fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This module is modified from https://github.com/locuslab/wanda.
|
|
3
|
+
|
|
4
|
+
It contains utility functions and classes for pruning neural network models using the Wanda method.
|
|
5
|
+
The WANDA method is a weight pruning technique that aims to reduce the number of parameters in a neural network
|
|
6
|
+
while maintaining its performance.
|
|
7
|
+
"""
|
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import time
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
import transformers
|
|
7
|
+
|
|
8
|
+
torch.backends.cuda.matmul.allow_tf32 = False
|
|
9
|
+
torch.backends.cudnn.allow_tf32 = False
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class AblateGPT:
|
|
13
|
+
def __init__(self, layer):
|
|
14
|
+
self.layer = layer
|
|
15
|
+
self.dev = self.layer.weight.device
|
|
16
|
+
W = layer.weight.data.clone()
|
|
17
|
+
if isinstance(self.layer, nn.Conv2d):
|
|
18
|
+
W = W.flatten(1)
|
|
19
|
+
if isinstance(self.layer, transformers.Conv1D):
|
|
20
|
+
W = W.t()
|
|
21
|
+
self.rows = W.shape[0]
|
|
22
|
+
self.columns = W.shape[1]
|
|
23
|
+
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
|
|
24
|
+
self.nsamples = 0
|
|
25
|
+
|
|
26
|
+
self.scaler_row = torch.zeros((self.columns), device=self.dev)
|
|
27
|
+
|
|
28
|
+
def add_batch(self, inp, out):
|
|
29
|
+
if len(inp.shape) == 2:
|
|
30
|
+
inp = inp.unsqueeze(0)
|
|
31
|
+
tmp = inp.shape[0]
|
|
32
|
+
if isinstance(self.layer, nn.Linear) or isinstance(
|
|
33
|
+
self.layer, transformers.Conv1D
|
|
34
|
+
):
|
|
35
|
+
if len(inp.shape) == 3:
|
|
36
|
+
inp = inp.reshape((-1, inp.shape[-1]))
|
|
37
|
+
inp = inp.t()
|
|
38
|
+
self.H *= self.nsamples / (self.nsamples + tmp)
|
|
39
|
+
|
|
40
|
+
self.scaler_row *= self.nsamples / (self.nsamples + tmp)
|
|
41
|
+
|
|
42
|
+
self.nsamples += tmp
|
|
43
|
+
inp = math.sqrt(2 / self.nsamples) * inp.float()
|
|
44
|
+
self.H += inp.matmul(inp.t())
|
|
45
|
+
self.scaler_row += torch.norm(inp, p=2, dim=1) ** 2 / self.nsamples
|
|
46
|
+
|
|
47
|
+
def get_wanda_mask(self, sparsity, prunen, prunem):
|
|
48
|
+
W_metric = torch.abs(self.layer.weight.data) * torch.sqrt(
|
|
49
|
+
self.scaler_row.reshape((1, -1))
|
|
50
|
+
)
|
|
51
|
+
W_mask = torch.zeros_like(W_metric) == 1 ## initialize a mask to be all False
|
|
52
|
+
if prunen != 0:
|
|
53
|
+
for ii in range(W_metric.shape[1]):
|
|
54
|
+
if ii % prunem == 0:
|
|
55
|
+
tmp = W_metric[:, ii : (ii + prunem)].float()
|
|
56
|
+
W_mask.scatter_(
|
|
57
|
+
1, ii + torch.topk(tmp, prunen, dim=1, largest=False)[1], True
|
|
58
|
+
)
|
|
59
|
+
else:
|
|
60
|
+
sort_res = torch.sort(W_metric, dim=-1, stable=True)
|
|
61
|
+
indices = sort_res[1][:, : int(W_metric.shape[1] * sparsity)]
|
|
62
|
+
W_mask.scatter_(1, indices, True)
|
|
63
|
+
|
|
64
|
+
return W_mask
|
|
65
|
+
|
|
66
|
+
def get_mag_mask(self, sparsity, prunen, prunem):
|
|
67
|
+
W = self.layer.weight.data
|
|
68
|
+
W_metric = torch.abs(W)
|
|
69
|
+
if prunen != 0:
|
|
70
|
+
W_mask = torch.zeros_like(W) == 1
|
|
71
|
+
for ii in range(W_metric.shape[1]):
|
|
72
|
+
if ii % prunem == 0:
|
|
73
|
+
tmp = W_metric[:, ii : (ii + prunem)].float()
|
|
74
|
+
W_mask.scatter_(
|
|
75
|
+
1, ii + torch.topk(tmp, prunen, dim=1, largest=False)[1], True
|
|
76
|
+
)
|
|
77
|
+
else:
|
|
78
|
+
thresh = torch.sort(W_metric.flatten().cuda())[0][
|
|
79
|
+
int(W.numel() * sparsity)
|
|
80
|
+
].cpu()
|
|
81
|
+
W_mask = W_metric <= thresh
|
|
82
|
+
|
|
83
|
+
return W_mask
|
|
84
|
+
|
|
85
|
+
def fasterprune(
|
|
86
|
+
self,
|
|
87
|
+
args,
|
|
88
|
+
sparsity,
|
|
89
|
+
mask=None,
|
|
90
|
+
prune_n=0,
|
|
91
|
+
prune_m=0,
|
|
92
|
+
blocksize=128,
|
|
93
|
+
percdamp=0.01,
|
|
94
|
+
):
|
|
95
|
+
W = self.layer.weight.data.clone()
|
|
96
|
+
if isinstance(self.layer, nn.Conv2d):
|
|
97
|
+
W = W.flatten(1)
|
|
98
|
+
if isinstance(self.layer, transformers.Conv1D):
|
|
99
|
+
W = W.t()
|
|
100
|
+
W = W.float()
|
|
101
|
+
|
|
102
|
+
tick = time.time()
|
|
103
|
+
|
|
104
|
+
H = self.H
|
|
105
|
+
del self.H
|
|
106
|
+
dead = torch.diag(H) == 0
|
|
107
|
+
H[dead, dead] = 1
|
|
108
|
+
W[:, dead] = 0
|
|
109
|
+
|
|
110
|
+
Losses = torch.zeros(self.rows, device=self.dev)
|
|
111
|
+
|
|
112
|
+
damp = percdamp * torch.mean(torch.diag(H))
|
|
113
|
+
diag = torch.arange(self.columns, device=self.dev)
|
|
114
|
+
H[diag, diag] += damp
|
|
115
|
+
H = torch.linalg.cholesky(H)
|
|
116
|
+
H = torch.cholesky_inverse(H)
|
|
117
|
+
H = torch.linalg.cholesky(H, upper=True)
|
|
118
|
+
Hinv = H
|
|
119
|
+
|
|
120
|
+
for i1 in range(0, self.columns, blocksize):
|
|
121
|
+
i2 = min(i1 + blocksize, self.columns)
|
|
122
|
+
count = i2 - i1
|
|
123
|
+
|
|
124
|
+
W1 = W[:, i1:i2].clone()
|
|
125
|
+
Q1 = torch.zeros_like(W1)
|
|
126
|
+
Err1 = torch.zeros_like(W1)
|
|
127
|
+
Losses1 = torch.zeros_like(W1)
|
|
128
|
+
Hinv1 = Hinv[i1:i2, i1:i2]
|
|
129
|
+
|
|
130
|
+
if prune_n == 0 or mask is not None:
|
|
131
|
+
if mask is not None:
|
|
132
|
+
mask1 = mask[:, i1:i2]
|
|
133
|
+
else:
|
|
134
|
+
# tmp = W1 ** 2 / (torch.diag(Hinv1).reshape((1, -1))) ** 2
|
|
135
|
+
if "wanda" in args.prune_method:
|
|
136
|
+
tmp = torch.abs(W1) * torch.sqrt(
|
|
137
|
+
self.scaler_row[i1:i2].reshape((1, -1))
|
|
138
|
+
)
|
|
139
|
+
elif "mag" in args.prune_method:
|
|
140
|
+
tmp = torch.abs(W1)
|
|
141
|
+
thresh = torch.sort(tmp.flatten())[0][int(tmp.numel() * sparsity)]
|
|
142
|
+
mask1 = tmp <= thresh
|
|
143
|
+
else:
|
|
144
|
+
mask1 = torch.zeros_like(W1) == 1
|
|
145
|
+
|
|
146
|
+
for i in range(count):
|
|
147
|
+
w = W1[:, i]
|
|
148
|
+
d = Hinv1[i, i]
|
|
149
|
+
|
|
150
|
+
if prune_n != 0 and i % prune_m == 0 and mask is None:
|
|
151
|
+
# tmp = W1[:, i:(i + prune_m)] ** 2 / (torch.diag(Hinv1)[i:(i + prune_m)].reshape((1, -1))) ** 2
|
|
152
|
+
if "wanda" in args.prune_method:
|
|
153
|
+
tmp = torch.abs(W1[:, i : (i + prune_m)]) * torch.sqrt(
|
|
154
|
+
self.scaler_row[(i + i1) : (i + i1 + prune_m)].reshape(
|
|
155
|
+
(1, -1)
|
|
156
|
+
)
|
|
157
|
+
)
|
|
158
|
+
elif "mag" in args.prune_method:
|
|
159
|
+
tmp = torch.abs(W1[:, i : (i + prune_m)])
|
|
160
|
+
mask1.scatter_(
|
|
161
|
+
1, i + torch.topk(tmp, prune_n, dim=1, largest=False)[1], True
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
q = w.clone()
|
|
165
|
+
q[mask1[:, i]] = 0
|
|
166
|
+
|
|
167
|
+
Q1[:, i] = q
|
|
168
|
+
Losses1[:, i] = (w - q) ** 2 / d**2
|
|
169
|
+
|
|
170
|
+
err1 = (w - q) / d
|
|
171
|
+
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
|
|
172
|
+
Err1[:, i] = err1
|
|
173
|
+
|
|
174
|
+
W[:, i1:i2] = Q1
|
|
175
|
+
Losses += torch.sum(Losses1, 1) / 2
|
|
176
|
+
|
|
177
|
+
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
|
|
178
|
+
|
|
179
|
+
torch.cuda.synchronize()
|
|
180
|
+
if isinstance(self.layer, transformers.Conv1D):
|
|
181
|
+
W = W.t()
|
|
182
|
+
self.layer.weight.data = W.reshape(self.layer.weight.shape).to(
|
|
183
|
+
self.layer.weight.data.dtype
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
def free(self):
|
|
187
|
+
self.H = None
|
|
188
|
+
torch.cuda.empty_cache()
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
# Code adapted from https://github.com/IST-DASLab/sparsegpt/blob/master/datautils.py
|
|
2
|
+
|
|
3
|
+
import random
|
|
4
|
+
from typing import List, Optional, Tuple, cast # noqa: F401
|
|
5
|
+
|
|
6
|
+
from datasets import load_dataset
|
|
7
|
+
from torch import Tensor
|
|
8
|
+
from tqdm.auto import tqdm
|
|
9
|
+
from transformers import PreTrainedTokenizer
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
# Wrapper for tokenized input IDs
|
|
13
|
+
class TokenizerWrapper:
|
|
14
|
+
def __init__(self, input_ids):
|
|
15
|
+
self.input_ids = input_ids
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# Load and process wikitext2 dataset
|
|
19
|
+
def get_wikitext2(
|
|
20
|
+
nsamples: int,
|
|
21
|
+
seed: int,
|
|
22
|
+
seqlen: int,
|
|
23
|
+
tokenizer: PreTrainedTokenizer,
|
|
24
|
+
data_path: str = "wikitext",
|
|
25
|
+
):
|
|
26
|
+
"""
|
|
27
|
+
Load and preprocess the Wikitext-2 dataset for training and testing.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
nsamples (int): Number of samples to generate from the training set.
|
|
31
|
+
seed (int): Random seed for reproducibility.
|
|
32
|
+
seqlen (int): Length of the sequence to be used for training.
|
|
33
|
+
tokenizer (PreTrainedTokenizer): Tokenizer to encode the text data.
|
|
34
|
+
data_path (str, optional): Path to the dataset. Defaults to "wikitext".
|
|
35
|
+
"""
|
|
36
|
+
# Load train and test datasets
|
|
37
|
+
traindata = load_dataset(data_path, "wikitext-2-raw-v1", split="train")
|
|
38
|
+
testdata = load_dataset(data_path, "wikitext-2-raw-v1", split="test")
|
|
39
|
+
|
|
40
|
+
# Encode datasets
|
|
41
|
+
trainenc = tokenizer(" ".join(traindata["text"]), return_tensors="pt")
|
|
42
|
+
testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt")
|
|
43
|
+
|
|
44
|
+
# Generate samples from training set
|
|
45
|
+
random.seed(seed)
|
|
46
|
+
trainloader: List[Tuple[Tensor, Tensor]] = []
|
|
47
|
+
for _ in tqdm(range(nsamples), desc="Generating samples"):
|
|
48
|
+
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
|
|
49
|
+
j = i + seqlen
|
|
50
|
+
inp: Tensor = trainenc.input_ids[:, i:j]
|
|
51
|
+
tar = inp.clone()
|
|
52
|
+
tar[:, :-1] = -100
|
|
53
|
+
trainloader.append((inp, tar))
|
|
54
|
+
return trainloader, testenc
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
# Load and process c4 dataset
|
|
58
|
+
def get_c4(
|
|
59
|
+
nsamples: int,
|
|
60
|
+
seed: int,
|
|
61
|
+
seqlen: int,
|
|
62
|
+
tokenizer,
|
|
63
|
+
data_path: str = "allenai/c4",
|
|
64
|
+
) -> Tuple[List[Tuple[Tensor, Tensor]], TokenizerWrapper]:
|
|
65
|
+
"""
|
|
66
|
+
Load and process the c4 dataset.
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
nsamples (int): Number of samples to generate from the training set.
|
|
70
|
+
seed (int): Seed for random number generation.
|
|
71
|
+
seqlen (int): Length of each sequence.
|
|
72
|
+
tokenizer: Tokenizer object for encoding the text.
|
|
73
|
+
data_path (str, optional): Path to the c4 dataset. Defaults to "allenai/c4".
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
tuple (Tuple[List[Tuple[Tensor, Tensor]], TokenizerWrapper]): Tuple containing the training samples and the validation dataset.
|
|
77
|
+
"""
|
|
78
|
+
# Load train and validation datasets
|
|
79
|
+
traindata = load_dataset(
|
|
80
|
+
data_path,
|
|
81
|
+
# "allenai--c4", # https://github.com/huggingface/datasets/issues/6559
|
|
82
|
+
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
|
|
83
|
+
split="train",
|
|
84
|
+
)
|
|
85
|
+
valdata = load_dataset(
|
|
86
|
+
data_path,
|
|
87
|
+
# "allenai--c4",
|
|
88
|
+
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
|
|
89
|
+
split="validation",
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# Generate samples from training set
|
|
93
|
+
if seed is not None:
|
|
94
|
+
random.seed(seed)
|
|
95
|
+
|
|
96
|
+
trainloader = []
|
|
97
|
+
for _ in tqdm(range(nsamples), desc="Generating samples"):
|
|
98
|
+
while True:
|
|
99
|
+
i = random.randint(0, len(traindata) - 1)
|
|
100
|
+
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
|
|
101
|
+
if trainenc.input_ids.shape[1] > seqlen:
|
|
102
|
+
break
|
|
103
|
+
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
|
|
104
|
+
j = i + seqlen
|
|
105
|
+
inp = trainenc.input_ids[:, i:j]
|
|
106
|
+
tar = inp.clone()
|
|
107
|
+
tar[:, :-1] = -100
|
|
108
|
+
trainloader.append((inp, tar))
|
|
109
|
+
|
|
110
|
+
# Prepare validation dataset
|
|
111
|
+
valenc = tokenizer(" ".join(valdata[:1100]["text"]), return_tensors="pt")
|
|
112
|
+
valenc = valenc.input_ids[:, : (256 * seqlen)]
|
|
113
|
+
valenc = TokenizerWrapper(valenc)
|
|
114
|
+
return trainloader, valenc
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
# Function to select the appropriate loader based on dataset name
|
|
118
|
+
def get_loaders(
|
|
119
|
+
name: str, nsamples: int = 128, seed: int = 0, seqlen: int = 2048, tokenizer=None
|
|
120
|
+
):
|
|
121
|
+
"""
|
|
122
|
+
Get the data loaders for the specified dataset.
|
|
123
|
+
|
|
124
|
+
Args:
|
|
125
|
+
name (str): The name of the dataset. Supported values are "wikitext2" and "c4".
|
|
126
|
+
nsamples (int, optional): Number of samples to generate from the dataset. Defaults to 128.
|
|
127
|
+
seed (int, optional): Random seed for reproducibility. Defaults to 0.
|
|
128
|
+
seqlen (int, optional): Length of the sequence to be used for training. Defaults to 2048.
|
|
129
|
+
tokenizer (optional): Tokenizer to encode the text data. Defaults to None.
|
|
130
|
+
"""
|
|
131
|
+
if "wikitext2" in name:
|
|
132
|
+
return get_wikitext2(nsamples, seed, seqlen, tokenizer)
|
|
133
|
+
if "c4" in name:
|
|
134
|
+
return get_c4(nsamples, seed, seqlen, tokenizer)
|
|
135
|
+
raise ValueError(f"Unknown dataset: {name}")
|
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
# Import necessary modules
|
|
2
|
+
import fnmatch
|
|
3
|
+
import time
|
|
4
|
+
from collections import defaultdict
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
import torch.nn as nn
|
|
8
|
+
|
|
9
|
+
# Import get_loaders function from data module within the same directory
|
|
10
|
+
from .data import get_loaders
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
# Function to evaluate perplexity (ppl) on a specified model and tokenizer
|
|
14
|
+
def eval_ppl(model, tokenizer, device=torch.device("cuda:0")):
|
|
15
|
+
"""
|
|
16
|
+
Evaluate wikitext-2 perplexity (ppl) on a specified model and tokenizer.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
model: The model to evaluate.
|
|
20
|
+
tokenizer: The tokenizer to use.
|
|
21
|
+
device: The device to run the evaluation on.
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
ppl_test: The perplexity of the model on the test dataset.
|
|
25
|
+
"""
|
|
26
|
+
# Set dataset
|
|
27
|
+
dataset = "wikitext2"
|
|
28
|
+
|
|
29
|
+
# Print status
|
|
30
|
+
print(f"evaluating on {dataset}")
|
|
31
|
+
|
|
32
|
+
# Get the test loader
|
|
33
|
+
_, testloader = get_loaders(
|
|
34
|
+
dataset, seed=0, seqlen=model.seqlen, tokenizer=tokenizer
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
# Evaluate ppl in no grad context to avoid updating the model
|
|
38
|
+
with torch.no_grad():
|
|
39
|
+
ppl_test = eval_ppl_wikitext(model, testloader, 1, device)
|
|
40
|
+
return ppl_test
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
# Function to evaluate perplexity (ppl) specifically on the wikitext dataset
|
|
44
|
+
def eval_ppl_wikitext_train(model, trainloader, bs=1, device=None):
|
|
45
|
+
"""
|
|
46
|
+
Evaluate perplexity (ppl) specifically on the wikitext dataset during training.
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
model: The model to evaluate.
|
|
50
|
+
trainloader: The training data loader.
|
|
51
|
+
bs: Batch size.
|
|
52
|
+
device: The device to run the evaluation on.
|
|
53
|
+
|
|
54
|
+
Returns:
|
|
55
|
+
ppl: The perplexity of the model on the training dataset.
|
|
56
|
+
"""
|
|
57
|
+
# Calculate number of samples
|
|
58
|
+
nsamples = len(trainloader)
|
|
59
|
+
|
|
60
|
+
# List to store negative log likelihoods
|
|
61
|
+
nlls = []
|
|
62
|
+
print(f"nsamples {nsamples}")
|
|
63
|
+
|
|
64
|
+
# Loop through each batch
|
|
65
|
+
for i in range(0, nsamples, bs):
|
|
66
|
+
if i % 50 == 0:
|
|
67
|
+
print(f"sample {i}")
|
|
68
|
+
|
|
69
|
+
# Calculate end index
|
|
70
|
+
j = min(i + bs, nsamples)
|
|
71
|
+
|
|
72
|
+
# Prepare inputs and move to device
|
|
73
|
+
inputs = trainloader[i][0].to(device)
|
|
74
|
+
inputs = inputs.reshape(j - i, model.seqlen)
|
|
75
|
+
|
|
76
|
+
# Forward pass through the model
|
|
77
|
+
lm_logits = model(inputs).logits
|
|
78
|
+
|
|
79
|
+
# Shift logits and labels for next token prediction
|
|
80
|
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
|
81
|
+
shift_labels = inputs[:, 1:]
|
|
82
|
+
|
|
83
|
+
# Compute loss
|
|
84
|
+
loss_fct = nn.CrossEntropyLoss()
|
|
85
|
+
loss = loss_fct(
|
|
86
|
+
shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1)
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
# Calculate negative log likelihood
|
|
90
|
+
neg_log_likelihood = loss.float() * model.seqlen * (j - i)
|
|
91
|
+
|
|
92
|
+
# Append to list of negative log likelihoods
|
|
93
|
+
nlls.append(neg_log_likelihood)
|
|
94
|
+
|
|
95
|
+
# Compute perplexity
|
|
96
|
+
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
|
|
97
|
+
|
|
98
|
+
# Empty CUDA cache to save memory
|
|
99
|
+
torch.cuda.empty_cache()
|
|
100
|
+
|
|
101
|
+
return ppl.item()
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
# Function to evaluate perplexity (ppl) specifically on the wikitext dataset
|
|
105
|
+
def eval_ppl_wikitext(model, testenc, bs: int = 1, device=None):
|
|
106
|
+
"""
|
|
107
|
+
Evaluate perplexity (ppl) specifically on the wikitext dataset.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
model: The model to evaluate.
|
|
111
|
+
testenc: The test data encoder.
|
|
112
|
+
bs: Batch size.
|
|
113
|
+
device: The device to run the evaluation on.
|
|
114
|
+
|
|
115
|
+
Returns:
|
|
116
|
+
ppl: The perplexity of the model on the test dataset.
|
|
117
|
+
"""
|
|
118
|
+
# Get input IDs
|
|
119
|
+
testenc = testenc.input_ids
|
|
120
|
+
|
|
121
|
+
# Calculate number of samples
|
|
122
|
+
nsamples = testenc.numel() // model.seqlen
|
|
123
|
+
|
|
124
|
+
# List to store negative log likelihoods
|
|
125
|
+
nlls = []
|
|
126
|
+
print(f"nsamples {nsamples}")
|
|
127
|
+
|
|
128
|
+
# Loop through each batch
|
|
129
|
+
for i in range(0, nsamples, bs):
|
|
130
|
+
if i % 50 == 0:
|
|
131
|
+
print(f"sample {i}")
|
|
132
|
+
|
|
133
|
+
# Calculate end index
|
|
134
|
+
j = min(i + bs, nsamples)
|
|
135
|
+
|
|
136
|
+
# Prepare inputs and move to device
|
|
137
|
+
inputs = testenc[:, (i * model.seqlen) : (j * model.seqlen)].to(device)
|
|
138
|
+
inputs = inputs.reshape(j - i, model.seqlen)
|
|
139
|
+
|
|
140
|
+
# Forward pass through the model
|
|
141
|
+
lm_logits = model(inputs).logits
|
|
142
|
+
|
|
143
|
+
# Shift logits and labels for next token prediction
|
|
144
|
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
|
145
|
+
shift_labels = inputs[:, 1:]
|
|
146
|
+
|
|
147
|
+
# Compute loss
|
|
148
|
+
loss_fct = nn.CrossEntropyLoss()
|
|
149
|
+
loss = loss_fct(
|
|
150
|
+
shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1)
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
# Calculate negative log likelihood
|
|
154
|
+
neg_log_likelihood = loss.float() * model.seqlen * (j - i)
|
|
155
|
+
|
|
156
|
+
# Append to list of negative log likelihoods
|
|
157
|
+
nlls.append(neg_log_likelihood)
|
|
158
|
+
|
|
159
|
+
# Compute perplexity
|
|
160
|
+
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
|
|
161
|
+
|
|
162
|
+
# Empty CUDA cache to save memory
|
|
163
|
+
torch.cuda.empty_cache()
|
|
164
|
+
|
|
165
|
+
return ppl.item()
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
def eval_zero_shot(
|
|
169
|
+
model_name,
|
|
170
|
+
model,
|
|
171
|
+
tokenizer,
|
|
172
|
+
task_list=[
|
|
173
|
+
"boolq",
|
|
174
|
+
"rte",
|
|
175
|
+
"hellaswag",
|
|
176
|
+
"winogrande",
|
|
177
|
+
"arc_challenge",
|
|
178
|
+
"arc_easy",
|
|
179
|
+
"openbookqa",
|
|
180
|
+
],
|
|
181
|
+
num_fewshot=0,
|
|
182
|
+
use_accelerate=False,
|
|
183
|
+
add_special_tokens=False,
|
|
184
|
+
):
|
|
185
|
+
"""
|
|
186
|
+
Evaluate the model on a list of tasks in a zero-shot setting.
|
|
187
|
+
|
|
188
|
+
Args:
|
|
189
|
+
model_name: The name of the model.
|
|
190
|
+
model: The model to evaluate.
|
|
191
|
+
tokenizer: The tokenizer to use.
|
|
192
|
+
task_list: List of tasks to evaluate on.
|
|
193
|
+
num_fewshot: Number of few-shot examples.
|
|
194
|
+
use_accelerate: Whether to use the accelerate library.
|
|
195
|
+
add_special_tokens: Whether to add special tokens.
|
|
196
|
+
|
|
197
|
+
Returns:
|
|
198
|
+
results: The evaluation results.
|
|
199
|
+
"""
|
|
200
|
+
from lm_eval import evaluator, tasks
|
|
201
|
+
|
|
202
|
+
def pattern_match(patterns, source_list):
|
|
203
|
+
"""
|
|
204
|
+
Match patterns in the source list.
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
patterns: List of patterns to match.
|
|
208
|
+
source_list: List of source items.
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
task_names: List of matched task names.
|
|
212
|
+
"""
|
|
213
|
+
task_names = set()
|
|
214
|
+
for pattern in patterns:
|
|
215
|
+
for matching in fnmatch.filter(source_list, pattern):
|
|
216
|
+
task_names.add(matching)
|
|
217
|
+
return list(task_names)
|
|
218
|
+
|
|
219
|
+
task_names = pattern_match(task_list, tasks.ALL_TASKS)
|
|
220
|
+
model_args = f"pretrained={model_name},cache_dir=./llm_weights"
|
|
221
|
+
limit = None
|
|
222
|
+
if "70b" in model_name or "65b" in model_name:
|
|
223
|
+
limit = 2000
|
|
224
|
+
if use_accelerate:
|
|
225
|
+
model_args = (
|
|
226
|
+
f"pretrained={model_name},cache_dir=./llm_weights,use_accelerate=True"
|
|
227
|
+
)
|
|
228
|
+
results = evaluator.simple_evaluate(
|
|
229
|
+
model="hf-causal-experimental",
|
|
230
|
+
model_args=model_args,
|
|
231
|
+
tasks=task_names,
|
|
232
|
+
num_fewshot=num_fewshot,
|
|
233
|
+
batch_size=None,
|
|
234
|
+
device=None,
|
|
235
|
+
no_cache=True,
|
|
236
|
+
limit=limit,
|
|
237
|
+
description_dict={},
|
|
238
|
+
decontamination_ngrams_path=None,
|
|
239
|
+
check_integrity=False,
|
|
240
|
+
pretrained_model=model,
|
|
241
|
+
tokenizer=tokenizer,
|
|
242
|
+
add_special_tokens=add_special_tokens,
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
return results
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
# Define WrappedGPT class
|
|
6
|
+
class WrappedGPT:
|
|
7
|
+
"""
|
|
8
|
+
This class wraps a GPT layer for specific operations.
|
|
9
|
+
|
|
10
|
+
Attributes:
|
|
11
|
+
layer (nn.Linear | nn.Module): The GPT layer to be wrapped.
|
|
12
|
+
dev (torch.device): The device on which the layer's weights are stored.
|
|
13
|
+
rows (int): The number of rows in the layer's weight matrix.
|
|
14
|
+
columns (int): The number of columns in the layer's weight matrix.
|
|
15
|
+
scaler_row (torch.Tensor): A tensor to store the scaler values for each column.
|
|
16
|
+
nsamples (int): The number of samples processed.
|
|
17
|
+
layer_id (int): The ID of the layer.
|
|
18
|
+
layer_name (str): The name of the layer.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
def __init__(self, layer: nn.Linear | nn.Module, layer_id=0, layer_name="none"):
|
|
22
|
+
"""
|
|
23
|
+
Initialize the WrappedGPT class.
|
|
24
|
+
|
|
25
|
+
Args:
|
|
26
|
+
layer (nn.Linear | nn.Module): The GPT layer to be wrapped.
|
|
27
|
+
layer_id (int, optional): The ID of the layer. Defaults to 0.
|
|
28
|
+
layer_name (str, optional): The name of the layer. Defaults to "none".
|
|
29
|
+
"""
|
|
30
|
+
self.layer = layer
|
|
31
|
+
self.dev = self.layer.weight.device
|
|
32
|
+
self.rows = layer.weight.data.shape[0]
|
|
33
|
+
self.columns = layer.weight.data.shape[1]
|
|
34
|
+
|
|
35
|
+
self.scaler_row = torch.zeros((self.columns), device=self.dev)
|
|
36
|
+
self.nsamples = 0
|
|
37
|
+
|
|
38
|
+
self.layer_id = layer_id
|
|
39
|
+
self.layer_name = layer_name
|
|
40
|
+
|
|
41
|
+
def add_batch(self, inp: torch.Tensor, out: torch.Tensor):
|
|
42
|
+
"""
|
|
43
|
+
Add a batch of input and output tensors to the scaler_row.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
inp (torch.Tensor): The input tensor.
|
|
47
|
+
out (torch.Tensor): The output tensor.
|
|
48
|
+
"""
|
|
49
|
+
if len(inp.shape) == 2:
|
|
50
|
+
inp = inp.unsqueeze(0)
|
|
51
|
+
tmp = inp.shape[0]
|
|
52
|
+
if isinstance(self.layer, nn.Linear):
|
|
53
|
+
if len(inp.shape) == 3:
|
|
54
|
+
inp = inp.reshape((-1, inp.shape[-1]))
|
|
55
|
+
inp = inp.t()
|
|
56
|
+
|
|
57
|
+
self.scaler_row *= self.nsamples / (self.nsamples + tmp)
|
|
58
|
+
self.nsamples += tmp
|
|
59
|
+
|
|
60
|
+
inp = inp.type(torch.float32)
|
|
61
|
+
self.scaler_row += torch.norm(inp, p=2, dim=1) ** 2 / self.nsamples
|