fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,335 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This is an experimental implementation of the Layer-wise AdaMerging algorithm for Llama models.
|
|
3
|
+
The efficiency of the algorithm is not guaranteed.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import logging
|
|
7
|
+
import os
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from typing import Optional, Tuple, Union, cast
|
|
10
|
+
|
|
11
|
+
import lightning as L
|
|
12
|
+
import torch
|
|
13
|
+
from torch import Tensor, nn
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
from tqdm.auto import tqdm
|
|
16
|
+
from transformers.data.data_collator import (
|
|
17
|
+
DataCollatorForLanguageModeling,
|
|
18
|
+
default_data_collator,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
from fusion_bench import BaseAlgorithm
|
|
22
|
+
from fusion_bench.method.simple_average import simple_average
|
|
23
|
+
from fusion_bench.mixins import LightningFabricMixin, SimpleProfilerMixin
|
|
24
|
+
from fusion_bench.modelpool import CausalLMPool
|
|
25
|
+
from fusion_bench.models.wrappers.layer_wise_fusion import (
|
|
26
|
+
LayerWiseMergedModel,
|
|
27
|
+
fix_other_parts,
|
|
28
|
+
get_layer_wise_weights,
|
|
29
|
+
merge_and_unload,
|
|
30
|
+
merge_weights,
|
|
31
|
+
)
|
|
32
|
+
from fusion_bench.utils import instantiate
|
|
33
|
+
from fusion_bench.utils.data import InfiniteDataLoader, load_tensor_from_file
|
|
34
|
+
from fusion_bench.utils.dtype import get_dtype
|
|
35
|
+
from fusion_bench.utils.parameters import print_parameters
|
|
36
|
+
|
|
37
|
+
log = logging.getLogger(__name__)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class LayerWiseAdaMergingForLlamaSFT(
|
|
41
|
+
BaseAlgorithm,
|
|
42
|
+
LightningFabricMixin,
|
|
43
|
+
SimpleProfilerMixin,
|
|
44
|
+
):
|
|
45
|
+
|
|
46
|
+
modelpool: CausalLMPool
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
seed: int,
|
|
51
|
+
output_dir: str,
|
|
52
|
+
optimizer: str,
|
|
53
|
+
lr: float,
|
|
54
|
+
sparsity_ratio: Optional[float],
|
|
55
|
+
average_attntion: bool,
|
|
56
|
+
start_layer_idx: Optional[Union[float, int]],
|
|
57
|
+
init_values: float,
|
|
58
|
+
init_weights_path: str,
|
|
59
|
+
clamp_weights: bool,
|
|
60
|
+
normalized_merging_weights: bool,
|
|
61
|
+
max_steps: int,
|
|
62
|
+
tie_weights: bool,
|
|
63
|
+
strict: bool,
|
|
64
|
+
dataloader_kwargs: bool,
|
|
65
|
+
skip_training: bool = False,
|
|
66
|
+
save_interval: int = None,
|
|
67
|
+
save_merged_model: bool = True,
|
|
68
|
+
**kwargs,
|
|
69
|
+
):
|
|
70
|
+
R"""
|
|
71
|
+
Layer-wise AdaMerging algorithm for Llama models.
|
|
72
|
+
Unlike the original AdaMerging algorithm that uses test-time adaptation training to optimize the entropy loss. This algorithm optimize the cross entropy loss.
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
seed (int): random seed to set at the begining of running.
|
|
76
|
+
output_dir (str): directory to save the merged model. If `None`, the log directory will be used.
|
|
77
|
+
optimizer (str): optimizer to use for training.
|
|
78
|
+
lr (float): learning rate for training.
|
|
79
|
+
sparsity_ratio (Optional[float]): ratio of zero weights in the task vectors. If `None`, no sparsity is enforced.
|
|
80
|
+
average_attntion (bool): whether to average attention weights.
|
|
81
|
+
start_layer_idx (Optional[Union[float, int]]): index of the layer to start merging.
|
|
82
|
+
init_values (float): initial value for the merging weights.
|
|
83
|
+
init_weights_path (str): path to the initial merging weights.
|
|
84
|
+
clamp_weights (bool): whether to clamp the merging weights.
|
|
85
|
+
normalized_merging_weights (bool): whether to normalize the merging weights.
|
|
86
|
+
max_steps (int): maximum number of training steps.
|
|
87
|
+
tie_weights (bool): whether to tie the weights of the same layer.
|
|
88
|
+
strict (bool): whether to enforce strict merging.
|
|
89
|
+
dataloader_kwargs (bool): keyword arguments for dataloaders.
|
|
90
|
+
skip_training (bool): whether to skip training.
|
|
91
|
+
save_interval (int): interval to save the merging weights. If `None`, no intermediate weights are saved. The weights are saved to `{output_dir}/checkpoints/merging-weights_{step_idx}.ckpt`.
|
|
92
|
+
save_merged_model (bool): whether to save the merged model. This will save the model to `{output_dir}/checkpoints/merged_model`.
|
|
93
|
+
"""
|
|
94
|
+
self.seed = seed
|
|
95
|
+
self.output_dir = output_dir
|
|
96
|
+
self.optimizer = optimizer
|
|
97
|
+
self.lr = lr
|
|
98
|
+
self.sparsity_ratio = sparsity_ratio
|
|
99
|
+
self.average_attntion = average_attntion
|
|
100
|
+
self.start_layer_idx = start_layer_idx
|
|
101
|
+
self.init_values = init_values
|
|
102
|
+
self.init_weights_path = init_weights_path
|
|
103
|
+
self.clamp_weights = clamp_weights
|
|
104
|
+
self.max_steps = max_steps
|
|
105
|
+
self.tie_weights = tie_weights
|
|
106
|
+
self.strict = strict
|
|
107
|
+
self.normalized_merging_weights = normalized_merging_weights
|
|
108
|
+
self.dataloader_kwargs = dataloader_kwargs
|
|
109
|
+
self.skip_training = skip_training
|
|
110
|
+
self.save_interval = save_interval
|
|
111
|
+
self.save_merged_model = save_merged_model
|
|
112
|
+
super().__init__(**kwargs)
|
|
113
|
+
|
|
114
|
+
def run(self, modelpool: CausalLMPool):
|
|
115
|
+
"""
|
|
116
|
+
Run the algorithm.
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
modelpool (CausalLMPool): The pool of models to be merged.
|
|
120
|
+
|
|
121
|
+
Returns:
|
|
122
|
+
The merged model.
|
|
123
|
+
"""
|
|
124
|
+
self.modelpool = modelpool
|
|
125
|
+
fabric = self.fabric
|
|
126
|
+
|
|
127
|
+
assert (
|
|
128
|
+
modelpool.has_pretrained
|
|
129
|
+
), "Must be a pre-tarined model with name `_pretrained_` in the model pool."
|
|
130
|
+
log.info(f"There are {len(modelpool)} expert models in the model pool.")
|
|
131
|
+
|
|
132
|
+
fabric.seed_everything(self.seed)
|
|
133
|
+
|
|
134
|
+
if self.output_dir is None:
|
|
135
|
+
log.warning(
|
|
136
|
+
f"`output_dir` is not specified, set to log directory {self.log_dir}."
|
|
137
|
+
)
|
|
138
|
+
self.output_dir = fabric.logger.log_dir
|
|
139
|
+
if fabric.global_rank == 0:
|
|
140
|
+
os.makedirs(self.output_dir, exist_ok=True)
|
|
141
|
+
|
|
142
|
+
with self.profile("construct_layer_wise_merged_model"):
|
|
143
|
+
module = self.construct_layer_wise_merged_model(modelpool)
|
|
144
|
+
if fabric.is_global_zero:
|
|
145
|
+
print_parameters(module)
|
|
146
|
+
|
|
147
|
+
if not self.skip_training:
|
|
148
|
+
module = self.train(module)
|
|
149
|
+
|
|
150
|
+
model = merge_and_unload(module)
|
|
151
|
+
if self.save_merged_model:
|
|
152
|
+
merged_model_path = os.path.join(
|
|
153
|
+
self.output_dir, "checkpoints", "merged_model"
|
|
154
|
+
)
|
|
155
|
+
if self.fabric.global_rank == 0:
|
|
156
|
+
modelpool.load_tokenizer().save_pretrained(merged_model_path)
|
|
157
|
+
model.save_pretrained(merged_model_path)
|
|
158
|
+
print_parameters(model)
|
|
159
|
+
return model
|
|
160
|
+
|
|
161
|
+
@torch.no_grad()
|
|
162
|
+
def construct_layer_wise_merged_model(self, modelpool: CausalLMPool):
|
|
163
|
+
"""
|
|
164
|
+
Constructs a wrapped layer-wise merged model from model pool.
|
|
165
|
+
|
|
166
|
+
This method creates a new wrapped model by merging the layers of a pretrained model with those of several fine-tuned models.
|
|
167
|
+
The merging is controlled by layer-wise weights, which is a `torch.Tensor` of the shape `(num_models, num_layers)`.
|
|
168
|
+
The merging weights can be initialized based on a provided configuration or loaded from a file.
|
|
169
|
+
|
|
170
|
+
Args:
|
|
171
|
+
modelpool (ModelPool): An object containing the pretrained model and fine-tuned models to be merged.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
LayerWiseMergedModel: An instance of the merged model with layer-wise weights applied.
|
|
175
|
+
"""
|
|
176
|
+
pretrained_causal_lm = modelpool.load_model("_pretrained_")
|
|
177
|
+
|
|
178
|
+
# we only merge the backbone
|
|
179
|
+
pretrained_model = pretrained_causal_lm.model.layers
|
|
180
|
+
finetuned_models = [
|
|
181
|
+
modelpool.load_model(name).model.layers for name in modelpool.model_names
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
if self.start_layer_idx is not None and isinstance(self.start_layer_idx, float):
|
|
185
|
+
self.start_layer_idx = int(self.start_layer_idx * len(pretrained_model))
|
|
186
|
+
|
|
187
|
+
if self.start_layer_idx is not None:
|
|
188
|
+
for layer_idx, layer in enumerate(pretrained_model[: self.start_layer_idx]):
|
|
189
|
+
pretrained_model[layer_idx] = simple_average(
|
|
190
|
+
[m[layer_idx] for m in finetuned_models],
|
|
191
|
+
base_module=pretrained_model[layer_idx],
|
|
192
|
+
)
|
|
193
|
+
pretrained_model[layer_idx].requires_grad_(False)
|
|
194
|
+
|
|
195
|
+
if self.average_attntion:
|
|
196
|
+
for layer_idx, layer in enumerate(pretrained_model):
|
|
197
|
+
if layer_idx < self.start_layer_idx:
|
|
198
|
+
continue
|
|
199
|
+
layer.self_attn = simple_average(
|
|
200
|
+
[m[layer_idx].self_attn for m in finetuned_models],
|
|
201
|
+
base_module=layer.self_attn,
|
|
202
|
+
)
|
|
203
|
+
layer.self_attn.requires_grad_(False)
|
|
204
|
+
|
|
205
|
+
# initialize layer-wise weights using the provided configuration `init_values` or load from file if `weights` is provided
|
|
206
|
+
for layer_idx, layer in enumerate(pretrained_model):
|
|
207
|
+
if layer_idx < self.start_layer_idx:
|
|
208
|
+
continue
|
|
209
|
+
layer_wise_weight = get_layer_wise_weights(
|
|
210
|
+
num_models=len(modelpool.model_names),
|
|
211
|
+
num_layers=len(
|
|
212
|
+
tuple(filter(lambda p: p.requires_grad, layer.parameters()))
|
|
213
|
+
),
|
|
214
|
+
init_values=self.init_values,
|
|
215
|
+
dtype=get_dtype(layer),
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
module = LayerWiseMergedModel(
|
|
219
|
+
layer_wise_weight=layer_wise_weight,
|
|
220
|
+
pretrained_model=pretrained_model[layer_idx],
|
|
221
|
+
finetuned_models=[m[layer_idx] for m in finetuned_models],
|
|
222
|
+
clamp_weights=self.clamp_weights,
|
|
223
|
+
tie_weights=self.tie_weights,
|
|
224
|
+
strict=self.strict,
|
|
225
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
226
|
+
normalized_merging_weights=self.normalized_merging_weights,
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
pretrained_causal_lm.model.layers[layer_idx] = module
|
|
230
|
+
|
|
231
|
+
fix_other_parts(pretrained_causal_lm)
|
|
232
|
+
return pretrained_causal_lm
|
|
233
|
+
|
|
234
|
+
def configure_optimizer(self, module: nn.Module):
|
|
235
|
+
if self.optimizer == "adam":
|
|
236
|
+
optimizer = torch.optim.Adam(
|
|
237
|
+
[p for p in module.parameters() if p.requires_grad], lr=self.lr
|
|
238
|
+
)
|
|
239
|
+
return {"optimizer": optimizer}
|
|
240
|
+
else:
|
|
241
|
+
raise ValueError(f"Unknown optmizer type {self.optimizer}")
|
|
242
|
+
|
|
243
|
+
def train(self, causal_lm):
|
|
244
|
+
fabric = self.fabric
|
|
245
|
+
modelpool = self.modelpool
|
|
246
|
+
|
|
247
|
+
with self.profile("load datasets and setup dataloaders"):
|
|
248
|
+
train_datasets = {
|
|
249
|
+
dataset_name: modelpool.load_train_dataset(dataset_name)
|
|
250
|
+
for dataset_name in modelpool.train_dataset_names
|
|
251
|
+
}
|
|
252
|
+
train_loaders = {
|
|
253
|
+
dataset_name: fabric.setup_dataloaders(
|
|
254
|
+
DataLoader(
|
|
255
|
+
dataset,
|
|
256
|
+
**self.dataloader_kwargs,
|
|
257
|
+
collate_fn=default_data_collator,
|
|
258
|
+
)
|
|
259
|
+
)
|
|
260
|
+
for dataset_name, dataset in train_datasets.items()
|
|
261
|
+
}
|
|
262
|
+
train_loader_iters = {
|
|
263
|
+
dataset_name: iter(InfiniteDataLoader(loader))
|
|
264
|
+
for dataset_name, loader in train_loaders.items()
|
|
265
|
+
}
|
|
266
|
+
|
|
267
|
+
optimizer = self.configure_optimizer(causal_lm)["optimizer"]
|
|
268
|
+
causal_lm, optimizer = cast(
|
|
269
|
+
Tuple[nn.Module, torch.optim.Optimizer],
|
|
270
|
+
fabric.setup(causal_lm, optimizer),
|
|
271
|
+
)
|
|
272
|
+
|
|
273
|
+
causal_lm.train()
|
|
274
|
+
merge_weights(causal_lm)
|
|
275
|
+
|
|
276
|
+
self.save_state("init", causal_lm)
|
|
277
|
+
|
|
278
|
+
assert len(train_datasets) > 0, "No training datasets are provided."
|
|
279
|
+
for step_idx in tqdm(range(self.max_steps)):
|
|
280
|
+
log_metrics = {}
|
|
281
|
+
|
|
282
|
+
losses = []
|
|
283
|
+
for dataset_name, dataloader in train_loader_iters.items():
|
|
284
|
+
# compute loss
|
|
285
|
+
inputs = next(dataloader)
|
|
286
|
+
outputs = causal_lm(**inputs)
|
|
287
|
+
|
|
288
|
+
losses.append(outputs.loss)
|
|
289
|
+
|
|
290
|
+
if len(losses) > 1:
|
|
291
|
+
total_loss = sum(losses)
|
|
292
|
+
else:
|
|
293
|
+
total_loss = losses[0]
|
|
294
|
+
|
|
295
|
+
log_metrics["train/loss"] = total_loss.item()
|
|
296
|
+
|
|
297
|
+
fabric.backward(total_loss)
|
|
298
|
+
optimizer.step()
|
|
299
|
+
optimizer.zero_grad()
|
|
300
|
+
|
|
301
|
+
if (
|
|
302
|
+
self.save_interval is not None
|
|
303
|
+
and (step_idx + 1) % self.save_interval == 0
|
|
304
|
+
):
|
|
305
|
+
self.save_state(step_idx=step_idx, causal_lm=causal_lm)
|
|
306
|
+
|
|
307
|
+
merge_weights(causal_lm)
|
|
308
|
+
|
|
309
|
+
self.fabric.log_dict(log_metrics, step=step_idx)
|
|
310
|
+
|
|
311
|
+
self.save_state("latest", causal_lm)
|
|
312
|
+
|
|
313
|
+
return causal_lm
|
|
314
|
+
|
|
315
|
+
def save_state(self, step_idx: Union[int, str], causal_lm):
|
|
316
|
+
"""
|
|
317
|
+
Save merging weights of each layers. This method must be called at all processes.
|
|
318
|
+
|
|
319
|
+
Args:
|
|
320
|
+
step_idx (Union[int, str]): step index of the training.
|
|
321
|
+
causal_lm (nn.Module): the model to save.
|
|
322
|
+
"""
|
|
323
|
+
state = {}
|
|
324
|
+
for layer_idx, layer in enumerate(causal_lm.model.layers):
|
|
325
|
+
if isinstance(layer, LayerWiseMergedModel):
|
|
326
|
+
state[f"layer_{layer_idx}"] = layer.merge_weight
|
|
327
|
+
|
|
328
|
+
if self.fabric.is_global_zero:
|
|
329
|
+
os.makedirs(os.path.join(self.output_dir, "checkpoints"), exist_ok=True)
|
|
330
|
+
save_path = os.path.join(
|
|
331
|
+
self.output_dir, "checkpoints", f"merging-weights_{step_idx}.ckpt"
|
|
332
|
+
)
|
|
333
|
+
if self.fabric.is_global_zero:
|
|
334
|
+
log.info(f"Saving merging weights to {save_path}")
|
|
335
|
+
self.fabric.save(save_path, state)
|
|
@@ -0,0 +1,227 @@
|
|
|
1
|
+
# This code is from
|
|
2
|
+
# Multi-Task Learning as Multi-Objective Optimization
|
|
3
|
+
# Ozan Sener, Vladlen Koltun
|
|
4
|
+
# Neural Information Processing Systems (NeurIPS) 2018
|
|
5
|
+
# https://github.com/intel-isl/MultiObjectiveOptimization
|
|
6
|
+
from typing import Union
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def np_sum(x: Union[torch.Tensor, np.ndarray]) -> float:
|
|
13
|
+
if isinstance(x, torch.Tensor):
|
|
14
|
+
return x.sum().item()
|
|
15
|
+
return np.sum(x)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def to_numpy(x: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
|
|
19
|
+
if isinstance(x, torch.Tensor):
|
|
20
|
+
return x.detach().cpu().numpy()
|
|
21
|
+
return x
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class MinNormSolver:
|
|
25
|
+
MAX_ITER = 250
|
|
26
|
+
STOP_CRIT = 1e-5
|
|
27
|
+
|
|
28
|
+
def _min_norm_element_from2(v1v1, v1v2, v2v2):
|
|
29
|
+
"""
|
|
30
|
+
Analytical solution for min_{c} |cx_1 + (1-c)x_2|_2^2
|
|
31
|
+
d is the distance (objective) optimzed
|
|
32
|
+
v1v1 = <x1,x1>
|
|
33
|
+
v1v2 = <x1,x2>
|
|
34
|
+
v2v2 = <x2,x2>
|
|
35
|
+
"""
|
|
36
|
+
if v1v2 >= v1v1:
|
|
37
|
+
# Case: Fig 1, third column
|
|
38
|
+
gamma = 0.999
|
|
39
|
+
cost = v1v1
|
|
40
|
+
return gamma, cost
|
|
41
|
+
if v1v2 >= v2v2:
|
|
42
|
+
# Case: Fig 1, first column
|
|
43
|
+
gamma = 0.001
|
|
44
|
+
cost = v2v2
|
|
45
|
+
return gamma, cost
|
|
46
|
+
# Case: Fig 1, second column
|
|
47
|
+
gamma = -1.0 * ((v1v2 - v2v2) / (v1v1 + v2v2 - 2 * v1v2))
|
|
48
|
+
cost = v2v2 + gamma * (v1v2 - v2v2)
|
|
49
|
+
return gamma, cost
|
|
50
|
+
|
|
51
|
+
def _min_norm_2d(vecs, dps):
|
|
52
|
+
R"""
|
|
53
|
+
Find the minimum norm solution as combination of two points
|
|
54
|
+
This is correct only in 2D
|
|
55
|
+
ie. min_c |\sum c_i x_i|_2^2 st. \sum c_i = 1 , 1 >= c_1 >= 0 for all i, c_i + c_j = 1.0 for some i, j
|
|
56
|
+
"""
|
|
57
|
+
dmin = 1e8
|
|
58
|
+
for i in range(len(vecs)):
|
|
59
|
+
for j in range(i + 1, len(vecs)):
|
|
60
|
+
if (i, j) not in dps:
|
|
61
|
+
dps[(i, j)] = 0.0
|
|
62
|
+
for k in range(len(vecs[i])):
|
|
63
|
+
dps[(i, j)] += (
|
|
64
|
+
torch.mul(vecs[i][k], vecs[j][k]).sum().data.cpu()
|
|
65
|
+
)
|
|
66
|
+
dps[(j, i)] = dps[(i, j)]
|
|
67
|
+
if (i, i) not in dps:
|
|
68
|
+
dps[(i, i)] = 0.0
|
|
69
|
+
for k in range(len(vecs[i])):
|
|
70
|
+
dps[(i, i)] += (
|
|
71
|
+
torch.mul(vecs[i][k], vecs[i][k]).sum().data.cpu()
|
|
72
|
+
)
|
|
73
|
+
if (j, j) not in dps:
|
|
74
|
+
dps[(j, j)] = 0.0
|
|
75
|
+
for k in range(len(vecs[i])):
|
|
76
|
+
dps[(j, j)] += (
|
|
77
|
+
torch.mul(vecs[j][k], vecs[j][k]).sum().data.cpu()
|
|
78
|
+
)
|
|
79
|
+
c, d = MinNormSolver._min_norm_element_from2(
|
|
80
|
+
dps[(i, i)], dps[(i, j)], dps[(j, j)]
|
|
81
|
+
)
|
|
82
|
+
if d < dmin:
|
|
83
|
+
dmin = d
|
|
84
|
+
sol = [(i, j), c, d]
|
|
85
|
+
return sol, dps
|
|
86
|
+
|
|
87
|
+
def _projection2simplex(y):
|
|
88
|
+
R"""
|
|
89
|
+
Given y, it solves argmin_z |y-z|_2 st \sum z = 1 , 1 >= z_i >= 0 for all i
|
|
90
|
+
"""
|
|
91
|
+
m = len(y)
|
|
92
|
+
sorted_y = np.flip(np.sort(y), axis=0)
|
|
93
|
+
tmpsum = 0.0
|
|
94
|
+
tmax_f = (np.sum(y) - 1.0) / m
|
|
95
|
+
for i in range(m - 1):
|
|
96
|
+
tmpsum += sorted_y[i]
|
|
97
|
+
tmax = (tmpsum - 1) / (i + 1.0)
|
|
98
|
+
if tmax > sorted_y[i + 1]:
|
|
99
|
+
tmax_f = tmax
|
|
100
|
+
break
|
|
101
|
+
return np.maximum(y - tmax_f, np.zeros(y.shape))
|
|
102
|
+
|
|
103
|
+
def _next_point(cur_val, grad, n):
|
|
104
|
+
proj_grad = grad - (np.sum(grad) / n)
|
|
105
|
+
tm1 = -1.0 * cur_val[proj_grad < 0] / proj_grad[proj_grad < 0]
|
|
106
|
+
tm2 = (1.0 - cur_val[proj_grad > 0]) / (proj_grad[proj_grad > 0])
|
|
107
|
+
|
|
108
|
+
skippers = np_sum(tm1 < 1e-7) + np_sum(tm2 < 1e-7)
|
|
109
|
+
t = 1
|
|
110
|
+
if len(tm1[tm1 > 1e-7]) > 0:
|
|
111
|
+
t = np.min(to_numpy(tm1[tm1 > 1e-7]))
|
|
112
|
+
if len(tm2[tm2 > 1e-7]) > 0:
|
|
113
|
+
t = min(t, np.min(to_numpy(tm2[tm2 > 1e-7])))
|
|
114
|
+
|
|
115
|
+
next_point = proj_grad * t + to_numpy(cur_val)
|
|
116
|
+
next_point = MinNormSolver._projection2simplex(next_point)
|
|
117
|
+
return next_point
|
|
118
|
+
|
|
119
|
+
def find_min_norm_element(vecs):
|
|
120
|
+
R"""
|
|
121
|
+
Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull
|
|
122
|
+
as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1.
|
|
123
|
+
It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j})
|
|
124
|
+
Hence, we find the best 2-task solution, and then run the projected gradient descent until convergence
|
|
125
|
+
"""
|
|
126
|
+
# Solution lying at the combination of two points
|
|
127
|
+
dps = {}
|
|
128
|
+
init_sol, dps = MinNormSolver._min_norm_2d(vecs, dps)
|
|
129
|
+
|
|
130
|
+
n = len(vecs)
|
|
131
|
+
sol_vec = np.zeros(n)
|
|
132
|
+
sol_vec[init_sol[0][0]] = init_sol[1]
|
|
133
|
+
sol_vec[init_sol[0][1]] = 1 - init_sol[1]
|
|
134
|
+
|
|
135
|
+
if n < 3:
|
|
136
|
+
# This is optimal for n=2, so return the solution
|
|
137
|
+
return sol_vec, init_sol[2]
|
|
138
|
+
|
|
139
|
+
iter_count = 0
|
|
140
|
+
|
|
141
|
+
grad_mat = np.zeros((n, n))
|
|
142
|
+
for i in range(n):
|
|
143
|
+
for j in range(n):
|
|
144
|
+
grad_mat[i, j] = dps[(i, j)]
|
|
145
|
+
|
|
146
|
+
while iter_count < MinNormSolver.MAX_ITER:
|
|
147
|
+
grad_dir = -1.0 * np.dot(grad_mat, sol_vec)
|
|
148
|
+
new_point = MinNormSolver._next_point(sol_vec, grad_dir, n)
|
|
149
|
+
# Re-compute the inner products for line search
|
|
150
|
+
v1v1 = 0.0
|
|
151
|
+
v1v2 = 0.0
|
|
152
|
+
v2v2 = 0.0
|
|
153
|
+
for i in range(n):
|
|
154
|
+
for j in range(n):
|
|
155
|
+
v1v1 += sol_vec[i] * sol_vec[j] * dps[(i, j)]
|
|
156
|
+
v1v2 += sol_vec[i] * new_point[j] * dps[(i, j)]
|
|
157
|
+
v2v2 += new_point[i] * new_point[j] * dps[(i, j)]
|
|
158
|
+
nc, nd = MinNormSolver._min_norm_element_from2(v1v1, v1v2, v2v2)
|
|
159
|
+
new_sol_vec = nc * sol_vec + (1 - nc) * new_point
|
|
160
|
+
change = new_sol_vec - sol_vec
|
|
161
|
+
if np_sum(np.abs(change)) < MinNormSolver.STOP_CRIT:
|
|
162
|
+
return sol_vec, nd
|
|
163
|
+
sol_vec = new_sol_vec
|
|
164
|
+
|
|
165
|
+
def find_min_norm_element_FW(vecs):
|
|
166
|
+
R"""
|
|
167
|
+
Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull
|
|
168
|
+
as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1.
|
|
169
|
+
It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j})
|
|
170
|
+
Hence, we find the best 2-task solution, and then run the Frank Wolfe until convergence
|
|
171
|
+
"""
|
|
172
|
+
# Solution lying at the combination of two points
|
|
173
|
+
dps = {}
|
|
174
|
+
init_sol, dps = MinNormSolver._min_norm_2d(vecs, dps)
|
|
175
|
+
|
|
176
|
+
n = len(vecs)
|
|
177
|
+
sol_vec = np.zeros(n)
|
|
178
|
+
sol_vec[init_sol[0][0]] = init_sol[1]
|
|
179
|
+
sol_vec[init_sol[0][1]] = 1 - init_sol[1]
|
|
180
|
+
|
|
181
|
+
if n < 3:
|
|
182
|
+
# This is optimal for n=2, so return the solution
|
|
183
|
+
return sol_vec, init_sol[2]
|
|
184
|
+
|
|
185
|
+
iter_count = 0
|
|
186
|
+
|
|
187
|
+
grad_mat = np.zeros((n, n))
|
|
188
|
+
for i in range(n):
|
|
189
|
+
for j in range(n):
|
|
190
|
+
grad_mat[i, j] = dps[(i, j)]
|
|
191
|
+
|
|
192
|
+
while iter_count < MinNormSolver.MAX_ITER:
|
|
193
|
+
t_iter = np.argmin(np.dot(grad_mat, sol_vec))
|
|
194
|
+
|
|
195
|
+
v1v1 = np.dot(sol_vec, np.dot(grad_mat, sol_vec))
|
|
196
|
+
v1v2 = np.dot(sol_vec, grad_mat[:, t_iter])
|
|
197
|
+
v2v2 = grad_mat[t_iter, t_iter]
|
|
198
|
+
|
|
199
|
+
nc, nd = MinNormSolver._min_norm_element_from2(v1v1, v1v2, v2v2)
|
|
200
|
+
new_sol_vec = nc * sol_vec
|
|
201
|
+
new_sol_vec[t_iter] += 1 - nc
|
|
202
|
+
|
|
203
|
+
change = new_sol_vec - sol_vec
|
|
204
|
+
if np_sum(np.abs(change)) < MinNormSolver.STOP_CRIT:
|
|
205
|
+
return sol_vec, nd
|
|
206
|
+
sol_vec = new_sol_vec
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def gradient_normalizers(grads, losses, normalization_type):
|
|
210
|
+
gn = {}
|
|
211
|
+
if normalization_type == "l2":
|
|
212
|
+
for t in grads:
|
|
213
|
+
gn[t] = np.sqrt(np.sum([gr.pow(2).sum().data.cpu() for gr in grads[t]]))
|
|
214
|
+
elif normalization_type == "loss":
|
|
215
|
+
for t in grads:
|
|
216
|
+
gn[t] = losses[t]
|
|
217
|
+
elif normalization_type == "loss+":
|
|
218
|
+
for t in grads:
|
|
219
|
+
gn[t] = losses[t] * np.sqrt(
|
|
220
|
+
np.sum([gr.pow(2).sum().data.cpu() for gr in grads[t]])
|
|
221
|
+
)
|
|
222
|
+
elif normalization_type == "none":
|
|
223
|
+
for t in grads:
|
|
224
|
+
gn[t] = 1.0
|
|
225
|
+
else:
|
|
226
|
+
print("ERROR: Invalid Normalization Type")
|
|
227
|
+
return gn
|