memory: True
|
|
23
|
+
|
|
24
|
+
# Training hyperparameters
|
|
25
|
+
# if max_epochs=-1, max_steps will be used to determine the number of training steps
|
|
26
|
+
max_epochs: 3
|
|
27
|
+
max_steps: -1
|
|
28
|
+
max_steps_per_epoch: -1
|
|
29
|
+
accumulate_grad_batches: 1
|
|
30
|
+
lr_scheduler_interval: step
|
|
31
|
+
lr_scheduler_frequency: 1
|
|
32
|
+
# Checkpointing may be done by epoch or step, and at the end of training
|
|
33
|
+
# `checkpoint_save_interval` can be 'epoch' or 'step'
|
|
34
|
+
checkpoint_save_interval: epoch
|
|
35
|
+
checkpoint_save_frequency: 1
|
|
36
|
+
# Whether to use gradient clipping, and if so, the value and algorithm
|
|
37
|
+
gradient_clip_val: null
|
|
38
|
+
gradient_clip_algorithm: norm
|
|
39
|
+
save_optimizer_state: false
|
|
40
|
+
# save_full_model must be true when using shared FSDP
|
|
41
|
+
save_full_model: true
|
|
42
|
+
# save_ckpt_type can be 'hf' or 'lightning'
|
|
43
|
+
save_ckpt_type: lightning
|
|
44
|
+
# Path to checkpoint to load from, used for resuming training
|
|
45
|
+
ckpt_path: null
|
|
46
|
+
max_length: 4096
|
|
47
|
+
fix_token_embedding: true
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
_target_: fusion_bench.method.PeftFinetuneSFT
|
|
2
|
+
_recursive_: False
|
|
3
|
+
|
|
4
|
+
optimizer:
|
|
5
|
+
_target_: torch.optim.AdamW
|
|
6
|
+
lr: 1e-4
|
|
7
|
+
weight_decay: 0.01
|
|
8
|
+
fused: null
|
|
9
|
+
|
|
10
|
+
lr_scheduler:
|
|
11
|
+
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
|
|
12
|
+
T_max: _T_max_ # this will be replaced by the expected number of training steps
|
|
13
|
+
eta_min: 1e-6
|
|
14
|
+
|
|
15
|
+
dataloader_kwargs:
|
|
16
|
+
# per-gpu batch size
|
|
17
|
+
batch_size: 1
|
|
18
|
+
num_workers: 0
|
|
19
|
+
pin_memory: True
|
|
20
|
+
|
|
21
|
+
peft_config:
|
|
22
|
+
_target_: peft.LoraConfig
|
|
23
|
+
task_type: peft.TaskType.CAUSAL_LM
|
|
24
|
+
target_modules:
|
|
25
|
+
# lora attention modules
|
|
26
|
+
- q_proj
|
|
27
|
+
- v_proj
|
|
28
|
+
# lora mlp modules
|
|
29
|
+
- gate_proj
|
|
30
|
+
- down_proj
|
|
31
|
+
- up_proj
|
|
32
|
+
r: 64
|
|
33
|
+
lora_alpha: 16
|
|
34
|
+
lora_dropout: 0
|
|
35
|
+
bias: none
|
|
36
|
+
|
|
37
|
+
adapter_name: default
|
|
38
|
+
# whether to merge and unload the adapter after training
|
|
39
|
+
merge_and_unload: false
|
|
40
|
+
|
|
41
|
+
# Training hyperparameters
|
|
42
|
+
# if max_epochs=-1, max_steps will be used to determine the number of training steps
|
|
43
|
+
max_epochs: 3
|
|
44
|
+
max_steps: -1
|
|
45
|
+
max_steps_per_epoch: -1
|
|
46
|
+
accumulate_grad_batches: 1
|
|
47
|
+
lr_scheduler_interval: step
|
|
48
|
+
lr_scheduler_frequency: 1
|
|
49
|
+
# Checkpointing may be done by epoch or step, and at the end of training
|
|
50
|
+
# `checkpoint_save_interval` can be 'epoch' or 'step'
|
|
51
|
+
checkpoint_save_interval: epoch
|
|
52
|
+
checkpoint_save_frequency: 1
|
|
53
|
+
# Whether to use gradient clipping, and if so, the value and algorithm
|
|
54
|
+
gradient_clip_val: null
|
|
55
|
+
gradient_clip_algorithm: norm
|
|
56
|
+
save_optimizer_state: false
|
|
57
|
+
# save_full_model must be true when using shared FSDP
|
|
58
|
+
save_full_model: false
|
|
59
|
+
# save_ckpt_type can be 'peft' or 'lightning'
|
|
60
|
+
save_ckpt_type: lightning
|
|
61
|
+
# Path to checkpoint to load from, used for resuming training
|
|
62
|
+
ckpt_path: null
|
|
63
|
+
max_length: 4096
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: fusion_bench.method.opcm.opcm.OPCMForCLIP
|
|
2
|
+
|
|
3
|
+
# shuffle the order of the models
|
|
4
|
+
shuffle_order: true
|
|
5
|
+
# the scaling factor for the SVD projection
|
|
6
|
+
alpha: 0.5
|
|
7
|
+
# the random seed to use
|
|
8
|
+
seed: null
|
|
9
|
+
# save the merged model on every step
|
|
10
|
+
save_on_every_step: true
|
|
11
|
+
# evaluate the merged model on every step
|
|
12
|
+
evaluate_on_every_step: true
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: fusion_bench.method.opcm.task_arithmetic.ContinualTaskArithmeticForCLIP
|
|
2
|
+
|
|
3
|
+
scaling_factor: 0.3
|
|
4
|
+
|
|
5
|
+
# shuffle the order of the models
|
|
6
|
+
shuffle_order: true
|
|
7
|
+
# the random seed to use
|
|
8
|
+
seed: null
|
|
9
|
+
# save the merged model on every step
|
|
10
|
+
save_on_every_step: true
|
|
11
|
+
# evaluate the merged model on every step
|
|
12
|
+
evaluate_on_every_step: true
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
_target_: fusion_bench.method.opcm.ties_merging.ContinualTiesMergingForCLIP
|
|
2
|
+
|
|
3
|
+
# Scaling factor $\lambda$
|
|
4
|
+
scaling_factor: 0.5
|
|
5
|
+
threshold: 20
|
|
6
|
+
# List of keys to remove from the state dict, default is empty
|
|
7
|
+
remove_keys: []
|
|
8
|
+
# Function to merge the models, default is sum. Options are 'sum', 'mean', and 'max'
|
|
9
|
+
merge_func: sum
|
|
10
|
+
|
|
11
|
+
# shuffle the order of the models
|
|
12
|
+
shuffle_order: true
|
|
13
|
+
# the random seed to use
|
|
14
|
+
seed: null
|
|
15
|
+
# save the merged model on every step
|
|
16
|
+
save_on_every_step: true
|
|
17
|
+
# evaluate the merged model on every step
|
|
18
|
+
evaluate_on_every_step: true
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
_target_: fusion_bench.method.opcm.weight_average.ContinualWeightAverageForCLIP
|
|
2
|
+
|
|
3
|
+
# shuffle the order of the models
|
|
4
|
+
shuffle_order: true
|
|
5
|
+
# the random seed to use
|
|
6
|
+
seed: null
|
|
7
|
+
# save the merged model on every step
|
|
8
|
+
save_on_every_step: true
|
|
9
|
+
# evaluate the merged model on every step
|
|
10
|
+
evaluate_on_every_step: true
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
_target_: fusion_bench.method.MagnitudePruningForLlama
|
|
2
|
+
_recursive_: false
|
|
3
|
+
# `prune_type` can be either `unstructured` or `semistructured`
|
|
4
|
+
prune_type: unstructured
|
|
5
|
+
# device and dtype to compute the pruning mask
|
|
6
|
+
device: cuda
|
|
7
|
+
dtype: null
|
|
8
|
+
# === options for unstructured pruning ===
|
|
9
|
+
# `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
|
|
10
|
+
sparsity_ratio: 0.5
|
|
11
|
+
# === options for semistructured pruning ===
|
|
12
|
+
# 2:4 means 2 out of 4 weights are pruned
|
|
13
|
+
n: 2
|
|
14
|
+
m: 4
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
_target_: fusion_bench.method.RandomPruningForLlama
|
|
2
|
+
prune_type: unstructured
|
|
3
|
+
# === options for unstructured pruning ===
|
|
4
|
+
# `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
|
|
5
|
+
sparsity_ratio: 0.5
|
|
6
|
+
# === options for semistructured pruning ===
|
|
7
|
+
# 2:4 means 2 out of 4 weights are pruned
|
|
8
|
+
n: 2
|
|
9
|
+
m: 4
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
_target_: fusion_bench.method.WandaPruningForLlama
|
|
2
|
+
nsamples: 128
|
|
3
|
+
seed: 0
|
|
4
|
+
use_variant: false
|
|
5
|
+
# `prune_type` can be either `unstructured` or `semistructured`
|
|
6
|
+
prune_type: unstructured
|
|
7
|
+
# device and dtype to compute the pruning mask
|
|
8
|
+
device: cuda
|
|
9
|
+
dtype: null
|
|
10
|
+
# === options for unstructured pruning ===
|
|
11
|
+
# `sparsity_ratio` is the ratio of weights to be pruned, 1 means all weights are pruned
|
|
12
|
+
sparsity_ratio: 0.5
|
|
13
|
+
# === options for semistructured pruning ===
|
|
14
|
+
# 2:4 means 2 out of 4 weights are pruned
|
|
15
|
+
n: 2
|
|
16
|
+
m: 4
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
_target_: fusion_bench.method.PWEMoELinearScalarizationForCLIP # or PWEMoExactParetoOptimalForCLIP
|
|
2
|
+
upscale_mlp: true
|
|
3
|
+
upscale_attn: true
|
|
4
|
+
# scaling factor for the remaining parameters
|
|
5
|
+
init_lambda: 0.3
|
|
6
|
+
router_hidden_layers: 2
|
|
7
|
+
lr: 1e-5
|
|
8
|
+
num_steps: 8000
|
|
9
|
+
save_interval: 2000
|
|
10
|
+
alpha: 1 # alpha for dirichlet, if alpha=1, then it is uniform
|
|
11
|
+
# load model from this checkpoint
|
|
12
|
+
checkpoint_path: null
|
|
13
|
+
|
|
14
|
+
# evaluation grid
|
|
15
|
+
eval_grid: true
|
|
16
|
+
eval_grid_n: 8
|
|
17
|
+
eval_grid_m: 2
|
|
18
|
+
|
|
19
|
+
dataloader_kwargs:
|
|
20
|
+
# per-device batch size
|
|
21
|
+
batch_size: 16
|
|
22
|
+
num_workers: 4
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
name: ??? # this can be
|
|
2
|
+
# the path for loading the model weights, if specified, skip the test-time adaptation training
|
|
3
|
+
checkpoint: False
|
|
4
|
+
# the path for saving the model weights.
|
|
5
|
+
save_checkpoint: False
|
|
6
|
+
router_hidden_layers: 1
|
|
7
|
+
init_lambda: 0.3
|
|
8
|
+
batch_reduce: true
|
|
9
|
+
|
|
10
|
+
# device to compute svd
|
|
11
|
+
svd_accelerator: cuda
|
|
12
|
+
rank_k: 32 # How many experts are added to the pool per task?
|
|
13
|
+
select_k: -1 # How many experts are selected from the pool to merge? Range is (1, rank_k*task_num). In particular -1: All the experts in the pool
|
|
14
|
+
|
|
15
|
+
# learning rate
|
|
16
|
+
lr: 1e-4
|
|
17
|
+
optimizer: adam
|
|
18
|
+
# this is overrided by `fabric.devices` if launched from the `fusion_bench` CLI.
|
|
19
|
+
devices: 1
|
|
20
|
+
batch_size: 16
|
|
21
|
+
num_workers: 16
|
|
22
|
+
max_steps: 1000 # default: 1000
|
|
23
|
+
# if true, we will use the gradient accumulation across tasks to save memory
|
|
24
|
+
use_grad_accumulate: true
|
|
25
|
+
cache_dir: outputs
|
|
26
|
+
fast_dev_run: ${fast_dev_run}
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
_target_: fusion_bench.method.RegMeanAlgorithmForCLIP
|
|
2
|
+
# list, regular expression of names of parameters that need to be excluded
|
|
3
|
+
exclude_param_names_regex: []
|
|
4
|
+
# numbers of examples to compute regmean weights
|
|
5
|
+
num_regmean_examples: 256
|
|
6
|
+
weight_transpose: true
|
|
7
|
+
# float, reduce non-diagonal elements in regmean weights by multiplying this scalar
|
|
8
|
+
reduce_non_diagonal_ratio: 0.6
|
|
9
|
+
dataloader_kwargs:
|
|
10
|
+
batch_size: 32
|
|
11
|
+
num_workers: 0
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
_target_: fusion_bench.method.RegMeanAlgorithmForGPT2
|
|
2
|
+
|
|
3
|
+
# list, regular expression of names of parameters that need to be excluded
|
|
4
|
+
exclude_param_names_regex: []
|
|
5
|
+
# numbers of examples to compute regmean weights
|
|
6
|
+
num_regmean_examples: 256
|
|
7
|
+
# float, reduce non-diagonal elements in regmean weights by multiplying this scalar
|
|
8
|
+
reduce_non_diagonal_ratio: 0.6
|
|
9
|
+
weight_transpose: false
|
|
10
|
+
cache_dir: outputs
|
|
11
|
+
batch_size: 32
|
|
12
|
+
num_workers: 0
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
_target_: fusion_bench.method.SimpleAverageAlgorithm
|