fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,1036 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Augmenters for ARC tasks
|
|
3
|
+
|
|
4
|
+
The augmenters are used to apply transformations to the input and output of the tasks.
|
|
5
|
+
|
|
6
|
+
Augmenter: Base class for all augmenters
|
|
7
|
+
Rotate: Rotate the grid by 90, 180, 270 degrees
|
|
8
|
+
PermuteColors: Permute the colors in the grid
|
|
9
|
+
PermuteColorswithMap: Permute the colors in the grid using a given color map
|
|
10
|
+
PermuteColorsRespectKeyColors: Permute the colors in the grid while keeping the key colors fixed
|
|
11
|
+
Flip: Flip the grid along the given axis
|
|
12
|
+
Reflect: Reflect the grid along the given axis
|
|
13
|
+
Repeat: Repeat the grid along the given
|
|
14
|
+
Transpose: Transpose the grid
|
|
15
|
+
IncreaseResolution: Increase the resolution of the grid
|
|
16
|
+
IncreaseHeight: Increase the height of the grid
|
|
17
|
+
IncreaseWidth: Increase the width of the grid
|
|
18
|
+
DropoutInput: Delete a random rectangular patch from the input
|
|
19
|
+
DropoutOutput: Delete a random rectangular patch from the output
|
|
20
|
+
RandomTranslateXY: Randomly shift the grid along the x and y axis
|
|
21
|
+
RandomTranslateX: Randomly shift the grid along the x axis
|
|
22
|
+
RandomTranslateY: Randomly shift the grid along the y axis
|
|
23
|
+
Chain: Chain multiple augmenters together
|
|
24
|
+
Concat: Concatenate the output of multiple augmenters
|
|
25
|
+
IdentityAugmenter: Identity augmenter
|
|
26
|
+
PermuteExamples: Permute the training examples in the task
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
import copy
|
|
30
|
+
from typing import List, Optional, Tuple
|
|
31
|
+
|
|
32
|
+
import numpy as np
|
|
33
|
+
from numpy.random import RandomState
|
|
34
|
+
|
|
35
|
+
from .arc import Example, Grid, Task
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class Augmenter:
|
|
39
|
+
share_rng: bool = False
|
|
40
|
+
|
|
41
|
+
def __repr__(self):
|
|
42
|
+
return str(self)
|
|
43
|
+
|
|
44
|
+
def __call__(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
45
|
+
return self.apply_to_grid(grid, rng=rng)
|
|
46
|
+
|
|
47
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
48
|
+
raise NotImplementedError()
|
|
49
|
+
|
|
50
|
+
def apply_to_example(
|
|
51
|
+
self,
|
|
52
|
+
example: Example,
|
|
53
|
+
rng: RandomState = None,
|
|
54
|
+
to_input: bool = True,
|
|
55
|
+
to_output: bool = True,
|
|
56
|
+
) -> Example:
|
|
57
|
+
input = (
|
|
58
|
+
self.apply_to_grid(example.input, rng=rng) if to_input else example.input
|
|
59
|
+
)
|
|
60
|
+
output = (
|
|
61
|
+
self.apply_to_grid(example.output, rng=rng) if to_output else example.output
|
|
62
|
+
)
|
|
63
|
+
if example.cot is not None:
|
|
64
|
+
cot = copy.deepcopy(example.cot)
|
|
65
|
+
if not np.array_equal(cot[-1], output):
|
|
66
|
+
cot.append(output)
|
|
67
|
+
else:
|
|
68
|
+
cot = None
|
|
69
|
+
return Example(input, output, cot)
|
|
70
|
+
|
|
71
|
+
def apply_to_task(
|
|
72
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
73
|
+
) -> Task:
|
|
74
|
+
|
|
75
|
+
if self.share_rng:
|
|
76
|
+
# make sure all examples get seperate copies of same rng
|
|
77
|
+
# this is to make sure that the same random number(s) is used for all examples
|
|
78
|
+
# seed = rng.randint(0, 2**32)
|
|
79
|
+
train_rngs = [copy.deepcopy(rng) for i in range(len(task.train_examples))]
|
|
80
|
+
test_rng = copy.deepcopy(rng) # RandomState(seed)
|
|
81
|
+
else:
|
|
82
|
+
train_rngs = [rng for _ in range(len(task.train_examples))]
|
|
83
|
+
test_rng = rng
|
|
84
|
+
|
|
85
|
+
return Task(
|
|
86
|
+
train_examples=[
|
|
87
|
+
self.apply_to_example(example, rng=rng_i, **kwargs)
|
|
88
|
+
for example, rng_i in zip(task.train_examples, train_rngs)
|
|
89
|
+
],
|
|
90
|
+
test_example=self.apply_to_example(
|
|
91
|
+
task.test_example, rng=test_rng, **kwargs
|
|
92
|
+
),
|
|
93
|
+
name=task.name,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
class Rotate(Augmenter):
|
|
98
|
+
def __init__(self, angle: int):
|
|
99
|
+
assert angle in [0, 90, 180, 270]
|
|
100
|
+
self.angle = angle
|
|
101
|
+
|
|
102
|
+
def __str__(self):
|
|
103
|
+
return f"Rotate({self.angle})"
|
|
104
|
+
|
|
105
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
106
|
+
# roate the input and output by the given angle
|
|
107
|
+
del rng
|
|
108
|
+
if self.angle == 90:
|
|
109
|
+
return np.rot90(grid, k=1)
|
|
110
|
+
elif self.angle == 180:
|
|
111
|
+
return np.rot90(grid, k=2)
|
|
112
|
+
elif self.angle == 270:
|
|
113
|
+
return np.rot90(grid, k=3)
|
|
114
|
+
else:
|
|
115
|
+
raise ValueError("Invalid angle")
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class PermuteColors(Augmenter):
|
|
119
|
+
share_rng = True
|
|
120
|
+
color_mapper = None
|
|
121
|
+
|
|
122
|
+
def __str__(self):
|
|
123
|
+
return "PermuteColors()"
|
|
124
|
+
|
|
125
|
+
def apply_to_task(
|
|
126
|
+
self,
|
|
127
|
+
task: Task,
|
|
128
|
+
use_test_output: bool = True,
|
|
129
|
+
rng: RandomState = None,
|
|
130
|
+
share_rng=False,
|
|
131
|
+
**kwargs,
|
|
132
|
+
) -> Task:
|
|
133
|
+
# get all used colors in the inputs and outputs
|
|
134
|
+
colors = []
|
|
135
|
+
for example in task.train_examples:
|
|
136
|
+
colors += example.input.flatten().tolist()
|
|
137
|
+
colors += example.output.flatten().tolist()
|
|
138
|
+
colors += task.test_example.input.flatten().tolist()
|
|
139
|
+
|
|
140
|
+
if use_test_output:
|
|
141
|
+
colors += task.test_example.output.flatten().tolist()
|
|
142
|
+
|
|
143
|
+
# get unique colors
|
|
144
|
+
colors = set(colors)
|
|
145
|
+
# remove 0
|
|
146
|
+
colors = colors - {0}
|
|
147
|
+
remaining_colors = list(set(list(range(1, 10))) - colors)
|
|
148
|
+
colors = list(colors)
|
|
149
|
+
|
|
150
|
+
rng.shuffle(remaining_colors) # inplac
|
|
151
|
+
|
|
152
|
+
permuted_colors = rng.permutation(colors).tolist()
|
|
153
|
+
# sample a mapping from colors to new ids
|
|
154
|
+
color_map = {0: 0}
|
|
155
|
+
|
|
156
|
+
for color in colors:
|
|
157
|
+
|
|
158
|
+
if color in color_map:
|
|
159
|
+
continue
|
|
160
|
+
|
|
161
|
+
if len(remaining_colors) > 0:
|
|
162
|
+
new_color = remaining_colors.pop()
|
|
163
|
+
else:
|
|
164
|
+
new_color = permuted_colors.pop()
|
|
165
|
+
# in this case we want to directly swap colors
|
|
166
|
+
# so new_color shoud be the color that is being replaced
|
|
167
|
+
color_map[new_color] = color
|
|
168
|
+
# remove color from permuted colors
|
|
169
|
+
if color in permuted_colors:
|
|
170
|
+
permuted_colors.remove(color)
|
|
171
|
+
|
|
172
|
+
color_map[color] = new_color
|
|
173
|
+
|
|
174
|
+
self._color_map = color_map
|
|
175
|
+
|
|
176
|
+
def color_mapper(color: int) -> int:
|
|
177
|
+
return color_map.get(color, color)
|
|
178
|
+
|
|
179
|
+
self.color_mapper = np.vectorize(color_mapper)
|
|
180
|
+
|
|
181
|
+
return Task(
|
|
182
|
+
train_examples=[
|
|
183
|
+
self.apply_to_example(example, rng=rng, **kwargs)
|
|
184
|
+
for example in task.train_examples
|
|
185
|
+
],
|
|
186
|
+
test_example=self.apply_to_example(task.test_example, rng=rng, **kwargs),
|
|
187
|
+
name=task.name,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
191
|
+
# map colors to new colors
|
|
192
|
+
return self.color_mapper(grid)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
class PermuteColorswithMap(Augmenter):
|
|
196
|
+
|
|
197
|
+
def __init__(self, color_map):
|
|
198
|
+
self.color_map = color_map
|
|
199
|
+
|
|
200
|
+
def color_mapper(color: int) -> int:
|
|
201
|
+
return color_map.get(color, color)
|
|
202
|
+
|
|
203
|
+
self.color_mapper = np.vectorize(color_mapper)
|
|
204
|
+
|
|
205
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
206
|
+
# map colors to new colors
|
|
207
|
+
return self.color_mapper(grid)
|
|
208
|
+
|
|
209
|
+
def __repr__(self):
|
|
210
|
+
return f"PermuteColorswithMap({self.color_map})"
|
|
211
|
+
|
|
212
|
+
def __str__(self):
|
|
213
|
+
return self.__repr__()
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
class PermuteColorsRespectKeyColors(Augmenter):
|
|
217
|
+
share_rng = True
|
|
218
|
+
color_mapper = None
|
|
219
|
+
|
|
220
|
+
def __init__(
|
|
221
|
+
self,
|
|
222
|
+
key_colors: List[int] = None,
|
|
223
|
+
use_remaining_colors: bool = True,
|
|
224
|
+
use_test_output: bool = False,
|
|
225
|
+
):
|
|
226
|
+
self.key_colors = key_colors
|
|
227
|
+
self.use_remaining_colors = use_remaining_colors
|
|
228
|
+
self.use_test_output = use_test_output
|
|
229
|
+
|
|
230
|
+
def __str__(self):
|
|
231
|
+
return "PermuteColorsRespectKeyColors(key_colors={self.key_colors}, use_remaining_colors={self.use_remaining_colors}, use_test_output={self.use_test_output})"
|
|
232
|
+
|
|
233
|
+
@staticmethod
|
|
234
|
+
def get_key_colors(task: Task, use_test_output: bool = False):
|
|
235
|
+
key_colors_input = []
|
|
236
|
+
key_colors_output = []
|
|
237
|
+
for example in task.train_examples:
|
|
238
|
+
key_colors_input.append(set(example.input.flatten().tolist()))
|
|
239
|
+
key_colors_output.append(set(example.output.flatten().tolist()))
|
|
240
|
+
|
|
241
|
+
key_colors_input.append(set(task.test_example.input.flatten().tolist()))
|
|
242
|
+
if use_test_output:
|
|
243
|
+
key_colors_output.append(set(task.test_example.output.flatten().tolist()))
|
|
244
|
+
|
|
245
|
+
all_colors = set.union(*key_colors_input, *key_colors_output)
|
|
246
|
+
|
|
247
|
+
key_colors_input = set.intersection(*key_colors_input)
|
|
248
|
+
key_colors_output = set.intersection(*key_colors_output)
|
|
249
|
+
key_colors = key_colors_input.union(key_colors_output)
|
|
250
|
+
|
|
251
|
+
return key_colors, all_colors
|
|
252
|
+
|
|
253
|
+
def apply_to_task(
|
|
254
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
255
|
+
) -> Task:
|
|
256
|
+
key_colors, colors = PermuteColorsRespectKeyColors.get_key_colors(
|
|
257
|
+
task, use_test_output=self.use_test_output
|
|
258
|
+
)
|
|
259
|
+
if self.key_colors is None:
|
|
260
|
+
self.key_colors = key_colors
|
|
261
|
+
else:
|
|
262
|
+
key_colors = self.key_colors
|
|
263
|
+
|
|
264
|
+
remaining_colors = list(set(list(range(10))) - colors)
|
|
265
|
+
colors = list(colors)
|
|
266
|
+
|
|
267
|
+
rng.shuffle(remaining_colors) # inplace
|
|
268
|
+
# keep key colors_static
|
|
269
|
+
color_map = {}
|
|
270
|
+
|
|
271
|
+
for key_color in self.key_colors:
|
|
272
|
+
color_map[key_color] = key_color
|
|
273
|
+
if key_color in colors:
|
|
274
|
+
colors.remove(key_color)
|
|
275
|
+
|
|
276
|
+
permuted_colors = rng.permutation(colors).tolist()
|
|
277
|
+
|
|
278
|
+
for color in colors:
|
|
279
|
+
|
|
280
|
+
if color in color_map:
|
|
281
|
+
continue
|
|
282
|
+
|
|
283
|
+
if self.use_remaining_colors and len(remaining_colors) > 0:
|
|
284
|
+
new_color = remaining_colors.pop()
|
|
285
|
+
else:
|
|
286
|
+
new_color = permuted_colors.pop()
|
|
287
|
+
# in this case we want to directly swap colors
|
|
288
|
+
# so new_color shoud be the color that is being replaced
|
|
289
|
+
color_map[new_color] = color
|
|
290
|
+
# remove color from permuted colors
|
|
291
|
+
if color in permuted_colors:
|
|
292
|
+
permuted_colors.remove(color)
|
|
293
|
+
|
|
294
|
+
color_map[color] = new_color
|
|
295
|
+
|
|
296
|
+
def color_mapper(color: int) -> int:
|
|
297
|
+
return color_map.get(color, color)
|
|
298
|
+
|
|
299
|
+
self.color_mapper = np.vectorize(color_mapper)
|
|
300
|
+
|
|
301
|
+
return Task(
|
|
302
|
+
train_examples=[
|
|
303
|
+
self.apply_to_example(example, rng=rng, **kwargs)
|
|
304
|
+
for example in task.train_examples
|
|
305
|
+
],
|
|
306
|
+
test_example=self.apply_to_example(task.test_example, rng=rng, **kwargs),
|
|
307
|
+
name=task.name,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
311
|
+
# map colors to new colors
|
|
312
|
+
return self.color_mapper(grid)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
class PermuteColorsStatic(Augmenter):
|
|
316
|
+
share_rng = True
|
|
317
|
+
color_mapper = None
|
|
318
|
+
|
|
319
|
+
def __str__(self):
|
|
320
|
+
return f"PermuteColorsStatic({self.color_map})"
|
|
321
|
+
|
|
322
|
+
def __init__(self, color_map):
|
|
323
|
+
self.color_map = color_map
|
|
324
|
+
|
|
325
|
+
self.color_mapper = np.vectorize(lambda x: self.color_map.get(x, x))
|
|
326
|
+
|
|
327
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
328
|
+
return self.color_mapper(grid)
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
class Flip(Augmenter):
|
|
332
|
+
def __init__(self, axis: int):
|
|
333
|
+
assert axis in [0, 1]
|
|
334
|
+
self.axis = axis
|
|
335
|
+
|
|
336
|
+
def __str__(self):
|
|
337
|
+
return f"Flip({self.axis})"
|
|
338
|
+
|
|
339
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
340
|
+
del rng
|
|
341
|
+
if self.axis == 0:
|
|
342
|
+
return np.flipud(grid)
|
|
343
|
+
elif self.axis == 1:
|
|
344
|
+
return np.fliplr(grid)
|
|
345
|
+
else:
|
|
346
|
+
raise ValueError("Invalid axis")
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
class Reflect(Augmenter):
|
|
350
|
+
def __init__(self, axis: int, reverse=False):
|
|
351
|
+
assert axis in [0, 1]
|
|
352
|
+
self.axis = axis
|
|
353
|
+
self.reverse = reverse
|
|
354
|
+
|
|
355
|
+
def __str__(self):
|
|
356
|
+
return f"Reflect({self.axis}, reverse={self.reverse})"
|
|
357
|
+
|
|
358
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Example:
|
|
359
|
+
del rng
|
|
360
|
+
# reflect the input and output by the given axis
|
|
361
|
+
original = grid
|
|
362
|
+
if self.axis == 0:
|
|
363
|
+
reflected = np.flipud(original)
|
|
364
|
+
elif self.axis == 1:
|
|
365
|
+
reflected = np.fliplr(original)
|
|
366
|
+
else:
|
|
367
|
+
raise ValueError("Invalid axis")
|
|
368
|
+
|
|
369
|
+
if self.reverse:
|
|
370
|
+
if self.axis == 0:
|
|
371
|
+
return np.concatenate((reflected, original), axis=0)
|
|
372
|
+
elif self.axis == 1:
|
|
373
|
+
return np.concatenate((reflected, original), axis=1)
|
|
374
|
+
else:
|
|
375
|
+
if self.axis == 0:
|
|
376
|
+
return np.concatenate((original, reflected), axis=0)
|
|
377
|
+
elif self.axis == 1:
|
|
378
|
+
return np.concatenate((original, reflected), axis=1)
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
class Repeat(Augmenter):
|
|
382
|
+
def __init__(self, axis: int, n: int):
|
|
383
|
+
assert axis in [0, 1, 2]
|
|
384
|
+
self.axis = axis
|
|
385
|
+
self.n = n
|
|
386
|
+
|
|
387
|
+
def __str__(self):
|
|
388
|
+
return f"Repeat({self.axis}, {self.n})"
|
|
389
|
+
|
|
390
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
391
|
+
del rng
|
|
392
|
+
if self.axis == 0:
|
|
393
|
+
return np.concatenate([grid] * self.n, axis=0)
|
|
394
|
+
elif self.axis == 1:
|
|
395
|
+
return np.concatenate([grid] * self.n, axis=1)
|
|
396
|
+
elif self.axis == 2:
|
|
397
|
+
return np.concatenate(
|
|
398
|
+
[np.concatenate([grid] * self.n, axis=0)] * self.n, axis=1
|
|
399
|
+
)
|
|
400
|
+
else:
|
|
401
|
+
raise ValueError("Invalid axis")
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
class Transpose(Augmenter):
|
|
405
|
+
def __str__(self):
|
|
406
|
+
return "Transpose()"
|
|
407
|
+
|
|
408
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
409
|
+
del rng
|
|
410
|
+
return np.transpose(grid)
|
|
411
|
+
|
|
412
|
+
|
|
413
|
+
class IncreaseResolution(Augmenter):
|
|
414
|
+
def __init__(self, factor: int):
|
|
415
|
+
assert factor > 1
|
|
416
|
+
self.factor = factor
|
|
417
|
+
|
|
418
|
+
def __str__(self):
|
|
419
|
+
return f"IncreaseResolution({self.factor})"
|
|
420
|
+
|
|
421
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
422
|
+
del rng
|
|
423
|
+
grid = np.repeat(grid, self.factor, axis=0)
|
|
424
|
+
grid = np.repeat(grid, self.factor, axis=1)
|
|
425
|
+
return grid
|
|
426
|
+
|
|
427
|
+
|
|
428
|
+
class IncreaseHeight(Augmenter):
|
|
429
|
+
def __init__(self, factor: int):
|
|
430
|
+
assert factor > 1
|
|
431
|
+
self.factor = factor
|
|
432
|
+
|
|
433
|
+
def __str__(self):
|
|
434
|
+
return f"IncreaseHeight({self.factor})"
|
|
435
|
+
|
|
436
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
437
|
+
del rng
|
|
438
|
+
grid = np.repeat(grid, self.factor, axis=0)
|
|
439
|
+
return grid
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
class IncreaseWidth(Augmenter):
|
|
443
|
+
def __init__(self, factor: int):
|
|
444
|
+
assert factor > 1
|
|
445
|
+
self.factor = factor
|
|
446
|
+
|
|
447
|
+
def __str__(self):
|
|
448
|
+
return f"IncreaseWidth({self.factor})"
|
|
449
|
+
|
|
450
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
451
|
+
del rng
|
|
452
|
+
grid = np.repeat(grid, self.factor, axis=1)
|
|
453
|
+
return grid
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
class DropoutInput(Augmenter):
|
|
457
|
+
"""
|
|
458
|
+
Delete a random rectangular patch
|
|
459
|
+
"""
|
|
460
|
+
|
|
461
|
+
def __init__(self):
|
|
462
|
+
self.dropout_color = 0
|
|
463
|
+
|
|
464
|
+
def __str__(self):
|
|
465
|
+
return "DropoutInput()"
|
|
466
|
+
|
|
467
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
468
|
+
# get rng with seed
|
|
469
|
+
if rng is None:
|
|
470
|
+
rng = RandomState()
|
|
471
|
+
grid = grid.copy()
|
|
472
|
+
num_dropouts = rng.randint(1, 3)
|
|
473
|
+
for _ in range(num_dropouts):
|
|
474
|
+
x_len_ratio = rng.uniform(0.1, 0.3)
|
|
475
|
+
y_len_ratio = rng.uniform(0.1, 0.3)
|
|
476
|
+
x_start_ratio = rng.uniform(0.1, 0.7)
|
|
477
|
+
y_start_ratio = rng.uniform(0.1, 0.7)
|
|
478
|
+
|
|
479
|
+
x_len = int(np.ceil(grid.shape[0] * x_len_ratio))
|
|
480
|
+
y_len = int(np.ceil(grid.shape[1] * y_len_ratio))
|
|
481
|
+
|
|
482
|
+
x_start = int(grid.shape[0] * x_start_ratio)
|
|
483
|
+
y_start = int(grid.shape[1] * y_start_ratio)
|
|
484
|
+
|
|
485
|
+
grid[x_start : x_start + x_len, y_start : y_start + y_len] = (
|
|
486
|
+
self.dropout_color
|
|
487
|
+
)
|
|
488
|
+
return grid
|
|
489
|
+
|
|
490
|
+
def apply_to_task(
|
|
491
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
492
|
+
) -> Task:
|
|
493
|
+
# find unused colors in the task
|
|
494
|
+
all_colors = set()
|
|
495
|
+
for example in task.train_examples:
|
|
496
|
+
all_colors.update(set(example.input.flatten().tolist()))
|
|
497
|
+
all_colors.update(set(example.output.flatten().tolist()))
|
|
498
|
+
|
|
499
|
+
all_colors = list(set(range(10)) - all_colors)
|
|
500
|
+
if len(all_colors) == 0:
|
|
501
|
+
self.dropout_color = 0
|
|
502
|
+
else:
|
|
503
|
+
self.dropout_color = rng.choice(all_colors)
|
|
504
|
+
|
|
505
|
+
return super().apply_to_task(task, rng=rng, share_rng=share_rng, **kwargs)
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
class DropoutOutput(Augmenter):
|
|
509
|
+
share_rng = True
|
|
510
|
+
|
|
511
|
+
def __str__(self):
|
|
512
|
+
return "DropoutOutput()"
|
|
513
|
+
self.dropout_color = 0
|
|
514
|
+
|
|
515
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
516
|
+
assert rng is not None
|
|
517
|
+
grid = grid.copy()
|
|
518
|
+
num_dropouts = rng.randint(1, 3)
|
|
519
|
+
for _ in range(num_dropouts):
|
|
520
|
+
x_len_ratio = rng.uniform(0.1, 0.3)
|
|
521
|
+
y_len_ratio = rng.uniform(0.1, 0.3)
|
|
522
|
+
x_start_ratio = rng.uniform(0.1, 0.7)
|
|
523
|
+
y_start_ratio = rng.uniform(0.1, 0.7)
|
|
524
|
+
|
|
525
|
+
x_len = int(np.ceil(grid.shape[0] * x_len_ratio))
|
|
526
|
+
y_len = int(np.ceil(grid.shape[1] * y_len_ratio))
|
|
527
|
+
|
|
528
|
+
x_start = int(grid.shape[0] * x_start_ratio)
|
|
529
|
+
y_start = int(grid.shape[1] * y_start_ratio)
|
|
530
|
+
|
|
531
|
+
grid[x_start : x_start + x_len, y_start : y_start + y_len] = (
|
|
532
|
+
self.dropout_color
|
|
533
|
+
)
|
|
534
|
+
return grid
|
|
535
|
+
|
|
536
|
+
def apply_to_task(
|
|
537
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
538
|
+
) -> Task:
|
|
539
|
+
# find unused colors in the task
|
|
540
|
+
all_colors = set()
|
|
541
|
+
for example in task.train_examples:
|
|
542
|
+
all_colors.update(set(example.input.flatten().tolist()))
|
|
543
|
+
all_colors.update(set(example.output.flatten().tolist()))
|
|
544
|
+
|
|
545
|
+
all_colors = list(set(range(10)) - all_colors)
|
|
546
|
+
|
|
547
|
+
if len(all_colors) == 0:
|
|
548
|
+
self.dropout_color = 0
|
|
549
|
+
else:
|
|
550
|
+
self.dropout_color = rng.choice(all_colors)
|
|
551
|
+
|
|
552
|
+
return super().apply_to_task(task, rng=rng, share_rng=share_rng, **kwargs)
|
|
553
|
+
|
|
554
|
+
|
|
555
|
+
class RandomTranslateXY(Augmenter):
|
|
556
|
+
share_rng = True
|
|
557
|
+
|
|
558
|
+
def __str__(self):
|
|
559
|
+
return "RandomTranslateXY()"
|
|
560
|
+
|
|
561
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
562
|
+
assert rng is not None
|
|
563
|
+
# if rng.rand() < 0.5:
|
|
564
|
+
shift_x = rng.randint(0, min(4, grid.shape[0]))
|
|
565
|
+
shift_y = rng.randint(0, min(4, grid.shape[1]))
|
|
566
|
+
# else:
|
|
567
|
+
# shift_x_ratio = rng.uniform(-0.5, 0.5)
|
|
568
|
+
# shift_x = int(np.round(grid.shape[0] * shift_x_ratio))
|
|
569
|
+
# shift_y_ratio = rng.uniform(-0.5, 0.5)
|
|
570
|
+
# shift_y = int(np.round(grid.shape[1] * shift_y_ratio))
|
|
571
|
+
return np.roll(grid, (shift_x, shift_y), axis=(0, 1))
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
class RandomTranslateX(Augmenter):
|
|
575
|
+
share_rng = True
|
|
576
|
+
|
|
577
|
+
def __str__(self):
|
|
578
|
+
return "RandomTranslateX()"
|
|
579
|
+
|
|
580
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
581
|
+
assert rng is not None
|
|
582
|
+
# if rng.rand() < 0.5:
|
|
583
|
+
shift_x = rng.randint(1, min(4, grid.shape[0]))
|
|
584
|
+
# else:
|
|
585
|
+
# shift_x_ratio = rng.uniform(-0.5, 0.5)
|
|
586
|
+
# shift_x = int(np.round(grid.shape[0] * shift_x_ratio))
|
|
587
|
+
return np.roll(grid, shift_x, axis=0)
|
|
588
|
+
|
|
589
|
+
|
|
590
|
+
class RandomTranslateY(Augmenter):
|
|
591
|
+
share_rng = True
|
|
592
|
+
|
|
593
|
+
def __str__(self):
|
|
594
|
+
return "RandomTranslateY()"
|
|
595
|
+
|
|
596
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
597
|
+
assert rng is not None
|
|
598
|
+
# if rng.rand() < 0.5:
|
|
599
|
+
shift_y = rng.randint(1, min(4, grid.shape[1]))
|
|
600
|
+
# else:
|
|
601
|
+
# shift_y_ratio = rng.uniform(-0.5, 0.5)
|
|
602
|
+
# shift_y = int(np.round(grid.shape[1] * shift_y_ratio))
|
|
603
|
+
return np.roll(grid, shift_y, axis=1)
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
def find_connected_components(
|
|
607
|
+
grid: Grid, background_color: Optional[int] = None
|
|
608
|
+
) -> List[List[tuple[int, int]]]:
|
|
609
|
+
# get background color as the most frequenct color
|
|
610
|
+
if background_color is None:
|
|
611
|
+
background_color = np.bincount(grid.flatten()).argmax()
|
|
612
|
+
|
|
613
|
+
# get connected components
|
|
614
|
+
visited = np.zeros_like(grid)
|
|
615
|
+
components = []
|
|
616
|
+
for i in range(grid.shape[0]):
|
|
617
|
+
for j in range(grid.shape[1]):
|
|
618
|
+
if visited[i, j] == 0 and grid[i, j] != background_color:
|
|
619
|
+
component = []
|
|
620
|
+
stack = [(i, j)]
|
|
621
|
+
while stack:
|
|
622
|
+
x, y = stack.pop()
|
|
623
|
+
if x < 0 or x >= grid.shape[0] or y < 0 or y >= grid.shape[1]:
|
|
624
|
+
continue
|
|
625
|
+
if visited[x, y] == 1 or grid[x, y] == background_color:
|
|
626
|
+
continue
|
|
627
|
+
component.append((x, y))
|
|
628
|
+
visited[x, y] = 1
|
|
629
|
+
stack.append((x + 1, y))
|
|
630
|
+
stack.append((x - 1, y))
|
|
631
|
+
stack.append((x, y + 1))
|
|
632
|
+
stack.append((x, y - 1))
|
|
633
|
+
components.append(component)
|
|
634
|
+
|
|
635
|
+
return components, background_color
|
|
636
|
+
|
|
637
|
+
|
|
638
|
+
class RandomObjectRotate(Augmenter):
|
|
639
|
+
share_rng = True
|
|
640
|
+
|
|
641
|
+
def __init__(self, angle: int):
|
|
642
|
+
self.angle = angle
|
|
643
|
+
|
|
644
|
+
def __str__(self):
|
|
645
|
+
return f"RandomObjectRotate({self.angle})"
|
|
646
|
+
|
|
647
|
+
def apply_to_grid(
|
|
648
|
+
self, grid: Grid, rng: RandomState = None, background_color: int = 0
|
|
649
|
+
) -> Grid:
|
|
650
|
+
assert rng is not None
|
|
651
|
+
|
|
652
|
+
components, background_color = find_connected_components(
|
|
653
|
+
grid, background_color=background_color
|
|
654
|
+
)
|
|
655
|
+
|
|
656
|
+
if not components:
|
|
657
|
+
return grid
|
|
658
|
+
|
|
659
|
+
idx = rng.choice(len(components), size=1)[0]
|
|
660
|
+
component = components[idx]
|
|
661
|
+
|
|
662
|
+
# copy grid
|
|
663
|
+
grid = grid.copy()
|
|
664
|
+
|
|
665
|
+
# rotate part of the grid by the given angle assume left bottom corner is the origin
|
|
666
|
+
rotated_component = []
|
|
667
|
+
origin = np.array([min(x for x, y in component), min(y for x, y in component)])
|
|
668
|
+
for x, y in component:
|
|
669
|
+
color = grid[x, y]
|
|
670
|
+
x -= origin[0]
|
|
671
|
+
y -= origin[1]
|
|
672
|
+
if self.angle == 90:
|
|
673
|
+
x, y = y, -x
|
|
674
|
+
elif self.angle == 180:
|
|
675
|
+
x, y = -x, -y
|
|
676
|
+
elif self.angle == 270:
|
|
677
|
+
x, y = -y, x
|
|
678
|
+
rotated_component.append((x + origin[0], y + origin[1], color))
|
|
679
|
+
|
|
680
|
+
for x, y in component:
|
|
681
|
+
grid[x, y] = background_color
|
|
682
|
+
for x, y, color in rotated_component:
|
|
683
|
+
grid[x, y] = color
|
|
684
|
+
|
|
685
|
+
return grid
|
|
686
|
+
|
|
687
|
+
|
|
688
|
+
class PermuteExamples(Augmenter):
|
|
689
|
+
def apply_to_task(
|
|
690
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
691
|
+
) -> Task:
|
|
692
|
+
if rng is None:
|
|
693
|
+
rng = RandomState()
|
|
694
|
+
|
|
695
|
+
perm = rng.permutation(len(task.train_examples))
|
|
696
|
+
train_examples = [task.train_examples[i] for i in perm]
|
|
697
|
+
return Task(
|
|
698
|
+
train_examples=train_examples,
|
|
699
|
+
test_example=task.test_example,
|
|
700
|
+
name=task.name,
|
|
701
|
+
)
|
|
702
|
+
|
|
703
|
+
|
|
704
|
+
class RandomObjectTranslateXY(Augmenter):
|
|
705
|
+
share_rng = True
|
|
706
|
+
|
|
707
|
+
def __str__(self):
|
|
708
|
+
return "RandomObjectTranslateXY()"
|
|
709
|
+
|
|
710
|
+
def apply_to_grid(
|
|
711
|
+
self,
|
|
712
|
+
grid: Grid,
|
|
713
|
+
rng: RandomState = None,
|
|
714
|
+
background_color: Optional[int] = None,
|
|
715
|
+
) -> Grid:
|
|
716
|
+
assert rng is not None
|
|
717
|
+
|
|
718
|
+
components, background_color = find_connected_components(
|
|
719
|
+
grid, background_color=background_color
|
|
720
|
+
)
|
|
721
|
+
|
|
722
|
+
if not components:
|
|
723
|
+
return grid
|
|
724
|
+
|
|
725
|
+
idx = rng.choice(len(components), size=1)[0]
|
|
726
|
+
component = components[idx]
|
|
727
|
+
|
|
728
|
+
# copy grid
|
|
729
|
+
grid = grid.copy()
|
|
730
|
+
|
|
731
|
+
# translate part of the grid by the given angle assume left bottom corner is the origin
|
|
732
|
+
translated_component = []
|
|
733
|
+
shift_x = rng.randint(-grid.shape[0] // 2, grid.shape[0] // 2)
|
|
734
|
+
shift_y = rng.randint(-grid.shape[1] // 2, grid.shape[1] // 2)
|
|
735
|
+
for x, y in component:
|
|
736
|
+
color = grid[x, y]
|
|
737
|
+
x += shift_x
|
|
738
|
+
y += shift_y
|
|
739
|
+
translated_component.append((x, y, color))
|
|
740
|
+
|
|
741
|
+
for x, y in component:
|
|
742
|
+
grid[x, y] = background_color
|
|
743
|
+
for x, y, color in translated_component:
|
|
744
|
+
grid[x, y] = color
|
|
745
|
+
|
|
746
|
+
return grid
|
|
747
|
+
|
|
748
|
+
|
|
749
|
+
class Chain(Augmenter):
|
|
750
|
+
def __init__(self, augmenters: Tuple[Augmenter]):
|
|
751
|
+
self.augmenters = augmenters
|
|
752
|
+
|
|
753
|
+
def __str__(self):
|
|
754
|
+
return f"Chain({self.augmenters})"
|
|
755
|
+
|
|
756
|
+
def apply_to_task(
|
|
757
|
+
self, task: Task, rng: RandomState = None, share_rng=False, **kwargs
|
|
758
|
+
) -> Task:
|
|
759
|
+
for augmenter in self.augmenters:
|
|
760
|
+
task = augmenter.apply_to_task(
|
|
761
|
+
task, rng=rng, share_rng=augmenter.share_rng, **kwargs
|
|
762
|
+
)
|
|
763
|
+
return task
|
|
764
|
+
|
|
765
|
+
def apply_to_example(
|
|
766
|
+
self,
|
|
767
|
+
example: Example,
|
|
768
|
+
rng: RandomState = None,
|
|
769
|
+
to_input: bool = True,
|
|
770
|
+
to_output: bool = True,
|
|
771
|
+
) -> Example:
|
|
772
|
+
for augmenter in self.augmenters:
|
|
773
|
+
example = augmenter.apply_to_example(
|
|
774
|
+
example, rng=rng, to_input=to_input, to_output=to_output
|
|
775
|
+
)
|
|
776
|
+
return example
|
|
777
|
+
|
|
778
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
779
|
+
for augmenter in self.augmenters:
|
|
780
|
+
grid = augmenter.apply_to_grid(grid, rng=rng)
|
|
781
|
+
return grid
|
|
782
|
+
|
|
783
|
+
|
|
784
|
+
class Concat(Augmenter):
|
|
785
|
+
def __init__(self, augmenters: Tuple[Augmenter], axis: int = 0):
|
|
786
|
+
self.augmenters = augmenters
|
|
787
|
+
self.axis = axis
|
|
788
|
+
|
|
789
|
+
def __str__(self):
|
|
790
|
+
return f"Concat({self.augmenters}, axis={self.axis})"
|
|
791
|
+
|
|
792
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
793
|
+
grids = []
|
|
794
|
+
for augmenter in self.augmenters:
|
|
795
|
+
grids.append(augmenter.apply_to_grid(grid, rng=rng))
|
|
796
|
+
|
|
797
|
+
return np.concatenate(grids, axis=self.axis)
|
|
798
|
+
|
|
799
|
+
|
|
800
|
+
class IdentityAugmenter(Augmenter):
|
|
801
|
+
def __str__(self):
|
|
802
|
+
return "IdentityAugmenter()"
|
|
803
|
+
|
|
804
|
+
def apply_to_grid(self, grid: Grid, rng: RandomState = None) -> Grid:
|
|
805
|
+
return grid.copy()
|
|
806
|
+
|
|
807
|
+
|
|
808
|
+
def inverse(augmenter):
|
|
809
|
+
if isinstance(augmenter, Rotate):
|
|
810
|
+
return Rotate(360 - augmenter.angle)
|
|
811
|
+
elif isinstance(augmenter, Flip):
|
|
812
|
+
return augmenter
|
|
813
|
+
elif isinstance(augmenter, Transpose):
|
|
814
|
+
return augmenter
|
|
815
|
+
elif isinstance(augmenter, PermuteColors):
|
|
816
|
+
color_map = augmenter._color_map
|
|
817
|
+
# reverse
|
|
818
|
+
inverse_map = {v: k for k, v in color_map.items()}
|
|
819
|
+
return PermuteColorswithMap(inverse_map)
|
|
820
|
+
|
|
821
|
+
|
|
822
|
+
augmenters_to_apply_to_input = [
|
|
823
|
+
DropoutInput(),
|
|
824
|
+
IncreaseResolution(2),
|
|
825
|
+
IncreaseResolution(3),
|
|
826
|
+
IncreaseHeight(2),
|
|
827
|
+
IncreaseWidth(2),
|
|
828
|
+
IncreaseHeight(3),
|
|
829
|
+
IncreaseWidth(3),
|
|
830
|
+
]
|
|
831
|
+
|
|
832
|
+
input_augmenters_probs = [
|
|
833
|
+
1,
|
|
834
|
+
1 / 2,
|
|
835
|
+
1 / 2,
|
|
836
|
+
1 / 4,
|
|
837
|
+
1 / 4,
|
|
838
|
+
1 / 4,
|
|
839
|
+
1 / 4,
|
|
840
|
+
]
|
|
841
|
+
|
|
842
|
+
augmenters_to_apply_to_output = [
|
|
843
|
+
Rotate(90),
|
|
844
|
+
Rotate(270),
|
|
845
|
+
Rotate(180),
|
|
846
|
+
Flip(0),
|
|
847
|
+
Flip(1),
|
|
848
|
+
Reflect(0, reverse=True),
|
|
849
|
+
Reflect(1, reverse=True),
|
|
850
|
+
Reflect(0, reverse=False),
|
|
851
|
+
Reflect(1, reverse=False),
|
|
852
|
+
IncreaseResolution(2),
|
|
853
|
+
IncreaseResolution(3),
|
|
854
|
+
IncreaseHeight(2),
|
|
855
|
+
IncreaseWidth(2),
|
|
856
|
+
Transpose(),
|
|
857
|
+
RandomTranslateXY(),
|
|
858
|
+
DropoutOutput(),
|
|
859
|
+
Repeat(0, 2),
|
|
860
|
+
Repeat(1, 2),
|
|
861
|
+
Repeat(0, 3),
|
|
862
|
+
Repeat(1, 3),
|
|
863
|
+
Repeat(2, 2),
|
|
864
|
+
Repeat(2, 3),
|
|
865
|
+
]
|
|
866
|
+
|
|
867
|
+
output_augmenters_probs = [
|
|
868
|
+
1 / 3,
|
|
869
|
+
1 / 3,
|
|
870
|
+
1 / 3,
|
|
871
|
+
1 / 2,
|
|
872
|
+
1 / 2,
|
|
873
|
+
1 / 4,
|
|
874
|
+
1 / 4,
|
|
875
|
+
1 / 4,
|
|
876
|
+
1 / 4,
|
|
877
|
+
1 / 4,
|
|
878
|
+
1 / 4,
|
|
879
|
+
1 / 4,
|
|
880
|
+
1 / 4,
|
|
881
|
+
1 / 2,
|
|
882
|
+
1 / 2,
|
|
883
|
+
1 / 2,
|
|
884
|
+
1 / 5,
|
|
885
|
+
1 / 5,
|
|
886
|
+
1 / 5,
|
|
887
|
+
1 / 5,
|
|
888
|
+
1 / 5,
|
|
889
|
+
1 / 5,
|
|
890
|
+
]
|
|
891
|
+
|
|
892
|
+
augmenters_to_apply_to_both = [
|
|
893
|
+
IncreaseResolution(2),
|
|
894
|
+
IncreaseResolution(3),
|
|
895
|
+
IncreaseHeight(2),
|
|
896
|
+
IncreaseWidth(2),
|
|
897
|
+
IncreaseHeight(3),
|
|
898
|
+
IncreaseWidth(3),
|
|
899
|
+
PermuteColors(),
|
|
900
|
+
# Transpose(),
|
|
901
|
+
# Rotate(90),
|
|
902
|
+
# Rotate(270),
|
|
903
|
+
# Rotate(180),
|
|
904
|
+
# Flip(0),
|
|
905
|
+
# Flip(1),
|
|
906
|
+
# Reflect(0, reverse=False),
|
|
907
|
+
# Reflect(1, reverse=False),
|
|
908
|
+
]
|
|
909
|
+
|
|
910
|
+
both_augmenters_probs = [
|
|
911
|
+
1 / 2,
|
|
912
|
+
1 / 2,
|
|
913
|
+
1 / 4,
|
|
914
|
+
1 / 4,
|
|
915
|
+
1 / 4,
|
|
916
|
+
1 / 4,
|
|
917
|
+
1 / 2,
|
|
918
|
+
# 1/8,
|
|
919
|
+
# 1/8,
|
|
920
|
+
# 1/8,
|
|
921
|
+
# 1/8,
|
|
922
|
+
# 1/8,
|
|
923
|
+
# 1/8,
|
|
924
|
+
# 1/8,
|
|
925
|
+
# 1/8,
|
|
926
|
+
]
|
|
927
|
+
|
|
928
|
+
# normalize
|
|
929
|
+
input_augmenters_probs = [
|
|
930
|
+
p / sum(input_augmenters_probs) for p in input_augmenters_probs
|
|
931
|
+
]
|
|
932
|
+
output_augmenters_probs = [
|
|
933
|
+
p / sum(output_augmenters_probs) for p in output_augmenters_probs
|
|
934
|
+
]
|
|
935
|
+
both_augmenters_probs = [p / sum(both_augmenters_probs) for p in both_augmenters_probs]
|
|
936
|
+
|
|
937
|
+
|
|
938
|
+
def apply_a_random_augmentation(task: Task, rng=None) -> Tuple[Task, Augmenter, str]:
|
|
939
|
+
if rng is None:
|
|
940
|
+
rng = RandomState()
|
|
941
|
+
|
|
942
|
+
category = rng.choice(["input", "output", "both"], p=[0.3, 0.6, 0.1])
|
|
943
|
+
|
|
944
|
+
if category == "input":
|
|
945
|
+
augmenter = rng.choice(augmenters_to_apply_to_input, p=input_augmenters_probs)
|
|
946
|
+
task = augmenter.apply_to_task(task, to_input=True, to_output=False, rng=rng)
|
|
947
|
+
elif category == "output":
|
|
948
|
+
augmenter = rng.choice(augmenters_to_apply_to_output, p=output_augmenters_probs)
|
|
949
|
+
task = augmenter.apply_to_task(task, to_input=False, to_output=True, rng=rng)
|
|
950
|
+
else:
|
|
951
|
+
augmenter = rng.choice(augmenters_to_apply_to_both, p=both_augmenters_probs)
|
|
952
|
+
task = augmenter.apply_to_task(task, to_input=True, to_output=True, rng=rng)
|
|
953
|
+
|
|
954
|
+
return task, augmenter, category
|
|
955
|
+
|
|
956
|
+
|
|
957
|
+
if __name__ == "__main__":
|
|
958
|
+
|
|
959
|
+
grid = np.array(
|
|
960
|
+
[
|
|
961
|
+
[1, 1, 1, 1, 1, 1, 1],
|
|
962
|
+
[2, 2, 2, 2, 2, 2, 2],
|
|
963
|
+
[3, 3, 3, 3, 3, 3, 3],
|
|
964
|
+
[4, 4, 4, 4, 4, 4, 4],
|
|
965
|
+
[5, 5, 5, 5, 5, 5, 5],
|
|
966
|
+
]
|
|
967
|
+
)
|
|
968
|
+
|
|
969
|
+
rng = RandomState(45)
|
|
970
|
+
task = Task(train_examples=[Example(grid, grid)], test_example=Example(grid, grid))
|
|
971
|
+
|
|
972
|
+
drop_task = DropoutOutput().apply_to_task(
|
|
973
|
+
task, rng=rng, to_input=False, to_output=True
|
|
974
|
+
)
|
|
975
|
+
drop_task_input = DropoutInput().apply_to_task(
|
|
976
|
+
task, rng=rng, to_input=True, to_output=False
|
|
977
|
+
)
|
|
978
|
+
|
|
979
|
+
grid1 = np.array(
|
|
980
|
+
[
|
|
981
|
+
[0, 0, 0, 0, 0],
|
|
982
|
+
[0, 1, 1, 1, 0],
|
|
983
|
+
[0, 1, 1, 1, 0],
|
|
984
|
+
[0, 0, 0, 0, 0],
|
|
985
|
+
[0, 2, 2, 0, 0],
|
|
986
|
+
[0, 2, 2, 0, 0],
|
|
987
|
+
[0, 2, 2, 0, 0],
|
|
988
|
+
]
|
|
989
|
+
)
|
|
990
|
+
|
|
991
|
+
# another grid
|
|
992
|
+
grid2 = np.array(
|
|
993
|
+
[
|
|
994
|
+
[0, 0, 0, 0, 0],
|
|
995
|
+
[0, 5, 5, 5, 0],
|
|
996
|
+
[0, 5, 5, 5, 0],
|
|
997
|
+
[0, 0, 0, 0, 0],
|
|
998
|
+
[0, 2, 4, 0, 0],
|
|
999
|
+
[0, 9, 4, 0, 0],
|
|
1000
|
+
[0, 9, 4, 0, 0],
|
|
1001
|
+
]
|
|
1002
|
+
)
|
|
1003
|
+
|
|
1004
|
+
train_examples = [Example(grid1, grid1) for _ in range(3)]
|
|
1005
|
+
train_examples.append(Example(grid1, grid2))
|
|
1006
|
+
test_example = Example(grid1, grid1)
|
|
1007
|
+
|
|
1008
|
+
task = Task(train_examples=train_examples, test_example=test_example)
|
|
1009
|
+
|
|
1010
|
+
for _ in range(1000):
|
|
1011
|
+
ttask, augmenterr, category = apply_a_random_augmentation(task, rng=rng)
|
|
1012
|
+
assert np.array_equal(
|
|
1013
|
+
ttask.train_examples[0].output, ttask.train_examples[1].output
|
|
1014
|
+
)
|
|
1015
|
+
assert np.array_equal(
|
|
1016
|
+
ttask.train_examples[0].output, ttask.train_examples[2].output
|
|
1017
|
+
)
|
|
1018
|
+
assert not np.array_equal(
|
|
1019
|
+
ttask.train_examples[0].output, ttask.train_examples[3].output
|
|
1020
|
+
)
|
|
1021
|
+
|
|
1022
|
+
# apply permute colors
|
|
1023
|
+
permute_colors = PermuteColors()
|
|
1024
|
+
ttask = permute_colors.apply_to_task(task, rng=rng)
|
|
1025
|
+
|
|
1026
|
+
# random permutation
|
|
1027
|
+
permuted = rng.permutation(np.arange(10))
|
|
1028
|
+
|
|
1029
|
+
print(permuted)
|
|
1030
|
+
|
|
1031
|
+
def color_mapper(color: int) -> int:
|
|
1032
|
+
return permuted[color]
|
|
1033
|
+
|
|
1034
|
+
color_mapper_v = np.vectorize(color_mapper)
|
|
1035
|
+
|
|
1036
|
+
color_mapper_v(task.test_example.input)
|