fusion-bench 0.2.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (727) hide show
  1. fusion_bench/__init__.py +20 -0
  2. fusion_bench/__main__.py +4 -0
  3. fusion_bench/compat/__init__.py +0 -0
  4. fusion_bench/compat/method/__init__.py +109 -0
  5. fusion_bench/compat/method/base_algorithm.py +58 -0
  6. fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
  7. fusion_bench/compat/modelpool/__init__.py +116 -0
  8. fusion_bench/compat/modelpool/base_pool.py +328 -0
  9. fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
  10. fusion_bench/compat/taskpool/__init__.py +95 -0
  11. fusion_bench/compat/taskpool/base_pool.py +111 -0
  12. fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
  13. fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
  14. fusion_bench/constants/__init__.py +2 -0
  15. fusion_bench/constants/paths.py +18 -0
  16. fusion_bench/dataset/__init__.py +29 -0
  17. fusion_bench/dataset/arc_agi/__init__.py +6 -0
  18. fusion_bench/dataset/arc_agi/arc.py +308 -0
  19. fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
  20. fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
  21. fusion_bench/dataset/arc_agi/messagers.py +1355 -0
  22. fusion_bench/dataset/arc_agi/np_cache.py +168 -0
  23. fusion_bench/dataset/arc_agi/preprocess.py +298 -0
  24. fusion_bench/dataset/arc_agi/representers.py +1019 -0
  25. fusion_bench/dataset/clip_dataset.py +71 -0
  26. fusion_bench/dataset/fer2013.py +12 -0
  27. fusion_bench/dataset/gpt2_glue.py +300 -0
  28. fusion_bench/dataset/gsm8k.py +60 -0
  29. fusion_bench/dataset/image_dataset.py +55 -0
  30. fusion_bench/dataset/imdb.py +11 -0
  31. fusion_bench/dataset/llama/__init__.py +1 -0
  32. fusion_bench/dataset/llama/alpaca.py +232 -0
  33. fusion_bench/dataset/llama/collate.py +120 -0
  34. fusion_bench/dataset/llama/metamathqa.py +50 -0
  35. fusion_bench/dataset/llama/openai.py +160 -0
  36. fusion_bench/dataset/llama/preference_700k.py +70 -0
  37. fusion_bench/dataset/llama/sharegpt.py +141 -0
  38. fusion_bench/dataset/llama/squad.py +125 -0
  39. fusion_bench/dataset/llama/stanford_shp.py +90 -0
  40. fusion_bench/dataset/llama/ultrachat.py +58 -0
  41. fusion_bench/dataset/llama/utils/__init__.py +0 -0
  42. fusion_bench/dataset/llama/wikitext.py +89 -0
  43. fusion_bench/dataset/nyuv2.py +119 -0
  44. fusion_bench/method/__init__.py +177 -0
  45. fusion_bench/method/ada_svd/__init__.py +2 -0
  46. fusion_bench/method/ada_svd/clip_vision.py +319 -0
  47. fusion_bench/method/adamerging/__init__.py +6 -0
  48. fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
  49. fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
  50. fusion_bench/method/adamerging/entropy_loss.py +25 -0
  51. fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
  52. fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
  53. fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
  54. fusion_bench/method/adamerging/llama_adamerging.py +335 -0
  55. fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
  56. fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
  57. fusion_bench/method/adamerging/utils.py +15 -0
  58. fusion_bench/method/analysis/__init__.py +2 -0
  59. fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
  60. fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
  61. fusion_bench/method/base_algorithm.py +44 -0
  62. fusion_bench/method/classification/__init__.py +3 -0
  63. fusion_bench/method/classification/clip_finetune.py +444 -0
  64. fusion_bench/method/classification/continual_clip_finetune.py +297 -0
  65. fusion_bench/method/concrete_subspace/__init__.py +6 -0
  66. fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
  67. fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
  68. fusion_bench/method/dare/__init__.py +4 -0
  69. fusion_bench/method/dare/simple_average.py +31 -0
  70. fusion_bench/method/dare/task_arithmetic.py +82 -0
  71. fusion_bench/method/dare/ties_merging.py +100 -0
  72. fusion_bench/method/dare/utils.py +87 -0
  73. fusion_bench/method/dawe/__init__.py +2 -0
  74. fusion_bench/method/dawe/dawe_for_clip.py +274 -0
  75. fusion_bench/method/dawe/warppers/__init__.py +13 -0
  76. fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
  77. fusion_bench/method/depth_upscaling/__init__.py +3 -0
  78. fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
  79. fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
  80. fusion_bench/method/dummy.py +35 -0
  81. fusion_bench/method/ensemble.py +98 -0
  82. fusion_bench/method/fisher_merging/__init__.py +4 -0
  83. fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
  84. fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
  85. fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
  86. fusion_bench/method/linear/__init__.py +6 -0
  87. fusion_bench/method/linear/expo.py +118 -0
  88. fusion_bench/method/linear/linear_interpolation.py +60 -0
  89. fusion_bench/method/linear/llama_expo.py +229 -0
  90. fusion_bench/method/linear/simple_average_for_llama.py +54 -0
  91. fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
  92. fusion_bench/method/lm_finetune/__init__.py +3 -0
  93. fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
  94. fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
  95. fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
  96. fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
  97. fusion_bench/method/mixture_of_experts/__init__.py +7 -0
  98. fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
  99. fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
  100. fusion_bench/method/model_recombination.py +121 -0
  101. fusion_bench/method/opcm/__init__.py +4 -0
  102. fusion_bench/method/opcm/opcm.py +277 -0
  103. fusion_bench/method/opcm/task_arithmetic.py +115 -0
  104. fusion_bench/method/opcm/ties_merging.py +156 -0
  105. fusion_bench/method/opcm/utils.py +73 -0
  106. fusion_bench/method/opcm/weight_average.py +120 -0
  107. fusion_bench/method/pruning/__init__.py +5 -0
  108. fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
  109. fusion_bench/method/pruning/llama_random_prune.py +143 -0
  110. fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
  111. fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
  112. fusion_bench/method/pruning/prune_utils.py +165 -0
  113. fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
  114. fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
  115. fusion_bench/method/pruning/wanda_utils/data.py +135 -0
  116. fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
  117. fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
  118. fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
  119. fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
  120. fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
  121. fusion_bench/method/pwe_moe/__init__.py +5 -0
  122. fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
  123. fusion_bench/method/pwe_moe/module.py +316 -0
  124. fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
  125. fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
  126. fusion_bench/method/pwe_moe/utils.py +43 -0
  127. fusion_bench/method/rankone_moe/__init__.py +3 -0
  128. fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
  129. fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
  130. fusion_bench/method/regmean/__init__.py +4 -0
  131. fusion_bench/method/regmean/clip_regmean.py +131 -0
  132. fusion_bench/method/regmean/gpt2_regmean.py +147 -0
  133. fusion_bench/method/regmean/regmean.py +375 -0
  134. fusion_bench/method/simple_average.py +112 -0
  135. fusion_bench/method/slerp/__init__.py +2 -0
  136. fusion_bench/method/slerp/slerp.py +101 -0
  137. fusion_bench/method/slerp/slerp_utils.py +107 -0
  138. fusion_bench/method/smile_upscaling/__init__.py +3 -0
  139. fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
  140. fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
  141. fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
  142. fusion_bench/method/sparse_we_moe/__init__.py +2 -0
  143. fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
  144. fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
  145. fusion_bench/method/sparselo/__init__.py +2 -0
  146. fusion_bench/method/sparselo/sparselo.py +955 -0
  147. fusion_bench/method/surgery/__init__.py +1 -0
  148. fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
  149. fusion_bench/method/tall_mask/__init__.py +0 -0
  150. fusion_bench/method/tall_mask/utils.py +234 -0
  151. fusion_bench/method/task_arithmetic/__init__.py +2 -0
  152. fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
  153. fusion_bench/method/task_singular_vector/TSVC.py +16 -0
  154. fusion_bench/method/task_singular_vector/TSVM.py +63 -0
  155. fusion_bench/method/task_singular_vector/__init__.py +9 -0
  156. fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
  157. fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
  158. fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
  159. fusion_bench/method/ties_merging/__init__.py +2 -0
  160. fusion_bench/method/ties_merging/ties_merging.py +117 -0
  161. fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
  162. fusion_bench/method/trust_region/__init__.py +2 -0
  163. fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
  164. fusion_bench/method/trust_region/utils.py +58 -0
  165. fusion_bench/method/we_moe/__init__.py +2 -0
  166. fusion_bench/method/we_moe/clip_we_moe.py +161 -0
  167. fusion_bench/method/we_moe/we_moe.py +247 -0
  168. fusion_bench/method/weighted_average/__init__.py +3 -0
  169. fusion_bench/method/weighted_average/llama.py +113 -0
  170. fusion_bench/method/weighted_average/weighted_average.py +102 -0
  171. fusion_bench/metrics/__init__.py +0 -0
  172. fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
  173. fusion_bench/metrics/nyuv2/__init__.py +11 -0
  174. fusion_bench/metrics/nyuv2/depth.py +45 -0
  175. fusion_bench/metrics/nyuv2/loss.py +31 -0
  176. fusion_bench/metrics/nyuv2/noise.py +16 -0
  177. fusion_bench/metrics/nyuv2/normal.py +48 -0
  178. fusion_bench/metrics/nyuv2/segmentation.py +43 -0
  179. fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
  180. fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
  181. fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
  182. fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
  183. fusion_bench/mixins/__init__.py +28 -0
  184. fusion_bench/mixins/clip_classification.py +252 -0
  185. fusion_bench/mixins/fabric_training.py +320 -0
  186. fusion_bench/mixins/lightning_fabric.py +174 -0
  187. fusion_bench/mixins/optim/__init__.py +0 -0
  188. fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
  189. fusion_bench/mixins/rich_live.py +21 -0
  190. fusion_bench/mixins/serialization.py +132 -0
  191. fusion_bench/mixins/simple_profiler.py +79 -0
  192. fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
  193. fusion_bench/modelpool/__init__.py +42 -0
  194. fusion_bench/modelpool/base_pool.py +268 -0
  195. fusion_bench/modelpool/causal_lm/__init__.py +2 -0
  196. fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
  197. fusion_bench/modelpool/clip_vision/__init__.py +1 -0
  198. fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
  199. fusion_bench/modelpool/huggingface_automodel.py +20 -0
  200. fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
  201. fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
  202. fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
  203. fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
  204. fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
  205. fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
  206. fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
  207. fusion_bench/models/__init__.py +3 -0
  208. fusion_bench/models/chat_templates/__init__.py +1 -0
  209. fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
  210. fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
  211. fusion_bench/models/hf_clip.py +199 -0
  212. fusion_bench/models/linearized/__init__.py +0 -0
  213. fusion_bench/models/linearized/linearized_model_utils.py +91 -0
  214. fusion_bench/models/linearized/vision_model.py +122 -0
  215. fusion_bench/models/llama/__init__.py +16 -0
  216. fusion_bench/models/llama/model_utils/__init__.py +0 -0
  217. fusion_bench/models/llama/model_utils/embedding.py +87 -0
  218. fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
  219. fusion_bench/models/llama/model_utils/misc.py +112 -0
  220. fusion_bench/models/llama/model_utils/mod.py +52 -0
  221. fusion_bench/models/llama/model_utils/visual.py +241 -0
  222. fusion_bench/models/llama/patcher.py +78 -0
  223. fusion_bench/models/llama/tokenizer_loader.py +153 -0
  224. fusion_bench/models/masks/__init__.py +2 -0
  225. fusion_bench/models/masks/mask_model.py +160 -0
  226. fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
  227. fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
  228. fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
  229. fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
  230. fusion_bench/models/modeling_losparse_llama/register.py +8 -0
  231. fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
  232. fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
  233. fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
  234. fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
  235. fusion_bench/models/modeling_smile_mistral/register.py +8 -0
  236. fusion_bench/models/nyuv2/__init__.py +0 -0
  237. fusion_bench/models/nyuv2/aspp.py +82 -0
  238. fusion_bench/models/nyuv2/lightning_module.py +176 -0
  239. fusion_bench/models/nyuv2/resnet.py +405 -0
  240. fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
  241. fusion_bench/models/parameter_dict.py +75 -0
  242. fusion_bench/models/rankone_moe.py +410 -0
  243. fusion_bench/models/separate_io.py +105 -0
  244. fusion_bench/models/smile_moe/__init__.py +0 -0
  245. fusion_bench/models/smile_moe/linear.py +256 -0
  246. fusion_bench/models/sparse_we_moe.py +459 -0
  247. fusion_bench/models/surgery/__init__.py +1 -0
  248. fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
  249. fusion_bench/models/utils.py +80 -0
  250. fusion_bench/models/we_moe.py +247 -0
  251. fusion_bench/models/wrappers/__init__.py +0 -0
  252. fusion_bench/models/wrappers/ensemble.py +183 -0
  253. fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
  254. fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
  255. fusion_bench/optim/__init__.py +2 -0
  256. fusion_bench/optim/exception.py +47 -0
  257. fusion_bench/optim/lr_scheduler/__init__.py +1 -0
  258. fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
  259. fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
  260. fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
  261. fusion_bench/optim/mezo.py +118 -0
  262. fusion_bench/programs/__init__.py +20 -0
  263. fusion_bench/programs/base_program.py +9 -0
  264. fusion_bench/programs/fabric_fusion_program.py +299 -0
  265. fusion_bench/scripts/__init__.py +0 -0
  266. fusion_bench/scripts/cli.py +43 -0
  267. fusion_bench/scripts/clip/__init__.py +0 -0
  268. fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
  269. fusion_bench/scripts/imgui.py +218 -0
  270. fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
  271. fusion_bench/scripts/webui.py +405 -0
  272. fusion_bench/taskpool/__init__.py +39 -0
  273. fusion_bench/taskpool/base_pool.py +35 -0
  274. fusion_bench/taskpool/clip_vision/__init__.py +4 -0
  275. fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
  276. fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
  277. fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
  278. fusion_bench/taskpool/dummy.py +58 -0
  279. fusion_bench/taskpool/gpt2_text_classification.py +149 -0
  280. fusion_bench/taskpool/llama/__init__.py +1 -0
  281. fusion_bench/taskpool/llama/reward_model.py +157 -0
  282. fusion_bench/taskpool/llama/test_generation.py +185 -0
  283. fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
  284. fusion_bench/tasks/__init__.py +2 -0
  285. fusion_bench/tasks/base_task.py +18 -0
  286. fusion_bench/tasks/classification.py +75 -0
  287. fusion_bench/tasks/clip_classification/__init__.py +183 -0
  288. fusion_bench/tasks/clip_classification/cifar10.py +33 -0
  289. fusion_bench/tasks/clip_classification/cifar100.py +146 -0
  290. fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
  291. fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
  292. fusion_bench/tasks/clip_classification/dtd.py +60 -0
  293. fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
  294. fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
  295. fusion_bench/tasks/clip_classification/eurosat.py +18 -0
  296. fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
  297. fusion_bench/tasks/clip_classification/fer2013.py +18 -0
  298. fusion_bench/tasks/clip_classification/flower102.py +106 -0
  299. fusion_bench/tasks/clip_classification/food101.py +105 -0
  300. fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
  301. fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
  302. fusion_bench/tasks/clip_classification/kmnist.py +17 -0
  303. fusion_bench/tasks/clip_classification/mnist.py +5 -0
  304. fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
  305. fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
  306. fusion_bench/tasks/clip_classification/pcam.py +5 -0
  307. fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
  308. fusion_bench/tasks/clip_classification/resisc45.py +68 -0
  309. fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
  310. fusion_bench/tasks/clip_classification/stl10.py +17 -0
  311. fusion_bench/tasks/clip_classification/sun397.py +404 -0
  312. fusion_bench/tasks/clip_classification/svhn.py +5 -0
  313. fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
  314. fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
  315. fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
  316. fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
  317. fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
  318. fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
  319. fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
  320. fusion_bench/utils/__init__.py +14 -0
  321. fusion_bench/utils/auto.py +31 -0
  322. fusion_bench/utils/cache_utils.py +58 -0
  323. fusion_bench/utils/data.py +165 -0
  324. fusion_bench/utils/devices.py +231 -0
  325. fusion_bench/utils/dict.py +43 -0
  326. fusion_bench/utils/dtype.py +146 -0
  327. fusion_bench/utils/expr.py +90 -0
  328. fusion_bench/utils/fabric.py +17 -0
  329. fusion_bench/utils/functools.py +37 -0
  330. fusion_bench/utils/hydra_utils.py +28 -0
  331. fusion_bench/utils/instantiate.py +450 -0
  332. fusion_bench/utils/json.py +93 -0
  333. fusion_bench/utils/lazy_imports.py +74 -0
  334. fusion_bench/utils/misc.py +18 -0
  335. fusion_bench/utils/packages.py +84 -0
  336. fusion_bench/utils/parameters.py +323 -0
  337. fusion_bench/utils/path.py +22 -0
  338. fusion_bench/utils/plot/__init__.py +0 -0
  339. fusion_bench/utils/plot/color_data.py +1726 -0
  340. fusion_bench/utils/plot/token.py +52 -0
  341. fusion_bench/utils/plot/token_notebook.py +127 -0
  342. fusion_bench/utils/pylogger.py +55 -0
  343. fusion_bench/utils/rich_utils.py +201 -0
  344. fusion_bench/utils/set.py +8 -0
  345. fusion_bench/utils/state_dict_arithmetic.py +297 -0
  346. fusion_bench/utils/strenum/__init__.py +326 -0
  347. fusion_bench/utils/strenum/_name_mangler.py +127 -0
  348. fusion_bench/utils/strenum/_version.py +556 -0
  349. fusion_bench/utils/tensorboard.py +51 -0
  350. fusion_bench/utils/timer.py +49 -0
  351. fusion_bench/utils/type.py +34 -0
  352. fusion_bench-0.2.9.dist-info/LICENSE +21 -0
  353. fusion_bench-0.2.9.dist-info/METADATA +258 -0
  354. fusion_bench-0.2.9.dist-info/RECORD +727 -0
  355. fusion_bench-0.2.9.dist-info/WHEEL +5 -0
  356. fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
  357. fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
  358. fusion_bench_config/README.md +12 -0
  359. fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
  360. fusion_bench_config/dataset/image_classification/README.md +6 -0
  361. fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
  362. fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
  363. fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
  364. fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
  365. fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
  366. fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
  367. fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
  368. fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
  369. fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
  370. fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
  371. fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
  372. fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
  373. fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
  374. fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
  375. fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
  376. fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
  377. fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
  378. fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
  379. fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
  380. fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
  381. fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
  382. fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
  383. fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
  384. fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
  385. fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
  386. fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
  387. fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
  388. fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
  389. fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
  390. fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
  391. fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
  392. fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
  393. fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
  394. fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
  395. fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
  396. fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
  397. fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
  398. fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
  399. fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
  400. fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
  401. fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
  402. fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
  403. fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
  404. fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
  405. fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
  406. fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
  407. fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
  408. fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
  409. fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
  410. fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
  411. fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
  412. fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
  413. fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
  414. fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
  415. fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
  416. fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
  417. fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
  418. fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
  419. fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
  420. fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
  421. fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
  422. fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
  423. fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
  424. fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
  425. fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
  426. fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
  427. fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
  428. fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
  429. fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
  430. fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
  431. fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
  432. fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
  433. fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
  434. fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
  435. fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
  436. fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
  437. fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
  438. fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
  439. fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
  440. fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
  441. fusion_bench_config/fabric/auto.yaml +16 -0
  442. fusion_bench_config/fabric/llama_ddp.yaml +18 -0
  443. fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
  444. fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
  445. fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
  446. fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
  447. fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
  448. fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
  449. fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
  450. fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
  451. fusion_bench_config/fabric_model_fusion.yaml +20 -0
  452. fusion_bench_config/hydra/default.yaml +8 -0
  453. fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
  454. fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
  455. fusion_bench_config/llama_full_finetune.yaml +19 -0
  456. fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
  457. fusion_bench_config/llama_model_fusion.yaml +17 -0
  458. fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
  459. fusion_bench_config/method/adamerging/clip.yaml +23 -0
  460. fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
  461. fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
  462. fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
  463. fusion_bench_config/method/adamerging.yaml +23 -0
  464. fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
  465. fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
  466. fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
  467. fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
  468. fusion_bench_config/method/clip_finetune.yaml +26 -0
  469. fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
  470. fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
  471. fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
  472. fusion_bench_config/method/dare/simple_average.yaml +5 -0
  473. fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
  474. fusion_bench_config/method/dare/ties_merging.yaml +15 -0
  475. fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
  476. fusion_bench_config/method/depth_upscaling.yaml +5 -0
  477. fusion_bench_config/method/dummy.yaml +1 -0
  478. fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
  479. fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
  480. fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
  481. fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
  482. fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
  483. fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
  484. fusion_bench_config/method/linear/expo.yaml +8 -0
  485. fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
  486. fusion_bench_config/method/linear/llama_expo.yaml +19 -0
  487. fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
  488. fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
  489. fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
  490. fusion_bench_config/method/linear/weighted_average.yaml +6 -0
  491. fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
  492. fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
  493. fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
  494. fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
  495. fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
  496. fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
  497. fusion_bench_config/method/model_recombination.yaml +4 -0
  498. fusion_bench_config/method/opcm/opcm.yaml +12 -0
  499. fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
  500. fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
  501. fusion_bench_config/method/opcm/weight_average.yaml +10 -0
  502. fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
  503. fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
  504. fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
  505. fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
  506. fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
  507. fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
  508. fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
  509. fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
  510. fusion_bench_config/method/regmean/regmean.yaml +4 -0
  511. fusion_bench_config/method/simple_average.yaml +1 -0
  512. fusion_bench_config/method/slerp/slerp.yaml +6 -0
  513. fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
  514. fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
  515. fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
  516. fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
  517. fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
  518. fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
  519. fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
  520. fusion_bench_config/method/task_arithmetic.yaml +2 -0
  521. fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
  522. fusion_bench_config/method/ties_merging.yaml +8 -0
  523. fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
  524. fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
  525. fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
  526. fusion_bench_config/model/clip-vit/README.md +38 -0
  527. fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
  528. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
  529. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
  530. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
  531. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
  532. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
  533. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
  534. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
  535. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
  536. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
  537. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
  538. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
  539. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
  540. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
  541. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
  542. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
  543. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
  544. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
  545. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
  546. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
  547. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
  548. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
  549. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
  550. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
  551. fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
  552. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
  553. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
  554. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
  555. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
  556. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
  557. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
  558. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
  559. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
  560. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
  561. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
  562. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
  563. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
  564. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
  565. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
  566. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
  567. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
  568. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
  569. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
  570. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
  571. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
  572. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
  573. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
  574. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
  575. fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
  576. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
  577. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
  578. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
  579. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
  580. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
  581. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
  582. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
  583. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
  584. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
  585. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
  586. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
  587. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
  588. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
  589. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
  590. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
  591. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
  592. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
  593. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
  594. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
  595. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
  596. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
  597. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
  598. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
  599. fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
  600. fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
  601. fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
  602. fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
  603. fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
  604. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
  605. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
  606. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
  607. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
  608. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
  609. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
  610. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
  611. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
  612. fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
  613. fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
  614. fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
  615. fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
  616. fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
  617. fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
  618. fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
  619. fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
  620. fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
  621. fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
  622. fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
  623. fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
  624. fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
  625. fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
  626. fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
  627. fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
  628. fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
  629. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
  630. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
  631. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
  632. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
  633. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
  634. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
  635. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
  636. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
  637. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
  638. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
  639. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
  640. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
  641. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
  642. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
  643. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
  644. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
  645. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
  646. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
  647. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
  648. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
  649. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
  650. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
  651. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
  652. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
  653. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
  654. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
  655. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
  656. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
  657. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
  658. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
  659. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
  660. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
  661. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
  662. fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
  663. fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
  664. fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
  665. fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
  666. fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
  667. fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
  668. fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
  669. fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
  670. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
  671. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
  672. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
  673. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
  674. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
  675. fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
  676. fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
  677. fusion_bench_config/modelpool/automodelpool.yaml +12 -0
  678. fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
  679. fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
  680. fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
  681. fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
  682. fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
  683. fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
  684. fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
  685. fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
  686. fusion_bench_config/nyuv2_config.yaml +17 -0
  687. fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
  688. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
  689. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
  690. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
  691. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
  692. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
  693. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
  694. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
  695. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
  696. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
  697. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
  698. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
  699. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
  700. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
  701. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
  702. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
  703. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
  704. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
  705. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
  706. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
  707. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
  708. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
  709. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
  710. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
  711. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
  712. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
  713. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
  714. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
  715. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
  716. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
  717. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
  718. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
  719. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
  720. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
  721. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
  722. fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
  723. fusion_bench_config/taskpool/dummy.yaml +2 -0
  724. fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
  725. fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
  726. fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
  727. fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
@@ -0,0 +1,268 @@
1
+ import logging
2
+ from copy import deepcopy
3
+ from typing import Dict, List, Optional, Union
4
+
5
+ import torch
6
+ from omegaconf import DictConfig
7
+ from torch import nn
8
+ from torch.utils.data import Dataset
9
+
10
+ from fusion_bench.mixins import BaseYAMLSerializableModel
11
+ from fusion_bench.utils import instantiate, timeit_context
12
+
13
+ __all__ = ["BaseModelPool"]
14
+
15
+ log = logging.getLogger(__name__)
16
+
17
+
18
+ class BaseModelPool(BaseYAMLSerializableModel):
19
+ """
20
+ A class for managing and interacting with a pool of models along with their associated datasets or other specifications. For example, a model pool may contain multiple models, each with its own training, validation, and testing datasets. As for the specifications, a vision model pool may contain image preprocessor, and a language model pool may contain a tokenizer.
21
+
22
+ Attributes:
23
+ _models (DictConfig): Configuration for all models in the pool.
24
+ _train_datasets (Optional[DictConfig]): Configuration for training datasets.
25
+ _val_datasets (Optional[DictConfig]): Configuration for validation datasets.
26
+ _test_datasets (Optional[DictConfig]): Configuration for testing datasets.
27
+ _usage_ (Optional[str]): Optional usage information.
28
+ _version_ (Optional[str]): Optional version information.
29
+ """
30
+
31
+ _program = None
32
+ _models: Union[DictConfig, Dict[str, nn.Module]]
33
+ _config_mapping = BaseYAMLSerializableModel._config_mapping | {
34
+ "_models": "models",
35
+ "_train_datasets": "train_datasets",
36
+ "_val_datasets": "val_datasets",
37
+ "_test_datasets": "test_datasets",
38
+ }
39
+
40
+ def __init__(
41
+ self,
42
+ models: Union[DictConfig, Dict[str, nn.Module], List[nn.Module]],
43
+ *,
44
+ train_datasets: Optional[DictConfig] = None,
45
+ val_datasets: Optional[DictConfig] = None,
46
+ test_datasets: Optional[DictConfig] = None,
47
+ **kwargs,
48
+ ):
49
+ if isinstance(models, List):
50
+ models = {str(model_idx): model for model_idx, model in enumerate(models)}
51
+ self._models = models
52
+ self._train_datasets = train_datasets
53
+ self._val_datasets = val_datasets
54
+ self._test_datasets = test_datasets
55
+ super().__init__(**kwargs)
56
+
57
+ @property
58
+ def has_pretrained(self):
59
+ """
60
+ Check if the model pool contains a pretrained model.
61
+
62
+ Returns:
63
+ bool: True if a pretrained model is available, False otherwise.
64
+ """
65
+ return "_pretrained_" in self._models
66
+
67
+ @property
68
+ def all_model_names(self) -> List[str]:
69
+ """
70
+ Get the names of all models in the pool, including special models.
71
+
72
+ Returns:
73
+ List[str]: A list of all model names.
74
+ """
75
+ return [name for name in self._models]
76
+
77
+ @property
78
+ def model_names(self) -> List[str]:
79
+ """
80
+ Get the names of regular models, excluding special models.
81
+
82
+ Returns:
83
+ List[str]: A list of regular model names.
84
+ """
85
+ return [name for name in self._models if not self.is_special_model(name)]
86
+
87
+ @property
88
+ def train_dataset_names(self) -> List[str]:
89
+ """
90
+ Get the names of training datasets.
91
+
92
+ Returns:
93
+ List[str]: A list of training dataset names.
94
+ """
95
+ return (
96
+ list(self._train_datasets.keys())
97
+ if self._train_datasets is not None
98
+ else []
99
+ )
100
+
101
+ @property
102
+ def val_dataset_names(self) -> List[str]:
103
+ """
104
+ Get the names of validation datasets.
105
+
106
+ Returns:
107
+ List[str]: A list of validation dataset names.
108
+ """
109
+ return list(self._val_datasets.keys()) if self._val_datasets is not None else []
110
+
111
+ @property
112
+ def test_dataset_names(self) -> List[str]:
113
+ """
114
+ Get the names of testing datasets.
115
+
116
+ Returns:
117
+ List[str]: A list of testing dataset names.
118
+ """
119
+ return (
120
+ list(self._test_datasets.keys()) if self._test_datasets is not None else []
121
+ )
122
+
123
+ def __len__(self):
124
+ return len(self.model_names)
125
+
126
+ @staticmethod
127
+ def is_special_model(model_name: str):
128
+ """
129
+ Determine if a model is special based on its name.
130
+
131
+ Args:
132
+ model_name (str): The name of the model.
133
+
134
+ Returns:
135
+ bool: True if the model name indicates a special model, False otherwise.
136
+ """
137
+ return model_name.startswith("_") and model_name.endswith("_")
138
+
139
+ def get_model_config(self, model_name: str, return_copy: bool = True) -> DictConfig:
140
+ """
141
+ Get the configuration for the specified model.
142
+
143
+ Args:
144
+ model_name (str): The name of the model.
145
+
146
+ Returns:
147
+ DictConfig: The configuration for the specified model.
148
+ """
149
+ model_config = self._models[model_name]
150
+ if return_copy:
151
+ model_config = deepcopy(model_config)
152
+ return model_config
153
+
154
+ def load_model(
155
+ self, model_name_or_config: Union[str, DictConfig], *args, **kwargs
156
+ ) -> nn.Module:
157
+ """
158
+ Load a model from the pool based on the provided configuration.
159
+
160
+ Args:
161
+ model (Union[str, DictConfig]): The model name or configuration.
162
+
163
+ Returns:
164
+ nn.Module: The instantiated model.
165
+ """
166
+ log.debug(f"Loading model: {model_name_or_config}", stacklevel=2)
167
+ if isinstance(self._models, DictConfig):
168
+ model_config = (
169
+ self._models[model_name_or_config]
170
+ if isinstance(model_name_or_config, str)
171
+ else model_name_or_config
172
+ )
173
+ model = instantiate(model_config, *args, **kwargs)
174
+ elif isinstance(self._models, Dict) and isinstance(model_name_or_config, str):
175
+ model = self._models[model_name_or_config]
176
+ else:
177
+ raise ValueError(
178
+ "The model pool configuration is not in the expected format."
179
+ f"We expected a DictConfig or Dict, but got {type(self._models)}."
180
+ )
181
+ return model
182
+
183
+ def load_pretrained_model(self, *args, **kwargs):
184
+ assert (
185
+ self.has_pretrained
186
+ ), "No pretrained model available. Check `_pretrained_` is in the `models` key."
187
+ model = self.load_model("_pretrained_", *args, **kwargs)
188
+ return model
189
+
190
+ def load_pretrained_or_first_model(self, *args, **kwargs):
191
+ """
192
+ Load the pretrained model if available, otherwise load the first available model.
193
+
194
+ Returns:
195
+ nn.Module: The loaded model.
196
+ """
197
+ if self.has_pretrained:
198
+ model = self.load_model("_pretrained_", *args, **kwargs)
199
+ else:
200
+ model = self.load_model(self.model_names[0], *args, **kwargs)
201
+ return model
202
+
203
+ def models(self):
204
+ for model_name in self.model_names:
205
+ yield self.load_model(model_name)
206
+
207
+ def named_models(self):
208
+ for model_name in self.model_names:
209
+ yield model_name, self.load_model(model_name)
210
+
211
+ def load_train_dataset(self, dataset_name: str, *args, **kwargs) -> Dataset:
212
+ """
213
+ Load the training dataset for the specified model.
214
+
215
+ Args:
216
+ dataset_name (str): The name of the model.
217
+
218
+ Returns:
219
+ Dataset: The instantiated training dataset.
220
+ """
221
+ return instantiate(self._train_datasets[dataset_name], *args, **kwargs)
222
+
223
+ def train_datasets(self):
224
+ for dataset_name in self.train_dataset_names:
225
+ yield self.load_train_dataset(dataset_name)
226
+
227
+ def load_val_dataset(self, dataset_name: str, *args, **kwargs) -> Dataset:
228
+ """
229
+ Load the validation dataset for the specified model.
230
+
231
+ Args:
232
+ dataset_name (str): The name of the model.
233
+
234
+ Returns:
235
+ Dataset: The instantiated validation dataset.
236
+ """
237
+ return instantiate(self._val_datasets[dataset_name], *args, **kwargs)
238
+
239
+ def val_datasets(self):
240
+ for dataset_name in self.val_dataset_names:
241
+ yield self.load_val_dataset(dataset_name)
242
+
243
+ def load_test_dataset(self, dataset_name: str, *args, **kwargs) -> Dataset:
244
+ """
245
+ Load the testing dataset for the specified model.
246
+
247
+ Args:
248
+ dataset_name (str): The name of the model.
249
+
250
+ Returns:
251
+ Dataset: The instantiated testing dataset.
252
+ """
253
+ return instantiate(self._test_datasets[dataset_name], *args, **kwargs)
254
+
255
+ def test_datasets(self):
256
+ for dataset_name in self.test_dataset_names:
257
+ yield self.load_test_dataset(dataset_name)
258
+
259
+ def save_model(self, model: nn.Module, path: str):
260
+ """
261
+ Save the state dictionary of the model to the specified path.
262
+
263
+ Args:
264
+ model (nn.Module): The model whose state dictionary is to be saved.
265
+ path (str): The path where the state dictionary will be saved.
266
+ """
267
+ with timeit_context(f"Saving the state dict of model to {path}"):
268
+ torch.save(model.state_dict(), path)
@@ -0,0 +1,2 @@
1
+ # flake8: noqa F401
2
+ from .causal_lm import CausalLMBackbonePool, CausalLMPool, load_peft_causal_lm
@@ -0,0 +1,139 @@
1
+ import logging
2
+ import os
3
+ from copy import deepcopy
4
+ from typing import Any, Optional, TypeAlias, Union, cast # noqa: F401
5
+
6
+ import peft
7
+ from omegaconf import DictConfig, flag_override
8
+ from torch import nn
9
+ from torch.nn.modules import Module
10
+ from transformers import (
11
+ LlamaForCausalLM,
12
+ MistralForCausalLM,
13
+ PreTrainedModel,
14
+ PreTrainedTokenizer,
15
+ )
16
+ from typing_extensions import override
17
+
18
+ from fusion_bench.modelpool import BaseModelPool
19
+ from fusion_bench.utils import instantiate
20
+ from fusion_bench.utils.dtype import parse_dtype
21
+
22
+ log = logging.getLogger(__name__)
23
+
24
+ CausalLM: TypeAlias = Union[LlamaForCausalLM, MistralForCausalLM, Any]
25
+
26
+
27
+ class CausalLMPool(BaseModelPool):
28
+ _config_mapping = BaseModelPool._config_mapping | {
29
+ "_tokenizer": "tokenizer",
30
+ "_model_kwargs": "model_kwargs",
31
+ }
32
+
33
+ def __init__(
34
+ self,
35
+ models,
36
+ *,
37
+ tokenizer: Optional[DictConfig],
38
+ model_kwargs: Optional[DictConfig] = None,
39
+ **kwargs,
40
+ ):
41
+ super().__init__(models, **kwargs)
42
+ # process `model_kwargs`
43
+ self._tokenizer = tokenizer
44
+ self._model_kwargs = model_kwargs
45
+ if self._model_kwargs is None:
46
+ self._model_kwargs = DictConfig({})
47
+ with flag_override(self._model_kwargs, "allow_objects", True):
48
+ if hasattr(self._model_kwargs, "torch_dtype"):
49
+ self._model_kwargs.torch_dtype = parse_dtype(
50
+ self._model_kwargs.torch_dtype
51
+ )
52
+
53
+ @override
54
+ def load_model(
55
+ self,
56
+ model_name_or_config: str | DictConfig,
57
+ *args,
58
+ **kwargs,
59
+ ) -> LlamaForCausalLM | MistralForCausalLM | nn.Module:
60
+ model_kwargs = deepcopy(self._model_kwargs)
61
+ model_kwargs.update(kwargs)
62
+ if isinstance(model_name_or_config, str):
63
+ log.info(f"Loading model: {model_name_or_config}", stacklevel=2)
64
+ return super().load_model(model_name_or_config, *args, **model_kwargs)
65
+
66
+ def load_tokenizer(self, *args, **kwargs) -> PreTrainedTokenizer:
67
+ assert self._tokenizer is not None, "Tokenizer is not defined in the config"
68
+ log.info("Loading tokenizer.", stacklevel=2)
69
+ tokenizer = instantiate(self._tokenizer, *args, **kwargs)
70
+ return tokenizer
71
+
72
+ @override
73
+ def save_model(
74
+ self,
75
+ model: PreTrainedModel,
76
+ path: str,
77
+ push_to_hub: bool = False,
78
+ model_dtype: Optional[str] = None,
79
+ save_tokenizer: bool = False,
80
+ tokenizer_kwargs=None,
81
+ **kwargs,
82
+ ):
83
+ """
84
+ Save the model to the specified path.
85
+
86
+ Args:
87
+ model (PreTrainedModel): The model to be saved.
88
+ path (str): The path where the model will be saved.
89
+ push_to_hub (bool, optional): Whether to push the model to the Hugging Face Hub. Defaults to False.
90
+ save_tokenizer (bool, optional): Whether to save the tokenizer along with the model. Defaults to False.
91
+ **kwargs: Additional keyword arguments passed to the `save_pretrained` method.
92
+ """
93
+ path = os.path.expanduser(path)
94
+ if save_tokenizer:
95
+ if tokenizer_kwargs is None:
96
+ tokenizer_kwargs = {}
97
+ # load the tokenizer
98
+ tokenizer = self.load_tokenizer(**tokenizer_kwargs)
99
+ tokenizer.save_pretrained(
100
+ path,
101
+ push_to_hub=push_to_hub,
102
+ )
103
+ if model_dtype is not None:
104
+ model.to(dtype=parse_dtype(model_dtype))
105
+ model.save_pretrained(
106
+ path,
107
+ push_to_hub=push_to_hub,
108
+ **kwargs,
109
+ )
110
+
111
+
112
+ class CausalLMBackbonePool(CausalLMPool):
113
+ def load_model(
114
+ self, model_name_or_config: str | DictConfig, *args, **kwargs
115
+ ) -> Module:
116
+ model: Union[MistralForCausalLM, LlamaForCausalLM, Any] = super().load_model(
117
+ model_name_or_config, *args, **kwargs
118
+ )
119
+ return model.model.layers
120
+
121
+
122
+ def load_peft_causal_lm(
123
+ base_model_path: str,
124
+ peft_model_path: str,
125
+ torch_dtype: str = "bfloat16",
126
+ is_trainable: bool = True,
127
+ merge_and_unload: bool = False,
128
+ ):
129
+ base_model = LlamaForCausalLM.from_pretrained(
130
+ base_model_path, torch_dtype=torch_dtype
131
+ )
132
+ model = peft.PeftModel.from_pretrained(
133
+ base_model,
134
+ peft_model_path,
135
+ is_trainable=is_trainable,
136
+ )
137
+ if merge_and_unload:
138
+ model = model.merge_and_unload()
139
+ return model
@@ -0,0 +1 @@
1
+ from .modelpool import CLIPVisionModelPool
@@ -0,0 +1,145 @@
1
+ import logging
2
+ from copy import deepcopy
3
+ from typing import Optional, Union
4
+
5
+ from datasets import load_dataset
6
+ from omegaconf import DictConfig, open_dict
7
+ from torch import nn
8
+ from torch.utils.data import Dataset
9
+ from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
10
+ from typing_extensions import override
11
+
12
+ from fusion_bench.utils import instantiate, timeit_context
13
+
14
+ from ..base_pool import BaseModelPool
15
+
16
+ log = logging.getLogger(__name__)
17
+
18
+
19
+ class CLIPVisionModelPool(BaseModelPool):
20
+ """
21
+ A model pool for managing Hugging Face's CLIP Vision models.
22
+
23
+ This class extends the base `ModelPool` class and overrides its methods to handle
24
+ the specifics of the CLIP Vision models provided by the Hugging Face Transformers library.
25
+ """
26
+
27
+ _config_mapping = BaseModelPool._config_mapping | {"_processor": "processor"}
28
+
29
+ def __init__(
30
+ self,
31
+ models: DictConfig,
32
+ *,
33
+ processor: Optional[DictConfig] = None,
34
+ **kwargs,
35
+ ):
36
+ super().__init__(models, **kwargs)
37
+
38
+ self._processor = processor
39
+
40
+ def load_processor(self, *args, **kwargs) -> CLIPProcessor:
41
+ assert self._processor is not None, "Processor is not defined in the config"
42
+ if isinstance(self._processor, str):
43
+ log.info(f"Loading `transformers.CLIPProcessor`: {self._processor}")
44
+ processor = CLIPProcessor.from_pretrained(self._processor)
45
+ else:
46
+ processor = instantiate(self._processor, *args, **kwargs)
47
+ return processor
48
+
49
+ def load_clip_model(self, model_name: str, *args, **kwargs) -> CLIPModel:
50
+ model_config = self._models[model_name]
51
+
52
+ if isinstance(model_config, str):
53
+ log.info(f"Loading `transformers.CLIPModel`: {model_config}")
54
+ clip_model = CLIPModel.from_pretrained(model_config, *args, **kwargs)
55
+ return clip_model
56
+ else:
57
+ assert isinstance(
58
+ model_config, DictConfig
59
+ ), "Model config must be a DictConfig"
60
+ model_config = deepcopy(model_config)
61
+ with open_dict(model_config):
62
+ model_config._target_ = "transformers.CLIPModel.from_pretrained"
63
+ clip_model = instantiate(model_config, *args, **kwargs)
64
+ return clip_model
65
+
66
+ @override
67
+ def save_model(self, model: CLIPVisionModel, path: str):
68
+ """
69
+ Save a CLIP Vision model to the given path.
70
+
71
+ Args:
72
+ model (CLIPVisionModel): The model to save.
73
+ path (str): The path to save the model to.
74
+ """
75
+ with timeit_context(f'Saving clip vision model to "{path}"'):
76
+ model.save_pretrained(path)
77
+
78
+ def load_model(
79
+ self, model_name_or_config: Union[str, DictConfig], *args, **kwargs
80
+ ) -> CLIPVisionModel:
81
+ """
82
+ This method is used to load a CLIPVisionModel from the model pool.
83
+
84
+ Example configuration could be:
85
+
86
+ ```yaml
87
+ models:
88
+ cifar10: tanganke/clip-vit-base-patch32_cifar10
89
+ sun397: tanganke/clip-vit-base-patch32_sun397
90
+ stanford-cars: tanganke/clip-vit-base-patch32_stanford-cars
91
+ ```
92
+
93
+ Args:
94
+ model_name_or_config (Union[str, DictConfig]): The name of the model or the model configuration.
95
+
96
+ Returns:
97
+ CLIPVisionModel: The loaded CLIPVisionModel.
98
+ """
99
+ if (
100
+ isinstance(model_name_or_config, str)
101
+ and model_name_or_config in self._models
102
+ ):
103
+ model = self._models[model_name_or_config]
104
+ if isinstance(model, str):
105
+ log.info(f"Loading `transformers.CLIPVisionModel`: {model}")
106
+ return CLIPVisionModel.from_pretrained(model, *args, **kwargs)
107
+ if isinstance(model, nn.Module):
108
+ log.info(f"Returning existing model: {model}")
109
+ return model
110
+
111
+ # If the model is not a string, we use the default load_model method
112
+ return super().load_model(model_name_or_config, *args, **kwargs)
113
+
114
+ def load_train_dataset(self, dataset_name: str, *args, **kwargs):
115
+ dataset_config = self._train_datasets[dataset_name]
116
+ if isinstance(dataset_config, str):
117
+ log.info(
118
+ f"Loading train dataset using `datasets.load_dataset`: {dataset_config}"
119
+ )
120
+ dataset = load_dataset(dataset_config, split="train")
121
+ else:
122
+ dataset = super().load_train_dataset(dataset_name, *args, **kwargs)
123
+ return dataset
124
+
125
+ def load_val_dataset(self, dataset_name: str, *args, **kwargs):
126
+ dataset_config = self._val_datasets[dataset_name]
127
+ if isinstance(dataset_config, str):
128
+ log.info(
129
+ f"Loading validation dataset using `datasets.load_dataset`: {dataset_config}"
130
+ )
131
+ dataset = load_dataset(dataset_config, split="validation")
132
+ else:
133
+ dataset = super().load_val_dataset(dataset_name, *args, **kwargs)
134
+ return dataset
135
+
136
+ def load_test_dataset(self, dataset_name: str, *args, **kwargs):
137
+ dataset_config = self._test_datasets[dataset_name]
138
+ if isinstance(dataset_config, str):
139
+ log.info(
140
+ f"Loading test dataset using `datasets.load_dataset`: {dataset_config}"
141
+ )
142
+ dataset = load_dataset(dataset_config, split="test")
143
+ else:
144
+ dataset = super().load_test_dataset(dataset_name, *args, **kwargs)
145
+ return dataset
@@ -0,0 +1,20 @@
1
+ import logging
2
+
3
+ from omegaconf import DictConfig
4
+ from torch.nn.modules import Module
5
+ from transformers import AutoModel
6
+
7
+ from fusion_bench.compat.modelpool import ModelPool
8
+
9
+ log = logging.getLogger(__name__)
10
+
11
+
12
+ class AutoModelPool(ModelPool):
13
+ def load_model(self, model_config: str | DictConfig) -> Module:
14
+ if isinstance(model_config, str):
15
+ model_config = self.get_model_config(model_config)
16
+ else:
17
+ model_config = model_config
18
+
19
+ model = AutoModel.from_pretrained(model_config.path)
20
+ return model
@@ -0,0 +1,63 @@
1
+ import functools
2
+ import logging
3
+ from typing import Optional
4
+
5
+ from omegaconf import DictConfig
6
+ from transformers import GPT2ForSequenceClassification, GPT2Tokenizer
7
+
8
+ from fusion_bench.dataset.gpt2_glue import TokenizedGLUE
9
+ from fusion_bench.modelpool import BaseModelPool
10
+ from fusion_bench.utils import instantiate
11
+
12
+ log = logging.getLogger(__name__)
13
+ tokenizer: GPT2Tokenizer = None
14
+
15
+
16
+ @functools.cache
17
+ def load_gpt2_dataset(name: str, split: Optional[str] = None):
18
+ global tokenizer
19
+ dataset = TokenizedGLUE(tokenizer=tokenizer).load_dataset(name)
20
+ if split is not None:
21
+ dataset = dataset[split]
22
+ return dataset
23
+
24
+
25
+ def load_gpt2_tokenizer(pretrained_model_name_or_path: str):
26
+ tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path)
27
+ tokenizer.model_max_length = 512
28
+ if tokenizer.pad_token is None:
29
+ if tokenizer.unk_token is not None:
30
+ tokenizer.pad_token = tokenizer.unk_token
31
+ elif tokenizer.eos_token is not None:
32
+ tokenizer.pad_token = tokenizer.eos_token
33
+ else:
34
+ raise ValueError
35
+ return tokenizer
36
+
37
+
38
+ class GPT2ForSequenceClassificationPool(BaseModelPool):
39
+ _config_mapping = BaseModelPool._config_mapping | {"_tokenizer": "tokenizer"}
40
+
41
+ def __init__(self, tokenizer: DictConfig, **kwargs):
42
+ self._tokenizer = tokenizer
43
+ super().__init__(**kwargs)
44
+ self.setup()
45
+
46
+ def setup(self):
47
+ global tokenizer
48
+ self.tokenizer = tokenizer = instantiate(self._tokenizer)
49
+
50
+ def load_classifier(
51
+ self, model_config: str | DictConfig
52
+ ) -> GPT2ForSequenceClassification:
53
+ if isinstance(model_config, str):
54
+ model_config = self.get_model_config(model_config, return_copy=True)
55
+ model_config._target_ = (
56
+ "transformers.GPT2ForSequenceClassification.from_pretrained"
57
+ )
58
+ model = instantiate(model_config)
59
+ return model
60
+
61
+
62
+ # For compatibility
63
+ HuggingFaceGPT2ClassificationPool = GPT2ForSequenceClassificationPool
@@ -0,0 +1,40 @@
1
+ import logging
2
+
3
+ import torch
4
+ from omegaconf import DictConfig
5
+ from torch import nn
6
+
7
+ from fusion_bench.compat.modelpool.base_pool import ModelPool
8
+ from fusion_bench.dataset.nyuv2 import NYUv2
9
+ from fusion_bench.models.nyuv2.aspp import DeepLabHead
10
+ from fusion_bench.models.nyuv2.lightning_module import NYUv2Model
11
+ from fusion_bench.models.nyuv2.resnet_dilated import ResnetDilated, resnet_dilated
12
+
13
+ log = logging.getLogger(__name__)
14
+
15
+
16
+ class NYUv2ModelPool(ModelPool):
17
+ def load_model(
18
+ self, model_config: str | DictConfig, encoder_only: bool = True
19
+ ) -> ResnetDilated | NYUv2Model:
20
+ if isinstance(model_config, str):
21
+ model_config = self.get_model_config(model_config)
22
+
23
+ encoder = resnet_dilated(model_config.encoder)
24
+ decoders = nn.ModuleDict(
25
+ {
26
+ task: DeepLabHead(2048, NYUv2.num_out_channels[task])
27
+ for task in model_config.decoders
28
+ }
29
+ )
30
+ model = NYUv2Model(encoder=encoder, decoders=decoders)
31
+ if model_config.get("ckpt_path", None) is not None:
32
+ ckpt = torch.load(model_config.ckpt_path, map_location="cpu")
33
+ if "state_dict" in ckpt:
34
+ ckpt = ckpt["state_dict"]
35
+ model.load_state_dict(ckpt, strict=False)
36
+
37
+ if encoder_only:
38
+ return model.encoder
39
+ else:
40
+ return model
@@ -0,0 +1,2 @@
1
+ # flake8: noqa F401
2
+ from .modelpool import Seq2SeqLMPool