fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from abc import abstractmethod
|
|
3
|
+
from typing import List, Mapping, Union # noqa: F401
|
|
4
|
+
|
|
5
|
+
import lightning as L
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
from omegaconf import DictConfig
|
|
10
|
+
from torch import Tensor
|
|
11
|
+
from torch.utils.data import DataLoader
|
|
12
|
+
from tqdm.autonotebook import tqdm
|
|
13
|
+
|
|
14
|
+
from fusion_bench.compat.method import ModelFusionAlgorithm
|
|
15
|
+
from fusion_bench.compat.modelpool import ModelPool
|
|
16
|
+
from fusion_bench.models.wrappers.task_wise_fusion import (
|
|
17
|
+
TaskWiseMergedModel,
|
|
18
|
+
get_task_wise_weights,
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
log = logging.getLogger(__name__)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def entropy_loss(logits: Tensor) -> Tensor:
|
|
25
|
+
"""
|
|
26
|
+
Compute the entropy loss of a set of logits.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
logits (Tensor): The logits to compute the entropy loss of.
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
Tensor: The entropy loss of the logits.
|
|
33
|
+
"""
|
|
34
|
+
probs = torch.softmax(logits, dim=-1)
|
|
35
|
+
return -torch.sum(probs * torch.log(probs + 1e-8), dim=-1).mean()
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class TaskWiseAdaMergingAlgorithm(ModelFusionAlgorithm):
|
|
39
|
+
_fabric: L.Fabric = None
|
|
40
|
+
|
|
41
|
+
def __init__(self, algorithm_config: DictConfig):
|
|
42
|
+
super().__init__(algorithm_config)
|
|
43
|
+
|
|
44
|
+
if self._fabric is None and torch.cuda.is_available():
|
|
45
|
+
self._fabric = L.Fabric(devices=self.config.get("devices", 1))
|
|
46
|
+
self._fabric.launch()
|
|
47
|
+
|
|
48
|
+
@torch.no_grad()
|
|
49
|
+
def construct_task_wise_merged_model(self, modelpool: ModelPool):
|
|
50
|
+
if self.config.weights is None:
|
|
51
|
+
task_wise_weight = get_task_wise_weights(
|
|
52
|
+
num_models=len(modelpool.model_names),
|
|
53
|
+
init_values=self.config.init_values,
|
|
54
|
+
)
|
|
55
|
+
else:
|
|
56
|
+
if isinstance(self.config.weights, str):
|
|
57
|
+
# self.config.weights is a path to a .np or .pt file
|
|
58
|
+
if self.config.weights.endswith(".pt"):
|
|
59
|
+
task_wise_weight = torch.load(
|
|
60
|
+
self.config.weights, map_location="cpu"
|
|
61
|
+
).detach_()
|
|
62
|
+
elif self.config.weights.endswith(".np"):
|
|
63
|
+
task_wise_weight = torch.from_numpy(
|
|
64
|
+
np.load(self.config.weights)
|
|
65
|
+
).detach_()
|
|
66
|
+
else:
|
|
67
|
+
raise ValueError(f"Unsupported file format: {self.config.weights}")
|
|
68
|
+
else:
|
|
69
|
+
try:
|
|
70
|
+
task_wise_weight = torch.tensor(
|
|
71
|
+
list(self.config.weights), dtype=torch.float32
|
|
72
|
+
)
|
|
73
|
+
except ValueError:
|
|
74
|
+
raise ValueError(
|
|
75
|
+
f"Unsupported weights format: {self.config.weights}"
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
pretrained_model = modelpool.load_model("_pretrained_")
|
|
79
|
+
finetuned_models = [
|
|
80
|
+
modelpool.load_model(name) for name in modelpool.model_names
|
|
81
|
+
]
|
|
82
|
+
|
|
83
|
+
module = TaskWiseMergedModel(
|
|
84
|
+
task_wise_weight=task_wise_weight,
|
|
85
|
+
pretrained_model=pretrained_model,
|
|
86
|
+
finetuned_models=finetuned_models,
|
|
87
|
+
clamp_weights=self.config.clamp_weights,
|
|
88
|
+
tie_weights=self.config.tie_weights,
|
|
89
|
+
strict=self.config.strict,
|
|
90
|
+
)
|
|
91
|
+
return module
|
|
92
|
+
|
|
93
|
+
def run(self, modelpool: ModelPool):
|
|
94
|
+
log.info("Fusing models using task-wise adaptive merging.")
|
|
95
|
+
self.modelpool = modelpool
|
|
96
|
+
|
|
97
|
+
module = self.construct_task_wise_merged_model(modelpool)
|
|
98
|
+
|
|
99
|
+
if self.config.weights is not None:
|
|
100
|
+
# skip the test-time adaptation
|
|
101
|
+
return module.merge_and_unload()
|
|
102
|
+
else:
|
|
103
|
+
module = self.test_time_adaptation(module)
|
|
104
|
+
if self.config.get("save_merging_weights", False):
|
|
105
|
+
torch.save(module.merge_weight, self.config.save_merging_weights)
|
|
106
|
+
return module.merge_and_unload()
|
|
107
|
+
|
|
108
|
+
def on_test_time_adaptation_start(self):
|
|
109
|
+
pass
|
|
110
|
+
|
|
111
|
+
@abstractmethod
|
|
112
|
+
def get_shuffled_test_loader_iter(self, task: str) -> DataLoader:
|
|
113
|
+
pass
|
|
114
|
+
|
|
115
|
+
@abstractmethod
|
|
116
|
+
def compute_logits(self, module: nn.Module, batch, task: str) -> Tensor:
|
|
117
|
+
"""
|
|
118
|
+
Compute the logits for the given batch and task.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
module (nn.Module): The model module.
|
|
122
|
+
batch (tuple): A batch of input data.
|
|
123
|
+
task (str): The name of the task.
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
Tensor: The classification logits for the batch.
|
|
127
|
+
"""
|
|
128
|
+
pass
|
|
129
|
+
|
|
130
|
+
def test_time_adaptation(self, module: TaskWiseMergedModel):
|
|
131
|
+
self.on_test_time_adaptation_start()
|
|
132
|
+
|
|
133
|
+
# configure optimizer
|
|
134
|
+
if self.config.optimizer == "adam":
|
|
135
|
+
optimizer = torch.optim.Adam([module.merge_weight], lr=self.config.lr)
|
|
136
|
+
else:
|
|
137
|
+
raise ValueError(f"Unsupported optimizer: {self.config.optimizer}")
|
|
138
|
+
|
|
139
|
+
if self._fabric is not None:
|
|
140
|
+
module, optimizer = self._fabric.setup(module, optimizer)
|
|
141
|
+
|
|
142
|
+
module.train()
|
|
143
|
+
module.merge_weights()
|
|
144
|
+
|
|
145
|
+
if self.config.get("fast_dev_run", False):
|
|
146
|
+
log.info("Running fast_dev_run, only one step")
|
|
147
|
+
pbar = tqdm(
|
|
148
|
+
range(1),
|
|
149
|
+
"AdaMerging Test-time adaptation",
|
|
150
|
+
dynamic_ncols=True,
|
|
151
|
+
)
|
|
152
|
+
else:
|
|
153
|
+
pbar = tqdm(
|
|
154
|
+
range(self.config.max_steps),
|
|
155
|
+
"AdaMerging Test-time adaptation",
|
|
156
|
+
dynamic_ncols=True,
|
|
157
|
+
)
|
|
158
|
+
for step_idx in pbar:
|
|
159
|
+
for task in self.modelpool.model_names:
|
|
160
|
+
batch = next(self.get_shuffled_test_loader_iter(task))
|
|
161
|
+
logits = self.compute_logits(module, batch, task)
|
|
162
|
+
assert (
|
|
163
|
+
logits.dim() == 2
|
|
164
|
+
), f"Expected logits to be 2D, got {logits.dim()}"
|
|
165
|
+
loss = entropy_loss(logits)
|
|
166
|
+
# .backward() accumulates when .zero_grad() wasn't called
|
|
167
|
+
# this can save memory
|
|
168
|
+
self._fabric.backward(loss, retain_graph=True)
|
|
169
|
+
|
|
170
|
+
optimizer.step()
|
|
171
|
+
optimizer.zero_grad()
|
|
172
|
+
module.merge_weights()
|
|
173
|
+
|
|
174
|
+
return module
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def get_memory_usage(desc):
|
|
5
|
+
"""
|
|
6
|
+
obtain the current GPU memory usage
|
|
7
|
+
|
|
8
|
+
Returns:
|
|
9
|
+
str: A string containing the allocated and cached memory in MB.
|
|
10
|
+
"""
|
|
11
|
+
allocated = torch.cuda.memory_allocated() / 1024**2 # 转换为 MB
|
|
12
|
+
cached = torch.cuda.memory_reserved() / 1024**2 # 转换为 MB
|
|
13
|
+
return (
|
|
14
|
+
f"{desc}\nAllocated Memory: {allocated:.2f} MB\nCached Memory: {cached:.2f} MB"
|
|
15
|
+
)
|
|
@@ -0,0 +1,172 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
from typing import Dict, List, Optional, cast
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import torch
|
|
8
|
+
import torch.utils
|
|
9
|
+
from numpy.typing import NDArray
|
|
10
|
+
from torch import nn
|
|
11
|
+
from tqdm.auto import tqdm
|
|
12
|
+
|
|
13
|
+
from fusion_bench.method import BaseAlgorithm
|
|
14
|
+
from fusion_bench.mixins import LightningFabricMixin
|
|
15
|
+
from fusion_bench.modelpool import BaseModelPool
|
|
16
|
+
from fusion_bench.utils.parameters import (
|
|
17
|
+
StateDictType,
|
|
18
|
+
state_dict_to_vector,
|
|
19
|
+
trainable_state_dict,
|
|
20
|
+
)
|
|
21
|
+
from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
|
|
22
|
+
|
|
23
|
+
log = logging.getLogger(__name__)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class TaskVectorCosSimilarity(BaseAlgorithm, LightningFabricMixin):
|
|
27
|
+
"""
|
|
28
|
+
This class is similar to the Dummy algorithm,
|
|
29
|
+
but it also print (or save) the cosine similarity matrix between the task vectors of the models in the model pool.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
33
|
+
"plot_heatmap": "plot_heatmap",
|
|
34
|
+
"_output_path": "output_path",
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
def __init__(
|
|
38
|
+
self,
|
|
39
|
+
plot_heatmap: bool,
|
|
40
|
+
trainable_only: bool = True,
|
|
41
|
+
max_points_per_model: Optional[int] = None,
|
|
42
|
+
output_path: Optional[str] = None,
|
|
43
|
+
**kwargs,
|
|
44
|
+
):
|
|
45
|
+
self.plot_heatmap = plot_heatmap
|
|
46
|
+
self.trainable_only = trainable_only
|
|
47
|
+
self.max_points_per_model = max_points_per_model
|
|
48
|
+
self._output_path = output_path
|
|
49
|
+
super().__init__(**kwargs)
|
|
50
|
+
|
|
51
|
+
@property
|
|
52
|
+
def output_path(self):
|
|
53
|
+
if self._output_path is None:
|
|
54
|
+
return self.fabric.logger.log_dir
|
|
55
|
+
else:
|
|
56
|
+
return self._output_path
|
|
57
|
+
|
|
58
|
+
@torch.no_grad()
|
|
59
|
+
def run(self, modelpool: BaseModelPool):
|
|
60
|
+
pretrained_model = modelpool.load_pretrained_model()
|
|
61
|
+
|
|
62
|
+
task_vectors = []
|
|
63
|
+
for name, finetuned_model in tqdm(
|
|
64
|
+
modelpool.named_models(), total=len(modelpool)
|
|
65
|
+
):
|
|
66
|
+
print(f"computing task vectors for {name}")
|
|
67
|
+
task_vectors.append(
|
|
68
|
+
self.get_task_vector(pretrained_model, finetuned_model).to(
|
|
69
|
+
torch.float64
|
|
70
|
+
)
|
|
71
|
+
)
|
|
72
|
+
task_vectors = torch.stack(task_vectors, dim=0)
|
|
73
|
+
|
|
74
|
+
cos_sim_matrix = torch.zeros(
|
|
75
|
+
len(modelpool), len(modelpool), dtype=torch.float64
|
|
76
|
+
)
|
|
77
|
+
for i in range(len(modelpool)):
|
|
78
|
+
for j in range(i, len(modelpool)):
|
|
79
|
+
assert task_vectors[i].size() == task_vectors[j].size()
|
|
80
|
+
cos_sim_matrix[i, j] = torch.nn.functional.cosine_similarity(
|
|
81
|
+
task_vectors[i], task_vectors[j], dim=0
|
|
82
|
+
)
|
|
83
|
+
cos_sim_matrix[j, i] = cos_sim_matrix[i, j]
|
|
84
|
+
|
|
85
|
+
# convert the matrix to a pandas DataFrame
|
|
86
|
+
cos_sim_df = pd.DataFrame(
|
|
87
|
+
cos_sim_matrix.numpy(),
|
|
88
|
+
index=modelpool.model_names,
|
|
89
|
+
columns=modelpool.model_names,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
print(cos_sim_df)
|
|
93
|
+
if self.output_path is not None:
|
|
94
|
+
os.makedirs(self.output_path, exist_ok=True)
|
|
95
|
+
cos_sim_df.to_csv(
|
|
96
|
+
os.path.join(self.output_path, "task_vector_cos_similarity.csv")
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
if self.plot_heatmap:
|
|
100
|
+
self._plot_heatmap(cos_sim_df)
|
|
101
|
+
|
|
102
|
+
return pretrained_model
|
|
103
|
+
|
|
104
|
+
def _plot_heatmap(self, data: pd.DataFrame):
|
|
105
|
+
"""
|
|
106
|
+
This function plots a heatmap of the provided data using seaborn.
|
|
107
|
+
|
|
108
|
+
Args:
|
|
109
|
+
data (pd.DataFrame): A pandas DataFrame containing the data to be plotted.
|
|
110
|
+
figsize (tuple): A tuple specifying the size of the figure. Default is (4, 3).
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
None
|
|
114
|
+
"""
|
|
115
|
+
import matplotlib.pyplot as plt
|
|
116
|
+
import seaborn as sns
|
|
117
|
+
|
|
118
|
+
# Create a heatmap using seaborn
|
|
119
|
+
plt.figure()
|
|
120
|
+
sns.heatmap(
|
|
121
|
+
data,
|
|
122
|
+
annot=True,
|
|
123
|
+
fmt=".2f",
|
|
124
|
+
cmap="GnBu",
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# Add title and labels with increased font size
|
|
128
|
+
plt.title("Heatmap of Cos Similarities", fontsize=14)
|
|
129
|
+
# plt.xlabel("Task", fontsize=14)
|
|
130
|
+
# plt.ylabel("Task", fontsize=14)
|
|
131
|
+
plt.xticks(rotation=45)
|
|
132
|
+
plt.yticks(rotation=45)
|
|
133
|
+
|
|
134
|
+
# Show plot
|
|
135
|
+
plt.savefig(
|
|
136
|
+
os.path.join(self.output_path, "task_vector_cos_similarity.pdf"),
|
|
137
|
+
bbox_inches="tight",
|
|
138
|
+
)
|
|
139
|
+
plt.close()
|
|
140
|
+
|
|
141
|
+
def get_task_vector(
|
|
142
|
+
self, pretrained_model: nn.Module, finetuned_model: nn.Module
|
|
143
|
+
) -> torch.Tensor:
|
|
144
|
+
task_vector = state_dict_sub(
|
|
145
|
+
self.get_state_dict(finetuned_model),
|
|
146
|
+
self.get_state_dict(pretrained_model),
|
|
147
|
+
)
|
|
148
|
+
task_vector = state_dict_to_vector(task_vector)
|
|
149
|
+
|
|
150
|
+
task_vector = task_vector.cpu().float().numpy()
|
|
151
|
+
# downsample if necessary
|
|
152
|
+
if (
|
|
153
|
+
self.max_points_per_model is not None
|
|
154
|
+
and self.max_points_per_model > 0
|
|
155
|
+
and task_vector.shape[0] > self.max_points_per_model
|
|
156
|
+
):
|
|
157
|
+
log.info(
|
|
158
|
+
f"Downsampling task vectors to {self.max_points_per_model} points."
|
|
159
|
+
)
|
|
160
|
+
indices = np.random.choice(
|
|
161
|
+
task_vector.shape[0], self.max_points_per_model, replace=False
|
|
162
|
+
)
|
|
163
|
+
task_vector = task_vector[indices].copy()
|
|
164
|
+
|
|
165
|
+
task_vector = torch.from_numpy(task_vector)
|
|
166
|
+
return task_vector
|
|
167
|
+
|
|
168
|
+
def get_state_dict(self, model: nn.Module):
|
|
169
|
+
if self.trainable_only:
|
|
170
|
+
return trainable_state_dict(model)
|
|
171
|
+
else:
|
|
172
|
+
return model.state_dict()
|
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
from typing import Dict, List, Optional, cast
|
|
4
|
+
|
|
5
|
+
import matplotlib as mpl
|
|
6
|
+
import matplotlib.pyplot as plt
|
|
7
|
+
import numpy as np
|
|
8
|
+
import seaborn as sns
|
|
9
|
+
import torch
|
|
10
|
+
from numpy.typing import NDArray
|
|
11
|
+
from torch import nn
|
|
12
|
+
from tqdm.auto import tqdm
|
|
13
|
+
|
|
14
|
+
from fusion_bench import BaseAlgorithm, BaseModelPool
|
|
15
|
+
from fusion_bench.mixins import LightningFabricMixin, SimpleProfilerMixin
|
|
16
|
+
from fusion_bench.utils import timeit_context
|
|
17
|
+
from fusion_bench.utils.parameters import (
|
|
18
|
+
StateDictType,
|
|
19
|
+
state_dict_to_vector,
|
|
20
|
+
trainable_state_dict,
|
|
21
|
+
)
|
|
22
|
+
from fusion_bench.utils.state_dict_arithmetic import state_dict_sub
|
|
23
|
+
|
|
24
|
+
log = logging.getLogger(__name__)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class TaskVectorViolinPlot(BaseAlgorithm, LightningFabricMixin, SimpleProfilerMixin):
|
|
28
|
+
R"""
|
|
29
|
+
Plot violin plots of task vectors as in:
|
|
30
|
+
[L.Shen, A.Tang, E.Yang et al. Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging](https://arxiv.org/abs/2410.21804)
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
# config_mapping is a mapping from the attributes to the key in the configuration files
|
|
34
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
35
|
+
"trainable_only": "trainable_only",
|
|
36
|
+
"max_points_per_model": "max_points_per_model",
|
|
37
|
+
"fig_kwargs": "fig_kwargs",
|
|
38
|
+
"_output_path": "output_path",
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
trainable_only: bool,
|
|
44
|
+
max_points_per_model: Optional[int] = 1000,
|
|
45
|
+
fig_kwawrgs=None,
|
|
46
|
+
output_path: Optional[str] = None,
|
|
47
|
+
**kwargs,
|
|
48
|
+
):
|
|
49
|
+
R"""
|
|
50
|
+
This class creates violin plots to visualize task vectors, which represent the differences
|
|
51
|
+
between fine-tuned models and their pretrained base model.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
trainable_only (bool): If True, only consider trainable parameters when computing
|
|
55
|
+
task vectors. If False, use all parameters.
|
|
56
|
+
fig_kwargs (dict, optional): Dictionary of keyword arguments to pass to
|
|
57
|
+
`matplotlib.pyplot.subplots`. Common options include:
|
|
58
|
+
- figsize: Tuple of (width, height) in inches
|
|
59
|
+
- dpi: Dots per inch
|
|
60
|
+
- facecolor: Figure background color
|
|
61
|
+
Defaults to None.
|
|
62
|
+
output_path (str, optional): Path where the violin plot will be saved. If None,
|
|
63
|
+
uses the fabric logger's log directory. Defaults to None.
|
|
64
|
+
kwargs: Additional keyword arguments passed to the parent class(es).
|
|
65
|
+
|
|
66
|
+
Example:
|
|
67
|
+
|
|
68
|
+
```python
|
|
69
|
+
plotter = TaskVectorViolinPlot(
|
|
70
|
+
trainable_only=True,
|
|
71
|
+
fig_kwargs={'figsize': (10, 6), 'dpi': 300},
|
|
72
|
+
output_path='./plots'
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
plotter.run(modelpool)
|
|
76
|
+
```
|
|
77
|
+
"""
|
|
78
|
+
self.trainable_only = trainable_only
|
|
79
|
+
self.fig_kwargs = fig_kwawrgs
|
|
80
|
+
self.max_points_per_model = max_points_per_model
|
|
81
|
+
self._output_path = output_path
|
|
82
|
+
super().__init__(**kwargs)
|
|
83
|
+
|
|
84
|
+
@property
|
|
85
|
+
def output_path(self):
|
|
86
|
+
if self._output_path is None:
|
|
87
|
+
return self.fabric.logger.log_dir
|
|
88
|
+
else:
|
|
89
|
+
return self._output_path
|
|
90
|
+
|
|
91
|
+
def run(self, modelpool: BaseModelPool):
|
|
92
|
+
"""Create violin plots of task vectors comparing different fine-tuned models against a pretrained model.
|
|
93
|
+
|
|
94
|
+
This method implements the visualization technique from the paper "Efficient and Effective
|
|
95
|
+
Weight-Ensembling Mixture of Experts for Multi-Task Model Merging". It:
|
|
96
|
+
|
|
97
|
+
1. Loads the pretrained model
|
|
98
|
+
2. Computes task vectors (differences between fine-tuned and pretrained models)
|
|
99
|
+
3. Creates violin plots showing the distribution of values in these task vectors
|
|
100
|
+
|
|
101
|
+
Args:
|
|
102
|
+
modelpool (BaseModelPool): Model pool containing the pretrained model and fine-tuned models
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
pretrained_model (nn.Model): The plot is saved to the specified output path.
|
|
106
|
+
"""
|
|
107
|
+
assert modelpool.has_pretrained
|
|
108
|
+
pretrained_model = modelpool.load_pretrained_model()
|
|
109
|
+
|
|
110
|
+
# Compute task vectors for each fine-tuned model
|
|
111
|
+
with torch.no_grad(), timeit_context("Computing task vectors"):
|
|
112
|
+
task_vectors: Dict[str, NDArray] = {}
|
|
113
|
+
for name, finetuned_model in tqdm(
|
|
114
|
+
modelpool.named_models(), total=len(modelpool)
|
|
115
|
+
):
|
|
116
|
+
print(f"computing task vectors for {name}")
|
|
117
|
+
task_vectors[name] = self.get_task_vector(
|
|
118
|
+
pretrained_model, finetuned_model
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
# === Create violin plot ===
|
|
122
|
+
fig, ax = plt.subplots(
|
|
123
|
+
1, 1, **self.fig_kwargs if self.fig_kwargs is not None else {}
|
|
124
|
+
)
|
|
125
|
+
fig = cast(plt.Figure, fig)
|
|
126
|
+
ax = cast(plt.Axes, ax)
|
|
127
|
+
|
|
128
|
+
# Prepare data for plotting
|
|
129
|
+
data = [values for values in task_vectors.values()]
|
|
130
|
+
labels = list(task_vectors.keys())
|
|
131
|
+
|
|
132
|
+
# Create violin plot using seaborn
|
|
133
|
+
with timeit_context("ploting"):
|
|
134
|
+
sns.violinplot(data=data, ax=ax)
|
|
135
|
+
|
|
136
|
+
# Customize plot
|
|
137
|
+
ax.set_xticklabels(labels, rotation=45, ha="right")
|
|
138
|
+
ax.set_ylabel("Task Vector Values")
|
|
139
|
+
ax.set_title("Distribution of Task Vector Values")
|
|
140
|
+
|
|
141
|
+
# Adjust layout to prevent label cutoff and save plot
|
|
142
|
+
plt.tight_layout()
|
|
143
|
+
os.makedirs(self.output_path, exist_ok=True)
|
|
144
|
+
output_file = f"{self.output_path}/task_vector_violin.pdf"
|
|
145
|
+
plt.savefig(output_file, bbox_inches="tight")
|
|
146
|
+
plt.close(fig)
|
|
147
|
+
|
|
148
|
+
# === Create violin plot (Abs values) ===
|
|
149
|
+
fig, ax = plt.subplots(
|
|
150
|
+
1, 1, **self.fig_kwargs if self.fig_kwargs is not None else {}
|
|
151
|
+
)
|
|
152
|
+
fig = cast(plt.Figure, fig)
|
|
153
|
+
ax = cast(plt.Axes, ax)
|
|
154
|
+
|
|
155
|
+
# Prepare data for plotting
|
|
156
|
+
data = [np.abs(values) for values in task_vectors.values()]
|
|
157
|
+
labels = list(task_vectors.keys())
|
|
158
|
+
|
|
159
|
+
# Create violin plot using seaborn
|
|
160
|
+
with timeit_context("ploting abs value plot"):
|
|
161
|
+
sns.violinplot(data=data, ax=ax)
|
|
162
|
+
|
|
163
|
+
# Customize plot
|
|
164
|
+
ax.set_xticklabels(labels, rotation=45, ha="right")
|
|
165
|
+
ax.set_ylabel("The Absolute Values")
|
|
166
|
+
ax.set_title("Distribution of Task Vector Absolute Values")
|
|
167
|
+
|
|
168
|
+
# Adjust layout to prevent label cutoff and save plot
|
|
169
|
+
plt.tight_layout()
|
|
170
|
+
os.makedirs(self.output_path, exist_ok=True)
|
|
171
|
+
output_file = f"{self.output_path}/task_vector_violin_abs.pdf"
|
|
172
|
+
plt.savefig(output_file, bbox_inches="tight")
|
|
173
|
+
plt.close(fig)
|
|
174
|
+
|
|
175
|
+
return pretrained_model
|
|
176
|
+
|
|
177
|
+
def get_task_vector(self, pretrained_model, finetuned_model):
|
|
178
|
+
task_vector = state_dict_sub(
|
|
179
|
+
self.get_state_dict(finetuned_model),
|
|
180
|
+
self.get_state_dict(pretrained_model),
|
|
181
|
+
)
|
|
182
|
+
task_vector = state_dict_to_vector(task_vector)
|
|
183
|
+
|
|
184
|
+
task_vector = task_vector.cpu().float().numpy()
|
|
185
|
+
# downsample if necessary
|
|
186
|
+
if (
|
|
187
|
+
self.max_points_per_model is not None
|
|
188
|
+
and self.max_points_per_model > 0
|
|
189
|
+
and task_vector.shape[0] > self.max_points_per_model
|
|
190
|
+
):
|
|
191
|
+
log.info(
|
|
192
|
+
f"Downsampling task vectors to {self.max_points_per_model} points."
|
|
193
|
+
)
|
|
194
|
+
indices = np.random.choice(
|
|
195
|
+
task_vector.shape[0], self.max_points_per_model, replace=False
|
|
196
|
+
)
|
|
197
|
+
task_vector = task_vector[indices].copy()
|
|
198
|
+
|
|
199
|
+
return task_vector
|
|
200
|
+
|
|
201
|
+
def get_state_dict(self, model: nn.Module):
|
|
202
|
+
if self.trainable_only:
|
|
203
|
+
return trainable_state_dict(model)
|
|
204
|
+
else:
|
|
205
|
+
return model.state_dict()
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from abc import abstractmethod
|
|
3
|
+
from typing import Optional # noqa: F401
|
|
4
|
+
|
|
5
|
+
from fusion_bench.mixins import BaseYAMLSerializableModel
|
|
6
|
+
from fusion_bench.modelpool import BaseModelPool
|
|
7
|
+
|
|
8
|
+
__all__ = ["BaseAlgorithm", "BaseModelFusionAlgorithm"]
|
|
9
|
+
|
|
10
|
+
log = logging.getLogger(__name__)
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class BaseAlgorithm(BaseYAMLSerializableModel):
|
|
14
|
+
"""
|
|
15
|
+
Base class for model fusion algorithms.
|
|
16
|
+
|
|
17
|
+
This class provides a template for implementing model fusion algorithms.
|
|
18
|
+
Subclasses must implement the `run` method to define the fusion logic.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
_program = None
|
|
22
|
+
|
|
23
|
+
@abstractmethod
|
|
24
|
+
def run(self, modelpool: BaseModelPool):
|
|
25
|
+
"""
|
|
26
|
+
Fuse the models in the given model pool.
|
|
27
|
+
|
|
28
|
+
This method must be implemented by subclasses to define the fusion logic.
|
|
29
|
+
|
|
30
|
+
Examples:
|
|
31
|
+
>>> algorithm = SimpleAverageAlgorithm()
|
|
32
|
+
>>> modelpool = ModelPool()
|
|
33
|
+
>>> merged_model = algorithm.run(modelpool)
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
modelpool (BaseModelPool): The pool of models to fuse.
|
|
37
|
+
"""
|
|
38
|
+
pass
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
BaseModelFusionAlgorithm = BaseAlgorithm
|
|
42
|
+
"""
|
|
43
|
+
Alias for `BaseAlgorithm`.
|
|
44
|
+
"""
|