fusion-bench 0.2.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (727) hide show
  1. fusion_bench/__init__.py +20 -0
  2. fusion_bench/__main__.py +4 -0
  3. fusion_bench/compat/__init__.py +0 -0
  4. fusion_bench/compat/method/__init__.py +109 -0
  5. fusion_bench/compat/method/base_algorithm.py +58 -0
  6. fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
  7. fusion_bench/compat/modelpool/__init__.py +116 -0
  8. fusion_bench/compat/modelpool/base_pool.py +328 -0
  9. fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
  10. fusion_bench/compat/taskpool/__init__.py +95 -0
  11. fusion_bench/compat/taskpool/base_pool.py +111 -0
  12. fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
  13. fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
  14. fusion_bench/constants/__init__.py +2 -0
  15. fusion_bench/constants/paths.py +18 -0
  16. fusion_bench/dataset/__init__.py +29 -0
  17. fusion_bench/dataset/arc_agi/__init__.py +6 -0
  18. fusion_bench/dataset/arc_agi/arc.py +308 -0
  19. fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
  20. fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
  21. fusion_bench/dataset/arc_agi/messagers.py +1355 -0
  22. fusion_bench/dataset/arc_agi/np_cache.py +168 -0
  23. fusion_bench/dataset/arc_agi/preprocess.py +298 -0
  24. fusion_bench/dataset/arc_agi/representers.py +1019 -0
  25. fusion_bench/dataset/clip_dataset.py +71 -0
  26. fusion_bench/dataset/fer2013.py +12 -0
  27. fusion_bench/dataset/gpt2_glue.py +300 -0
  28. fusion_bench/dataset/gsm8k.py +60 -0
  29. fusion_bench/dataset/image_dataset.py +55 -0
  30. fusion_bench/dataset/imdb.py +11 -0
  31. fusion_bench/dataset/llama/__init__.py +1 -0
  32. fusion_bench/dataset/llama/alpaca.py +232 -0
  33. fusion_bench/dataset/llama/collate.py +120 -0
  34. fusion_bench/dataset/llama/metamathqa.py +50 -0
  35. fusion_bench/dataset/llama/openai.py +160 -0
  36. fusion_bench/dataset/llama/preference_700k.py +70 -0
  37. fusion_bench/dataset/llama/sharegpt.py +141 -0
  38. fusion_bench/dataset/llama/squad.py +125 -0
  39. fusion_bench/dataset/llama/stanford_shp.py +90 -0
  40. fusion_bench/dataset/llama/ultrachat.py +58 -0
  41. fusion_bench/dataset/llama/utils/__init__.py +0 -0
  42. fusion_bench/dataset/llama/wikitext.py +89 -0
  43. fusion_bench/dataset/nyuv2.py +119 -0
  44. fusion_bench/method/__init__.py +177 -0
  45. fusion_bench/method/ada_svd/__init__.py +2 -0
  46. fusion_bench/method/ada_svd/clip_vision.py +319 -0
  47. fusion_bench/method/adamerging/__init__.py +6 -0
  48. fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
  49. fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
  50. fusion_bench/method/adamerging/entropy_loss.py +25 -0
  51. fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
  52. fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
  53. fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
  54. fusion_bench/method/adamerging/llama_adamerging.py +335 -0
  55. fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
  56. fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
  57. fusion_bench/method/adamerging/utils.py +15 -0
  58. fusion_bench/method/analysis/__init__.py +2 -0
  59. fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
  60. fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
  61. fusion_bench/method/base_algorithm.py +44 -0
  62. fusion_bench/method/classification/__init__.py +3 -0
  63. fusion_bench/method/classification/clip_finetune.py +444 -0
  64. fusion_bench/method/classification/continual_clip_finetune.py +297 -0
  65. fusion_bench/method/concrete_subspace/__init__.py +6 -0
  66. fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
  67. fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
  68. fusion_bench/method/dare/__init__.py +4 -0
  69. fusion_bench/method/dare/simple_average.py +31 -0
  70. fusion_bench/method/dare/task_arithmetic.py +82 -0
  71. fusion_bench/method/dare/ties_merging.py +100 -0
  72. fusion_bench/method/dare/utils.py +87 -0
  73. fusion_bench/method/dawe/__init__.py +2 -0
  74. fusion_bench/method/dawe/dawe_for_clip.py +274 -0
  75. fusion_bench/method/dawe/warppers/__init__.py +13 -0
  76. fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
  77. fusion_bench/method/depth_upscaling/__init__.py +3 -0
  78. fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
  79. fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
  80. fusion_bench/method/dummy.py +35 -0
  81. fusion_bench/method/ensemble.py +98 -0
  82. fusion_bench/method/fisher_merging/__init__.py +4 -0
  83. fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
  84. fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
  85. fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
  86. fusion_bench/method/linear/__init__.py +6 -0
  87. fusion_bench/method/linear/expo.py +118 -0
  88. fusion_bench/method/linear/linear_interpolation.py +60 -0
  89. fusion_bench/method/linear/llama_expo.py +229 -0
  90. fusion_bench/method/linear/simple_average_for_llama.py +54 -0
  91. fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
  92. fusion_bench/method/lm_finetune/__init__.py +3 -0
  93. fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
  94. fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
  95. fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
  96. fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
  97. fusion_bench/method/mixture_of_experts/__init__.py +7 -0
  98. fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
  99. fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
  100. fusion_bench/method/model_recombination.py +121 -0
  101. fusion_bench/method/opcm/__init__.py +4 -0
  102. fusion_bench/method/opcm/opcm.py +277 -0
  103. fusion_bench/method/opcm/task_arithmetic.py +115 -0
  104. fusion_bench/method/opcm/ties_merging.py +156 -0
  105. fusion_bench/method/opcm/utils.py +73 -0
  106. fusion_bench/method/opcm/weight_average.py +120 -0
  107. fusion_bench/method/pruning/__init__.py +5 -0
  108. fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
  109. fusion_bench/method/pruning/llama_random_prune.py +143 -0
  110. fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
  111. fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
  112. fusion_bench/method/pruning/prune_utils.py +165 -0
  113. fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
  114. fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
  115. fusion_bench/method/pruning/wanda_utils/data.py +135 -0
  116. fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
  117. fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
  118. fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
  119. fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
  120. fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
  121. fusion_bench/method/pwe_moe/__init__.py +5 -0
  122. fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
  123. fusion_bench/method/pwe_moe/module.py +316 -0
  124. fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
  125. fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
  126. fusion_bench/method/pwe_moe/utils.py +43 -0
  127. fusion_bench/method/rankone_moe/__init__.py +3 -0
  128. fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
  129. fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
  130. fusion_bench/method/regmean/__init__.py +4 -0
  131. fusion_bench/method/regmean/clip_regmean.py +131 -0
  132. fusion_bench/method/regmean/gpt2_regmean.py +147 -0
  133. fusion_bench/method/regmean/regmean.py +375 -0
  134. fusion_bench/method/simple_average.py +112 -0
  135. fusion_bench/method/slerp/__init__.py +2 -0
  136. fusion_bench/method/slerp/slerp.py +101 -0
  137. fusion_bench/method/slerp/slerp_utils.py +107 -0
  138. fusion_bench/method/smile_upscaling/__init__.py +3 -0
  139. fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
  140. fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
  141. fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
  142. fusion_bench/method/sparse_we_moe/__init__.py +2 -0
  143. fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
  144. fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
  145. fusion_bench/method/sparselo/__init__.py +2 -0
  146. fusion_bench/method/sparselo/sparselo.py +955 -0
  147. fusion_bench/method/surgery/__init__.py +1 -0
  148. fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
  149. fusion_bench/method/tall_mask/__init__.py +0 -0
  150. fusion_bench/method/tall_mask/utils.py +234 -0
  151. fusion_bench/method/task_arithmetic/__init__.py +2 -0
  152. fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
  153. fusion_bench/method/task_singular_vector/TSVC.py +16 -0
  154. fusion_bench/method/task_singular_vector/TSVM.py +63 -0
  155. fusion_bench/method/task_singular_vector/__init__.py +9 -0
  156. fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
  157. fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
  158. fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
  159. fusion_bench/method/ties_merging/__init__.py +2 -0
  160. fusion_bench/method/ties_merging/ties_merging.py +117 -0
  161. fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
  162. fusion_bench/method/trust_region/__init__.py +2 -0
  163. fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
  164. fusion_bench/method/trust_region/utils.py +58 -0
  165. fusion_bench/method/we_moe/__init__.py +2 -0
  166. fusion_bench/method/we_moe/clip_we_moe.py +161 -0
  167. fusion_bench/method/we_moe/we_moe.py +247 -0
  168. fusion_bench/method/weighted_average/__init__.py +3 -0
  169. fusion_bench/method/weighted_average/llama.py +113 -0
  170. fusion_bench/method/weighted_average/weighted_average.py +102 -0
  171. fusion_bench/metrics/__init__.py +0 -0
  172. fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
  173. fusion_bench/metrics/nyuv2/__init__.py +11 -0
  174. fusion_bench/metrics/nyuv2/depth.py +45 -0
  175. fusion_bench/metrics/nyuv2/loss.py +31 -0
  176. fusion_bench/metrics/nyuv2/noise.py +16 -0
  177. fusion_bench/metrics/nyuv2/normal.py +48 -0
  178. fusion_bench/metrics/nyuv2/segmentation.py +43 -0
  179. fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
  180. fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
  181. fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
  182. fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
  183. fusion_bench/mixins/__init__.py +28 -0
  184. fusion_bench/mixins/clip_classification.py +252 -0
  185. fusion_bench/mixins/fabric_training.py +320 -0
  186. fusion_bench/mixins/lightning_fabric.py +174 -0
  187. fusion_bench/mixins/optim/__init__.py +0 -0
  188. fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
  189. fusion_bench/mixins/rich_live.py +21 -0
  190. fusion_bench/mixins/serialization.py +132 -0
  191. fusion_bench/mixins/simple_profiler.py +79 -0
  192. fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
  193. fusion_bench/modelpool/__init__.py +42 -0
  194. fusion_bench/modelpool/base_pool.py +268 -0
  195. fusion_bench/modelpool/causal_lm/__init__.py +2 -0
  196. fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
  197. fusion_bench/modelpool/clip_vision/__init__.py +1 -0
  198. fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
  199. fusion_bench/modelpool/huggingface_automodel.py +20 -0
  200. fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
  201. fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
  202. fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
  203. fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
  204. fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
  205. fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
  206. fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
  207. fusion_bench/models/__init__.py +3 -0
  208. fusion_bench/models/chat_templates/__init__.py +1 -0
  209. fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
  210. fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
  211. fusion_bench/models/hf_clip.py +199 -0
  212. fusion_bench/models/linearized/__init__.py +0 -0
  213. fusion_bench/models/linearized/linearized_model_utils.py +91 -0
  214. fusion_bench/models/linearized/vision_model.py +122 -0
  215. fusion_bench/models/llama/__init__.py +16 -0
  216. fusion_bench/models/llama/model_utils/__init__.py +0 -0
  217. fusion_bench/models/llama/model_utils/embedding.py +87 -0
  218. fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
  219. fusion_bench/models/llama/model_utils/misc.py +112 -0
  220. fusion_bench/models/llama/model_utils/mod.py +52 -0
  221. fusion_bench/models/llama/model_utils/visual.py +241 -0
  222. fusion_bench/models/llama/patcher.py +78 -0
  223. fusion_bench/models/llama/tokenizer_loader.py +153 -0
  224. fusion_bench/models/masks/__init__.py +2 -0
  225. fusion_bench/models/masks/mask_model.py +160 -0
  226. fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
  227. fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
  228. fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
  229. fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
  230. fusion_bench/models/modeling_losparse_llama/register.py +8 -0
  231. fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
  232. fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
  233. fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
  234. fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
  235. fusion_bench/models/modeling_smile_mistral/register.py +8 -0
  236. fusion_bench/models/nyuv2/__init__.py +0 -0
  237. fusion_bench/models/nyuv2/aspp.py +82 -0
  238. fusion_bench/models/nyuv2/lightning_module.py +176 -0
  239. fusion_bench/models/nyuv2/resnet.py +405 -0
  240. fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
  241. fusion_bench/models/parameter_dict.py +75 -0
  242. fusion_bench/models/rankone_moe.py +410 -0
  243. fusion_bench/models/separate_io.py +105 -0
  244. fusion_bench/models/smile_moe/__init__.py +0 -0
  245. fusion_bench/models/smile_moe/linear.py +256 -0
  246. fusion_bench/models/sparse_we_moe.py +459 -0
  247. fusion_bench/models/surgery/__init__.py +1 -0
  248. fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
  249. fusion_bench/models/utils.py +80 -0
  250. fusion_bench/models/we_moe.py +247 -0
  251. fusion_bench/models/wrappers/__init__.py +0 -0
  252. fusion_bench/models/wrappers/ensemble.py +183 -0
  253. fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
  254. fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
  255. fusion_bench/optim/__init__.py +2 -0
  256. fusion_bench/optim/exception.py +47 -0
  257. fusion_bench/optim/lr_scheduler/__init__.py +1 -0
  258. fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
  259. fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
  260. fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
  261. fusion_bench/optim/mezo.py +118 -0
  262. fusion_bench/programs/__init__.py +20 -0
  263. fusion_bench/programs/base_program.py +9 -0
  264. fusion_bench/programs/fabric_fusion_program.py +299 -0
  265. fusion_bench/scripts/__init__.py +0 -0
  266. fusion_bench/scripts/cli.py +43 -0
  267. fusion_bench/scripts/clip/__init__.py +0 -0
  268. fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
  269. fusion_bench/scripts/imgui.py +218 -0
  270. fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
  271. fusion_bench/scripts/webui.py +405 -0
  272. fusion_bench/taskpool/__init__.py +39 -0
  273. fusion_bench/taskpool/base_pool.py +35 -0
  274. fusion_bench/taskpool/clip_vision/__init__.py +4 -0
  275. fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
  276. fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
  277. fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
  278. fusion_bench/taskpool/dummy.py +58 -0
  279. fusion_bench/taskpool/gpt2_text_classification.py +149 -0
  280. fusion_bench/taskpool/llama/__init__.py +1 -0
  281. fusion_bench/taskpool/llama/reward_model.py +157 -0
  282. fusion_bench/taskpool/llama/test_generation.py +185 -0
  283. fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
  284. fusion_bench/tasks/__init__.py +2 -0
  285. fusion_bench/tasks/base_task.py +18 -0
  286. fusion_bench/tasks/classification.py +75 -0
  287. fusion_bench/tasks/clip_classification/__init__.py +183 -0
  288. fusion_bench/tasks/clip_classification/cifar10.py +33 -0
  289. fusion_bench/tasks/clip_classification/cifar100.py +146 -0
  290. fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
  291. fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
  292. fusion_bench/tasks/clip_classification/dtd.py +60 -0
  293. fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
  294. fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
  295. fusion_bench/tasks/clip_classification/eurosat.py +18 -0
  296. fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
  297. fusion_bench/tasks/clip_classification/fer2013.py +18 -0
  298. fusion_bench/tasks/clip_classification/flower102.py +106 -0
  299. fusion_bench/tasks/clip_classification/food101.py +105 -0
  300. fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
  301. fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
  302. fusion_bench/tasks/clip_classification/kmnist.py +17 -0
  303. fusion_bench/tasks/clip_classification/mnist.py +5 -0
  304. fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
  305. fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
  306. fusion_bench/tasks/clip_classification/pcam.py +5 -0
  307. fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
  308. fusion_bench/tasks/clip_classification/resisc45.py +68 -0
  309. fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
  310. fusion_bench/tasks/clip_classification/stl10.py +17 -0
  311. fusion_bench/tasks/clip_classification/sun397.py +404 -0
  312. fusion_bench/tasks/clip_classification/svhn.py +5 -0
  313. fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
  314. fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
  315. fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
  316. fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
  317. fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
  318. fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
  319. fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
  320. fusion_bench/utils/__init__.py +14 -0
  321. fusion_bench/utils/auto.py +31 -0
  322. fusion_bench/utils/cache_utils.py +58 -0
  323. fusion_bench/utils/data.py +165 -0
  324. fusion_bench/utils/devices.py +231 -0
  325. fusion_bench/utils/dict.py +43 -0
  326. fusion_bench/utils/dtype.py +146 -0
  327. fusion_bench/utils/expr.py +90 -0
  328. fusion_bench/utils/fabric.py +17 -0
  329. fusion_bench/utils/functools.py +37 -0
  330. fusion_bench/utils/hydra_utils.py +28 -0
  331. fusion_bench/utils/instantiate.py +450 -0
  332. fusion_bench/utils/json.py +93 -0
  333. fusion_bench/utils/lazy_imports.py +74 -0
  334. fusion_bench/utils/misc.py +18 -0
  335. fusion_bench/utils/packages.py +84 -0
  336. fusion_bench/utils/parameters.py +323 -0
  337. fusion_bench/utils/path.py +22 -0
  338. fusion_bench/utils/plot/__init__.py +0 -0
  339. fusion_bench/utils/plot/color_data.py +1726 -0
  340. fusion_bench/utils/plot/token.py +52 -0
  341. fusion_bench/utils/plot/token_notebook.py +127 -0
  342. fusion_bench/utils/pylogger.py +55 -0
  343. fusion_bench/utils/rich_utils.py +201 -0
  344. fusion_bench/utils/set.py +8 -0
  345. fusion_bench/utils/state_dict_arithmetic.py +297 -0
  346. fusion_bench/utils/strenum/__init__.py +326 -0
  347. fusion_bench/utils/strenum/_name_mangler.py +127 -0
  348. fusion_bench/utils/strenum/_version.py +556 -0
  349. fusion_bench/utils/tensorboard.py +51 -0
  350. fusion_bench/utils/timer.py +49 -0
  351. fusion_bench/utils/type.py +34 -0
  352. fusion_bench-0.2.9.dist-info/LICENSE +21 -0
  353. fusion_bench-0.2.9.dist-info/METADATA +258 -0
  354. fusion_bench-0.2.9.dist-info/RECORD +727 -0
  355. fusion_bench-0.2.9.dist-info/WHEEL +5 -0
  356. fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
  357. fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
  358. fusion_bench_config/README.md +12 -0
  359. fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
  360. fusion_bench_config/dataset/image_classification/README.md +6 -0
  361. fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
  362. fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
  363. fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
  364. fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
  365. fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
  366. fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
  367. fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
  368. fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
  369. fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
  370. fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
  371. fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
  372. fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
  373. fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
  374. fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
  375. fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
  376. fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
  377. fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
  378. fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
  379. fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
  380. fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
  381. fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
  382. fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
  383. fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
  384. fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
  385. fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
  386. fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
  387. fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
  388. fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
  389. fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
  390. fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
  391. fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
  392. fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
  393. fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
  394. fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
  395. fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
  396. fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
  397. fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
  398. fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
  399. fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
  400. fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
  401. fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
  402. fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
  403. fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
  404. fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
  405. fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
  406. fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
  407. fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
  408. fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
  409. fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
  410. fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
  411. fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
  412. fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
  413. fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
  414. fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
  415. fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
  416. fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
  417. fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
  418. fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
  419. fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
  420. fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
  421. fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
  422. fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
  423. fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
  424. fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
  425. fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
  426. fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
  427. fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
  428. fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
  429. fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
  430. fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
  431. fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
  432. fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
  433. fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
  434. fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
  435. fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
  436. fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
  437. fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
  438. fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
  439. fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
  440. fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
  441. fusion_bench_config/fabric/auto.yaml +16 -0
  442. fusion_bench_config/fabric/llama_ddp.yaml +18 -0
  443. fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
  444. fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
  445. fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
  446. fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
  447. fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
  448. fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
  449. fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
  450. fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
  451. fusion_bench_config/fabric_model_fusion.yaml +20 -0
  452. fusion_bench_config/hydra/default.yaml +8 -0
  453. fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
  454. fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
  455. fusion_bench_config/llama_full_finetune.yaml +19 -0
  456. fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
  457. fusion_bench_config/llama_model_fusion.yaml +17 -0
  458. fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
  459. fusion_bench_config/method/adamerging/clip.yaml +23 -0
  460. fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
  461. fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
  462. fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
  463. fusion_bench_config/method/adamerging.yaml +23 -0
  464. fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
  465. fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
  466. fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
  467. fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
  468. fusion_bench_config/method/clip_finetune.yaml +26 -0
  469. fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
  470. fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
  471. fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
  472. fusion_bench_config/method/dare/simple_average.yaml +5 -0
  473. fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
  474. fusion_bench_config/method/dare/ties_merging.yaml +15 -0
  475. fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
  476. fusion_bench_config/method/depth_upscaling.yaml +5 -0
  477. fusion_bench_config/method/dummy.yaml +1 -0
  478. fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
  479. fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
  480. fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
  481. fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
  482. fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
  483. fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
  484. fusion_bench_config/method/linear/expo.yaml +8 -0
  485. fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
  486. fusion_bench_config/method/linear/llama_expo.yaml +19 -0
  487. fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
  488. fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
  489. fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
  490. fusion_bench_config/method/linear/weighted_average.yaml +6 -0
  491. fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
  492. fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
  493. fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
  494. fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
  495. fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
  496. fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
  497. fusion_bench_config/method/model_recombination.yaml +4 -0
  498. fusion_bench_config/method/opcm/opcm.yaml +12 -0
  499. fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
  500. fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
  501. fusion_bench_config/method/opcm/weight_average.yaml +10 -0
  502. fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
  503. fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
  504. fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
  505. fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
  506. fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
  507. fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
  508. fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
  509. fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
  510. fusion_bench_config/method/regmean/regmean.yaml +4 -0
  511. fusion_bench_config/method/simple_average.yaml +1 -0
  512. fusion_bench_config/method/slerp/slerp.yaml +6 -0
  513. fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
  514. fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
  515. fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
  516. fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
  517. fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
  518. fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
  519. fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
  520. fusion_bench_config/method/task_arithmetic.yaml +2 -0
  521. fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
  522. fusion_bench_config/method/ties_merging.yaml +8 -0
  523. fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
  524. fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
  525. fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
  526. fusion_bench_config/model/clip-vit/README.md +38 -0
  527. fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
  528. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
  529. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
  530. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
  531. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
  532. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
  533. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
  534. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
  535. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
  536. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
  537. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
  538. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
  539. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
  540. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
  541. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
  542. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
  543. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
  544. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
  545. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
  546. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
  547. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
  548. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
  549. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
  550. fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
  551. fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
  552. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
  553. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
  554. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
  555. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
  556. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
  557. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
  558. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
  559. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
  560. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
  561. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
  562. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
  563. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
  564. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
  565. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
  566. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
  567. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
  568. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
  569. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
  570. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
  571. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
  572. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
  573. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
  574. fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
  575. fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
  576. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
  577. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
  578. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
  579. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
  580. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
  581. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
  582. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
  583. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
  584. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
  585. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
  586. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
  587. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
  588. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
  589. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
  590. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
  591. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
  592. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
  593. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
  594. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
  595. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
  596. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
  597. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
  598. fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
  599. fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
  600. fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
  601. fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
  602. fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
  603. fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
  604. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
  605. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
  606. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
  607. fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
  608. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
  609. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
  610. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
  611. fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
  612. fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
  613. fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
  614. fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
  615. fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
  616. fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
  617. fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
  618. fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
  619. fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
  620. fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
  621. fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
  622. fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
  623. fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
  624. fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
  625. fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
  626. fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
  627. fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
  628. fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
  629. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
  630. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
  631. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
  632. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
  633. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
  634. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
  635. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
  636. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
  637. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
  638. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
  639. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
  640. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
  641. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
  642. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
  643. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
  644. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
  645. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
  646. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
  647. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
  648. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
  649. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
  650. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
  651. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
  652. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
  653. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
  654. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
  655. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
  656. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
  657. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
  658. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
  659. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
  660. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
  661. fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
  662. fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
  663. fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
  664. fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
  665. fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
  666. fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
  667. fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
  668. fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
  669. fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
  670. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
  671. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
  672. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
  673. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
  674. fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
  675. fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
  676. fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
  677. fusion_bench_config/modelpool/automodelpool.yaml +12 -0
  678. fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
  679. fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
  680. fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
  681. fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
  682. fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
  683. fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
  684. fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
  685. fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
  686. fusion_bench_config/nyuv2_config.yaml +17 -0
  687. fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
  688. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
  689. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
  690. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
  691. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
  692. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
  693. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
  694. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
  695. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
  696. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
  697. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
  698. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
  699. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
  700. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
  701. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
  702. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
  703. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
  704. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
  705. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
  706. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
  707. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
  708. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
  709. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
  710. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
  711. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
  712. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
  713. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
  714. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
  715. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
  716. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
  717. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
  718. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
  719. fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
  720. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
  721. fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
  722. fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
  723. fusion_bench_config/taskpool/dummy.yaml +2 -0
  724. fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
  725. fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
  726. fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
  727. fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
@@ -0,0 +1,256 @@
1
+ import logging
2
+ from typing import Dict, List, Tuple # noqa: F401
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from torch import Tensor, nn
7
+
8
+ log = logging.getLogger(__name__)
9
+
10
+
11
+ class ExpertNotTrainedError(Exception):
12
+ pass
13
+
14
+
15
+ def _is_all_zeros(tensor: Tensor | List[Tensor]) -> bool:
16
+ if isinstance(tensor, Tensor):
17
+ return torch.allclose(tensor, torch.zeros_like(tensor))
18
+ else:
19
+ return all(_is_all_zeros(t) for t in tensor)
20
+
21
+
22
+ def _svd(w: Tensor, full_matrices=True) -> Tuple[Tensor, Tensor, Tensor]:
23
+ u, s, vh = torch.linalg.svd(
24
+ w, full_matrices=full_matrices, driver="gesvd" if w.is_cuda else None
25
+ )
26
+ v = vh.T
27
+ return u, s, v
28
+
29
+
30
+ def svd(
31
+ w: Tensor, full_matrices=True, accelerator=None
32
+ ) -> Tuple[Tensor, Tensor, Tensor]:
33
+ if accelerator is None:
34
+ return _svd(w, full_matrices=full_matrices)
35
+ original_device = w.device
36
+ w = w.to(accelerator)
37
+ u, s, v = _svd(w)
38
+ return u.to(original_device), s.to(original_device), v.to(original_device)
39
+
40
+
41
+ class SmileGate(nn.Module):
42
+ def __init__(
43
+ self,
44
+ input_features: int,
45
+ w_diff_list: List[Tensor],
46
+ k: int,
47
+ svd_list=None, # cached `svd_list`, pass it to avoid recomputing
48
+ upscaling_accelerator=None,
49
+ ):
50
+ super().__init__()
51
+ self.input_features = input_features
52
+ self.num_experts = len(w_diff_list)
53
+ weights = []
54
+ for i, w_diff in enumerate(w_diff_list):
55
+ if svd_list is None:
56
+ u, s, v = svd(w_diff, accelerator=upscaling_accelerator)
57
+ else:
58
+ u, s, v = svd_list[i]
59
+ u = u[:, :k]
60
+ s = s[:k]
61
+ v = v[:, :k]
62
+
63
+ # weights.append((s * v).T)
64
+ weights.append(v.T)
65
+ self.k = s.size(0) # k is the actual k after truncation
66
+
67
+ weights = (
68
+ torch.stack(weights, dim=0)
69
+ .reshape(self.num_experts * self.k, -1)
70
+ .contiguous()
71
+ )
72
+ self.weights = nn.Parameter(
73
+ weights
74
+ ) # weights should be a tensor of shape (num_experts * k, n)
75
+
76
+ def forward(self, x: Tensor):
77
+ batch_size = x.size(0)
78
+ if self.num_experts == 1:
79
+ return torch.ones(batch_size, 1, device=x.device, dtype=x.dtype)
80
+
81
+ routing_weights = F.linear(x, self.weights).view(
82
+ batch_size, self.num_experts, self.k
83
+ )
84
+ routing_weights = routing_weights.norm(p=2, dim=2)
85
+ return routing_weights
86
+
87
+
88
+ class SmileCompressedLinear(nn.Module):
89
+ def __init__(self, model: nn.Linear, k: int, svd_cache=None):
90
+ super().__init__()
91
+ if svd_cache is None:
92
+ u, s, v = svd(model.weight)
93
+ else:
94
+ u, s, v = svd_cache
95
+ if k > 0:
96
+ u = u[:, :k]
97
+ s = s[:k]
98
+ v = v[:, :k]
99
+
100
+ self.u = nn.Parameter(u)
101
+ self.svh = nn.Parameter((s * v).T)
102
+
103
+ if model.bias is not None:
104
+ self.bias = nn.Parameter(model.bias.data, requires_grad=True)
105
+ else:
106
+ self.register_parameter("bias", None)
107
+
108
+ def forward(self, x):
109
+ x = F.linear(x, self.svh)
110
+ x = F.linear(x, self.u, self.bias)
111
+ return x
112
+
113
+
114
+ class SmileMoELinear(nn.Module):
115
+ @torch.no_grad()
116
+ def __init__(
117
+ self,
118
+ pretrained_model: nn.Linear,
119
+ finetuned_models: List[nn.Linear],
120
+ gate_k: int,
121
+ k: int,
122
+ top_k: int = 1,
123
+ full_matrices=True,
124
+ upscaling_accelerator=None,
125
+ routing_use_diff=True,
126
+ ):
127
+ super().__init__()
128
+ self.num_experts = len(finetuned_models)
129
+ self.top_k = top_k
130
+ self.k = k
131
+ self.gate_k = gate_k
132
+ self.in_features = pretrained_model.in_features
133
+ self.out_features = pretrained_model.out_features
134
+
135
+ w_diff_list = [m.weight - pretrained_model.weight for m in finetuned_models]
136
+ if _is_all_zeros(w_diff_list):
137
+ # All fine-tuned models are identical to the pretrained model
138
+ raise ExpertNotTrainedError()
139
+
140
+ if routing_use_diff or k > 0:
141
+ svd_cache_list = [
142
+ svd(w, full_matrices=full_matrices, accelerator=upscaling_accelerator)
143
+ for w in w_diff_list
144
+ ] # the svd cache list to avoid recomputing
145
+
146
+ # construct the gate network
147
+ if routing_use_diff:
148
+ self.gate = SmileGate(
149
+ input_features=self.in_features,
150
+ w_diff_list=w_diff_list,
151
+ k=gate_k,
152
+ svd_list=svd_cache_list,
153
+ upscaling_accelerator=upscaling_accelerator,
154
+ )
155
+ else:
156
+ self.gate = SmileGate(
157
+ input_features=self.in_features,
158
+ w_diff_list=[m.weight for m in finetuned_models],
159
+ k=gate_k,
160
+ svd_list=None,
161
+ upscaling_accelerator=upscaling_accelerator,
162
+ )
163
+
164
+ # construct experts
165
+ for m, w_diff in zip(finetuned_models, w_diff_list):
166
+ m.weight.data = w_diff
167
+ if k > 0:
168
+ experts = [
169
+ SmileCompressedLinear(m, k, svd_cache=svd_cache)
170
+ for m, svd_cache in zip(finetuned_models, svd_cache_list)
171
+ ]
172
+ else:
173
+ # if k is not set (<0), we use the full fine-tuned model
174
+ experts = finetuned_models
175
+ self.experts = nn.ModuleList(experts)
176
+
177
+ if pretrained_model.bias is not None:
178
+ for m in experts:
179
+ m.bias.data = m.bias.data - pretrained_model.bias
180
+ # assign the pretrained model (the shared part)
181
+ self.pretrained_model = pretrained_model
182
+
183
+ def forward(self, hidden_states: Tensor):
184
+ pretrained_out = self.pretrained_model(hidden_states)
185
+
186
+ input_shape = hidden_states.size()
187
+ hidden_states = hidden_states.view(-1, self.in_features)
188
+
189
+ router_logits = self.gate(hidden_states)
190
+ routing_weights = F.softmax(router_logits, dim=1)
191
+ # sample the expert according to the routing weights
192
+ routing_weights, selected_experts = torch.topk(
193
+ routing_weights, self.top_k, dim=-1
194
+ )
195
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
196
+
197
+ final_hidden_states = torch.zeros(
198
+ (hidden_states.size(0), self.out_features),
199
+ dtype=hidden_states.dtype,
200
+ device=hidden_states.device,
201
+ )
202
+
203
+ # One hot encode the selected experts to create an expert mask
204
+ # this will be used to easily index which expert is going to be sollicitated
205
+ expert_mask = torch.nn.functional.one_hot(
206
+ selected_experts, num_classes=self.num_experts
207
+ ).permute(2, 1, 0)
208
+
209
+ # Loop over all available experts in the model and perform the computation on each expert
210
+ for expert_idx in range(self.num_experts):
211
+ expert_layer = self.experts[expert_idx]
212
+ idx, top_x = torch.where(expert_mask[expert_idx])
213
+
214
+ # Index the correct hidden states and compute the expert hidden state for
215
+ # the current expert. We need to make sure to multiply the output hidden
216
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
217
+ current_state = hidden_states[None, top_x].reshape(-1, self.in_features)
218
+ if current_state.numel() == 0:
219
+ continue
220
+ current_hidden_states = (
221
+ expert_layer(current_state) * routing_weights[top_x, idx, None]
222
+ )
223
+
224
+ # However `index_add_` only support torch tensors for indexing so we'll use
225
+ # the `top_x` tensor here.
226
+ final_hidden_states.index_add_(
227
+ 0, top_x, current_hidden_states.to(hidden_states.dtype)
228
+ )
229
+ final_hidden_states = final_hidden_states.reshape(
230
+ *input_shape[:-1], self.out_features
231
+ )
232
+ final_hidden_states = pretrained_out + final_hidden_states
233
+ return final_hidden_states
234
+
235
+ @property
236
+ def weight(self):
237
+ """
238
+ Mimic linear layer. Bacause in some cases, user might indicate the device (or dtype of parameters) of the linear layer using `linear_layer.weight.device`
239
+ """
240
+ return self.pretrained_model.weight
241
+
242
+ @property
243
+ def bias(self):
244
+ return self.pretrained_model.bias
245
+
246
+ def __repr__(self):
247
+ return (
248
+ f"SingularMoELinear("
249
+ f"in_features={self.pretrained_model.in_features}, "
250
+ f"out_features={self.pretrained_model.out_features}, "
251
+ f"num_experts={self.num_experts}, "
252
+ f"top_k={self.top_k}, "
253
+ f"gate_k={self.gate_k}, "
254
+ f"k={self.k}"
255
+ f")"
256
+ )
@@ -0,0 +1,459 @@
1
+ import functools
2
+ import logging
3
+ from copy import deepcopy
4
+ from typing import List, Optional
5
+
6
+ import numpy as np
7
+ import torch
8
+ import torch.func
9
+ from torch import Tensor, nn
10
+ from torch.func import functional_call
11
+ from torch.nn import functional as F
12
+ from tqdm.auto import tqdm
13
+
14
+ from fusion_bench.utils.state_dict_arithmetic import (
15
+ state_dict_sub,
16
+ state_dict_weighted_sum,
17
+ )
18
+ from fusion_bench.utils.type import StateDictType
19
+
20
+ log = logging.getLogger(__name__)
21
+
22
+
23
+ def join_list(list_of_list: List[List]):
24
+ ans = []
25
+ for l in list_of_list:
26
+ ans.extend(l)
27
+ return ans
28
+
29
+
30
+ def del_attr(obj, names: List[str]):
31
+ """
32
+ Deletes an attribute from an object recursively.
33
+
34
+ Args:
35
+ obj (object): Object to delete attribute from.
36
+ names (list): List of attribute names to delete recursively.
37
+ """
38
+ if len(names) == 1:
39
+ delattr(obj, names[0])
40
+ else:
41
+ del_attr(getattr(obj, names[0]), names[1:])
42
+
43
+
44
+ def set_attr(obj, names: List[str], val):
45
+ """
46
+ Sets an attribute of an object recursively.
47
+
48
+ Args:
49
+ obj (object): Object to set attribute of.
50
+ names (list): List of attribute names to set recursively.
51
+ val (object): Value to set the attribute to.
52
+ """
53
+ if len(names) == 1:
54
+ setattr(obj, names[0], val)
55
+ else:
56
+ set_attr(getattr(obj, names[0]), names[1:], val)
57
+
58
+
59
+ def get_attr(obj, names: List[str]):
60
+ """
61
+ Gets an attribute of an object recursively.
62
+
63
+ Args:
64
+ obj (object): Object to get attribute of.
65
+ names (list): List of attribute names to get recursively.
66
+
67
+ Returns:
68
+ object: The attribute of the object.
69
+ """
70
+ if len(names) == 1:
71
+ return getattr(obj, names[0])
72
+ else:
73
+ return get_attr(getattr(obj, names[0]), names[1:])
74
+
75
+
76
+ class Depth_0_Gate(nn.Module):
77
+ def __init__(self, num_experts: int):
78
+ super().__init__()
79
+ self.weight = nn.Parameter(torch.empty(num_experts), requires_grad=True)
80
+
81
+ def init_weight(self, init_lambda: float):
82
+ nn.init.constant_(self.weight, init_lambda)
83
+
84
+ def forward(self, *args, **kwargs) -> Tensor:
85
+ return self.weight
86
+
87
+
88
+ class Depth_1_Gate(nn.Module):
89
+ def __init__(self, hidden_size: int, num_experts: int):
90
+ super().__init__()
91
+ self.fc = nn.Linear(hidden_size, num_experts, bias=True)
92
+
93
+ def init_weight(self, init_lambda: float):
94
+ nn.init.normal_(self.fc.weight, std=0.01)
95
+ nn.init.constant_(self.fc.bias, init_lambda)
96
+
97
+ def forward(self, hidden_states: Tensor) -> Tensor:
98
+ return self.fc(hidden_states)
99
+
100
+
101
+ class Depth_2_Gate(nn.Module):
102
+ def __init__(self, hidden_size: int, num_experts: int):
103
+ super().__init__()
104
+ self.fc1 = nn.Linear(hidden_size, hidden_size, bias=True)
105
+ self.fc2 = nn.Linear(hidden_size, num_experts, bias=True)
106
+
107
+ def init_weight(self, init_lambda: float):
108
+ nn.init.normal_(self.fc1.weight, std=0.01)
109
+ nn.init.zeros_(self.fc1.bias)
110
+ nn.init.normal_(self.fc2.weight, std=0.01)
111
+ nn.init.constant_(self.fc2.bias, init_lambda)
112
+
113
+ def forward(self, hidden_states: Tensor) -> Tensor:
114
+ hidden_states = F.relu(self.fc1(hidden_states))
115
+ return self.fc2(hidden_states)
116
+
117
+
118
+ def construct_weight_ensembling_gate(
119
+ hidden_size: int,
120
+ num_experts: int,
121
+ init_lambda: float,
122
+ num_hidden_layers: int = 2,
123
+ ):
124
+ if num_hidden_layers == 0:
125
+ gate = Depth_0_Gate(num_experts)
126
+ elif num_hidden_layers == 1:
127
+ gate = Depth_1_Gate(hidden_size, num_experts)
128
+ elif num_hidden_layers == 2:
129
+ gate = Depth_2_Gate(hidden_size, num_experts)
130
+ else:
131
+ raise ValueError(f"Unsupported number of hidden layers: {num_hidden_layers}")
132
+
133
+ gate.num_hidden_layers = num_hidden_layers
134
+ gate.init_weight(init_lambda)
135
+ return gate
136
+
137
+
138
+ def positional_encoding(layer_idx, dim=8):
139
+ """
140
+ layer index encoding
141
+ """
142
+ pos = layer_idx
143
+ i = np.arange(dim // 2)
144
+ angle_rates = 1 / np.power(10000, (2 * i) / dim)
145
+ encoding = np.concatenate([np.sin(pos * angle_rates), np.cos(pos * angle_rates)])
146
+ return encoding
147
+
148
+
149
+ def _magnitude_prune(weight: Tensor, prune_ratio: float) -> Tensor:
150
+ """
151
+ Prune the weights by setting values below a certain quantile to zero.
152
+
153
+ Args:
154
+ weight (Tensor): The weight tensor to be pruned.
155
+ prune_ratio (float): The ratio of weights to prune.
156
+
157
+ Returns:
158
+ Tensor: The pruned weight tensor.
159
+ """
160
+ weight_abs = weight.abs()
161
+ mask = weight_abs > weight_abs.quantile(prune_ratio)
162
+ weight = weight * mask
163
+ return weight
164
+
165
+
166
+ def _module_magnitude_prune(
167
+ model: Tensor, prune_ratio: float, layer_idx: int
168
+ ) -> Tensor:
169
+ """
170
+ Prune a module.
171
+ """
172
+ for name, param in tqdm(
173
+ model.named_parameters(),
174
+ "Magnitude Pruning On {} Linear Layer".format(layer_idx),
175
+ total=len(tuple(model.named_parameters())),
176
+ ):
177
+ param.data = _magnitude_prune(param, prune_ratio)
178
+ return model
179
+
180
+
181
+ class SparseWeightEnsemblingMoE(nn.Module):
182
+ # variable to store the merged state dict temporarily
183
+ _merged_state_dict: StateDictType = None
184
+
185
+ def __init__(
186
+ self,
187
+ hidden_size: int,
188
+ base_model: nn.Module,
189
+ expert_models: List[nn.Module],
190
+ init_lambda: float = 0.2,
191
+ batch_first: bool = False,
192
+ router_hidden_layers: int = 2,
193
+ batch_reduce: bool = False,
194
+ num_layers: int = -1,
195
+ layer_idx: int = -1,
196
+ tv_prune_ratio: float = 0,
197
+ ):
198
+ """
199
+ Initializes the SparseWeightEnsemblingMoE class.
200
+
201
+ Args:
202
+
203
+ hidden_size (int): The size of the hidden layer in the models.
204
+ base_model (nn.Module): The base model that will be used as a reference for the expert models.
205
+ expert_models (List[nn.Module]): A list of expert models that will be combined.
206
+ init_lambda (float, optional): The initial lambda value for the weight ensembling gate. Defaults to 0.2.
207
+ batch_first (bool, optional): If True, the input tensors are expected to have the batch size as the first dimension. Defaults to False.
208
+ router_hidden_layers (int, optional): The number of hidden layers in the router. Defaults to 2.
209
+ batch_reduce (bool): If True, the batch dimension of routing weights is reduced. Defaults to False.
210
+ num_layers (int): Total number of layers
211
+ layer_idx (int): Index of the layer
212
+ tv_prune_ratio (int): What percentage of the parameters are removed
213
+ """
214
+ super().__init__()
215
+ self.num_experts = len(expert_models)
216
+ self.hidden_size = hidden_size
217
+ self.batch_first = batch_first
218
+ self.batch_reduce = batch_reduce
219
+
220
+ self.gate = construct_weight_ensembling_gate(
221
+ hidden_size,
222
+ self.num_experts,
223
+ init_lambda=init_lambda,
224
+ num_hidden_layers=router_hidden_layers,
225
+ )
226
+
227
+ # compute the task vectors
228
+ for name, param in base_model.named_parameters():
229
+ if not param.requires_grad:
230
+ for m in expert_models:
231
+ del_attr(m, name.split("."))
232
+ else:
233
+ for m in expert_models:
234
+ get_attr(m, name.split(".")).data = (
235
+ get_attr(m, name.split(".")) - param
236
+ )
237
+
238
+ # sparse task vectors
239
+ expert_models = [
240
+ _module_magnitude_prune(m, prune_ratio=tv_prune_ratio, layer_idx=layer_idx)
241
+ for m in expert_models
242
+ ]
243
+
244
+ # fix base model and expert models
245
+ self.base_model = base_model.requires_grad_(False)
246
+ for m in expert_models:
247
+ m.requires_grad_(False)
248
+ self.task_vectors = nn.ModuleList(expert_models)
249
+
250
+ @property
251
+ def forward_model(self):
252
+ return functools.partial(
253
+ functional_call,
254
+ self.base_model,
255
+ self._merged_state_dict,
256
+ )
257
+
258
+ def merge_weights(self, expert_weights):
259
+ state_dict = self.base_model.state_dict(keep_vars=True)
260
+ for weight, task_vector in zip(expert_weights, self.task_vectors):
261
+ for name, param in task_vector.named_parameters():
262
+ state_dict[name] = state_dict[name] + weight * param
263
+ self._merged_state_dict = state_dict
264
+ return state_dict
265
+
266
+ def forward(self, hidden_states: Tensor):
267
+ if self.gate.num_hidden_layers == 0:
268
+ gate_weights = self.gate()
269
+ else:
270
+ gate_weights = self.gate(hidden_states)
271
+ if self.batch_first:
272
+ # the input is in the shape of (batch_size, seq_len, hidden_size)
273
+ gate_weights = gate_weights.mean(dim=1)
274
+ else:
275
+ # the input is in the shape of (seq_len, batch_size, hidden_size)
276
+ gate_weights = gate_weights.mean(dim=0)
277
+
278
+ if self.gate.num_hidden_layers == 0:
279
+ self.merge_weights(gate_weights)
280
+ output_hidden_states = self.forward_model(hidden_states)
281
+ elif self.batch_reduce:
282
+ gate_weights = gate_weights.mean(dim=0)
283
+ self.merge_weights(gate_weights)
284
+ output_hidden_states = self.forward_model(hidden_states)
285
+ else:
286
+ output_hidden_states = []
287
+ for sample_idx, weights in enumerate(gate_weights):
288
+ self.merge_weights(weights)
289
+ if self.batch_first:
290
+ output_hidden_states.append(
291
+ self.forward_model(hidden_states[sample_idx : sample_idx + 1])
292
+ )
293
+ else:
294
+ output_hidden_states.append(
295
+ self.forward_model(
296
+ hidden_states[:, sample_idx : sample_idx + 1]
297
+ )
298
+ )
299
+ if self.batch_first:
300
+ output_hidden_states = torch.cat(output_hidden_states, dim=0)
301
+ else:
302
+ output_hidden_states = torch.cat(output_hidden_states, dim=1)
303
+
304
+ self._merged_state_dict = None
305
+ return output_hidden_states
306
+
307
+
308
+ class SparseWeightEnsemblingMoE_ShardGate(nn.Module):
309
+ # variable to store the merged state dict temporarily
310
+ _merged_state_dict: StateDictType = None
311
+
312
+ def __init__(
313
+ self,
314
+ hidden_size: int,
315
+ base_model: nn.Module,
316
+ expert_models: List[nn.Module],
317
+ init_lambda: float = 0.2,
318
+ batch_first: bool = False,
319
+ router_hidden_layers: int = 2,
320
+ batch_reduce: bool = False,
321
+ num_layers: int = -1,
322
+ layer_idx: int = -1,
323
+ tv_prune_ratio: float = 0,
324
+ sharedgate: nn.Module = None,
325
+ position_encoding: bool = False,
326
+ position_encoding_dim: int = 0,
327
+ ):
328
+ """
329
+ Initializes the SparseWeightEnsemblingMoE class.
330
+
331
+ Args:
332
+ hidden_size (int): The size of the hidden layer in the models.
333
+ base_model (nn.Module): The base model that will be used as a reference for the expert models.
334
+ expert_models (List[nn.Module]): A list of expert models that will be combined.
335
+ init_lambda (float, optional): The initial lambda value for the weight ensembling gate. Defaults to 0.2.
336
+ batch_first (bool, optional): If True, the input tensors are expected to have the batch size as the first dimension. Defaults to False.
337
+ router_hidden_layers (int, optional): The number of hidden layers in the router. Defaults to 2.
338
+ batch_reduce (bool): If True, the batch dimension of routing weights is reduced. Defaults to False.
339
+ num_layers (int): Total number of layers
340
+ layer_idx (int): Index of the layer
341
+ tv_prune_ratio (int): What percentage of the parameters are removed
342
+ sharedgate (nn.Module): Shared routing mechanism
343
+ position_encoding (bool): Is Positional Encoding enabled?
344
+ position_encoding_dim (int): Positional Encoding dimension
345
+ """
346
+ super().__init__()
347
+ self.num_experts = len(expert_models)
348
+ self.hidden_size = hidden_size
349
+ self.batch_first = batch_first
350
+ self.batch_reduce = batch_reduce
351
+ self.position_encoding = position_encoding
352
+ self.position_encoding_dim = position_encoding_dim
353
+ # self.layer_idx = layer_idx
354
+
355
+ self.gate = sharedgate
356
+ if self.position_encoding:
357
+ self.layer_positional_encoding = torch.from_numpy(
358
+ positional_encoding(layer_idx, position_encoding_dim)
359
+ ).float()
360
+
361
+ # compute the task vectors
362
+ for name, param in base_model.named_parameters():
363
+ if not param.requires_grad:
364
+ for m in expert_models:
365
+ del_attr(m, name.split("."))
366
+ else:
367
+ for m in expert_models:
368
+ get_attr(m, name.split(".")).data = (
369
+ get_attr(m, name.split(".")) - param
370
+ )
371
+
372
+ # sparse task vectors
373
+ expert_models = [
374
+ _module_magnitude_prune(m, prune_ratio=tv_prune_ratio, layer_idx=layer_idx)
375
+ for m in expert_models
376
+ ]
377
+
378
+ # fix base model and expert models
379
+ self.base_model = base_model.requires_grad_(False)
380
+ for m in expert_models:
381
+ m.requires_grad_(False)
382
+ self.task_vectors = nn.ModuleList(expert_models)
383
+
384
+ @property
385
+ def forward_model(self):
386
+ return functools.partial(
387
+ functional_call,
388
+ self.base_model,
389
+ self._merged_state_dict,
390
+ )
391
+
392
+ def merge_weights(self, expert_weights):
393
+ state_dict = self.base_model.state_dict(keep_vars=True)
394
+ for weight, task_vector in zip(expert_weights, self.task_vectors):
395
+ for name, param in task_vector.named_parameters():
396
+ state_dict[name] = state_dict[name] + weight * param
397
+ self._merged_state_dict = state_dict
398
+ return state_dict
399
+
400
+ def forward(self, hidden_states: Tensor):
401
+ gate_input = hidden_states
402
+
403
+ if self.gate.num_hidden_layers == 0:
404
+ gate_weights = self.gate()
405
+ else:
406
+ if self.position_encoding:
407
+ layer_positional_encoding = (
408
+ self.layer_positional_encoding.unsqueeze(0)
409
+ .unsqueeze(0)
410
+ .expand(
411
+ hidden_states.size()[0],
412
+ hidden_states.size()[1],
413
+ self.position_encoding_dim,
414
+ )
415
+ )
416
+ layer_positional_encoding = layer_positional_encoding.to(
417
+ hidden_states.device
418
+ )
419
+ gate_input = torch.cat(
420
+ (layer_positional_encoding, hidden_states), dim=-1
421
+ )
422
+
423
+ gate_weights = self.gate(gate_input)
424
+ if self.batch_first:
425
+ # the input is in the shape of (batch_size, seq_len, hidden_size)
426
+ gate_weights = gate_weights.mean(dim=1)
427
+ else:
428
+ # the input is in the shape of (seq_len, batch_size, hidden_size)
429
+ gate_weights = gate_weights.mean(dim=0)
430
+
431
+ # print('self.batch_reduce'+'-------------'+str(self.batch_reduce)+'-------------')
432
+ if self.gate.num_hidden_layers == 0:
433
+ self.merge_weights(gate_weights)
434
+ output_hidden_states = self.forward_model(hidden_states)
435
+ elif self.batch_reduce:
436
+ gate_weights = gate_weights.mean(dim=0)
437
+ self.merge_weights(gate_weights)
438
+ output_hidden_states = self.forward_model(hidden_states)
439
+ else:
440
+ output_hidden_states = []
441
+ for sample_idx, weights in enumerate(gate_weights):
442
+ self.merge_weights(weights)
443
+ if self.batch_first:
444
+ output_hidden_states.append(
445
+ self.forward_model(hidden_states[sample_idx : sample_idx + 1])
446
+ )
447
+ else:
448
+ output_hidden_states.append(
449
+ self.forward_model(
450
+ hidden_states[:, sample_idx : sample_idx + 1]
451
+ )
452
+ )
453
+ if self.batch_first:
454
+ output_hidden_states = torch.cat(output_hidden_states, dim=0)
455
+ else:
456
+ output_hidden_states = torch.cat(output_hidden_states, dim=1)
457
+
458
+ self._merged_state_dict = None
459
+ return output_hidden_states