fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,1726 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
__all__ = ["get_color_data"]
|
|
4
|
+
|
|
5
|
+
_color_data = []
|
|
6
|
+
_color_data.append(
|
|
7
|
+
(
|
|
8
|
+
(0.2472, 0.24, 0.6),
|
|
9
|
+
(0.6, 0.24, 0.442893),
|
|
10
|
+
(0.6, 0.547014, 0.24),
|
|
11
|
+
(0.24, 0.6, 0.33692),
|
|
12
|
+
(0.24, 0.353173, 0.6),
|
|
13
|
+
(0.6, 0.24, 0.563266),
|
|
14
|
+
(0.6, 0.426641, 0.24),
|
|
15
|
+
(0.263452, 0.6, 0.24),
|
|
16
|
+
(0.24, 0.473545, 0.6),
|
|
17
|
+
(0.516361, 0.24, 0.6),
|
|
18
|
+
(0.6, 0.306268, 0.24),
|
|
19
|
+
(0.383825, 0.6, 0.24),
|
|
20
|
+
(0.24, 0.593918, 0.6),
|
|
21
|
+
(0.395989, 0.24, 0.6),
|
|
22
|
+
(0.6, 0.24, 0.294104),
|
|
23
|
+
)
|
|
24
|
+
)
|
|
25
|
+
_color_data.append(
|
|
26
|
+
(
|
|
27
|
+
(0.858824, 0.00784314, 0.00784314),
|
|
28
|
+
(1.0, 0.266667, 0.0),
|
|
29
|
+
(1.0, 0.454902, 0.254902),
|
|
30
|
+
(0.482353, 0.188235, 0.0352941),
|
|
31
|
+
(1.0, 0.878431, 0.505882),
|
|
32
|
+
(0.701961, 0.745098, 0.823529),
|
|
33
|
+
(0.207843, 0.239216, 0.321569),
|
|
34
|
+
(0.0862745, 0.141176, 0.286275),
|
|
35
|
+
(0.337255, 0.403922, 0.623529),
|
|
36
|
+
)
|
|
37
|
+
)
|
|
38
|
+
_color_data.append(
|
|
39
|
+
(
|
|
40
|
+
(0.0, 0.0, 0.0),
|
|
41
|
+
(0.996078, 0.360784, 0.027451),
|
|
42
|
+
(0.996078, 0.988235, 0.0352941),
|
|
43
|
+
(0.541176, 0.713725, 0.027451),
|
|
44
|
+
(0.145098, 0.435294, 0.384314),
|
|
45
|
+
(0.00784314, 0.509804, 0.929412),
|
|
46
|
+
(0.152941, 0.113725, 0.490196),
|
|
47
|
+
(0.470588, 0.262745, 0.584314),
|
|
48
|
+
(0.890196, 0.0117647, 0.490196),
|
|
49
|
+
(0.905882, 0.027451, 0.129412),
|
|
50
|
+
)
|
|
51
|
+
)
|
|
52
|
+
_color_data.append(
|
|
53
|
+
(
|
|
54
|
+
(0.223529, 0.223529, 0.223529),
|
|
55
|
+
(0.211765, 0.137255, 0.113725),
|
|
56
|
+
(0.537255, 0.384314, 0.254902),
|
|
57
|
+
(0.423529, 0.32549, 0.207843),
|
|
58
|
+
(0.937255, 0.760784, 0.403922),
|
|
59
|
+
(0.996078, 0.905882, 0.388235),
|
|
60
|
+
(0.623529, 0.592157, 0.4),
|
|
61
|
+
(0.698039, 0.67451, 0.368627),
|
|
62
|
+
(0.415686, 0.45098, 0.376471),
|
|
63
|
+
(0.333333, 0.388235, 0.290196),
|
|
64
|
+
)
|
|
65
|
+
)
|
|
66
|
+
_color_data.append(
|
|
67
|
+
(
|
|
68
|
+
(0.458824, 0.141176, 0.141176),
|
|
69
|
+
(0.627451, 0.231373, 0.231373),
|
|
70
|
+
(0.380392, 0.278431, 0.207843),
|
|
71
|
+
(0.588235, 0.443137, 0.337255),
|
|
72
|
+
(0.592157, 0.419608, 0.282353),
|
|
73
|
+
(0.823529, 0.501961, 0.0941176),
|
|
74
|
+
(0.976471, 0.690196, 0.321569),
|
|
75
|
+
(0.396078, 0.396078, 0.176471),
|
|
76
|
+
(0.415686, 0.415686, 0.305882),
|
|
77
|
+
(0.631373, 0.631373, 0.247059),
|
|
78
|
+
)
|
|
79
|
+
)
|
|
80
|
+
_color_data.append(
|
|
81
|
+
(
|
|
82
|
+
(0.341176, 0.341176, 0.341176),
|
|
83
|
+
(0.643137, 0.105882, 0.0431373),
|
|
84
|
+
(0.192157, 0.105882, 0.0627451),
|
|
85
|
+
(0.792157, 0.733333, 0.611765),
|
|
86
|
+
(0.811765, 0.596078, 0.027451),
|
|
87
|
+
(0.105882, 0.254902, 0.160784),
|
|
88
|
+
(0.12549, 0.309804, 0.427451),
|
|
89
|
+
(0.0784314, 0.145098, 0.317647),
|
|
90
|
+
(0.658824, 0.603922, 0.701961),
|
|
91
|
+
(0.521569, 0.419608, 0.454902),
|
|
92
|
+
(0.486275, 0.0313725, 0.0941176),
|
|
93
|
+
)
|
|
94
|
+
)
|
|
95
|
+
_color_data.append(
|
|
96
|
+
(
|
|
97
|
+
(0.501961, 0.498039, 0.498039),
|
|
98
|
+
(0.796078, 0.513725, 0.498039),
|
|
99
|
+
(0.407843, 0.243137, 0.207843),
|
|
100
|
+
(0.803922, 0.686275, 0.603922),
|
|
101
|
+
(0.286275, 0.239216, 0.2),
|
|
102
|
+
(0.756863, 0.705882, 0.576471),
|
|
103
|
+
(0.698039, 0.72549, 0.564706),
|
|
104
|
+
(0.458824, 0.576471, 0.505882),
|
|
105
|
+
(0.572549, 0.631373, 0.670588),
|
|
106
|
+
(0.341176, 0.345098, 0.34902),
|
|
107
|
+
(0.262745, 0.341176, 0.447059),
|
|
108
|
+
)
|
|
109
|
+
)
|
|
110
|
+
_color_data.append(
|
|
111
|
+
(
|
|
112
|
+
(0.611765, 0.298039, 0.294118),
|
|
113
|
+
(1.0, 0.854902, 0.827451),
|
|
114
|
+
(0.858824, 0.560784, 0.458824),
|
|
115
|
+
(0.654902, 0.298039, 0.0823529),
|
|
116
|
+
(0.870588, 0.92549, 0.215686),
|
|
117
|
+
(0.501961, 0.686275, 0.0352941),
|
|
118
|
+
(0.215686, 0.364706, 0.164706),
|
|
119
|
+
(0.243137, 0.317647, 0.309804),
|
|
120
|
+
(0.686275, 0.192157, 0.247059),
|
|
121
|
+
)
|
|
122
|
+
)
|
|
123
|
+
_color_data.append(
|
|
124
|
+
(
|
|
125
|
+
(0.937255, 0.647059, 0.643137),
|
|
126
|
+
(0.67451, 0.0745098, 0.0431373),
|
|
127
|
+
(0.862745, 0.521569, 0.345098),
|
|
128
|
+
(0.968627, 0.603922, 0.0),
|
|
129
|
+
(0.388235, 0.427451, 0.396078),
|
|
130
|
+
(0.117647, 0.105882, 0.384314),
|
|
131
|
+
(0.0941176, 0.0823529, 0.290196),
|
|
132
|
+
(0.282353, 0.211765, 0.27451),
|
|
133
|
+
(0.647059, 0.568627, 0.611765),
|
|
134
|
+
)
|
|
135
|
+
)
|
|
136
|
+
_color_data.append(
|
|
137
|
+
(
|
|
138
|
+
(0.698039, 0.0156863, 0.0),
|
|
139
|
+
(0.921569, 0.494118, 0.431373),
|
|
140
|
+
(0.937255, 0.627451, 0.168627),
|
|
141
|
+
(0.992157, 0.815686, 0.490196),
|
|
142
|
+
(0.72549, 0.8, 0.0705882),
|
|
143
|
+
(0.317647, 0.490196, 0.0784314),
|
|
144
|
+
(0.172549, 0.360784, 0.0705882),
|
|
145
|
+
(0.360784, 0.407843, 0.533333),
|
|
146
|
+
(0.227451, 0.239216, 0.45098),
|
|
147
|
+
(0.0980392, 0.0666667, 0.25098),
|
|
148
|
+
(0.560784, 0.52549, 0.564706),
|
|
149
|
+
)
|
|
150
|
+
)
|
|
151
|
+
_color_data.append(
|
|
152
|
+
(
|
|
153
|
+
(0.658824, 0.341176, 0.329412),
|
|
154
|
+
(0.882353, 0.286275, 0.203922),
|
|
155
|
+
(0.890196, 0.788235, 0.65098),
|
|
156
|
+
(0.666667, 0.505882, 0.196078),
|
|
157
|
+
(0.666667, 0.698039, 0.403922),
|
|
158
|
+
(0.584314, 0.772549, 0.341176),
|
|
159
|
+
(0.713725, 0.760784, 0.917647),
|
|
160
|
+
(0.654902, 0.65098, 0.815686),
|
|
161
|
+
)
|
|
162
|
+
)
|
|
163
|
+
_color_data.append(
|
|
164
|
+
(
|
|
165
|
+
(0.623529, 0.145098, 0.12549),
|
|
166
|
+
(0.658824, 0.305882, 0.172549),
|
|
167
|
+
(0.243137, 0.117647, 0.0588235),
|
|
168
|
+
(0.945098, 0.752941, 0.635294),
|
|
169
|
+
(0.839216, 0.47451, 0.211765),
|
|
170
|
+
(0.827451, 0.72549, 0.435294),
|
|
171
|
+
(0.443137, 0.498039, 0.54902),
|
|
172
|
+
(0.247059, 0.309804, 0.372549),
|
|
173
|
+
(0.168627, 0.239216, 0.380392),
|
|
174
|
+
(0.298039, 0.176471, 0.196078),
|
|
175
|
+
)
|
|
176
|
+
)
|
|
177
|
+
_color_data.append(
|
|
178
|
+
(
|
|
179
|
+
(0.658824, 0.498039, 0.490196),
|
|
180
|
+
(0.721569, 0.184314, 0.0509804),
|
|
181
|
+
(0.803922, 0.545098, 0.458824),
|
|
182
|
+
(0.815686, 0.690196, 0.631373),
|
|
183
|
+
(0.94902, 0.87451, 0.717647),
|
|
184
|
+
(0.380392, 0.384314, 0.635294),
|
|
185
|
+
(0.231373, 0.207843, 0.552941),
|
|
186
|
+
(0.584314, 0.560784, 0.662745),
|
|
187
|
+
(0.466667, 0.27451, 0.34902),
|
|
188
|
+
(0.596078, 0.27451, 0.364706),
|
|
189
|
+
)
|
|
190
|
+
)
|
|
191
|
+
_color_data.append(
|
|
192
|
+
(
|
|
193
|
+
(0.835294, 0.576471, 0.560784),
|
|
194
|
+
(0.94902, 0.294118, 0.0509804),
|
|
195
|
+
(1.0, 0.733333, 0.2),
|
|
196
|
+
(0.996078, 0.94902, 0.443137),
|
|
197
|
+
(0.705882, 0.686275, 0.301961),
|
|
198
|
+
(0.415686, 0.545098, 0.121569),
|
|
199
|
+
(0.0196078, 0.207843, 0.462745),
|
|
200
|
+
(0.686275, 0.721569, 0.811765),
|
|
201
|
+
(0.427451, 0.0666667, 0.156863),
|
|
202
|
+
(0.854902, 0.196078, 0.27451),
|
|
203
|
+
)
|
|
204
|
+
)
|
|
205
|
+
_color_data.append(
|
|
206
|
+
(
|
|
207
|
+
(0.407843, 0.152941, 0.137255),
|
|
208
|
+
(0.658824, 0.560784, 0.533333),
|
|
209
|
+
(0.831373, 0.435294, 0.129412),
|
|
210
|
+
(0.894118, 0.827451, 0.764706),
|
|
211
|
+
(0.937255, 0.776471, 0.313725),
|
|
212
|
+
(0.239216, 0.270588, 0.462745),
|
|
213
|
+
(0.235294, 0.145098, 0.458824),
|
|
214
|
+
(0.364706, 0.239216, 0.431373),
|
|
215
|
+
(0.219608, 0.12549, 0.188235),
|
|
216
|
+
(0.552941, 0.129412, 0.223529),
|
|
217
|
+
(0.705882, 0.262745, 0.270588),
|
|
218
|
+
)
|
|
219
|
+
)
|
|
220
|
+
_color_data.append(
|
|
221
|
+
(
|
|
222
|
+
(0.454902, 0.0509804, 0.0235294),
|
|
223
|
+
(0.678431, 0.313725, 0.0),
|
|
224
|
+
(0.905882, 0.639216, 0.0705882),
|
|
225
|
+
(0.164706, 0.415686, 0.117647),
|
|
226
|
+
(0.854902, 0.960784, 1.0),
|
|
227
|
+
(0.121569, 0.509804, 0.733333),
|
|
228
|
+
(0.639216, 0.560784, 0.752941),
|
|
229
|
+
(0.145098, 0.113725, 0.164706),
|
|
230
|
+
(0.941176, 0.0, 0.00784314),
|
|
231
|
+
)
|
|
232
|
+
)
|
|
233
|
+
_color_data.append(
|
|
234
|
+
(
|
|
235
|
+
(0.282353, 0.227451, 0.223529),
|
|
236
|
+
(0.564706, 0.231373, 0.152941),
|
|
237
|
+
(0.639216, 0.392157, 0.333333),
|
|
238
|
+
(0.862745, 0.619608, 0.262745),
|
|
239
|
+
(0.964706, 0.788235, 0.52549),
|
|
240
|
+
(0.458824, 0.592157, 0.462745),
|
|
241
|
+
(0.239216, 0.45098, 0.247059),
|
|
242
|
+
(0.345098, 0.580392, 0.690196),
|
|
243
|
+
(0.184314, 0.392157, 0.490196),
|
|
244
|
+
(0.568627, 0.74902, 0.843137),
|
|
245
|
+
)
|
|
246
|
+
)
|
|
247
|
+
_color_data.append(
|
|
248
|
+
(
|
|
249
|
+
(0.764706, 0.556863, 0.541176),
|
|
250
|
+
(0.992157, 0.788235, 0.756863),
|
|
251
|
+
(0.294118, 0.192157, 0.105882),
|
|
252
|
+
(0.372549, 0.278431, 0.192157),
|
|
253
|
+
(0.294118, 0.270588, 0.188235),
|
|
254
|
+
(0.709804, 0.698039, 0.505882),
|
|
255
|
+
(0.870588, 0.878431, 0.690196),
|
|
256
|
+
(0.270588, 0.337255, 0.286275),
|
|
257
|
+
(0.698039, 0.435294, 0.447059),
|
|
258
|
+
)
|
|
259
|
+
)
|
|
260
|
+
_color_data.append(
|
|
261
|
+
(
|
|
262
|
+
(0.568627, 0.0431373, 0.0),
|
|
263
|
+
(0.560784, 0.227451, 0.2),
|
|
264
|
+
(0.662745, 0.333333, 0.0),
|
|
265
|
+
(0.847059, 0.639216, 0.427451),
|
|
266
|
+
(0.768627, 0.462745, 0.14902),
|
|
267
|
+
(0.0156863, 0.192157, 0.0980392),
|
|
268
|
+
(0.192157, 0.368627, 0.27451),
|
|
269
|
+
(0.4, 0.52549, 0.458824),
|
|
270
|
+
(0.0666667, 0.152941, 0.207843),
|
|
271
|
+
)
|
|
272
|
+
)
|
|
273
|
+
_color_data.append(
|
|
274
|
+
(
|
|
275
|
+
(0.745098, 0.0666667, 0.00392157),
|
|
276
|
+
(0.901961, 0.196078, 0.129412),
|
|
277
|
+
(0.356863, 0.054902, 0.0156863),
|
|
278
|
+
(0.682353, 0.415686, 0.0),
|
|
279
|
+
(0.835294, 0.627451, 0.0862745),
|
|
280
|
+
(0.980392, 0.780392, 0.258824),
|
|
281
|
+
(1.0, 0.905882, 0.654902),
|
|
282
|
+
(0.384314, 0.6, 0.878431),
|
|
283
|
+
(0.0627451, 0.258824, 0.513725),
|
|
284
|
+
(0.12549, 0.364706, 0.678431),
|
|
285
|
+
)
|
|
286
|
+
)
|
|
287
|
+
_color_data.append(
|
|
288
|
+
(
|
|
289
|
+
(0.941176, 0.494118, 0.45098),
|
|
290
|
+
(0.87451, 0.466667, 0.329412),
|
|
291
|
+
(1.0, 0.352941, 0.121569),
|
|
292
|
+
(0.972549, 0.8, 0.545098),
|
|
293
|
+
(0.913725, 0.803922, 0.607843),
|
|
294
|
+
(0.784314, 0.690196, 0.517647),
|
|
295
|
+
(0.458824, 0.372549, 0.188235),
|
|
296
|
+
(0.694118, 0.623529, 0.380392),
|
|
297
|
+
(0.435294, 0.309804, 0.376471),
|
|
298
|
+
(0.203922, 0.0784314, 0.121569),
|
|
299
|
+
)
|
|
300
|
+
)
|
|
301
|
+
_color_data.append(
|
|
302
|
+
(
|
|
303
|
+
(0.407843, 0.0666667, 0.0313725),
|
|
304
|
+
(0.862745, 0.403922, 0.027451),
|
|
305
|
+
(0.937255, 0.776471, 0.0),
|
|
306
|
+
(0.639216, 0.756863, 0.898039),
|
|
307
|
+
(0.313725, 0.368627, 0.647059),
|
|
308
|
+
(0.596078, 0.552941, 0.811765),
|
|
309
|
+
(0.152941, 0.0509804, 0.101961),
|
|
310
|
+
(0.870588, 0.533333, 0.639216),
|
|
311
|
+
(0.721569, 0.133333, 0.247059),
|
|
312
|
+
)
|
|
313
|
+
)
|
|
314
|
+
_color_data.append(
|
|
315
|
+
(
|
|
316
|
+
(0.352941, 0.0431373, 0.0),
|
|
317
|
+
(0.443137, 0.172549, 0.0196078),
|
|
318
|
+
(0.427451, 0.2, 0.054902),
|
|
319
|
+
(0.85098, 0.556863, 0.329412),
|
|
320
|
+
(0.960784, 0.752941, 0.556863),
|
|
321
|
+
(0.772549, 0.556863, 0.243137),
|
|
322
|
+
(0.803922, 0.533333, 0.137255),
|
|
323
|
+
(0.933333, 0.721569, 0.345098),
|
|
324
|
+
)
|
|
325
|
+
)
|
|
326
|
+
_color_data.append(
|
|
327
|
+
(
|
|
328
|
+
(0.921569, 0.494118, 0.431373),
|
|
329
|
+
(1.0, 0.721569, 0.219608),
|
|
330
|
+
(0.94902, 0.862745, 0.435294),
|
|
331
|
+
(0.670588, 0.878431, 0.937255),
|
|
332
|
+
(0.317647, 0.654902, 0.752941),
|
|
333
|
+
(0.129412, 0.517647, 0.631373),
|
|
334
|
+
(0.0901961, 0.337255, 0.494118),
|
|
335
|
+
(0.705882, 0.494118, 0.545098),
|
|
336
|
+
(0.533333, 0.235294, 0.305882),
|
|
337
|
+
(0.894118, 0.709804, 0.74902),
|
|
338
|
+
)
|
|
339
|
+
)
|
|
340
|
+
_color_data.append(
|
|
341
|
+
(
|
|
342
|
+
(0.203922, 0.0352941, 0.00392157),
|
|
343
|
+
(0.6, 0.164706, 0.0745098),
|
|
344
|
+
(0.341176, 0.0627451, 0.00392157),
|
|
345
|
+
(0.796078, 0.4, 0.0901961),
|
|
346
|
+
(0.796078, 0.482353, 0.192157),
|
|
347
|
+
(0.670588, 0.466667, 0.247059),
|
|
348
|
+
(0.384314, 0.243137, 0.027451),
|
|
349
|
+
(0.494118, 0.360784, 0.0235294),
|
|
350
|
+
(0.14902, 0.2, 0.0431373),
|
|
351
|
+
)
|
|
352
|
+
)
|
|
353
|
+
_color_data.append(
|
|
354
|
+
(
|
|
355
|
+
(0.470588, 0.14902, 0.0862745),
|
|
356
|
+
(0.909804, 0.360784, 0.215686),
|
|
357
|
+
(0.870588, 0.360784, 0.0509804),
|
|
358
|
+
(0.803922, 0.72549, 0.631373),
|
|
359
|
+
(0.439216, 0.27451, 0.0666667),
|
|
360
|
+
(0.92549, 0.854902, 0.752941),
|
|
361
|
+
(0.917647, 0.686275, 0.329412),
|
|
362
|
+
(0.32549, 0.454902, 0.47451),
|
|
363
|
+
)
|
|
364
|
+
)
|
|
365
|
+
_color_data.append(
|
|
366
|
+
(
|
|
367
|
+
(0.654902, 0.109804, 0.0),
|
|
368
|
+
(0.980392, 0.729412, 0.54902),
|
|
369
|
+
(0.94902, 0.596078, 0.219608),
|
|
370
|
+
(0.996078, 1.0, 0.858824),
|
|
371
|
+
(0.372549, 0.533333, 0.368627),
|
|
372
|
+
(0.866667, 0.929412, 0.890196),
|
|
373
|
+
(0.490196, 0.717647, 0.623529),
|
|
374
|
+
(0.490196, 0.662745, 0.67451),
|
|
375
|
+
(0.623529, 0.807843, 0.870588),
|
|
376
|
+
(0.8, 0.435294, 0.517647),
|
|
377
|
+
)
|
|
378
|
+
)
|
|
379
|
+
_color_data.append(
|
|
380
|
+
(
|
|
381
|
+
(0.905882, 0.380392, 0.27451),
|
|
382
|
+
(0.839216, 0.552941, 0.478431),
|
|
383
|
+
(0.654902, 0.439216, 0.360784),
|
|
384
|
+
(0.964706, 0.705882, 0.172549),
|
|
385
|
+
(0.819608, 0.741176, 0.298039),
|
|
386
|
+
(0.0352941, 0.494118, 0.705882),
|
|
387
|
+
(0.247059, 0.443137, 0.580392),
|
|
388
|
+
(0.0, 0.47451, 0.854902),
|
|
389
|
+
(0.643137, 0.419608, 0.478431),
|
|
390
|
+
)
|
|
391
|
+
)
|
|
392
|
+
_color_data.append(
|
|
393
|
+
(
|
|
394
|
+
(0.756863, 0.286275, 0.188235),
|
|
395
|
+
(0.737255, 0.372549, 0.2),
|
|
396
|
+
(0.784314, 0.627451, 0.490196),
|
|
397
|
+
(0.85098, 0.686275, 0.152941),
|
|
398
|
+
(0.333333, 0.298039, 0.176471),
|
|
399
|
+
(0.678431, 0.717647, 0.619608),
|
|
400
|
+
(0.211765, 0.321569, 0.568627),
|
|
401
|
+
(0.0, 0.0901961, 0.341176),
|
|
402
|
+
(0.454902, 0.301961, 0.313725),
|
|
403
|
+
(0.490196, 0.270588, 0.282353),
|
|
404
|
+
)
|
|
405
|
+
)
|
|
406
|
+
_color_data.append(
|
|
407
|
+
(
|
|
408
|
+
(0.231373, 0.176471, 0.164706),
|
|
409
|
+
(0.364706, 0.184314, 0.12549),
|
|
410
|
+
(0.533333, 0.266667, 0.113725),
|
|
411
|
+
(0.643137, 0.521569, 0.2),
|
|
412
|
+
(0.870588, 0.890196, 0.678431),
|
|
413
|
+
(0.678431, 0.772549, 0.670588),
|
|
414
|
+
(0.411765, 0.52549, 0.54902),
|
|
415
|
+
(0.4, 0.403922, 0.411765),
|
|
416
|
+
(0.517647, 0.509804, 0.513725),
|
|
417
|
+
)
|
|
418
|
+
)
|
|
419
|
+
_color_data.append(
|
|
420
|
+
(
|
|
421
|
+
(0.870588, 0.309804, 0.145098),
|
|
422
|
+
(0.980392, 0.372549, 0.192157),
|
|
423
|
+
(0.419608, 0.211765, 0.141176),
|
|
424
|
+
(0.898039, 0.611765, 0.45098),
|
|
425
|
+
(0.772549, 0.509804, 0.152941),
|
|
426
|
+
(0.835294, 0.733333, 0.2),
|
|
427
|
+
(0.596078, 0.819608, 0.690196),
|
|
428
|
+
(0.219608, 0.556863, 0.372549),
|
|
429
|
+
(0.239216, 0.419608, 0.521569),
|
|
430
|
+
)
|
|
431
|
+
)
|
|
432
|
+
_color_data.append(
|
|
433
|
+
(
|
|
434
|
+
(0.4, 0.101961, 0.0),
|
|
435
|
+
(0.980392, 0.807843, 0.733333),
|
|
436
|
+
(0.74902, 0.435294, 0.247059),
|
|
437
|
+
(0.823529, 0.603922, 0.34902),
|
|
438
|
+
(0.47451, 0.360784, 0.117647),
|
|
439
|
+
(0.835294, 0.737255, 0.505882),
|
|
440
|
+
(1.0, 0.909804, 0.662745),
|
|
441
|
+
(0.858824, 0.92549, 0.776471),
|
|
442
|
+
(0.458824, 0.25098, 0.290196),
|
|
443
|
+
)
|
|
444
|
+
)
|
|
445
|
+
_color_data.append(
|
|
446
|
+
(
|
|
447
|
+
(0.588235, 0.305882, 0.207843),
|
|
448
|
+
(0.741176, 0.529412, 0.384314),
|
|
449
|
+
(0.85098, 0.733333, 0.592157),
|
|
450
|
+
(0.823529, 0.72549, 0.392157),
|
|
451
|
+
(0.882353, 0.819608, 0.603922),
|
|
452
|
+
(0.584314, 0.670588, 0.435294),
|
|
453
|
+
(0.835294, 0.878431, 0.760784),
|
|
454
|
+
(0.313725, 0.435294, 0.105882),
|
|
455
|
+
)
|
|
456
|
+
)
|
|
457
|
+
_color_data.append(
|
|
458
|
+
(
|
|
459
|
+
(0.4, 0.32549, 0.290196),
|
|
460
|
+
(0.670588, 0.627451, 0.494118),
|
|
461
|
+
(0.796078, 0.803922, 0.772549),
|
|
462
|
+
(0.870588, 0.94902, 0.717647),
|
|
463
|
+
(0.670588, 0.760784, 0.615686),
|
|
464
|
+
(0.94902, 0.980392, 0.988235),
|
|
465
|
+
)
|
|
466
|
+
)
|
|
467
|
+
_color_data.append(
|
|
468
|
+
(
|
|
469
|
+
(0.803922, 0.309804, 0.0705882),
|
|
470
|
+
(1.0, 0.72549, 0.0941176),
|
|
471
|
+
(0.956863, 0.796078, 0.137255),
|
|
472
|
+
(0.952941, 0.980392, 0.572549),
|
|
473
|
+
(0.411765, 0.592157, 0.4),
|
|
474
|
+
(0.309804, 0.470588, 0.345098),
|
|
475
|
+
(0.298039, 0.286275, 0.54902),
|
|
476
|
+
(0.270588, 0.184314, 0.376471),
|
|
477
|
+
(0.878431, 0.101961, 0.207843),
|
|
478
|
+
(0.8, 0.0588235, 0.0745098),
|
|
479
|
+
)
|
|
480
|
+
)
|
|
481
|
+
_color_data.append(
|
|
482
|
+
(
|
|
483
|
+
(0.823529, 0.733333, 0.686275),
|
|
484
|
+
(0.407843, 0.427451, 0.266667),
|
|
485
|
+
(0.615686, 0.686275, 0.486275),
|
|
486
|
+
(0.337255, 0.435294, 0.392157),
|
|
487
|
+
(0.52549, 0.592157, 0.6),
|
|
488
|
+
(0.423529, 0.458824, 0.482353),
|
|
489
|
+
(0.392157, 0.494118, 0.568627),
|
|
490
|
+
(0.607843, 0.560784, 0.580392),
|
|
491
|
+
)
|
|
492
|
+
)
|
|
493
|
+
_color_data.append(
|
|
494
|
+
(
|
|
495
|
+
(0.854902, 0.392157, 0.14902),
|
|
496
|
+
(0.717647, 0.27451, 0.0392157),
|
|
497
|
+
(1.0, 0.556863, 0.321569),
|
|
498
|
+
(1.0, 0.807843, 0.462745),
|
|
499
|
+
(0.815686, 0.607843, 0.231373),
|
|
500
|
+
(0.658824, 0.596078, 0.270588),
|
|
501
|
+
(0.929412, 0.905882, 0.780392),
|
|
502
|
+
(0.811765, 0.760784, 0.478431),
|
|
503
|
+
(0.658824, 0.780392, 0.941176),
|
|
504
|
+
(0.423529, 0.603922, 0.843137),
|
|
505
|
+
(0.2, 0.415686, 0.701961),
|
|
506
|
+
)
|
|
507
|
+
)
|
|
508
|
+
_color_data.append(
|
|
509
|
+
(
|
|
510
|
+
(0.568627, 0.298039, 0.145098),
|
|
511
|
+
(0.705882, 0.698039, 0.498039),
|
|
512
|
+
(0.65098, 0.760784, 0.227451),
|
|
513
|
+
(0.392157, 0.729412, 0.584314),
|
|
514
|
+
(0.823529, 0.894118, 0.94902),
|
|
515
|
+
(0.227451, 0.192157, 0.4),
|
|
516
|
+
(0.501961, 0.239216, 0.447059),
|
|
517
|
+
(0.670588, 0.129412, 0.227451),
|
|
518
|
+
)
|
|
519
|
+
)
|
|
520
|
+
_color_data.append(
|
|
521
|
+
(
|
|
522
|
+
(0.870588, 0.341176, 0.0196078),
|
|
523
|
+
(0.811765, 0.368627, 0.0627451),
|
|
524
|
+
(0.937255, 0.717647, 0.14902),
|
|
525
|
+
(0.133333, 0.278431, 0.109804),
|
|
526
|
+
(0.254902, 0.541176, 0.321569),
|
|
527
|
+
(0.321569, 0.505882, 0.615686),
|
|
528
|
+
(0.368627, 0.447059, 0.576471),
|
|
529
|
+
(0.541176, 0.541176, 0.572549),
|
|
530
|
+
)
|
|
531
|
+
)
|
|
532
|
+
_color_data.append(
|
|
533
|
+
(
|
|
534
|
+
(0.745098, 0.301961, 0.0),
|
|
535
|
+
(0.882353, 0.494118, 0.0941176),
|
|
536
|
+
(0.827451, 0.811765, 0.454902),
|
|
537
|
+
(0.682353, 0.690196, 0.647059),
|
|
538
|
+
(0.611765, 0.690196, 0.341176),
|
|
539
|
+
(0.270588, 0.45098, 0.341176),
|
|
540
|
+
(0.160784, 0.278431, 0.372549),
|
|
541
|
+
(0.14902, 0.270588, 0.482353),
|
|
542
|
+
(0.0784314, 0.160784, 0.368627),
|
|
543
|
+
(0.658824, 0.635294, 0.807843),
|
|
544
|
+
)
|
|
545
|
+
)
|
|
546
|
+
_color_data.append(
|
|
547
|
+
(
|
|
548
|
+
(0.737255, 0.47451, 0.2),
|
|
549
|
+
(0.505882, 0.286275, 0.0470588),
|
|
550
|
+
(0.247059, 0.298039, 0.258824),
|
|
551
|
+
(0.396078, 0.545098, 0.431373),
|
|
552
|
+
(0.541176, 0.501961, 0.635294),
|
|
553
|
+
(0.215686, 0.117647, 0.329412),
|
|
554
|
+
(0.364706, 0.298039, 0.439216),
|
|
555
|
+
)
|
|
556
|
+
)
|
|
557
|
+
_color_data.append(
|
|
558
|
+
(
|
|
559
|
+
(0.92549, 0.866667, 0.756863),
|
|
560
|
+
(0.733333, 0.666667, 0.541176),
|
|
561
|
+
(0.584314, 0.533333, 0.411765),
|
|
562
|
+
(0.686275, 0.647059, 0.27451),
|
|
563
|
+
)
|
|
564
|
+
)
|
|
565
|
+
_color_data.append(
|
|
566
|
+
(
|
|
567
|
+
(1.0, 0.796078, 0.262745),
|
|
568
|
+
(0.921569, 0.886275, 0.592157),
|
|
569
|
+
(0.960784, 0.917647, 0.00784314),
|
|
570
|
+
(0.180392, 0.0627451, 0.580392),
|
|
571
|
+
(0.180392, 0.0117647, 0.333333),
|
|
572
|
+
(0.529412, 0.407843, 0.639216),
|
|
573
|
+
(0.737255, 0.188235, 0.341176),
|
|
574
|
+
(0.784314, 0.0705882, 0.231373),
|
|
575
|
+
(0.905882, 0.0, 0.0784314),
|
|
576
|
+
)
|
|
577
|
+
)
|
|
578
|
+
_color_data.append(
|
|
579
|
+
(
|
|
580
|
+
(0.692302, 0.618341, 0.375174),
|
|
581
|
+
(0.4533, 0.506783, 0.175158),
|
|
582
|
+
(0.814481, 0.0706188, 0.0264134),
|
|
583
|
+
(0.705882, 0.578744, 0.240635),
|
|
584
|
+
(0.606332, 0.199557, 0.0732433),
|
|
585
|
+
(0.788418, 0.814481, 0.359167),
|
|
586
|
+
(0.755657, 0.279011, 0.0189212),
|
|
587
|
+
(0.742077, 0.466728, 0.0988632),
|
|
588
|
+
(0.697078, 0.302922, 0.383215),
|
|
589
|
+
(1, 0.501961, 0),
|
|
590
|
+
(0.529412, 0.322988, 0.0804608),
|
|
591
|
+
(0.660639, 0.659358, 0.122408),
|
|
592
|
+
(0.936645, 0.79704, 0.0903487),
|
|
593
|
+
)
|
|
594
|
+
)
|
|
595
|
+
_color_data.append(
|
|
596
|
+
(
|
|
597
|
+
(0.797253, 0.904982, 0.410498),
|
|
598
|
+
(0.934691, 0.945708, 0.75346),
|
|
599
|
+
(0.769879, 0.92369, 0.977371),
|
|
600
|
+
(1, 0.566415, 0.0386511),
|
|
601
|
+
(1, 1, 0.4),
|
|
602
|
+
(1, 0.784756, 0.323308),
|
|
603
|
+
(0.909499, 0.582605, 0.44213),
|
|
604
|
+
(0.621866, 0.909026, 0.965408),
|
|
605
|
+
(1, 0.542397, 0.309712),
|
|
606
|
+
(0.645075, 0.644968, 0.978851),
|
|
607
|
+
(0.755657, 0.61117, 0.154498),
|
|
608
|
+
)
|
|
609
|
+
)
|
|
610
|
+
_color_data.append(
|
|
611
|
+
(
|
|
612
|
+
(0.855879, 0.665019, 0.302953),
|
|
613
|
+
(0.780926, 0.753979, 0.604883),
|
|
614
|
+
(0.807065, 0.511589, 0.285222),
|
|
615
|
+
(0.866682, 0.764462, 0.397528),
|
|
616
|
+
(0.735576, 0.755901, 0.876387),
|
|
617
|
+
(0.855879, 0.62414, 0.192096),
|
|
618
|
+
(1, 0.815946, 0.794202),
|
|
619
|
+
(1, 0.922957, 0.384054),
|
|
620
|
+
(0.733028, 0.519722, 0.0599069),
|
|
621
|
+
(0.788251, 0.806806, 0.950225),
|
|
622
|
+
(0.793454, 0.387564, 0.166766),
|
|
623
|
+
(0.877821, 0.790021, 0.310719),
|
|
624
|
+
(0.601816, 0.416114, 0.0997787),
|
|
625
|
+
(0.936645, 0.910887, 0.747143),
|
|
626
|
+
(0.60705, 0.625162, 0.72398),
|
|
627
|
+
)
|
|
628
|
+
)
|
|
629
|
+
_color_data.append(
|
|
630
|
+
(
|
|
631
|
+
(0.501961),
|
|
632
|
+
(0.660639),
|
|
633
|
+
(0.593454, 0.888609, 0.918547),
|
|
634
|
+
(0.346227, 0.71075, 0.927596),
|
|
635
|
+
(0.355077, 0.714931, 0.54519),
|
|
636
|
+
(0.2869, 0.583703, 0.280903),
|
|
637
|
+
(0.490944, 0.719463, 0.356405),
|
|
638
|
+
(0.377615, 0.477134, 0.916426),
|
|
639
|
+
(0.305684, 0.394965, 0.755657),
|
|
640
|
+
(0.168902, 0.250996, 0.633478),
|
|
641
|
+
(0.393668),
|
|
642
|
+
(0.43949, 0.503655, 0.619913),
|
|
643
|
+
)
|
|
644
|
+
)
|
|
645
|
+
_color_data.append(
|
|
646
|
+
(
|
|
647
|
+
(0.805432, 0.43006, 0.438804),
|
|
648
|
+
(0.963806, 0.591257, 0.601724),
|
|
649
|
+
(0.63801, 0.0991073, 0.147646),
|
|
650
|
+
(0.733028, 0.239811, 0.279622),
|
|
651
|
+
(0.873304, 0.567529, 0.217945),
|
|
652
|
+
(0.316747, 0.0594034, 0.0387579),
|
|
653
|
+
(0.316747, 0.224979, 0.242267),
|
|
654
|
+
(0.873304, 0.356405, 0.384848),
|
|
655
|
+
(0.606332, 0.370703, 0.114763),
|
|
656
|
+
(0.687785, 0.0596323, 0.0222934),
|
|
657
|
+
)
|
|
658
|
+
)
|
|
659
|
+
_color_data.append(
|
|
660
|
+
(
|
|
661
|
+
(0.823529, 0.788464, 0.657969),
|
|
662
|
+
(0.710414, 0.677302, 0.556176),
|
|
663
|
+
(0.687785, 0.640955, 0.477546),
|
|
664
|
+
(0.610864, 0.569268, 0.42414),
|
|
665
|
+
(0.493217, 0.434531, 0.340993),
|
|
666
|
+
(0.37557, 0.330877, 0.259648),
|
|
667
|
+
(0.271489, 0.239185, 0.187701),
|
|
668
|
+
(0.153841, 0.135546, 0.106355),
|
|
669
|
+
(0.271489, 0.262257, 0.201144),
|
|
670
|
+
(0.244526, 0.215335, 0.14963),
|
|
671
|
+
)
|
|
672
|
+
)
|
|
673
|
+
_color_data.append(
|
|
674
|
+
(
|
|
675
|
+
(0.714931, 0.604425, 0.0751812),
|
|
676
|
+
(0.950225, 0.85272, 0.062623),
|
|
677
|
+
(0.968322, 0.939544, 0.0737011),
|
|
678
|
+
(0.987869, 1, 0.364248),
|
|
679
|
+
(0.904982, 0.80087, 0.0986343),
|
|
680
|
+
(0.976333, 1, 0.501946),
|
|
681
|
+
(0.850675, 0.768994, 0.314717),
|
|
682
|
+
(0.565606, 0.469108, 0.0232242),
|
|
683
|
+
(0.976333, 1, 0.501946),
|
|
684
|
+
(1, 1, 0),
|
|
685
|
+
(0.63801, 0.562615, 0.258091),
|
|
686
|
+
)
|
|
687
|
+
)
|
|
688
|
+
_color_data.append(
|
|
689
|
+
(
|
|
690
|
+
(1, 0.753262, 0.0437629),
|
|
691
|
+
(0.945708, 0.661402, 0.128328),
|
|
692
|
+
(1, 0.854948, 0.112474),
|
|
693
|
+
(0.850675, 0.561089, 0.0324254),
|
|
694
|
+
(1, 0.70927, 0.144472),
|
|
695
|
+
(0.714931, 0.467216, 0.0763714),
|
|
696
|
+
(1, 0.79234, 0.292164),
|
|
697
|
+
(0.592767, 0.410986, 0.121248),
|
|
698
|
+
(1, 0.917754, 0.0541543),
|
|
699
|
+
(0.371038, 0.280095, 0.0870375),
|
|
700
|
+
)
|
|
701
|
+
)
|
|
702
|
+
_color_data.append(
|
|
703
|
+
(
|
|
704
|
+
(0.773754, 0.420615, 0.187213),
|
|
705
|
+
(0.443442, 0.110262, 0.100633),
|
|
706
|
+
(0.877699, 0.728923, 0.228702),
|
|
707
|
+
(0.882353, 0.597772, 0.124285),
|
|
708
|
+
(0.266972, 0.112123, 0.117922),
|
|
709
|
+
(0.683253, 0.00616464, 0.0506752),
|
|
710
|
+
(1, 0.8, 0.4),
|
|
711
|
+
(0.70135, 0.246342, 0.10016),
|
|
712
|
+
(0.969253, 0.932845, 0.614572),
|
|
713
|
+
(0.131228, 0.074464, 0.0730449),
|
|
714
|
+
)
|
|
715
|
+
)
|
|
716
|
+
_color_data.append(
|
|
717
|
+
(
|
|
718
|
+
(0.922972, 0.986419, 0.46389),
|
|
719
|
+
(0.501961, 0, 0),
|
|
720
|
+
(0.773754, 0.146609, 0.00296025),
|
|
721
|
+
(0.986419, 0.905287, 0.0534218),
|
|
722
|
+
(0.417227, 0.46154, 0.157656),
|
|
723
|
+
(0.900893, 0.727153, 0.205951),
|
|
724
|
+
(0.900893, 0.344152, 0.236088),
|
|
725
|
+
(0.447959, 0.27097, 0.0874037),
|
|
726
|
+
(0.877821, 0.53579, 0.248753),
|
|
727
|
+
(0.986419, 0.945861, 0.519921),
|
|
728
|
+
(0.358999, 0.36199, 0.0027924),
|
|
729
|
+
(0.986419, 0.918746, 0.320531),
|
|
730
|
+
(0.683253, 0.497841, 0.0674754),
|
|
731
|
+
)
|
|
732
|
+
)
|
|
733
|
+
_color_data.append(
|
|
734
|
+
(
|
|
735
|
+
(0.782803, 0.164904, 0.400458),
|
|
736
|
+
(0.909499, 0.613916, 0.204196),
|
|
737
|
+
(0.806577, 0.385397, 0.762768),
|
|
738
|
+
(0.698817, 0.873304, 0.295247),
|
|
739
|
+
(0.378897, 0.873304, 0.787549),
|
|
740
|
+
(1, 0.529198, 0.324819),
|
|
741
|
+
(1, 0.998367, 0.434775),
|
|
742
|
+
(0.873304, 0.150484, 0.255131),
|
|
743
|
+
(0.723598, 0.791043, 0.963806),
|
|
744
|
+
(0.85037, 0.558389, 0),
|
|
745
|
+
(1, 0.998856, 0.00207523),
|
|
746
|
+
(0.273106, 0.542992, 0.495583),
|
|
747
|
+
(1, 0.740871, 0.828473),
|
|
748
|
+
(0.630091, 0.148196, 0.579461),
|
|
749
|
+
(0.346715, 0.587594, 0.244526),
|
|
750
|
+
(0.927596, 0.725414, 0.204257),
|
|
751
|
+
(0.332128, 0.305196, 0.579187),
|
|
752
|
+
(1, 0.778332, 0.734707),
|
|
753
|
+
(0.501961, 0.501961, 0),
|
|
754
|
+
(0.501961, 0, 0.25098),
|
|
755
|
+
(1, 1, 0.762768),
|
|
756
|
+
)
|
|
757
|
+
)
|
|
758
|
+
_color_data.append(
|
|
759
|
+
(
|
|
760
|
+
(0.709133, 0.747539, 0.83711),
|
|
761
|
+
(0.813855, 0.974746, 0.996429),
|
|
762
|
+
(0.76527, 0.954757, 0.912932),
|
|
763
|
+
(0.581781, 0.801038, 0.828061),
|
|
764
|
+
(0.66154, 0.87277, 0.882353),
|
|
765
|
+
(0.616999, 0.753475, 0.909499),
|
|
766
|
+
(0.88957, 0.713878, 1),
|
|
767
|
+
(0.737484, 0.745327, 0.909499),
|
|
768
|
+
(0.775662, 0.632776, 0.918547),
|
|
769
|
+
(0.642084, 0.509957, 0.868772),
|
|
770
|
+
(0.507195, 0.428443, 0.710414),
|
|
771
|
+
(0.393545, 0.336843, 0.561089),
|
|
772
|
+
(0.342138, 0.241611, 0.452491),
|
|
773
|
+
)
|
|
774
|
+
)
|
|
775
|
+
_color_data.append(
|
|
776
|
+
(
|
|
777
|
+
(0.814481, 0.432822, 0.406287),
|
|
778
|
+
(1, 0.4, 0.4),
|
|
779
|
+
(0.954757, 0.215122, 0.0483253),
|
|
780
|
+
(0.268833, 0.246555, 0.506783),
|
|
781
|
+
(0.570138, 0.0971847, 0.0971847),
|
|
782
|
+
(0.409247, 0.384085, 0.823529),
|
|
783
|
+
(0.924651, 0.699779, 0.839963),
|
|
784
|
+
(0.349065, 0.298116, 0.642527),
|
|
785
|
+
(0.380087, 0.118044, 0.155291),
|
|
786
|
+
(0.640833, 0.661311, 0.886885),
|
|
787
|
+
(0.823529, 0.00888075, 0.0356909),
|
|
788
|
+
(0.211917, 0.157198, 0.411765),
|
|
789
|
+
)
|
|
790
|
+
)
|
|
791
|
+
_color_data.append(
|
|
792
|
+
(
|
|
793
|
+
(0.339361, 0.306752, 0.0416419),
|
|
794
|
+
(0.76817, 0.891402, 0.871962),
|
|
795
|
+
(0.610864, 0.327443, 0.219913),
|
|
796
|
+
(0.909773, 0.932128, 0.699825),
|
|
797
|
+
(0.418616, 0.48278, 0.719463),
|
|
798
|
+
(0.642527),
|
|
799
|
+
(0.814481, 0.554788, 0.334264),
|
|
800
|
+
(0.832578, 0.811261, 0.567498),
|
|
801
|
+
(0.696834, 0.400534, 0.293294),
|
|
802
|
+
(0.592264, 0.649119, 0.873304),
|
|
803
|
+
(0.380087, 0.377371, 0.298589),
|
|
804
|
+
(0.986908, 1, 0.771313),
|
|
805
|
+
(0.367086, 0.40798, 0.547509),
|
|
806
|
+
(0.266972, 0.247196, 0.155093),
|
|
807
|
+
(0.52784, 0.214603, 0.157061),
|
|
808
|
+
)
|
|
809
|
+
)
|
|
810
|
+
_color_data.append(
|
|
811
|
+
(
|
|
812
|
+
(0.742077, 0.0624857, 0.00605783),
|
|
813
|
+
(0, 0.501961, 0),
|
|
814
|
+
(0.891279, 0.721172, 0.777905),
|
|
815
|
+
(0.0620432, 0.521904, 0.704387),
|
|
816
|
+
(0.823529, 0.663981, 0.00828565),
|
|
817
|
+
(1, 0.0175937, 0.505959),
|
|
818
|
+
(0.975067, 1, 0.906294),
|
|
819
|
+
(0.162524, 0.167422, 0.153964),
|
|
820
|
+
(0.904982, 0.676844, 0.566705),
|
|
821
|
+
(0.475792, 0.675181, 0.189776),
|
|
822
|
+
(0.760174, 0.00823987, 0.412406),
|
|
823
|
+
(0, 0.390173, 0.773754),
|
|
824
|
+
(1, 0.904479, 0.279423),
|
|
825
|
+
(0.0184939, 0.438911, 0.147189),
|
|
826
|
+
)
|
|
827
|
+
)
|
|
828
|
+
_color_data.append(
|
|
829
|
+
(
|
|
830
|
+
(0.151827, 0.281636, 0.714931),
|
|
831
|
+
(0.753628, 0.82591, 0.991257),
|
|
832
|
+
(1, 0.937255, 0.224521),
|
|
833
|
+
(0.915969, 0.930159, 0.97409),
|
|
834
|
+
(1, 0.993332, 0.352972),
|
|
835
|
+
(0.208026, 0.25182, 0.529198),
|
|
836
|
+
(0.742367, 0.822126, 1),
|
|
837
|
+
(0.401907, 0.317494, 0.138964),
|
|
838
|
+
(0.98175, 0.967147, 0.930663),
|
|
839
|
+
(0.285069, 0.261799, 0.21828),
|
|
840
|
+
(0.508965, 0.787335, 0.578561),
|
|
841
|
+
(0.777829, 0.453574, 0.511559),
|
|
842
|
+
(0.647059, 0, 0.141192),
|
|
843
|
+
(0.968322, 0.591943, 0.687633),
|
|
844
|
+
)
|
|
845
|
+
)
|
|
846
|
+
_color_data.append(
|
|
847
|
+
(
|
|
848
|
+
(0.90045, 0.0204013, 0.0301823),
|
|
849
|
+
(0.829938, 0.725154, 1),
|
|
850
|
+
(1, 0.511666, 0.141085),
|
|
851
|
+
(0.566842, 0.967407, 1),
|
|
852
|
+
(1, 0.926772, 0.151904),
|
|
853
|
+
(1),
|
|
854
|
+
(0.759213, 0.886885, 0.319265),
|
|
855
|
+
(0.4, 0.8, 1),
|
|
856
|
+
(0.959274, 0.614496, 0.466316),
|
|
857
|
+
(0.790433, 0.450294, 1),
|
|
858
|
+
(0.895369, 0.716976, 0.346883),
|
|
859
|
+
(1, 0.0980392, 0.392157),
|
|
860
|
+
(1, 1, 0.392157),
|
|
861
|
+
(1, 0.4, 0.4),
|
|
862
|
+
(0.545876, 1, 0.558755),
|
|
863
|
+
(0.391867, 0.710414, 0.663966),
|
|
864
|
+
(1, 0.8, 0.4),
|
|
865
|
+
(1, 0.4, 0.4),
|
|
866
|
+
(1, 0, 1),
|
|
867
|
+
(0.563638, 0.606256, 0.935851),
|
|
868
|
+
(0.868772, 0.73959, 0.218616),
|
|
869
|
+
)
|
|
870
|
+
)
|
|
871
|
+
_color_data.append(
|
|
872
|
+
(
|
|
873
|
+
(0.70135, 0.093019, 0.00140383),
|
|
874
|
+
(0.289647, 0.222614, 0.484169),
|
|
875
|
+
(0.98677, 0.98793, 0.458686),
|
|
876
|
+
(0.42948, 0.524086, 0.719463),
|
|
877
|
+
(0.30808, 0.443137, 0.124895),
|
|
878
|
+
(0.895125, 0.71606, 0.0964523),
|
|
879
|
+
(0.138415, 0.184848, 0.429862),
|
|
880
|
+
(0.882353, 0.0253147, 0.11165),
|
|
881
|
+
(0.895125, 0.870893, 0.632624),
|
|
882
|
+
)
|
|
883
|
+
)
|
|
884
|
+
_color_data.append(
|
|
885
|
+
(
|
|
886
|
+
(0.90045, 0.765209, 0.745602),
|
|
887
|
+
(0.864256, 0.544503, 0.601099),
|
|
888
|
+
(0.719463, 0.374975, 0.35935),
|
|
889
|
+
(0.312215, 0.134813, 0.182895),
|
|
890
|
+
(0.488685, 0.199069, 0.220294),
|
|
891
|
+
(0.963806, 0.945785, 0.623575),
|
|
892
|
+
(0.299687, 0.352941, 0.114382),
|
|
893
|
+
(0.606516, 0.669688, 0.306233),
|
|
894
|
+
(1, 0.886915, 0.754116),
|
|
895
|
+
(0.704433, 0.864256, 0.469459),
|
|
896
|
+
(1, 0.978103, 0.943175),
|
|
897
|
+
(0.280537, 0.234745, 0.149096),
|
|
898
|
+
(0.338262, 0.480644, 0.141192),
|
|
899
|
+
)
|
|
900
|
+
)
|
|
901
|
+
_color_data.append(
|
|
902
|
+
(
|
|
903
|
+
(0.73, 0.245061, 0.1971),
|
|
904
|
+
(0.1971, 0.502247, 0.73),
|
|
905
|
+
(0.535616, 0.73, 0.1971),
|
|
906
|
+
(0.571276, 0.1971, 0.73),
|
|
907
|
+
(0.1971, 0.73, 0.537908),
|
|
908
|
+
(0.73, 0.504539, 0.1971),
|
|
909
|
+
(0.1971, 0.242769, 0.73),
|
|
910
|
+
(0.276137, 0.73, 0.1971),
|
|
911
|
+
(0.73, 0.1971, 0.629245),
|
|
912
|
+
(0.1971, 0.662614, 0.73),
|
|
913
|
+
(0.695982, 0.73, 0.1971),
|
|
914
|
+
(0.41091, 0.1971, 0.73),
|
|
915
|
+
(0.1971, 0.73, 0.377541),
|
|
916
|
+
(0.73, 0.344173, 0.1971),
|
|
917
|
+
(0.1971, 0.403135, 0.73),
|
|
918
|
+
)
|
|
919
|
+
)
|
|
920
|
+
_color_data.append(
|
|
921
|
+
(
|
|
922
|
+
(0.5, 0.5, 0.4),
|
|
923
|
+
(0.11, 0.75, 0.8),
|
|
924
|
+
(0.04, 1, 0.8),
|
|
925
|
+
(0.5, 0.5, 0.6),
|
|
926
|
+
(0.67, 0.33, 0.5),
|
|
927
|
+
(0.33, 0.5, 0.6),
|
|
928
|
+
(0, 0.67, 0.6),
|
|
929
|
+
(0.17, 0.9, 0.7),
|
|
930
|
+
(0, 0.5, 0.6),
|
|
931
|
+
(0.17, 0.33, 0.6),
|
|
932
|
+
)
|
|
933
|
+
)
|
|
934
|
+
_color_data.append(
|
|
935
|
+
(
|
|
936
|
+
(0.64, 0.5, 0.7),
|
|
937
|
+
(0.11, 0.75, 0.7),
|
|
938
|
+
(0.5, 0.7, 0.6),
|
|
939
|
+
(0.2, 0.66, 0.66),
|
|
940
|
+
(0.7, 0.4, 0.8),
|
|
941
|
+
(0.15, 0.67, 0.75),
|
|
942
|
+
(0.5, 0.6, 0.7),
|
|
943
|
+
(0.17, 0.6, 0.6),
|
|
944
|
+
(0.35, 0.33, 0.75),
|
|
945
|
+
(0.25, 0.67, 0.6),
|
|
946
|
+
)
|
|
947
|
+
)
|
|
948
|
+
_color_data.append(
|
|
949
|
+
(
|
|
950
|
+
(0.61, 0.7, 1),
|
|
951
|
+
(0.17, 0.4, 0.65),
|
|
952
|
+
(0.64, 0.5, 0.75),
|
|
953
|
+
(0.45, 0.4, 0.7),
|
|
954
|
+
(0.55, 0.8, 0.6),
|
|
955
|
+
(0.64, 0.2, 0.7),
|
|
956
|
+
(0.4, 0.5, 0.5),
|
|
957
|
+
(0.56, 0.6, 0.85),
|
|
958
|
+
(0.58, 0.5, 0.6),
|
|
959
|
+
(0.45, 0.7, 0.7),
|
|
960
|
+
)
|
|
961
|
+
)
|
|
962
|
+
_color_data.append(
|
|
963
|
+
(
|
|
964
|
+
(0, 1, 1),
|
|
965
|
+
(0.1, 0.7, 0.9),
|
|
966
|
+
(0, 0.75, 0.8),
|
|
967
|
+
(0.05, 0.8, 1),
|
|
968
|
+
(0.05, 1, 0.8),
|
|
969
|
+
(0, 0.7, 1),
|
|
970
|
+
(0, 1, 0.7),
|
|
971
|
+
(0, 0.8, 0.9),
|
|
972
|
+
(0.05, 0.9, 0.6),
|
|
973
|
+
(0.05, 0.7, 0.8),
|
|
974
|
+
)
|
|
975
|
+
)
|
|
976
|
+
_color_data.append(
|
|
977
|
+
(
|
|
978
|
+
(0.55, 1, 0.7),
|
|
979
|
+
(0.06, 1, 0.9),
|
|
980
|
+
(0.25, 1, 0.55),
|
|
981
|
+
(0.11, 0.9, 0.85),
|
|
982
|
+
(0.5, 1, 0.5),
|
|
983
|
+
(0.2, 1, 0.7),
|
|
984
|
+
(0.08, 1, 0.7),
|
|
985
|
+
(0.5, 0.8, 0.75),
|
|
986
|
+
(0.45, 1, 0.5),
|
|
987
|
+
(0.6, 0.5, 0.9),
|
|
988
|
+
)
|
|
989
|
+
)
|
|
990
|
+
_color_data.append(
|
|
991
|
+
(
|
|
992
|
+
(0.12, 0.8, 0.8),
|
|
993
|
+
(0.17, 0.6, 0.5),
|
|
994
|
+
(0.1, 0.83, 0.96),
|
|
995
|
+
(0.1, 1, 0.7),
|
|
996
|
+
(0.11, 0.6, 0.8),
|
|
997
|
+
(0.06, 0.75, 0.8),
|
|
998
|
+
(0.13, 0.67, 0.96),
|
|
999
|
+
(0.11, 0.75, 0.64),
|
|
1000
|
+
(0.11, 0.5, 0.96),
|
|
1001
|
+
(0.08, 0.67, 0.85),
|
|
1002
|
+
)
|
|
1003
|
+
)
|
|
1004
|
+
_color_data.append(
|
|
1005
|
+
(
|
|
1006
|
+
(0.04, 1, 1),
|
|
1007
|
+
(0.12, 1, 0.9),
|
|
1008
|
+
(0.5, 0.5, 0.5),
|
|
1009
|
+
(0.15, 0.7, 0.9),
|
|
1010
|
+
(0.06, 1, 0.75),
|
|
1011
|
+
(0.08, 1, 1),
|
|
1012
|
+
(0.67, 0.3, 0.7),
|
|
1013
|
+
(0.1, 0.5, 0.8),
|
|
1014
|
+
(0, 0.67, 0.8),
|
|
1015
|
+
(0.06, 0.7, 0.9),
|
|
1016
|
+
)
|
|
1017
|
+
)
|
|
1018
|
+
_color_data.append(
|
|
1019
|
+
(
|
|
1020
|
+
(0.94, 0.7, 0.9),
|
|
1021
|
+
(0, 0.5, 1),
|
|
1022
|
+
(0.9, 0.5, 0.7),
|
|
1023
|
+
(0.05, 0.5, 0.85),
|
|
1024
|
+
(0.9, 0.67, 0.85),
|
|
1025
|
+
(0.05, 0.6, 1),
|
|
1026
|
+
(0.9, 0.8, 0.9),
|
|
1027
|
+
(0.08, 0.8, 1),
|
|
1028
|
+
(0, 0.7, 0.9),
|
|
1029
|
+
(0.12, 0.7, 0.9),
|
|
1030
|
+
)
|
|
1031
|
+
)
|
|
1032
|
+
_color_data.append(
|
|
1033
|
+
(
|
|
1034
|
+
(0.08, 1, 0.88),
|
|
1035
|
+
(0.11, 1, 0.66),
|
|
1036
|
+
(0.17, 0.67, 0.66),
|
|
1037
|
+
(0, 0.33, 0.66),
|
|
1038
|
+
(0.11, 0.9, 0.85),
|
|
1039
|
+
(0.15, 0.5, 0.5),
|
|
1040
|
+
(0, 0.5, 0.85),
|
|
1041
|
+
(0.08, 1, 0.7),
|
|
1042
|
+
(0.06, 0.75, 0.88),
|
|
1043
|
+
(0.2, 1, 0.56),
|
|
1044
|
+
)
|
|
1045
|
+
)
|
|
1046
|
+
_color_data.append(
|
|
1047
|
+
(
|
|
1048
|
+
(0.12, 0.8, 0.8),
|
|
1049
|
+
(0.17, 0.67, 0.48),
|
|
1050
|
+
(0.11, 0.6, 0.7),
|
|
1051
|
+
(0.06, 0.75, 0.76),
|
|
1052
|
+
(0.17, 0.75, 0.64),
|
|
1053
|
+
(0.11, 0.75, 0.64),
|
|
1054
|
+
(0.13, 0.67, 0.85),
|
|
1055
|
+
(0.17, 0.9, 0.6),
|
|
1056
|
+
(0.08, 0.67, 0.9),
|
|
1057
|
+
(0.17, 0.5, 0.64),
|
|
1058
|
+
)
|
|
1059
|
+
)
|
|
1060
|
+
_color_data.append(
|
|
1061
|
+
(
|
|
1062
|
+
(0.33, 0.5, 0.6),
|
|
1063
|
+
(0.11, 0.75, 0.9),
|
|
1064
|
+
(0.5, 0.5, 0.5),
|
|
1065
|
+
(0.83, 0.33, 0.75),
|
|
1066
|
+
(0.17, 0.5, 0.5),
|
|
1067
|
+
(0.67, 0.33, 0.75),
|
|
1068
|
+
(0.83, 0.5, 0.5),
|
|
1069
|
+
(0.17, 0.67, 0.65),
|
|
1070
|
+
(0.92, 0.67, 0.6),
|
|
1071
|
+
(0.08, 0.67, 0.75),
|
|
1072
|
+
)
|
|
1073
|
+
)
|
|
1074
|
+
_color_data.append(
|
|
1075
|
+
(
|
|
1076
|
+
(0.22, 1, 0.51),
|
|
1077
|
+
(0.21, 0.8, 0.85),
|
|
1078
|
+
(0.28, 0.75, 0.6),
|
|
1079
|
+
(0.25, 1, 0.85),
|
|
1080
|
+
(0.45, 1, 0.55),
|
|
1081
|
+
(0.22, 1, 0.68),
|
|
1082
|
+
(0.3, 1, 0.51),
|
|
1083
|
+
(0.28, 0.6, 0.85),
|
|
1084
|
+
(0.17, 0.67, 0.51),
|
|
1085
|
+
(0.22, 0.4, 0.85),
|
|
1086
|
+
)
|
|
1087
|
+
)
|
|
1088
|
+
_color_data.append(
|
|
1089
|
+
(
|
|
1090
|
+
(0, 1, 0.68),
|
|
1091
|
+
(0.15, 1, 0.25),
|
|
1092
|
+
(0.03, 1, 0.85),
|
|
1093
|
+
(0, 1, 0.4),
|
|
1094
|
+
(0.05, 0.9, 0.7),
|
|
1095
|
+
(0.1, 1, 0.35),
|
|
1096
|
+
(0.04, 1, 0.68),
|
|
1097
|
+
(0.15, 1, 0.35),
|
|
1098
|
+
(0.1, 0.9, 0.7),
|
|
1099
|
+
(0.05, 1, 0.5),
|
|
1100
|
+
)
|
|
1101
|
+
)
|
|
1102
|
+
_color_data.append(
|
|
1103
|
+
(
|
|
1104
|
+
(0.08, 1, 0.68),
|
|
1105
|
+
(0.17, 0.5, 0.34),
|
|
1106
|
+
(0.11, 0.75, 0.68),
|
|
1107
|
+
(0.08, 0.67, 0.51),
|
|
1108
|
+
(0.12, 0.8, 0.85),
|
|
1109
|
+
(0.06, 0.9, 0.6),
|
|
1110
|
+
(0.08, 0.8, 0.85),
|
|
1111
|
+
(0.11, 1, 0.51),
|
|
1112
|
+
(0.11, 0.6, 0.85),
|
|
1113
|
+
(0.12, 1, 0.68),
|
|
1114
|
+
)
|
|
1115
|
+
)
|
|
1116
|
+
_color_data.append(
|
|
1117
|
+
(
|
|
1118
|
+
(0.21, 1, 0.56),
|
|
1119
|
+
(0.13, 0.83, 0.8),
|
|
1120
|
+
(0.22, 1, 0.42),
|
|
1121
|
+
(0.25, 0.8, 0.7),
|
|
1122
|
+
(0.17, 0.67, 0.42),
|
|
1123
|
+
(0.2, 0.83, 0.84),
|
|
1124
|
+
(0.12, 0.8, 0.6),
|
|
1125
|
+
(0.17, 0.6, 0.7),
|
|
1126
|
+
(0.17, 1, 0.5),
|
|
1127
|
+
(0.21, 0.8, 0.7),
|
|
1128
|
+
)
|
|
1129
|
+
)
|
|
1130
|
+
_color_data.append(
|
|
1131
|
+
(
|
|
1132
|
+
(0.06, 1, 0.85),
|
|
1133
|
+
(0.11, 0.9, 0.8),
|
|
1134
|
+
(0, 0.5, 0.44),
|
|
1135
|
+
(0.06, 0.8, 0.8),
|
|
1136
|
+
(0.08, 1, 0.5),
|
|
1137
|
+
(0.17, 0.67, 0.66),
|
|
1138
|
+
(0.83, 0.5, 0.44),
|
|
1139
|
+
(0.13, 1, 0.7),
|
|
1140
|
+
(0.65, 0.5, 0.6),
|
|
1141
|
+
(0.17, 0.9, 0.6),
|
|
1142
|
+
)
|
|
1143
|
+
)
|
|
1144
|
+
_color_data.append(
|
|
1145
|
+
(
|
|
1146
|
+
(0.04, 1, 0.8),
|
|
1147
|
+
(0.08, 0.8, 0.9),
|
|
1148
|
+
(0.07, 1, 0.75),
|
|
1149
|
+
(0.08, 1, 1),
|
|
1150
|
+
(0.03, 0.8, 0.75),
|
|
1151
|
+
(0.05, 0.8, 0.9),
|
|
1152
|
+
(0.06, 1, 0.65),
|
|
1153
|
+
(0.06, 0.6, 0.9),
|
|
1154
|
+
(0.07, 0.8, 0.6),
|
|
1155
|
+
(0.11, 0.6, 0.8),
|
|
1156
|
+
)
|
|
1157
|
+
)
|
|
1158
|
+
_color_data.append(
|
|
1159
|
+
(
|
|
1160
|
+
(0.58, 1, 0.5),
|
|
1161
|
+
(0.12, 1, 0.9),
|
|
1162
|
+
(0, 1, 0.75),
|
|
1163
|
+
(0.5, 1, 0.6),
|
|
1164
|
+
(0.67, 0.5, 0.7),
|
|
1165
|
+
(0.17, 1, 0.6),
|
|
1166
|
+
(0.9, 1, 0.75),
|
|
1167
|
+
(0.11, 0.7, 0.75),
|
|
1168
|
+
(0.61, 1, 0.9),
|
|
1169
|
+
(0.08, 1, 1),
|
|
1170
|
+
)
|
|
1171
|
+
)
|
|
1172
|
+
_color_data.append(
|
|
1173
|
+
(
|
|
1174
|
+
(0.6, 0.7, 0.8),
|
|
1175
|
+
(0.22, 1, 0.7),
|
|
1176
|
+
(0.75, 0.6, 0.7),
|
|
1177
|
+
(0.5, 1, 0.65),
|
|
1178
|
+
(0.7, 0.6, 0.7),
|
|
1179
|
+
(0.15, 0.7, 0.65),
|
|
1180
|
+
(0.63, 0.6, 0.7),
|
|
1181
|
+
(0.4, 0.7, 0.7),
|
|
1182
|
+
(0.55, 1, 0.75),
|
|
1183
|
+
(0.125, 0.9, 0.9),
|
|
1184
|
+
)
|
|
1185
|
+
)
|
|
1186
|
+
_color_data.append(
|
|
1187
|
+
(
|
|
1188
|
+
(0.08, 1, 1),
|
|
1189
|
+
(0.17, 0.8, 0.5),
|
|
1190
|
+
(0, 1, 0.8),
|
|
1191
|
+
(0.06, 1, 0.8),
|
|
1192
|
+
(0.33, 0.5, 0.5),
|
|
1193
|
+
(0.08, 1, 0.6),
|
|
1194
|
+
(0.5, 0.5, 0.5),
|
|
1195
|
+
(0.04, 1, 1),
|
|
1196
|
+
(0.11, 1, 0.8),
|
|
1197
|
+
(0, 0.75, 0.9),
|
|
1198
|
+
)
|
|
1199
|
+
)
|
|
1200
|
+
_color_data.append(
|
|
1201
|
+
(
|
|
1202
|
+
(0.11, 0.38, 0.64),
|
|
1203
|
+
(0.08, 0.29, 0.5),
|
|
1204
|
+
(0.08, 0.25, 0.64),
|
|
1205
|
+
(0.08, 0.6, 0.6),
|
|
1206
|
+
(0.11, 0.33, 0.72),
|
|
1207
|
+
(0.11, 0.43, 0.5),
|
|
1208
|
+
(0.13, 0.44, 0.72),
|
|
1209
|
+
(0.08, 0.5, 0.6),
|
|
1210
|
+
(0.06, 0.25, 0.7),
|
|
1211
|
+
(0.11, 0.7, 0.55),
|
|
1212
|
+
)
|
|
1213
|
+
)
|
|
1214
|
+
_color_data.append(
|
|
1215
|
+
(
|
|
1216
|
+
(0, 1, 0.72),
|
|
1217
|
+
(0.06, 1, 0.9),
|
|
1218
|
+
(0.17, 1, 0.4),
|
|
1219
|
+
(0.11, 1, 0.72),
|
|
1220
|
+
(0.06, 1, 0.72),
|
|
1221
|
+
(0.12, 1, 0.9),
|
|
1222
|
+
(0.5, 0.5, 0.5),
|
|
1223
|
+
(0.17, 1, 0.6),
|
|
1224
|
+
(0, 0.6, 0.6),
|
|
1225
|
+
(0.08, 1, 0.8),
|
|
1226
|
+
)
|
|
1227
|
+
)
|
|
1228
|
+
_color_data.append(
|
|
1229
|
+
(
|
|
1230
|
+
(0.6, 0.6, 0.7),
|
|
1231
|
+
(0.11, 0.8, 0.75),
|
|
1232
|
+
(0.2, 1, 0.55),
|
|
1233
|
+
(0.5, 0.7, 0.6),
|
|
1234
|
+
(0.7, 0.55, 0.9),
|
|
1235
|
+
(0.13, 1, 0.8),
|
|
1236
|
+
(0.58, 0.8, 0.8),
|
|
1237
|
+
(0.28, 0.7, 0.7),
|
|
1238
|
+
(0.5, 1, 0.5),
|
|
1239
|
+
(0.55, 0.6, 0.8),
|
|
1240
|
+
)
|
|
1241
|
+
)
|
|
1242
|
+
_color_data.append(
|
|
1243
|
+
(
|
|
1244
|
+
(0.05, 1, 1),
|
|
1245
|
+
(0.1, 1, 0.95),
|
|
1246
|
+
(0, 0.7, 0.9),
|
|
1247
|
+
(0.15, 0.7, 0.85),
|
|
1248
|
+
(0.83, 0.33, 0.75),
|
|
1249
|
+
(0.07, 0.7, 0.9),
|
|
1250
|
+
(0.17, 0.7, 0.6),
|
|
1251
|
+
(0.08, 1, 1),
|
|
1252
|
+
(0.67, 0.4, 0.9),
|
|
1253
|
+
(0.11, 1, 0.75),
|
|
1254
|
+
)
|
|
1255
|
+
)
|
|
1256
|
+
_color_data.append(
|
|
1257
|
+
(
|
|
1258
|
+
(0.42, 0.67, 0.75),
|
|
1259
|
+
(0.17, 1, 0.75),
|
|
1260
|
+
(0.05, 0.7, 1),
|
|
1261
|
+
(0.5, 0.67, 0.75),
|
|
1262
|
+
(0.67, 0.5, 1),
|
|
1263
|
+
(0.08, 1, 1),
|
|
1264
|
+
(0.25, 0.67, 0.75),
|
|
1265
|
+
(0.11, 0.75, 1),
|
|
1266
|
+
(0.33, 0.33, 0.75),
|
|
1267
|
+
(0.11, 1, 0.9),
|
|
1268
|
+
)
|
|
1269
|
+
)
|
|
1270
|
+
_color_data.append(
|
|
1271
|
+
(
|
|
1272
|
+
(0.5, 0.5, 0.4),
|
|
1273
|
+
(0.08, 0.9, 0.8),
|
|
1274
|
+
(0.42, 0.67, 0.6),
|
|
1275
|
+
(0.13, 0.8, 0.85),
|
|
1276
|
+
(0.5, 0.67, 0.6),
|
|
1277
|
+
(0.17, 0.9, 0.6),
|
|
1278
|
+
(0.67, 0.5, 0.7),
|
|
1279
|
+
(0.1, 0.75, 0.8),
|
|
1280
|
+
(0, 0.75, 0.8),
|
|
1281
|
+
(0.04, 0.8, 1),
|
|
1282
|
+
)
|
|
1283
|
+
)
|
|
1284
|
+
_color_data.append(
|
|
1285
|
+
(
|
|
1286
|
+
(0.22, 1, 0.6),
|
|
1287
|
+
(0.01, 0.8, 0.8),
|
|
1288
|
+
(0.61, 0.75, 1),
|
|
1289
|
+
(0.11, 1, 0.75),
|
|
1290
|
+
(0.67, 0.6, 0.9),
|
|
1291
|
+
(0.17, 1, 0.5),
|
|
1292
|
+
(0.06, 1, 0.75),
|
|
1293
|
+
(0.8, 0.5, 0.6),
|
|
1294
|
+
(0.25, 1, 0.5),
|
|
1295
|
+
(0.58, 0.67, 0.75),
|
|
1296
|
+
)
|
|
1297
|
+
)
|
|
1298
|
+
_color_data.append(
|
|
1299
|
+
(
|
|
1300
|
+
(0.58, 0.67, 0.66),
|
|
1301
|
+
(0.17, 1, 0.66),
|
|
1302
|
+
(0.45, 0.75, 0.6),
|
|
1303
|
+
(0.12, 0.7, 0.7),
|
|
1304
|
+
(0.25, 0.7, 0.6),
|
|
1305
|
+
(0.58, 0.5, 0.8),
|
|
1306
|
+
(0.11, 1, 0.66),
|
|
1307
|
+
(0.06, 0.75, 0.88),
|
|
1308
|
+
(0.5, 0.5, 0.44),
|
|
1309
|
+
(0.67, 0.33, 0.66),
|
|
1310
|
+
)
|
|
1311
|
+
)
|
|
1312
|
+
_color_data.append(
|
|
1313
|
+
(
|
|
1314
|
+
(0.12, 1, 0.9),
|
|
1315
|
+
(0.08, 1, 0.7),
|
|
1316
|
+
(0.08, 1, 0.92),
|
|
1317
|
+
(0.17, 1, 0.5),
|
|
1318
|
+
(0.12, 0.7, 0.8),
|
|
1319
|
+
(0, 0.33, 0.6),
|
|
1320
|
+
(0.11, 1, 0.8),
|
|
1321
|
+
(0.5, 0.5, 0.5),
|
|
1322
|
+
(0.17, 1, 0.7),
|
|
1323
|
+
(0.06, 1, 0.69),
|
|
1324
|
+
)
|
|
1325
|
+
)
|
|
1326
|
+
_color_data.append(
|
|
1327
|
+
(
|
|
1328
|
+
(0, 0.8, 0.85),
|
|
1329
|
+
(0.11, 0.75, 0.92),
|
|
1330
|
+
(0.17, 0.6, 0.52),
|
|
1331
|
+
(0.06, 0.75, 0.92),
|
|
1332
|
+
(0.5, 0.5, 0.55),
|
|
1333
|
+
(0.17, 0.67, 0.69),
|
|
1334
|
+
(0.67, 0.33, 0.69),
|
|
1335
|
+
(0.5, 0.33, 0.69),
|
|
1336
|
+
(0.94, 0.5, 0.69),
|
|
1337
|
+
(0.25, 0.6, 0.7),
|
|
1338
|
+
)
|
|
1339
|
+
)
|
|
1340
|
+
_color_data.append(
|
|
1341
|
+
(
|
|
1342
|
+
(0.210202, 0.478028, 0.802198),
|
|
1343
|
+
(0.707272, 0.367344, 0.225726),
|
|
1344
|
+
(0.0, 0.547861, 0.489169),
|
|
1345
|
+
(0.645179, 0.359284, 0.673737),
|
|
1346
|
+
(0.479521, 0.479449, 0.089445),
|
|
1347
|
+
(0.0, 0.523964, 0.74671),
|
|
1348
|
+
(0.761821, 0.309931, 0.391207),
|
|
1349
|
+
(0.0, 0.538075, 0.301193),
|
|
1350
|
+
(0.430639, 0.436709, 0.782913),
|
|
1351
|
+
(0.636472, 0.41387, 0.143178),
|
|
1352
|
+
(0.0, 0.545007, 0.602897),
|
|
1353
|
+
(0.722244, 0.319989, 0.572676),
|
|
1354
|
+
(0.359842, 0.508864, 0.144524),
|
|
1355
|
+
(0.0, 0.498754, 0.793374),
|
|
1356
|
+
(0.737905, 0.340553, 0.285097),
|
|
1357
|
+
)
|
|
1358
|
+
)
|
|
1359
|
+
_color_data.append(
|
|
1360
|
+
(
|
|
1361
|
+
(0.547741, 0.678141, 0.919876),
|
|
1362
|
+
(0.870588, 0.604825, 0.492284),
|
|
1363
|
+
(0.315739, 0.73984, 0.687293),
|
|
1364
|
+
(0.811653, 0.601228, 0.82585),
|
|
1365
|
+
(0.693018, 0.679972, 0.419934),
|
|
1366
|
+
(0.365738, 0.716057, 0.878593),
|
|
1367
|
+
(0.908568, 0.575295, 0.613305),
|
|
1368
|
+
(0.450904, 0.730731, 0.549649),
|
|
1369
|
+
(0.661563, 0.648537, 0.906077),
|
|
1370
|
+
(0.816152, 0.633087, 0.441625),
|
|
1371
|
+
(0.278846, 0.736466, 0.771928),
|
|
1372
|
+
(0.872286, 0.580685, 0.750455),
|
|
1373
|
+
(0.603462, 0.704196, 0.448275),
|
|
1374
|
+
(0.475063, 0.694449, 0.913188),
|
|
1375
|
+
(0.893142, 0.590291, 0.534183),
|
|
1376
|
+
)
|
|
1377
|
+
)
|
|
1378
|
+
_color_data.append(
|
|
1379
|
+
(
|
|
1380
|
+
(0.23792, 0.688748, 1.0),
|
|
1381
|
+
(1.0, 0.519592, 0.309672),
|
|
1382
|
+
(0.0, 0.790415, 0.705117),
|
|
1383
|
+
(0.936355, 0.506531, 0.981107),
|
|
1384
|
+
(0.686959, 0.690573, 0.0577263),
|
|
1385
|
+
(0.0, 0.75636, 1.0),
|
|
1386
|
+
(1.0, 0.427217, 0.558872),
|
|
1387
|
+
(0.0, 0.77627, 0.422678),
|
|
1388
|
+
(0.610912, 0.62653, 1.0),
|
|
1389
|
+
(0.92057, 0.591746, 0.176036),
|
|
1390
|
+
(0.0, 0.786495, 0.875359),
|
|
1391
|
+
(1.0, 0.443453, 0.829825),
|
|
1392
|
+
(0.507056, 0.733903, 0.173624),
|
|
1393
|
+
(0.0, 0.719486, 1.0),
|
|
1394
|
+
(1.0, 0.477056, 0.399999),
|
|
1395
|
+
)
|
|
1396
|
+
)
|
|
1397
|
+
_color_data.append(
|
|
1398
|
+
(
|
|
1399
|
+
(0.368417, 0.506779, 0.709798),
|
|
1400
|
+
(0.880722, 0.611041, 0.142051),
|
|
1401
|
+
(0.560181, 0.691569, 0.194885),
|
|
1402
|
+
(0.922526, 0.385626, 0.209179),
|
|
1403
|
+
(0.528488, 0.470624, 0.701351),
|
|
1404
|
+
(0.772079, 0.431554, 0.102387),
|
|
1405
|
+
(0.363898, 0.618501, 0.782349),
|
|
1406
|
+
(1, 0.75, 0),
|
|
1407
|
+
(0.647624, 0.37816, 0.614037),
|
|
1408
|
+
(0.571589, 0.586483, 0.0),
|
|
1409
|
+
(0.915, 0.3325, 0.2125),
|
|
1410
|
+
(0.400822, 0.522007, 0.85),
|
|
1411
|
+
(0.972829, 0.621644, 0.073362),
|
|
1412
|
+
(0.736783, 0.358, 0.503027),
|
|
1413
|
+
(0.280264, 0.715, 0.429209),
|
|
1414
|
+
)
|
|
1415
|
+
)
|
|
1416
|
+
_color_data.append(
|
|
1417
|
+
(
|
|
1418
|
+
(0.29, 0.588, 0.612),
|
|
1419
|
+
(0.886243, 0.527215, 0.0910023),
|
|
1420
|
+
(0.613966, 0.37652, 0.585084),
|
|
1421
|
+
(0.521981, 0.66, 0.0942065),
|
|
1422
|
+
(0.820916, 0.341417, 0.22514),
|
|
1423
|
+
(0.436075, 0.482355, 0.72),
|
|
1424
|
+
(0.915458, 0.67329, 0.0122632),
|
|
1425
|
+
(0.687223, 0.3576, 0.441196),
|
|
1426
|
+
(0.217839, 0.655694, 0.494605),
|
|
1427
|
+
(0.868187, 0.436936, 0.13357),
|
|
1428
|
+
(0.517011, 0.406193, 0.72),
|
|
1429
|
+
(0.759193, 0.664755, 0.0),
|
|
1430
|
+
(0.719709, 0.342, 0.360447),
|
|
1431
|
+
(0.280656, 0.563875, 0.624787),
|
|
1432
|
+
(0.868374, 0.522271, 0.0853896),
|
|
1433
|
+
)
|
|
1434
|
+
)
|
|
1435
|
+
_color_data.append(
|
|
1436
|
+
(
|
|
1437
|
+
(0.65, 0.0, 0.0),
|
|
1438
|
+
(0.0504678, 0.526626, 0.627561),
|
|
1439
|
+
(0.752461, 0.362306, 0.125339),
|
|
1440
|
+
(0.435888, 0.259065, 0.71028),
|
|
1441
|
+
(0.461492, 0.563303, 0.0104797),
|
|
1442
|
+
(0.659814, 0.212037, 0.300311),
|
|
1443
|
+
(0.212151, 0.39271, 0.8),
|
|
1444
|
+
(0.784922, 0.524612, 0.0407096),
|
|
1445
|
+
(0.515278, 0.224, 0.530342),
|
|
1446
|
+
(0.111025, 0.56, 0.418696),
|
|
1447
|
+
(0.647864, 0.308204, 0.0196601),
|
|
1448
|
+
(0.407876, 0.275406, 0.780311),
|
|
1449
|
+
(0.705543, 0.589505, 0.0),
|
|
1450
|
+
(0.653126, 0.213375, 0.311456),
|
|
1451
|
+
(0.124612, 0.460311, 0.709534),
|
|
1452
|
+
)
|
|
1453
|
+
)
|
|
1454
|
+
_color_data.append(
|
|
1455
|
+
(
|
|
1456
|
+
(0.0684356, 0.645252, 0.782123),
|
|
1457
|
+
(0.98993, 0.699651, 0.0271887),
|
|
1458
|
+
(0.450866, 0.379481, 1.0),
|
|
1459
|
+
(0.369422, 0.7, 0.229826),
|
|
1460
|
+
(0.942659, 0.463296, 0.151884),
|
|
1461
|
+
(0.214511, 0.528391, 0.957413),
|
|
1462
|
+
(0.827693, 0.730855, 0.0),
|
|
1463
|
+
(0.546532, 0.322857, 0.883671),
|
|
1464
|
+
(0.0575287, 0.697632, 0.634101),
|
|
1465
|
+
(0.971874, 0.609371, 0.0759396),
|
|
1466
|
+
(0.240278, 0.513454, 0.954279),
|
|
1467
|
+
(0.664468, 0.716058, 0.0382467),
|
|
1468
|
+
(0.535911, 0.329201, 0.887952),
|
|
1469
|
+
(0.0930023, 0.661592, 0.700348),
|
|
1470
|
+
(0.987599, 0.716733, 0.0176115),
|
|
1471
|
+
)
|
|
1472
|
+
)
|
|
1473
|
+
_color_data.append(
|
|
1474
|
+
(
|
|
1475
|
+
(0.21099, 0.531208, 0.953188),
|
|
1476
|
+
(0.985248, 0.676238, 0.0398315),
|
|
1477
|
+
(0.519913, 0.338384, 0.950217),
|
|
1478
|
+
(0.0358167, 0.691123, 0.698773),
|
|
1479
|
+
(0.68343, 0.28, 0.602415),
|
|
1480
|
+
(0.337228, 0.447663, 1.0),
|
|
1481
|
+
(0.969644, 0.598219, 0.081962),
|
|
1482
|
+
(0.463466, 0.37192, 1.0),
|
|
1483
|
+
(0.285145, 0.714257, 0.500399),
|
|
1484
|
+
(0.64286, 0.28, 0.664831),
|
|
1485
|
+
(0.188288, 0.550488, 0.919235),
|
|
1486
|
+
(0.950576, 0.695346, 0.0556806),
|
|
1487
|
+
(0.475066, 0.365124, 0.975383),
|
|
1488
|
+
(0.117539, 0.682865, 0.669161),
|
|
1489
|
+
(0.637866, 0.284291, 0.679587),
|
|
1490
|
+
)
|
|
1491
|
+
)
|
|
1492
|
+
_color_data.append(
|
|
1493
|
+
(
|
|
1494
|
+
(0.328624, 0.538662, 0.894982),
|
|
1495
|
+
(0.7, 0.6825, 0.63),
|
|
1496
|
+
(0.125288, 0.70818, 0.634349),
|
|
1497
|
+
(0.613538, 0.367936, 0.741154),
|
|
1498
|
+
(0.977524, 0.65262, 0.0606854),
|
|
1499
|
+
(0.463744, 0.456754, 0.9),
|
|
1500
|
+
(0.558991, 0.72, 0.0458291),
|
|
1501
|
+
(0.680096, 0.342, 0.596007),
|
|
1502
|
+
(0.245115, 0.603908, 0.804138),
|
|
1503
|
+
(0.956122, 0.758684, 0.000795641),
|
|
1504
|
+
(0.574241, 0.390864, 0.838631),
|
|
1505
|
+
(0.224072, 0.696849, 0.543647),
|
|
1506
|
+
(0.971426, 0.677947, 0.0463239),
|
|
1507
|
+
(0.404069, 0.494152, 0.890438),
|
|
1508
|
+
(0.557025, 0.723664, 0.0903003),
|
|
1509
|
+
)
|
|
1510
|
+
)
|
|
1511
|
+
_color_data.append(
|
|
1512
|
+
(
|
|
1513
|
+
(0.9, 0.378, 0.0),
|
|
1514
|
+
(0.50284, 0.348442, 0.978155),
|
|
1515
|
+
(0.974953, 0.624767, 0.0676258),
|
|
1516
|
+
(0.717359, 0.28, 0.550217),
|
|
1517
|
+
(0.440683, 0.7, 0.13913),
|
|
1518
|
+
(0.7, 0.294, 0.0),
|
|
1519
|
+
(0.0, 0.56, 0.8),
|
|
1520
|
+
(1.0, 0.37, 0.1),
|
|
1521
|
+
(0.704, 0.32, 0.8),
|
|
1522
|
+
(0.641118, 0.710124, 0.0),
|
|
1523
|
+
(0.852394, 0.259521, 0.329344),
|
|
1524
|
+
(0.524898, 0.335476, 0.937755),
|
|
1525
|
+
(0.960617, 0.553086, 0.104563),
|
|
1526
|
+
(0.717215, 0.277933, 0.549113),
|
|
1527
|
+
(0.666071, 0.712897, 0.0),
|
|
1528
|
+
)
|
|
1529
|
+
)
|
|
1530
|
+
_color_data.append(
|
|
1531
|
+
(
|
|
1532
|
+
(0.028, 0.5376, 0.5936),
|
|
1533
|
+
(0.75, 0.315, 0.0),
|
|
1534
|
+
(0.531753, 0.331477, 0.920616),
|
|
1535
|
+
(0.627887, 0.708654, 0.0),
|
|
1536
|
+
(0.237882, 0.510711, 0.979357),
|
|
1537
|
+
(0.975692, 0.628459, 0.0656322),
|
|
1538
|
+
(0.629898, 0.28, 0.684772),
|
|
1539
|
+
(0.198854, 0.7, 0.446913),
|
|
1540
|
+
(0.910038, 0.300188, 0.226913),
|
|
1541
|
+
(0.440765, 0.385541, 1.0),
|
|
1542
|
+
(0.797526, 0.718694, 0.00486471),
|
|
1543
|
+
(0.792386, 0.272363, 0.429254),
|
|
1544
|
+
(0.289887, 0.478466, 0.985608),
|
|
1545
|
+
(0.96081, 0.554048, 0.104292),
|
|
1546
|
+
(0.633426, 0.29116, 0.697739),
|
|
1547
|
+
)
|
|
1548
|
+
)
|
|
1549
|
+
_color_data.append(
|
|
1550
|
+
(
|
|
1551
|
+
(0.227469, 0.518025, 0.972963),
|
|
1552
|
+
(0.680612, 0.714512, 0.0),
|
|
1553
|
+
(0.0173758, 0.686099, 0.720851),
|
|
1554
|
+
(0.993469, 0.717345, 0.0176339),
|
|
1555
|
+
(0.357314, 0.435612, 1.0),
|
|
1556
|
+
(0.423978, 0.7, 0.160391),
|
|
1557
|
+
(0.14722, 0.582224, 0.876665),
|
|
1558
|
+
(0.825059, 0.730562, 0.0),
|
|
1559
|
+
(0.485021, 0.35902, 0.995068),
|
|
1560
|
+
(0.13832, 0.7, 0.523957),
|
|
1561
|
+
(0.976518, 0.632587, 0.0634027),
|
|
1562
|
+
(0.191651, 0.54792, 0.922538),
|
|
1563
|
+
(0.65508, 0.711676, 0.0),
|
|
1564
|
+
(0.493464, 0.354032, 0.983338),
|
|
1565
|
+
(0.0448197, 0.688434, 0.678706),
|
|
1566
|
+
)
|
|
1567
|
+
)
|
|
1568
|
+
_color_data.append(
|
|
1569
|
+
(
|
|
1570
|
+
(0.34398, 0.49112, 0.89936),
|
|
1571
|
+
(0.97, 0.606, 0.081),
|
|
1572
|
+
(0.91, 0.318, 0.243),
|
|
1573
|
+
(0.448, 0.69232, 0.1538),
|
|
1574
|
+
(0.62168, 0.2798, 0.6914),
|
|
1575
|
+
(0.09096, 0.6296, 0.85532),
|
|
1576
|
+
(0.46056, 0.40064, 0.81392),
|
|
1577
|
+
(0.94, 0.462, 0.162),
|
|
1578
|
+
(0.0, 0.7, 0.7),
|
|
1579
|
+
(0.827051, 0.418034, 0.0243459),
|
|
1580
|
+
(0.551175, 0.320148, 0.872063),
|
|
1581
|
+
(0.726941, 0.71966, 0.0),
|
|
1582
|
+
(0.868071, 0.256386, 0.303216),
|
|
1583
|
+
(0.241869, 0.506504, 0.990243),
|
|
1584
|
+
(0.957391, 0.536954, 0.115045),
|
|
1585
|
+
)
|
|
1586
|
+
)
|
|
1587
|
+
_color_data.append(
|
|
1588
|
+
(
|
|
1589
|
+
(0.286842, 0.530395, 1.0),
|
|
1590
|
+
(0.56, 0.7, 0.7),
|
|
1591
|
+
(0.532474, 0.388, 0.736579),
|
|
1592
|
+
(0.063618, 0.694106, 0.821342),
|
|
1593
|
+
(0.420451, 0.450297, 0.989958),
|
|
1594
|
+
(0.351133, 0.745, 0.298103),
|
|
1595
|
+
(0.604213, 0.388, 0.626211),
|
|
1596
|
+
(0.201578, 0.584574, 0.981873),
|
|
1597
|
+
(0.0688702, 0.745326, 0.661078),
|
|
1598
|
+
(0.813624, 0.605623, 0.246924),
|
|
1599
|
+
(0.323, 0.510002, 0.990107),
|
|
1600
|
+
(0.53231, 0.750962, 0.159044),
|
|
1601
|
+
(0.549235, 0.389647, 0.713718),
|
|
1602
|
+
(0.123497, 0.657278, 0.857613),
|
|
1603
|
+
(0.840785, 0.741427, 0.174663),
|
|
1604
|
+
)
|
|
1605
|
+
)
|
|
1606
|
+
_color_data.append(
|
|
1607
|
+
(
|
|
1608
|
+
(0.9, 0.36, 0.054),
|
|
1609
|
+
(0.365248, 0.427802, 0.758297),
|
|
1610
|
+
(0.945109, 0.593901, 0.0),
|
|
1611
|
+
(0.645957, 0.253192, 0.685109),
|
|
1612
|
+
(0.285821, 0.56, 0.450773),
|
|
1613
|
+
(0.7, 0.336, 0.0),
|
|
1614
|
+
(0.491486, 0.345109, 0.8),
|
|
1615
|
+
(0.71788, 0.568653, 0.0),
|
|
1616
|
+
(0.70743, 0.224, 0.542415),
|
|
1617
|
+
(0.287228, 0.490217, 0.664674),
|
|
1618
|
+
(0.982289, 0.577132, 0.0115425),
|
|
1619
|
+
(0.587674, 0.287728, 0.75007),
|
|
1620
|
+
(0.426209, 0.558155, 0.2778),
|
|
1621
|
+
(0.943149, 0.414556, 0.0714083),
|
|
1622
|
+
(0.414974, 0.393632, 0.784299),
|
|
1623
|
+
)
|
|
1624
|
+
)
|
|
1625
|
+
_color_data.append(
|
|
1626
|
+
(
|
|
1627
|
+
(1.0, 0.4, 0.0),
|
|
1628
|
+
(0.655728, 0.8, 0.0),
|
|
1629
|
+
(0.0, 0.742291, 0.873126),
|
|
1630
|
+
(1.0, 0.656408, 0.0),
|
|
1631
|
+
(0.893126, 0.4, 0.767184),
|
|
1632
|
+
(0.295048, 0.8, 0.286932),
|
|
1633
|
+
(0.238758, 0.610466, 1.0),
|
|
1634
|
+
(1.0, 0.325204, 0.406504),
|
|
1635
|
+
(0.0, 0.786874, 0.739379),
|
|
1636
|
+
(1.0, 0.520437, 0.0),
|
|
1637
|
+
(0.752933, 0.41765, 1.0),
|
|
1638
|
+
(0.557281, 0.8, 0),
|
|
1639
|
+
(1.0, 0.068116, 0.0851449),
|
|
1640
|
+
(0, 0.722602, 0.932195),
|
|
1641
|
+
(1.0, 0.715476, 0),
|
|
1642
|
+
)
|
|
1643
|
+
)
|
|
1644
|
+
_color_data.append(
|
|
1645
|
+
(
|
|
1646
|
+
(0.3, 0.68, 0.88),
|
|
1647
|
+
(0.962492, 0.612461, 0.301114),
|
|
1648
|
+
(0.659963, 0.445022, 0.850093),
|
|
1649
|
+
(0.557756, 0.76, 0.304674),
|
|
1650
|
+
(0.889907, 0.406019, 0.450155),
|
|
1651
|
+
(0.462306, 0.562616, 1.0),
|
|
1652
|
+
(0.994953, 0.774767, 0.213626),
|
|
1653
|
+
(0.741359, 0.424, 0.690217),
|
|
1654
|
+
(0.311025, 0.76, 0.618696),
|
|
1655
|
+
(0.932399, 0.461995, 0.371482),
|
|
1656
|
+
(0.574457, 0.495326, 1.0),
|
|
1657
|
+
(0.843548, 0.782616, 0.2),
|
|
1658
|
+
(0.799677, 0.424, 0.600497),
|
|
1659
|
+
(0.31184, 0.670528, 0.894208),
|
|
1660
|
+
(0.96486, 0.624301, 0.294877),
|
|
1661
|
+
)
|
|
1662
|
+
)
|
|
1663
|
+
_color_data.append(
|
|
1664
|
+
(
|
|
1665
|
+
(0.567426, 0.32317, 0.729831),
|
|
1666
|
+
(0.969902, 0.60553, 0.0812646),
|
|
1667
|
+
(0.779595, 0.27424, 0.452303),
|
|
1668
|
+
(0.40798, 0.445781, 0.850056),
|
|
1669
|
+
(0.927008, 0.399638, 0.197078),
|
|
1670
|
+
(0.653277, 0.291071, 0.630502),
|
|
1671
|
+
(0.0, 0.58, 1.0),
|
|
1672
|
+
(0.847824, 0.290388, 0.344449),
|
|
1673
|
+
(0.506477, 0.365003, 0.780268),
|
|
1674
|
+
(0.953518, 0.526886, 0.125502),
|
|
1675
|
+
(0.708441, 0.276745, 0.560036),
|
|
1676
|
+
(0.306099, 0.520521, 0.927123),
|
|
1677
|
+
(0.890674, 0.309417, 0.274533),
|
|
1678
|
+
(0.57214, 0.321408, 0.724377),
|
|
1679
|
+
(0.971358, 0.612517, 0.077334),
|
|
1680
|
+
)
|
|
1681
|
+
)
|
|
1682
|
+
_color_data.append(
|
|
1683
|
+
(
|
|
1684
|
+
(0.790588, 0.201176, 0.0),
|
|
1685
|
+
(0.192157, 0.388235, 0.807843),
|
|
1686
|
+
(1.0, 0.607843, 0.0),
|
|
1687
|
+
(0.0, 0.596078, 0.109804),
|
|
1688
|
+
(0.567426, 0.32317, 0.729831),
|
|
1689
|
+
(0.0, 0.588235, 0.705882),
|
|
1690
|
+
(0.8505, 0.4275, 0.13185),
|
|
1691
|
+
(0.499929, 0.285875, 0.775177),
|
|
1692
|
+
(0.124903, 0.63, 0.471033),
|
|
1693
|
+
(0.823949, 0.294745, 0.192917),
|
|
1694
|
+
(0.421264, 0.332242, 0.9),
|
|
1695
|
+
(0.723992, 0.655444, 0.0),
|
|
1696
|
+
(0.674637, 0.252, 0.450559),
|
|
1697
|
+
(0.12582, 0.529344, 0.780984),
|
|
1698
|
+
(0.860468, 0.477339, 0.106737),
|
|
1699
|
+
)
|
|
1700
|
+
)
|
|
1701
|
+
_color_data.append(
|
|
1702
|
+
(
|
|
1703
|
+
(0.9, 0.27, 0.0),
|
|
1704
|
+
(0.97331, 0.616548, 0.0720638),
|
|
1705
|
+
(0.672892, 0.38748, 0.61777),
|
|
1706
|
+
(0.873133, 0.420301, 0.0828321),
|
|
1707
|
+
(0.402478, 0.548513, 0.8),
|
|
1708
|
+
(0.783249, 0.374, 0.42577),
|
|
1709
|
+
(0.919858, 0.523239, 0.0718724),
|
|
1710
|
+
(0.608835, 0.424846, 0.777912),
|
|
1711
|
+
(0.889944, 0.371757, 0.199627),
|
|
1712
|
+
(0.990081, 0.700404, 0.026782),
|
|
1713
|
+
(0.727426, 0.374, 0.511652),
|
|
1714
|
+
(0.881047, 0.467233, 0.0591929),
|
|
1715
|
+
(0.520368, 0.477781, 0.799702),
|
|
1716
|
+
(0.842317, 0.365537, 0.329472),
|
|
1717
|
+
(0.95828, 0.579307, 0.0811509),
|
|
1718
|
+
)
|
|
1719
|
+
)
|
|
1720
|
+
|
|
1721
|
+
|
|
1722
|
+
def get_color_data(i: int) -> np.ndarray:
|
|
1723
|
+
assert i >= 0 and i < len(_color_data), "i must be between 0 and %d" % len(
|
|
1724
|
+
_color_data
|
|
1725
|
+
)
|
|
1726
|
+
return _color_data[i]
|