fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,955 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import logging
|
|
3
|
+
from abc import abstractmethod
|
|
4
|
+
from copy import deepcopy
|
|
5
|
+
from typing import Dict, List, Literal, Optional, Tuple, Union, cast
|
|
6
|
+
|
|
7
|
+
import lightning as L
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
import torch.utils.hooks
|
|
11
|
+
from accelerate import init_empty_weights
|
|
12
|
+
from torch import Tensor, nn
|
|
13
|
+
from tqdm.auto import tqdm
|
|
14
|
+
from transformers import LlamaForCausalLM
|
|
15
|
+
from typing_extensions import override
|
|
16
|
+
|
|
17
|
+
from fusion_bench.method import BaseAlgorithm
|
|
18
|
+
from fusion_bench.method.pruning.llama_wanda_prune import WandaHookFn
|
|
19
|
+
from fusion_bench.method.pruning.prune_utils import (
|
|
20
|
+
PruningType,
|
|
21
|
+
compute_sparsity,
|
|
22
|
+
find_linear_layers,
|
|
23
|
+
semistructured_magnitude_prune_,
|
|
24
|
+
unstructured_magnitude_prune_,
|
|
25
|
+
)
|
|
26
|
+
from fusion_bench.method.pruning.wanda_utils.data import get_loaders
|
|
27
|
+
from fusion_bench.method.pruning.wanda_utils.prune import prepare_calibration_input
|
|
28
|
+
from fusion_bench.mixins import SimpleProfilerMixin
|
|
29
|
+
from fusion_bench.modelpool import CausalLMPool
|
|
30
|
+
from fusion_bench.models.modeling_losparse_llama import LoSparseLlamaForCausalLM
|
|
31
|
+
from fusion_bench.models.modeling_losparse_llama.losparse_linear import LoSparseLinear
|
|
32
|
+
from fusion_bench.models.modeling_losparse_llama.utils import convert_to_losparse_llama
|
|
33
|
+
from fusion_bench.utils import cache_to_disk, print_parameters, timeit_context
|
|
34
|
+
from fusion_bench.utils.devices import get_device
|
|
35
|
+
|
|
36
|
+
log = logging.getLogger(__name__)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@torch.no_grad()
|
|
40
|
+
def extract_low_rank_part_(linear: LoSparseLinear, rank: int):
|
|
41
|
+
assert isinstance(
|
|
42
|
+
linear, LoSparseLinear
|
|
43
|
+
), f"Expected LoSparseLinear, got {type(linear)}"
|
|
44
|
+
|
|
45
|
+
u, s, vh = cast(
|
|
46
|
+
Tuple[Tensor, Tensor, Tensor],
|
|
47
|
+
torch.linalg.svd(linear.weight.float(), full_matrices=False),
|
|
48
|
+
)
|
|
49
|
+
v = vh.T
|
|
50
|
+
uk = u[:, :rank]
|
|
51
|
+
sk = s[:rank]
|
|
52
|
+
vk = v[:, :rank]
|
|
53
|
+
linear.lo_A.data = vk.T.to(linear.lo_A.dtype).contiguous()
|
|
54
|
+
linear.lo_B.data = (uk * sk).to(linear.lo_B.dtype).contiguous()
|
|
55
|
+
linear.weight.data = (linear.weight - linear.lo_B @ linear.lo_A).contiguous()
|
|
56
|
+
return linear
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def iterative_weight_update(w, w_pruned, mask, rank):
|
|
60
|
+
w_diff = w - w_pruned
|
|
61
|
+
u, s, vh = torch.linalg.svd(w_diff.float(), full_matrices=False)
|
|
62
|
+
v = vh.t()
|
|
63
|
+
rank = min(s.size(0) - 1, rank)
|
|
64
|
+
uk = u[:, rank:]
|
|
65
|
+
sk = s[rank:]
|
|
66
|
+
vk = v[:, rank:]
|
|
67
|
+
w_pruned = w_pruned + (mask * (uk @ torch.diag(sk) @ vk.t())).to(w_pruned.dtype)
|
|
68
|
+
spectrum_ratio = torch.sum(s[:rank]) / torch.sum(s)
|
|
69
|
+
return (w_pruned, spectrum_ratio)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def pcp_loss_with_mask(w, q, mask):
|
|
73
|
+
_lambda = 1 / np.sqrt(np.max(w.size()))
|
|
74
|
+
nuclear_loss = torch.linalg.matrix_norm((w * (~mask) + q * mask).float(), ord="nuc")
|
|
75
|
+
l1_loss = _lambda * torch.linalg.matrix_norm((w * mask - q * mask).float(), ord=1)
|
|
76
|
+
return nuclear_loss + l1_loss
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def PCP_search_with_mask(w, mask, T_max=1000, lr=1e-2):
|
|
80
|
+
q = torch.zeros_like(w).float().requires_grad_(True)
|
|
81
|
+
optimizer = torch.optim.AdamW([q], lr=lr)
|
|
82
|
+
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
|
83
|
+
optimizer, T_max=T_max, eta_min=1e-1 * lr
|
|
84
|
+
)
|
|
85
|
+
for step_idx in tqdm(range(T_max)):
|
|
86
|
+
optimizer.zero_grad()
|
|
87
|
+
loss = pcp_loss_with_mask(w, q, mask)
|
|
88
|
+
loss.backward()
|
|
89
|
+
optimizer.step()
|
|
90
|
+
lr_scheduler.step()
|
|
91
|
+
if step_idx % (T_max // 20) == 0:
|
|
92
|
+
print(f"Step {step_idx}: Loss {loss.item()}")
|
|
93
|
+
s = (w * mask - q * mask).to(w.dtype)
|
|
94
|
+
return s
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
class SparseLoForLlama(BaseAlgorithm, SimpleProfilerMixin):
|
|
98
|
+
"Zero-Shot SVD Algorithm"
|
|
99
|
+
|
|
100
|
+
_variants_requires_calibration_data = ["wanda"]
|
|
101
|
+
_variants_hook_mapping = {"wanda": WandaHookFn}
|
|
102
|
+
|
|
103
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
104
|
+
"nsamples": "nsamples",
|
|
105
|
+
"seed": "seed",
|
|
106
|
+
"rank": "rank",
|
|
107
|
+
"sparsity_ratio": "sparsity_ratio",
|
|
108
|
+
"prune_type": "prune_type",
|
|
109
|
+
"n": "n",
|
|
110
|
+
"m": "m",
|
|
111
|
+
"device": "device",
|
|
112
|
+
"variant": "variant",
|
|
113
|
+
}
|
|
114
|
+
|
|
115
|
+
def __init__(
|
|
116
|
+
self,
|
|
117
|
+
*,
|
|
118
|
+
nsamples: int,
|
|
119
|
+
variant: Literal["dense", "random", "wanda", "lowrank-only", "magnitude"],
|
|
120
|
+
seed: int,
|
|
121
|
+
rank: int,
|
|
122
|
+
sparsity_ratio: float,
|
|
123
|
+
prune_type: PruningType,
|
|
124
|
+
n: int,
|
|
125
|
+
m: int,
|
|
126
|
+
device: Optional[str] = None,
|
|
127
|
+
model_save_path: Optional[str] = None,
|
|
128
|
+
**kwargs,
|
|
129
|
+
):
|
|
130
|
+
super().__init__(**kwargs)
|
|
131
|
+
self.nsamples = nsamples
|
|
132
|
+
self.variant = variant
|
|
133
|
+
self.seed = seed
|
|
134
|
+
self.rank = rank
|
|
135
|
+
self.sparsity_ratio = sparsity_ratio
|
|
136
|
+
self.prune_type = prune_type
|
|
137
|
+
self.device = device
|
|
138
|
+
self.model_save_path = model_save_path
|
|
139
|
+
self.n = n
|
|
140
|
+
self.m = m
|
|
141
|
+
|
|
142
|
+
@override
|
|
143
|
+
def run(self, modelpool: CausalLMPool):
|
|
144
|
+
if self.seed is not None:
|
|
145
|
+
L.seed_everything(self.seed)
|
|
146
|
+
|
|
147
|
+
# load pre-trained model or the first model in the pool
|
|
148
|
+
with self.profile("load_model"):
|
|
149
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
150
|
+
model.seqlen = model.config.max_position_embeddings
|
|
151
|
+
tokenizer = modelpool.load_tokenizer(use_fast=False)
|
|
152
|
+
|
|
153
|
+
if not isinstance(model, (LlamaForCausalLM,)):
|
|
154
|
+
log.warning(f"Model type {type(model)} may not supported.")
|
|
155
|
+
|
|
156
|
+
if self.variant in self._variants_requires_calibration_data:
|
|
157
|
+
inps, outs, attention_mask, position_ids = self.prepare_calibration_data(
|
|
158
|
+
model, tokenizer
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
model = convert_to_losparse_llama(model, rank=self.rank)
|
|
162
|
+
gc.collect()
|
|
163
|
+
if torch.cuda.is_available():
|
|
164
|
+
torch.cuda.empty_cache()
|
|
165
|
+
|
|
166
|
+
for linear in find_linear_layers(model, layers=[LoSparseLinear]).values():
|
|
167
|
+
linear = cast(LoSparseLinear, linear)
|
|
168
|
+
linear.lo_A.data.zero_()
|
|
169
|
+
linear.lo_B.data.zero_()
|
|
170
|
+
linear.skip_lowrank = True
|
|
171
|
+
|
|
172
|
+
match self.variant:
|
|
173
|
+
case "dense":
|
|
174
|
+
# this variant is a no-op, just for debug the conversion
|
|
175
|
+
pass
|
|
176
|
+
case "lowrank-only":
|
|
177
|
+
self.extract_low_rank_parts_(model)
|
|
178
|
+
self.set_weights_to_zeros_(model)
|
|
179
|
+
case "random":
|
|
180
|
+
self.random_prune_(model)
|
|
181
|
+
case "magnitude":
|
|
182
|
+
self.magnitude_prune_(model)
|
|
183
|
+
case variant if variant in self._variants_requires_calibration_data:
|
|
184
|
+
self.prune_using_calibration_data_(
|
|
185
|
+
model,
|
|
186
|
+
inps=inps,
|
|
187
|
+
outs=outs,
|
|
188
|
+
attention_mask=attention_mask,
|
|
189
|
+
position_ids=position_ids,
|
|
190
|
+
)
|
|
191
|
+
case _:
|
|
192
|
+
raise ValueError(f"Invalid variant: {self.variant}")
|
|
193
|
+
|
|
194
|
+
if self.model_save_path is not None:
|
|
195
|
+
with timeit_context(f"Saving the model to {self.model_save_path}"):
|
|
196
|
+
tokenizer.save_pretrained(self.model_save_path)
|
|
197
|
+
model.save_pretrained(self.model_save_path)
|
|
198
|
+
|
|
199
|
+
return model
|
|
200
|
+
|
|
201
|
+
def set_weights_to_zeros_(self, model):
|
|
202
|
+
layers: nn.ModuleList = model.model.layers
|
|
203
|
+
for layer in tqdm(
|
|
204
|
+
list(layers),
|
|
205
|
+
"Pruning Layers",
|
|
206
|
+
dynamic_ncols=True,
|
|
207
|
+
):
|
|
208
|
+
for name, losparse_linear in layer.named_modules():
|
|
209
|
+
if isinstance(losparse_linear, LoSparseLinear):
|
|
210
|
+
log.info(f"Pruning {name}, set weights to zeros")
|
|
211
|
+
losparse_linear.weight.data.zero_()
|
|
212
|
+
|
|
213
|
+
@torch.no_grad()
|
|
214
|
+
def extract_low_rank_parts_(self, model):
|
|
215
|
+
for layer in tqdm(
|
|
216
|
+
list(model.model.layers),
|
|
217
|
+
"Extract Low-Rank Parts (Layers)",
|
|
218
|
+
dynamic_ncols=True,
|
|
219
|
+
):
|
|
220
|
+
for losparse_linear in layer.modules():
|
|
221
|
+
if isinstance(losparse_linear, LoSparseLinear):
|
|
222
|
+
if self.device is not None:
|
|
223
|
+
original_device = get_device(losparse_linear)
|
|
224
|
+
losparse_linear.to(self.device)
|
|
225
|
+
extract_low_rank_part_(losparse_linear, self.rank)
|
|
226
|
+
if self.device is not None:
|
|
227
|
+
losparse_linear.to(original_device)
|
|
228
|
+
|
|
229
|
+
def _prepare_calibration_data(self, model, tokenizer):
|
|
230
|
+
with timeit_context("loading calibration data"):
|
|
231
|
+
dataloader, _ = get_loaders(
|
|
232
|
+
"c4",
|
|
233
|
+
nsamples=self.nsamples,
|
|
234
|
+
seed=self.seed,
|
|
235
|
+
seqlen=model.seqlen,
|
|
236
|
+
tokenizer=tokenizer,
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
with torch.no_grad():
|
|
240
|
+
# collect input to the first layer
|
|
241
|
+
inps, outs, attention_mask, position_ids = prepare_calibration_input(
|
|
242
|
+
model, dataloader, self.device
|
|
243
|
+
)
|
|
244
|
+
return inps, outs, attention_mask, position_ids
|
|
245
|
+
|
|
246
|
+
def prepare_calibration_data(self, model: LlamaForCausalLM, tokenizer):
|
|
247
|
+
|
|
248
|
+
@cache_to_disk(
|
|
249
|
+
f"outputs/cache/{model.config.name_or_path.split('/')[-1]}/calibration_data.pkl"
|
|
250
|
+
)
|
|
251
|
+
def _prepare_calibration_data(model, tokenizer):
|
|
252
|
+
return self._prepare_calibration_data(model, tokenizer)
|
|
253
|
+
|
|
254
|
+
return _prepare_calibration_data(model, tokenizer)
|
|
255
|
+
|
|
256
|
+
def random_prune_(self, model):
|
|
257
|
+
layers: nn.ModuleList = model.model.layers
|
|
258
|
+
for layer in tqdm(
|
|
259
|
+
list(layers),
|
|
260
|
+
"Pruning Layers",
|
|
261
|
+
dynamic_ncols=True,
|
|
262
|
+
):
|
|
263
|
+
for name, losparse_linear in layer.named_modules():
|
|
264
|
+
if isinstance(losparse_linear, LoSparseLinear):
|
|
265
|
+
log.info(f"Pruning {name}, set weights to zeros")
|
|
266
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
267
|
+
_, pruned_weights = unstructured_magnitude_prune_(
|
|
268
|
+
losparse_linear.weight.data,
|
|
269
|
+
metric_function_or_scores=torch.rand_like,
|
|
270
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
271
|
+
return_pruned_weight=True,
|
|
272
|
+
)
|
|
273
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
274
|
+
_, pruned_weights = semistructured_magnitude_prune_(
|
|
275
|
+
losparse_linear.weight.data,
|
|
276
|
+
metric_function_or_scores=torch.rand_like,
|
|
277
|
+
n=self.n,
|
|
278
|
+
m=self.m,
|
|
279
|
+
return_pruned_weight=True,
|
|
280
|
+
)
|
|
281
|
+
else:
|
|
282
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
283
|
+
self.check_sparsity(losparse_linear.weight)
|
|
284
|
+
self.extract_low_rank_part_using_pruned_(
|
|
285
|
+
losparse_linear, pruned_weights
|
|
286
|
+
)
|
|
287
|
+
|
|
288
|
+
def magnitude_prune_(self, model):
|
|
289
|
+
layers: nn.ModuleList = model.model.layers
|
|
290
|
+
for layer_idx, layer in tqdm(
|
|
291
|
+
enumerate(layers), "Pruning Layers", total=len(layers), dynamic_ncols=True
|
|
292
|
+
):
|
|
293
|
+
for name, losparse_linear in layer.named_modules():
|
|
294
|
+
if isinstance(losparse_linear, LoSparseLinear):
|
|
295
|
+
log.info(f"Magnitude Pruning {name}")
|
|
296
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
297
|
+
_, pruned_weights = unstructured_magnitude_prune_(
|
|
298
|
+
losparse_linear.weight.data,
|
|
299
|
+
metric_function_or_scores=torch.abs,
|
|
300
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
301
|
+
return_pruned_weight=True,
|
|
302
|
+
)
|
|
303
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
304
|
+
_, pruned_weights = semistructured_magnitude_prune_(
|
|
305
|
+
losparse_linear.weight.data,
|
|
306
|
+
metric_function_or_scores=torch.abs,
|
|
307
|
+
n=self.n,
|
|
308
|
+
m=self.m,
|
|
309
|
+
return_pruned_weight=True,
|
|
310
|
+
)
|
|
311
|
+
else:
|
|
312
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
313
|
+
self.check_sparsity(losparse_linear.weight)
|
|
314
|
+
self.extract_low_rank_part_using_pruned_(
|
|
315
|
+
losparse_linear, pruned_weights
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
def prune_using_calibration_data_(
|
|
319
|
+
self,
|
|
320
|
+
model: LoSparseLlamaForCausalLM,
|
|
321
|
+
*,
|
|
322
|
+
inps: Tensor,
|
|
323
|
+
outs: Tensor,
|
|
324
|
+
attention_mask: Optional[Tensor],
|
|
325
|
+
position_ids: Optional[Tensor],
|
|
326
|
+
):
|
|
327
|
+
layers = model.model.layers
|
|
328
|
+
for layer_idx, layer in tqdm(
|
|
329
|
+
enumerate(layers),
|
|
330
|
+
"Pruning Layers",
|
|
331
|
+
total=len(layers),
|
|
332
|
+
dynamic_ncols=True,
|
|
333
|
+
):
|
|
334
|
+
if (
|
|
335
|
+
hasattr(model, "hf_device_map")
|
|
336
|
+
and f"model.layers.{layer_idx}" in model.hf_device_map
|
|
337
|
+
): ## handle the case for llama-30B and llama-65B, when the device map has multiple GPUs;
|
|
338
|
+
dev = model.hf_device_map[f"model.layers.{layer_idx}"]
|
|
339
|
+
inps, outs, attention_mask, position_ids = (
|
|
340
|
+
inps.to(dev),
|
|
341
|
+
outs.to(dev),
|
|
342
|
+
attention_mask.to(dev) if attention_mask is not None else None,
|
|
343
|
+
position_ids.to(dev) if position_ids is not None else None,
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
# collect the importance scores
|
|
347
|
+
linear_layers = cast(
|
|
348
|
+
Dict[str, LoSparseLinear],
|
|
349
|
+
find_linear_layers(layer, layers=[LoSparseLinear]),
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
# register hooks to collect the importance scores
|
|
353
|
+
def get_hook_fn(linear: LoSparseLinear):
|
|
354
|
+
hook_fn = self._variants_hook_mapping[self.variant](linear)
|
|
355
|
+
return hook_fn
|
|
356
|
+
|
|
357
|
+
hooks = {}
|
|
358
|
+
handles: List[torch.utils.hooks.RemovableHandle] = []
|
|
359
|
+
for name, linear in linear_layers.items():
|
|
360
|
+
hook_fn = get_hook_fn(linear)
|
|
361
|
+
hooks[name] = hook_fn
|
|
362
|
+
handles.append(linear.register_forward_hook(hook_fn))
|
|
363
|
+
|
|
364
|
+
with torch.no_grad():
|
|
365
|
+
for j in range(self.nsamples):
|
|
366
|
+
outs[j] = layer(
|
|
367
|
+
inps[j].unsqueeze(0),
|
|
368
|
+
attention_mask=attention_mask,
|
|
369
|
+
position_ids=position_ids,
|
|
370
|
+
)[0]
|
|
371
|
+
|
|
372
|
+
# compute the importance scores and remove the hooks
|
|
373
|
+
metrics = {}
|
|
374
|
+
for name, hook in hooks.items():
|
|
375
|
+
metrics[name] = hook.compute()
|
|
376
|
+
for h in handles:
|
|
377
|
+
h.remove()
|
|
378
|
+
|
|
379
|
+
# prune the weights based on the importance scores
|
|
380
|
+
pruned_weights_dict = {}
|
|
381
|
+
for name, linear in linear_layers.items():
|
|
382
|
+
log.info(f"Pruning {name}")
|
|
383
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
384
|
+
_, pruned_weights = unstructured_magnitude_prune_(
|
|
385
|
+
linear.weight.data,
|
|
386
|
+
metrics[name],
|
|
387
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
388
|
+
return_pruned_weight=True,
|
|
389
|
+
)
|
|
390
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
391
|
+
_, pruned_weights = semistructured_magnitude_prune_(
|
|
392
|
+
linear.weight.data,
|
|
393
|
+
metrics[name],
|
|
394
|
+
n=self.n,
|
|
395
|
+
m=self.m,
|
|
396
|
+
return_pruned_weight=True,
|
|
397
|
+
)
|
|
398
|
+
else:
|
|
399
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
400
|
+
self.check_sparsity(linear.weight)
|
|
401
|
+
pruned_weights_dict[name] = pruned_weights
|
|
402
|
+
|
|
403
|
+
# compute the input to the next layer
|
|
404
|
+
with torch.no_grad():
|
|
405
|
+
for j in range(self.nsamples):
|
|
406
|
+
outs[j] = layer(
|
|
407
|
+
inps[j].unsqueeze(0),
|
|
408
|
+
attention_mask=attention_mask,
|
|
409
|
+
position_ids=position_ids,
|
|
410
|
+
)[0]
|
|
411
|
+
inps, outs = outs, inps
|
|
412
|
+
|
|
413
|
+
# extract the low-rank parts
|
|
414
|
+
for name, linear in linear_layers.items():
|
|
415
|
+
log.info(f"Extracting low-rank part for {name}")
|
|
416
|
+
self.extract_low_rank_part_using_pruned_(
|
|
417
|
+
linear, pruned_weights_dict[name]
|
|
418
|
+
)
|
|
419
|
+
linear.skip_lowrank = False
|
|
420
|
+
|
|
421
|
+
@torch.no_grad()
|
|
422
|
+
def extract_low_rank_part_using_pruned_(
|
|
423
|
+
self, linear: LoSparseLinear, pruned_weight: Tensor
|
|
424
|
+
):
|
|
425
|
+
assert isinstance(
|
|
426
|
+
linear, LoSparseLinear
|
|
427
|
+
), f"Expected LoSparseLinear, got {type(linear)}"
|
|
428
|
+
|
|
429
|
+
u, s, vh = cast(
|
|
430
|
+
Tuple[Tensor, Tensor, Tensor],
|
|
431
|
+
torch.linalg.svd(pruned_weight.float(), full_matrices=False),
|
|
432
|
+
)
|
|
433
|
+
v = vh.T
|
|
434
|
+
uk = u[:, : self.rank]
|
|
435
|
+
sk = s[: self.rank]
|
|
436
|
+
vk = v[:, : self.rank]
|
|
437
|
+
linear.lo_A.data = vk.T.to(linear.lo_A.dtype).contiguous()
|
|
438
|
+
linear.lo_B.data = (uk * sk).to(linear.lo_B.dtype).contiguous()
|
|
439
|
+
return linear
|
|
440
|
+
|
|
441
|
+
@torch.no_grad()
|
|
442
|
+
def check_sparsity(self, weight: Tensor, tol: float = 0.01):
|
|
443
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
444
|
+
assert (compute_sparsity(weight) - self.sparsity_ratio).abs() < tol
|
|
445
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
446
|
+
assert (compute_sparsity(weight) - self.n / self.m).abs() < tol
|
|
447
|
+
else:
|
|
448
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
class PCPSparseLoForLlama(SparseLoForLlama):
|
|
452
|
+
"PCP with mask"
|
|
453
|
+
|
|
454
|
+
_config_mapping = SparseLoForLlama._config_mapping | {
|
|
455
|
+
"num_iterations": "num_iterations",
|
|
456
|
+
}
|
|
457
|
+
|
|
458
|
+
def __init__(self, num_iterations: int, **kwargs):
|
|
459
|
+
super().__init__(**kwargs)
|
|
460
|
+
self.num_iterations = num_iterations
|
|
461
|
+
|
|
462
|
+
@override
|
|
463
|
+
def run(self, modelpool):
|
|
464
|
+
if self.seed is not None:
|
|
465
|
+
L.seed_everything(self.seed)
|
|
466
|
+
|
|
467
|
+
# load pre-trained model or the first model in the pool
|
|
468
|
+
with self.profile("load_model"):
|
|
469
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
470
|
+
model.seqlen = model.config.max_position_embeddings
|
|
471
|
+
tokenizer = modelpool.load_tokenizer(use_fast=False)
|
|
472
|
+
|
|
473
|
+
if not isinstance(model, (LlamaForCausalLM,)):
|
|
474
|
+
log.warning(f"Model type {type(model)} may not supported.")
|
|
475
|
+
|
|
476
|
+
if self.variant in self._variants_requires_calibration_data:
|
|
477
|
+
inps, outs, attention_mask, position_ids = self.prepare_calibration_data(
|
|
478
|
+
model, tokenizer
|
|
479
|
+
)
|
|
480
|
+
|
|
481
|
+
model = convert_to_losparse_llama(model, rank=self.rank)
|
|
482
|
+
gc.collect()
|
|
483
|
+
if torch.cuda.is_available():
|
|
484
|
+
torch.cuda.empty_cache()
|
|
485
|
+
|
|
486
|
+
for linear in find_linear_layers(model, layers=[LoSparseLinear]).values():
|
|
487
|
+
linear = cast(LoSparseLinear, linear)
|
|
488
|
+
linear.lo_A.data.zero_()
|
|
489
|
+
linear.lo_B.data.zero_()
|
|
490
|
+
linear.skip_lowrank = True
|
|
491
|
+
|
|
492
|
+
match self.variant:
|
|
493
|
+
case "dense":
|
|
494
|
+
# this variant is a no-op, just for debug the conversion
|
|
495
|
+
pass
|
|
496
|
+
case "lowrank-only":
|
|
497
|
+
self.extract_low_rank_parts_(model)
|
|
498
|
+
self.set_weights_to_zeros_(model)
|
|
499
|
+
case "random":
|
|
500
|
+
self.pcp_random_prune_(model)
|
|
501
|
+
case "magnitude":
|
|
502
|
+
self.pcp_magnitude_prune_(model)
|
|
503
|
+
case variant if variant in self._variants_requires_calibration_data:
|
|
504
|
+
self.pcp_prune_using_calibration_data_(
|
|
505
|
+
model,
|
|
506
|
+
inps=inps,
|
|
507
|
+
outs=outs,
|
|
508
|
+
attention_mask=attention_mask,
|
|
509
|
+
position_ids=position_ids,
|
|
510
|
+
)
|
|
511
|
+
case _:
|
|
512
|
+
raise ValueError(f"Invalid variant: {self.variant}")
|
|
513
|
+
|
|
514
|
+
if self.model_save_path is not None:
|
|
515
|
+
with timeit_context(f"Saving the model to {self.model_save_path}"):
|
|
516
|
+
tokenizer.save_pretrained(self.model_save_path)
|
|
517
|
+
model.save_pretrained(self.model_save_path)
|
|
518
|
+
|
|
519
|
+
return model
|
|
520
|
+
|
|
521
|
+
@torch.no_grad()
|
|
522
|
+
def pcp_random_prune_(self, model):
|
|
523
|
+
layers: nn.ModuleList = model.model.layers
|
|
524
|
+
for layer_idx, layer in tqdm(
|
|
525
|
+
list(enumerate(layers)),
|
|
526
|
+
"Pruning Layers",
|
|
527
|
+
dynamic_ncols=True,
|
|
528
|
+
):
|
|
529
|
+
for name, linear in layer.named_modules():
|
|
530
|
+
if isinstance(linear, LoSparseLinear):
|
|
531
|
+
log.info(f"Pruning {name}, set weights to zeros")
|
|
532
|
+
W = linear.weight.data.clone()
|
|
533
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
534
|
+
unstructured_magnitude_prune_(
|
|
535
|
+
linear.weight.data,
|
|
536
|
+
metric_function_or_scores=torch.rand_like,
|
|
537
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
538
|
+
)
|
|
539
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
540
|
+
semistructured_magnitude_prune_(
|
|
541
|
+
linear.weight.data,
|
|
542
|
+
metric_function_or_scores=torch.rand_like,
|
|
543
|
+
n=self.n,
|
|
544
|
+
m=self.m,
|
|
545
|
+
)
|
|
546
|
+
else:
|
|
547
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
548
|
+
self.check_sparsity(linear.weight)
|
|
549
|
+
mask = linear.weight != 0
|
|
550
|
+
linear.weight.data = PCP_search_with_mask(
|
|
551
|
+
W, mask, T_max=self.num_iterations
|
|
552
|
+
)
|
|
553
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
554
|
+
|
|
555
|
+
def pcp_magnitude_prune_(self, model):
|
|
556
|
+
layers: nn.ModuleList = model.model.layers
|
|
557
|
+
for layer_idx, layer in tqdm(
|
|
558
|
+
enumerate(layers), "Pruning Layers", total=len(layers), dynamic_ncols=True
|
|
559
|
+
):
|
|
560
|
+
for name, linear in layer.named_modules():
|
|
561
|
+
if isinstance(linear, LoSparseLinear):
|
|
562
|
+
log.info(f"Magnitude Pruning {name}")
|
|
563
|
+
W = linear.weight.data.clone()
|
|
564
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
565
|
+
unstructured_magnitude_prune_(
|
|
566
|
+
linear.weight.data,
|
|
567
|
+
metric_function_or_scores=torch.abs,
|
|
568
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
569
|
+
)
|
|
570
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
571
|
+
semistructured_magnitude_prune_(
|
|
572
|
+
linear.weight.data,
|
|
573
|
+
metric_function_or_scores=torch.abs,
|
|
574
|
+
n=self.n,
|
|
575
|
+
m=self.m,
|
|
576
|
+
)
|
|
577
|
+
else:
|
|
578
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
579
|
+
self.check_sparsity(linear.weight)
|
|
580
|
+
mask = linear.weight != 0
|
|
581
|
+
linear.weight.data = PCP_search_with_mask(
|
|
582
|
+
W, mask, T_max=self.num_iterations
|
|
583
|
+
)
|
|
584
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
585
|
+
|
|
586
|
+
def pcp_prune_using_calibration_data_(
|
|
587
|
+
self,
|
|
588
|
+
model: LoSparseLlamaForCausalLM,
|
|
589
|
+
*,
|
|
590
|
+
inps: Tensor,
|
|
591
|
+
outs: Tensor,
|
|
592
|
+
attention_mask: Optional[Tensor],
|
|
593
|
+
position_ids: Optional[Tensor],
|
|
594
|
+
):
|
|
595
|
+
layers = model.model.layers
|
|
596
|
+
for layer_idx, layer in tqdm(
|
|
597
|
+
enumerate(layers),
|
|
598
|
+
"Pruning Layers",
|
|
599
|
+
total=len(layers),
|
|
600
|
+
dynamic_ncols=True,
|
|
601
|
+
):
|
|
602
|
+
if (
|
|
603
|
+
hasattr(model, "hf_device_map")
|
|
604
|
+
and f"model.layers.{layer_idx}" in model.hf_device_map
|
|
605
|
+
): ## handle the case for llama-30B and llama-65B, when the device map has multiple GPUs;
|
|
606
|
+
dev = model.hf_device_map[f"model.layers.{layer_idx}"]
|
|
607
|
+
inps, outs, attention_mask, position_ids = (
|
|
608
|
+
inps.to(dev),
|
|
609
|
+
outs.to(dev),
|
|
610
|
+
attention_mask.to(dev) if attention_mask is not None else None,
|
|
611
|
+
position_ids.to(dev) if position_ids is not None else None,
|
|
612
|
+
)
|
|
613
|
+
|
|
614
|
+
# collect the importance scores
|
|
615
|
+
linear_layers = cast(
|
|
616
|
+
Dict[str, LoSparseLinear],
|
|
617
|
+
find_linear_layers(layer, layers=[LoSparseLinear]),
|
|
618
|
+
)
|
|
619
|
+
|
|
620
|
+
# register hooks to collect the importance scores
|
|
621
|
+
def get_hook_fn(linear: LoSparseLinear):
|
|
622
|
+
hook_fn = self._variants_hook_mapping[self.variant](linear)
|
|
623
|
+
return hook_fn
|
|
624
|
+
|
|
625
|
+
hooks = {}
|
|
626
|
+
handles: List[torch.utils.hooks.RemovableHandle] = []
|
|
627
|
+
for name, linear in linear_layers.items():
|
|
628
|
+
hook_fn = get_hook_fn(linear)
|
|
629
|
+
hooks[name] = hook_fn
|
|
630
|
+
handles.append(linear.register_forward_hook(hook_fn))
|
|
631
|
+
|
|
632
|
+
with torch.no_grad():
|
|
633
|
+
for j in range(self.nsamples):
|
|
634
|
+
outs[j] = layer(
|
|
635
|
+
inps[j].unsqueeze(0),
|
|
636
|
+
attention_mask=attention_mask,
|
|
637
|
+
position_ids=position_ids,
|
|
638
|
+
)[0]
|
|
639
|
+
|
|
640
|
+
# compute the importance scores and remove the hooks
|
|
641
|
+
metrics = {}
|
|
642
|
+
for name, hook in hooks.items():
|
|
643
|
+
metrics[name] = hook.compute()
|
|
644
|
+
for h in handles:
|
|
645
|
+
h.remove()
|
|
646
|
+
|
|
647
|
+
# prune the weights based on the importance scores
|
|
648
|
+
for name, linear in linear_layers.items():
|
|
649
|
+
log.info(f"Pruning {name}")
|
|
650
|
+
W = linear.weight.data.clone()
|
|
651
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
652
|
+
_, pruned_weights = unstructured_magnitude_prune_(
|
|
653
|
+
linear.weight.data,
|
|
654
|
+
metrics[name],
|
|
655
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
656
|
+
return_pruned_weight=True,
|
|
657
|
+
)
|
|
658
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
659
|
+
_, pruned_weights = semistructured_magnitude_prune_(
|
|
660
|
+
linear.weight.data,
|
|
661
|
+
metrics[name],
|
|
662
|
+
n=self.n,
|
|
663
|
+
m=self.m,
|
|
664
|
+
return_pruned_weight=True,
|
|
665
|
+
)
|
|
666
|
+
else:
|
|
667
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
668
|
+
self.check_sparsity(linear.weight)
|
|
669
|
+
mask = linear.weight != 0
|
|
670
|
+
linear.weight.data = PCP_search_with_mask(
|
|
671
|
+
W, mask, T_max=self.num_iterations
|
|
672
|
+
)
|
|
673
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
674
|
+
linear.skip_lowrank = False
|
|
675
|
+
|
|
676
|
+
# compute the input to the next layer
|
|
677
|
+
with torch.no_grad():
|
|
678
|
+
for j in range(self.nsamples):
|
|
679
|
+
outs[j] = layer(
|
|
680
|
+
inps[j].unsqueeze(0),
|
|
681
|
+
attention_mask=attention_mask,
|
|
682
|
+
position_ids=position_ids,
|
|
683
|
+
)[0]
|
|
684
|
+
inps, outs = outs, inps
|
|
685
|
+
|
|
686
|
+
|
|
687
|
+
class IterativeSparseLoForLlama(SparseLoForLlama):
|
|
688
|
+
"Iterative Weight Update"
|
|
689
|
+
|
|
690
|
+
_config_mapping = SparseLoForLlama._config_mapping | {
|
|
691
|
+
"num_iterations": "num_iterations",
|
|
692
|
+
}
|
|
693
|
+
|
|
694
|
+
def __init__(self, num_iterations: int, **kwargs):
|
|
695
|
+
super().__init__(**kwargs)
|
|
696
|
+
self.num_iterations = num_iterations
|
|
697
|
+
|
|
698
|
+
@override
|
|
699
|
+
def run(self, modelpool):
|
|
700
|
+
if self.seed is not None:
|
|
701
|
+
L.seed_everything(self.seed)
|
|
702
|
+
|
|
703
|
+
# load pre-trained model or the first model in the pool
|
|
704
|
+
with self.profile("load_model"):
|
|
705
|
+
model = modelpool.load_pretrained_or_first_model()
|
|
706
|
+
model.seqlen = model.config.max_position_embeddings
|
|
707
|
+
tokenizer = modelpool.load_tokenizer(use_fast=False)
|
|
708
|
+
|
|
709
|
+
if not isinstance(model, (LlamaForCausalLM,)):
|
|
710
|
+
log.warning(f"Model type {type(model)} may not supported.")
|
|
711
|
+
|
|
712
|
+
if self.variant in self._variants_requires_calibration_data:
|
|
713
|
+
inps, outs, attention_mask, position_ids = self.prepare_calibration_data(
|
|
714
|
+
model, tokenizer
|
|
715
|
+
)
|
|
716
|
+
|
|
717
|
+
model = convert_to_losparse_llama(model, rank=self.rank)
|
|
718
|
+
gc.collect()
|
|
719
|
+
if torch.cuda.is_available():
|
|
720
|
+
torch.cuda.empty_cache()
|
|
721
|
+
|
|
722
|
+
for linear in find_linear_layers(model, layers=[LoSparseLinear]).values():
|
|
723
|
+
linear = cast(LoSparseLinear, linear)
|
|
724
|
+
linear.lo_A.data.zero_()
|
|
725
|
+
linear.lo_B.data.zero_()
|
|
726
|
+
linear.skip_lowrank = True
|
|
727
|
+
|
|
728
|
+
match self.variant:
|
|
729
|
+
case "dense":
|
|
730
|
+
# this variant is a no-op, just for debug the conversion
|
|
731
|
+
pass
|
|
732
|
+
case "lowrank-only":
|
|
733
|
+
self.extract_low_rank_parts_(model)
|
|
734
|
+
self.set_weights_to_zeros_(model)
|
|
735
|
+
case "random":
|
|
736
|
+
self.iterative_random_prune_(model)
|
|
737
|
+
case "magnitude":
|
|
738
|
+
self.iterative_magnitude_prune_(model)
|
|
739
|
+
case variant if variant in self._variants_requires_calibration_data:
|
|
740
|
+
self.iterative_prune_using_calibration_data_(
|
|
741
|
+
model,
|
|
742
|
+
inps=inps,
|
|
743
|
+
outs=outs,
|
|
744
|
+
attention_mask=attention_mask,
|
|
745
|
+
position_ids=position_ids,
|
|
746
|
+
)
|
|
747
|
+
case _:
|
|
748
|
+
raise ValueError(f"Invalid variant: {self.variant}")
|
|
749
|
+
|
|
750
|
+
if self.model_save_path is not None:
|
|
751
|
+
with timeit_context(f"Saving the model to {self.model_save_path}"):
|
|
752
|
+
tokenizer.save_pretrained(self.model_save_path)
|
|
753
|
+
model.save_pretrained(self.model_save_path)
|
|
754
|
+
|
|
755
|
+
return model
|
|
756
|
+
|
|
757
|
+
@torch.no_grad()
|
|
758
|
+
def iterative_random_prune_(self, model):
|
|
759
|
+
layers: nn.ModuleList = model.model.layers
|
|
760
|
+
for layer_idx, layer in tqdm(
|
|
761
|
+
list(enumerate(layers)),
|
|
762
|
+
"Pruning Layers",
|
|
763
|
+
dynamic_ncols=True,
|
|
764
|
+
):
|
|
765
|
+
for name, linear in layer.named_modules():
|
|
766
|
+
if isinstance(linear, LoSparseLinear):
|
|
767
|
+
log.info(f"Pruning {name}, set weights to zeros")
|
|
768
|
+
W = linear.weight.data.clone()
|
|
769
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
770
|
+
unstructured_magnitude_prune_(
|
|
771
|
+
linear.weight.data,
|
|
772
|
+
metric_function_or_scores=torch.rand_like,
|
|
773
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
774
|
+
)
|
|
775
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
776
|
+
semistructured_magnitude_prune_(
|
|
777
|
+
linear.weight.data,
|
|
778
|
+
metric_function_or_scores=torch.rand_like,
|
|
779
|
+
n=self.n,
|
|
780
|
+
m=self.m,
|
|
781
|
+
)
|
|
782
|
+
else:
|
|
783
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
784
|
+
self.check_sparsity(linear.weight)
|
|
785
|
+
mask = linear.weight != 0
|
|
786
|
+
for rank in tqdm(
|
|
787
|
+
np.linspace(1, self.rank, self.num_iterations, dtype=np.int64),
|
|
788
|
+
"Iterative Pruning",
|
|
789
|
+
leave=False,
|
|
790
|
+
dynamic_ncols=True,
|
|
791
|
+
):
|
|
792
|
+
linear.weight.data, specturm_ratio = iterative_weight_update(
|
|
793
|
+
W,
|
|
794
|
+
linear.weight,
|
|
795
|
+
mask,
|
|
796
|
+
rank=rank,
|
|
797
|
+
)
|
|
798
|
+
if specturm_ratio > 0.99:
|
|
799
|
+
break
|
|
800
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
801
|
+
|
|
802
|
+
@torch.no_grad()
|
|
803
|
+
def iterative_magnitude_prune_(self, model):
|
|
804
|
+
layers: nn.ModuleList = model.model.layers
|
|
805
|
+
for layer_idx, layer in tqdm(
|
|
806
|
+
enumerate(layers), "Pruning Layers", total=len(layers), dynamic_ncols=True
|
|
807
|
+
):
|
|
808
|
+
for name, linear in layer.named_modules():
|
|
809
|
+
if isinstance(linear, LoSparseLinear):
|
|
810
|
+
log.info(f"Magnitude Pruning {name}")
|
|
811
|
+
W = linear.weight.data.clone()
|
|
812
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
813
|
+
unstructured_magnitude_prune_(
|
|
814
|
+
linear.weight.data,
|
|
815
|
+
metric_function_or_scores=torch.abs,
|
|
816
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
817
|
+
)
|
|
818
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
819
|
+
semistructured_magnitude_prune_(
|
|
820
|
+
linear.weight.data,
|
|
821
|
+
metric_function_or_scores=torch.abs,
|
|
822
|
+
n=self.n,
|
|
823
|
+
m=self.m,
|
|
824
|
+
)
|
|
825
|
+
else:
|
|
826
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
827
|
+
self.check_sparsity(linear.weight)
|
|
828
|
+
mask = linear.weight != 0
|
|
829
|
+
for rank in tqdm(
|
|
830
|
+
np.linspace(1, self.rank, self.num_iterations, dtype=np.int64),
|
|
831
|
+
"Iterative Pruning",
|
|
832
|
+
leave=False,
|
|
833
|
+
dynamic_ncols=True,
|
|
834
|
+
):
|
|
835
|
+
linear.weight.data, specturm_ratio = iterative_weight_update(
|
|
836
|
+
W,
|
|
837
|
+
linear.weight,
|
|
838
|
+
mask,
|
|
839
|
+
rank=rank,
|
|
840
|
+
)
|
|
841
|
+
if specturm_ratio > 0.99:
|
|
842
|
+
break
|
|
843
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
844
|
+
|
|
845
|
+
@torch.no_grad()
|
|
846
|
+
def iterative_prune_using_calibration_data_(
|
|
847
|
+
self,
|
|
848
|
+
model: LoSparseLlamaForCausalLM,
|
|
849
|
+
*,
|
|
850
|
+
inps: Tensor,
|
|
851
|
+
outs: Tensor,
|
|
852
|
+
attention_mask: Optional[Tensor],
|
|
853
|
+
position_ids: Optional[Tensor],
|
|
854
|
+
):
|
|
855
|
+
layers = model.model.layers
|
|
856
|
+
for layer_idx, layer in tqdm(
|
|
857
|
+
enumerate(layers),
|
|
858
|
+
"Pruning Layers",
|
|
859
|
+
total=len(layers),
|
|
860
|
+
dynamic_ncols=True,
|
|
861
|
+
):
|
|
862
|
+
if (
|
|
863
|
+
hasattr(model, "hf_device_map")
|
|
864
|
+
and f"model.layers.{layer_idx}" in model.hf_device_map
|
|
865
|
+
): ## handle the case for llama-30B and llama-65B, when the device map has multiple GPUs;
|
|
866
|
+
dev = model.hf_device_map[f"model.layers.{layer_idx}"]
|
|
867
|
+
inps, outs, attention_mask, position_ids = (
|
|
868
|
+
inps.to(dev),
|
|
869
|
+
outs.to(dev),
|
|
870
|
+
attention_mask.to(dev) if attention_mask is not None else None,
|
|
871
|
+
position_ids.to(dev) if position_ids is not None else None,
|
|
872
|
+
)
|
|
873
|
+
|
|
874
|
+
# collect the importance scores
|
|
875
|
+
linear_layers = cast(
|
|
876
|
+
Dict[str, LoSparseLinear],
|
|
877
|
+
find_linear_layers(layer, layers=[LoSparseLinear]),
|
|
878
|
+
)
|
|
879
|
+
|
|
880
|
+
# register hooks to collect the importance scores
|
|
881
|
+
def get_hook_fn(linear: LoSparseLinear):
|
|
882
|
+
hook_fn = self._variants_hook_mapping[self.variant](linear)
|
|
883
|
+
return hook_fn
|
|
884
|
+
|
|
885
|
+
hooks = {}
|
|
886
|
+
handles: List[torch.utils.hooks.RemovableHandle] = []
|
|
887
|
+
for name, linear in linear_layers.items():
|
|
888
|
+
hook_fn = get_hook_fn(linear)
|
|
889
|
+
hooks[name] = hook_fn
|
|
890
|
+
handles.append(linear.register_forward_hook(hook_fn))
|
|
891
|
+
|
|
892
|
+
with torch.no_grad():
|
|
893
|
+
for j in range(self.nsamples):
|
|
894
|
+
outs[j] = layer(
|
|
895
|
+
inps[j].unsqueeze(0),
|
|
896
|
+
attention_mask=attention_mask,
|
|
897
|
+
position_ids=position_ids,
|
|
898
|
+
)[0]
|
|
899
|
+
|
|
900
|
+
# compute the importance scores and remove the hooks
|
|
901
|
+
metrics = {}
|
|
902
|
+
for name, hook in hooks.items():
|
|
903
|
+
metrics[name] = hook.compute()
|
|
904
|
+
for h in handles:
|
|
905
|
+
h.remove()
|
|
906
|
+
|
|
907
|
+
# prune the weights based on the importance scores
|
|
908
|
+
for name, linear in linear_layers.items():
|
|
909
|
+
log.info(f"Pruning {name}")
|
|
910
|
+
W = linear.weight.data.clone()
|
|
911
|
+
if self.prune_type == PruningType.UNSTRUCTURED:
|
|
912
|
+
_, pruned_weights = unstructured_magnitude_prune_(
|
|
913
|
+
linear.weight.data,
|
|
914
|
+
metrics[name],
|
|
915
|
+
sparsity_ratio=self.sparsity_ratio,
|
|
916
|
+
return_pruned_weight=True,
|
|
917
|
+
)
|
|
918
|
+
elif self.prune_type == PruningType.SEMISTRUCTURED:
|
|
919
|
+
_, pruned_weights = semistructured_magnitude_prune_(
|
|
920
|
+
linear.weight.data,
|
|
921
|
+
metrics[name],
|
|
922
|
+
n=self.n,
|
|
923
|
+
m=self.m,
|
|
924
|
+
return_pruned_weight=True,
|
|
925
|
+
)
|
|
926
|
+
else:
|
|
927
|
+
raise ValueError(f"Invalid pruning type: {self.prune_type}")
|
|
928
|
+
self.check_sparsity(linear.weight)
|
|
929
|
+
mask = linear.weight != 0
|
|
930
|
+
for rank in tqdm(
|
|
931
|
+
np.linspace(1, self.rank, self.num_iterations, dtype=np.int64),
|
|
932
|
+
"Iterative Pruning",
|
|
933
|
+
leave=False,
|
|
934
|
+
dynamic_ncols=True,
|
|
935
|
+
):
|
|
936
|
+
linear.weight.data, specturm_ratio = iterative_weight_update(
|
|
937
|
+
W,
|
|
938
|
+
linear.weight,
|
|
939
|
+
mask,
|
|
940
|
+
rank=rank,
|
|
941
|
+
)
|
|
942
|
+
if specturm_ratio > 0.99:
|
|
943
|
+
break
|
|
944
|
+
self.extract_low_rank_part_using_pruned_(linear, W - linear.weight)
|
|
945
|
+
linear.skip_lowrank = False
|
|
946
|
+
|
|
947
|
+
# compute the input to the next layer
|
|
948
|
+
with torch.no_grad():
|
|
949
|
+
for j in range(self.nsamples):
|
|
950
|
+
outs[j] = layer(
|
|
951
|
+
inps[j].unsqueeze(0),
|
|
952
|
+
attention_mask=attention_mask,
|
|
953
|
+
position_ids=position_ids,
|
|
954
|
+
)[0]
|
|
955
|
+
inps, outs = outs, inps
|