fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
from typing import Dict
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def compute_backward_transfer(
|
|
7
|
+
acc_Ti: Dict[str, float], acc_ii: Dict[str, float]
|
|
8
|
+
) -> float:
|
|
9
|
+
R"""
|
|
10
|
+
Compute the backward transfer (BWT) of a model on a set of tasks.
|
|
11
|
+
|
|
12
|
+
Equation:
|
|
13
|
+
BWT = \frac{1}{n} \sum_{k=1}^{n} (acc_{Ti}[k] - acc_{ii}[k])
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
float: The backward transfer of the model.
|
|
17
|
+
"""
|
|
18
|
+
assert set(acc_ii.keys()) == set(acc_Ti.keys())
|
|
19
|
+
bwt = 0
|
|
20
|
+
for task_name in acc_ii:
|
|
21
|
+
bwt += acc_Ti[task_name] - acc_ii[task_name]
|
|
22
|
+
return bwt / len(acc_ii)
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
from .depth import DepthMetric
|
|
2
|
+
from .noise import NoiseMetric
|
|
3
|
+
from .normal import NormalMetric
|
|
4
|
+
from .segmentation import SegmentationMertic
|
|
5
|
+
|
|
6
|
+
metric_classes = {
|
|
7
|
+
"segmentation": SegmentationMertic,
|
|
8
|
+
"depth": DepthMetric,
|
|
9
|
+
"normal": NormalMetric,
|
|
10
|
+
"noise": NoiseMetric,
|
|
11
|
+
}
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
from typing import List, cast
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
from torch import Tensor, nn
|
|
6
|
+
from torchmetrics import Metric
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class DepthMetric(Metric):
|
|
10
|
+
metric_names = ["abs_err", "rel_err"]
|
|
11
|
+
|
|
12
|
+
def __init__(self):
|
|
13
|
+
super().__init__()
|
|
14
|
+
|
|
15
|
+
self.add_state("abs_record", default=[], dist_reduce_fx="cat")
|
|
16
|
+
self.add_state("rel_record", default=[], dist_reduce_fx="cat")
|
|
17
|
+
self.add_state("batch_size", default=[], dist_reduce_fx="cat")
|
|
18
|
+
|
|
19
|
+
def reset(self):
|
|
20
|
+
self.abs_record = []
|
|
21
|
+
self.rel_record = []
|
|
22
|
+
self.batch_size = []
|
|
23
|
+
|
|
24
|
+
def update(self, preds: Tensor, target: Tensor):
|
|
25
|
+
binary_mask = (torch.sum(target, dim=1) != 0).unsqueeze(1)
|
|
26
|
+
preds = preds.masked_select(binary_mask)
|
|
27
|
+
target = target.masked_select(binary_mask)
|
|
28
|
+
abs_err = torch.abs(preds - target)
|
|
29
|
+
rel_err = torch.abs(preds - target) / target
|
|
30
|
+
abs_err = torch.sum(abs_err) / torch.nonzero(binary_mask, as_tuple=False).size(
|
|
31
|
+
0
|
|
32
|
+
)
|
|
33
|
+
rel_err = torch.sum(rel_err) / torch.nonzero(binary_mask, as_tuple=False).size(
|
|
34
|
+
0
|
|
35
|
+
)
|
|
36
|
+
self.abs_record.append(abs_err)
|
|
37
|
+
self.rel_record.append(rel_err)
|
|
38
|
+
self.batch_size.append(torch.asarray(preds.size(0), device=preds.device))
|
|
39
|
+
|
|
40
|
+
def compute(self):
|
|
41
|
+
records = torch.stack(
|
|
42
|
+
[torch.stack(self.abs_record), torch.stack(self.rel_record)]
|
|
43
|
+
)
|
|
44
|
+
batch_size = torch.stack(self.batch_size)
|
|
45
|
+
return [(records[i] * batch_size).sum() / batch_size.sum() for i in range(2)]
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import Tensor, nn
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def segmentation_loss(pred: Tensor, gt: Tensor):
|
|
6
|
+
return nn.functional.cross_entropy(pred, gt.long(), ignore_index=-1)
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def depth_loss(pred: Tensor, gt: Tensor):
|
|
10
|
+
binary_mask = (torch.sum(gt, dim=1) != 0).float().unsqueeze(1).to(pred.device)
|
|
11
|
+
loss = torch.sum(torch.abs(pred - gt) * binary_mask) / torch.nonzero(
|
|
12
|
+
binary_mask, as_tuple=False
|
|
13
|
+
).size(0)
|
|
14
|
+
return loss
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def normal_loss(pred: Tensor, gt: Tensor):
|
|
18
|
+
# gt has been normalized on the NYUv2 dataset
|
|
19
|
+
pred = pred / torch.norm(pred, p=2, dim=1, keepdim=True)
|
|
20
|
+
binary_mask = (torch.sum(gt, dim=1) != 0).float().unsqueeze(1).to(pred.device)
|
|
21
|
+
loss = 1 - torch.sum((pred * gt) * binary_mask) / torch.nonzero(
|
|
22
|
+
binary_mask, as_tuple=False
|
|
23
|
+
).size(0)
|
|
24
|
+
return loss
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
loss_fn = {
|
|
28
|
+
"segmentation": segmentation_loss,
|
|
29
|
+
"depth": depth_loss,
|
|
30
|
+
"normal": normal_loss,
|
|
31
|
+
}
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
from typing import List, cast
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import Tensor, nn
|
|
5
|
+
from torchmetrics import Metric
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class NoiseMetric(Metric):
|
|
9
|
+
def __init__(self):
|
|
10
|
+
super().__init__()
|
|
11
|
+
|
|
12
|
+
def update(self, preds: Tensor, target: Tensor):
|
|
13
|
+
pass
|
|
14
|
+
|
|
15
|
+
def compute(self):
|
|
16
|
+
return [1]
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
from typing import List, cast
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
from torch import Tensor, nn
|
|
6
|
+
from torchmetrics import Metric
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class NormalMetric(Metric):
|
|
10
|
+
metric_names = ["mean", "median", "<11.25", "<22.5", "<30"]
|
|
11
|
+
|
|
12
|
+
def __init__(self):
|
|
13
|
+
super(NormalMetric, self).__init__()
|
|
14
|
+
|
|
15
|
+
self.add_state("record", default=[], dist_reduce_fx="cat")
|
|
16
|
+
|
|
17
|
+
def update(self, preds, target):
|
|
18
|
+
# gt has been normalized on the NYUv2 dataset
|
|
19
|
+
preds = preds / torch.norm(preds, p=2, dim=1, keepdim=True)
|
|
20
|
+
binary_mask = torch.sum(target, dim=1) != 0
|
|
21
|
+
error = (
|
|
22
|
+
torch.acos(
|
|
23
|
+
torch.clamp(
|
|
24
|
+
torch.sum(preds * target, 1).masked_select(binary_mask), -1, 1
|
|
25
|
+
)
|
|
26
|
+
)
|
|
27
|
+
.detach()
|
|
28
|
+
.cpu()
|
|
29
|
+
.numpy()
|
|
30
|
+
)
|
|
31
|
+
error = np.degrees(error)
|
|
32
|
+
self.record.append(torch.from_numpy(error))
|
|
33
|
+
|
|
34
|
+
def compute(self):
|
|
35
|
+
"""
|
|
36
|
+
returns mean, median, and percentage of pixels with error less than 11.25, 22.5, and 30 degrees ("mean", "median", "<11.25", "<22.5", "<30")
|
|
37
|
+
"""
|
|
38
|
+
if self.record is None:
|
|
39
|
+
return torch.asarray([0.0, 0.0, 0.0, 0.0, 0.0])
|
|
40
|
+
|
|
41
|
+
records = torch.concatenate(self.record)
|
|
42
|
+
return [
|
|
43
|
+
torch.mean(records),
|
|
44
|
+
torch.median(records),
|
|
45
|
+
torch.mean((records < 11.25) * 1.0),
|
|
46
|
+
torch.mean((records < 22.5) * 1.0),
|
|
47
|
+
torch.mean((records < 30) * 1.0),
|
|
48
|
+
]
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from typing import List, cast
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
from torch import Tensor, nn
|
|
5
|
+
from torchmetrics import Metric
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class SegmentationMertic(Metric):
|
|
9
|
+
metric_names = ["mIoU", "pixAcc"]
|
|
10
|
+
|
|
11
|
+
def __init__(self, num_classes=13):
|
|
12
|
+
super().__init__()
|
|
13
|
+
|
|
14
|
+
self.num_classes = num_classes
|
|
15
|
+
self.add_state(
|
|
16
|
+
"record",
|
|
17
|
+
default=torch.zeros(
|
|
18
|
+
(self.num_classes, self.num_classes), dtype=torch.int64
|
|
19
|
+
),
|
|
20
|
+
dist_reduce_fx="sum",
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
def reset(self):
|
|
24
|
+
self.record.zero_()
|
|
25
|
+
|
|
26
|
+
def update(self, preds: Tensor, target: Tensor):
|
|
27
|
+
preds = preds.softmax(1).argmax(1).flatten()
|
|
28
|
+
target = target.long().flatten()
|
|
29
|
+
|
|
30
|
+
k = (target >= 0) & (target < self.num_classes)
|
|
31
|
+
inds = self.num_classes * target[k].to(torch.int64) + preds[k]
|
|
32
|
+
self.record += torch.bincount(inds, minlength=self.num_classes**2).reshape(
|
|
33
|
+
self.num_classes, self.num_classes
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def compute(self):
|
|
37
|
+
"""
|
|
38
|
+
return mIoU and pixel accuracy
|
|
39
|
+
"""
|
|
40
|
+
h = cast(Tensor, self.record).float()
|
|
41
|
+
iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))
|
|
42
|
+
acc = torch.diag(h).sum() / h.sum()
|
|
43
|
+
return [torch.mean(iu), acc]
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
"""
|
|
2
|
+
In this module, we implement some metrics for text-to-image generation tasks.
|
|
3
|
+
Including reward functions for alignment and Reinforcement Learning with Human Feedback training (RLHF).
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
# flake8: noqa F401
|
|
7
|
+
from .aesthetic_scorer import aesthetic_scorer
|
|
8
|
+
from .compressibility import jpeg_compressibility_scorer, jpeg_incompressibility_scorer
|
|
9
|
+
from .pickscore_scorer import pickscore_scorer
|
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from typing import cast
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from huggingface_hub import hf_hub_download
|
|
6
|
+
from huggingface_hub.utils import EntryNotFoundError
|
|
7
|
+
from torch import Tensor, nn
|
|
8
|
+
from transformers import CLIPModel, CLIPProcessor
|
|
9
|
+
from trl.import_utils import is_npu_available, is_xpu_available
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class MLP(nn.Module):
|
|
13
|
+
def __init__(self):
|
|
14
|
+
super().__init__()
|
|
15
|
+
self.layers = nn.Sequential(
|
|
16
|
+
nn.Linear(768, 1024),
|
|
17
|
+
nn.Dropout(0.2),
|
|
18
|
+
nn.Linear(1024, 128),
|
|
19
|
+
nn.Dropout(0.2),
|
|
20
|
+
nn.Linear(128, 64),
|
|
21
|
+
nn.Dropout(0.1),
|
|
22
|
+
nn.Linear(64, 16),
|
|
23
|
+
nn.Linear(16, 1),
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
@torch.no_grad()
|
|
27
|
+
def forward(self, embed: Tensor) -> Tensor:
|
|
28
|
+
"""
|
|
29
|
+
Forward pass through the MLP. The return value is a single scalar.
|
|
30
|
+
"""
|
|
31
|
+
return self.layers(embed)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class AestheticScorer(torch.nn.Module):
|
|
35
|
+
"""
|
|
36
|
+
This model attempts to predict the aesthetic score of an image. The aesthetic score
|
|
37
|
+
is a numerical approximation of how much a specific image is liked by humans on average.
|
|
38
|
+
This is from https://github.com/christophschuhmann/improved-aesthetic-predictor
|
|
39
|
+
|
|
40
|
+
Note for `model_id` and `model_filename`:
|
|
41
|
+
|
|
42
|
+
In some implementation, the filename of the MLP model is 'sac+logos+ava1-l14-linearMSE.pth',
|
|
43
|
+
which is the same as the default value of the 'model_filename' parameter in the constructor ('aesthetic-model.pth').
|
|
44
|
+
It was simply renamed to 'aesthetic-model.pth' in the implementation.
|
|
45
|
+
see https://huggingface.co/trl-lib/ddpo-aesthetic-predictor/commit/7f639699bec8126062148a47ecb1a4312d8e6688
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
*,
|
|
51
|
+
dtype: torch.dtype,
|
|
52
|
+
model_id: str = "trl-lib/ddpo-aesthetic-predictor",
|
|
53
|
+
model_filename: str = "aesthetic-model.pth",
|
|
54
|
+
):
|
|
55
|
+
"""
|
|
56
|
+
Initialize the AestheticScorer class.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
dtype (torch.dtype): The data type of the tensors.
|
|
60
|
+
model_id (str, optional): The ID of the model to download. Defaults to "trl-lib/ddpo-aesthetic-predictor".
|
|
61
|
+
model_filename (str, optional): The filename of the model to download. Defaults to "aesthetic-model.pth". This is the same as 'sac+logos+ava1-l14-linearMSE.pth' in some implementations.
|
|
62
|
+
"""
|
|
63
|
+
super().__init__()
|
|
64
|
+
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
|
65
|
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
|
66
|
+
self.mlp = MLP()
|
|
67
|
+
try:
|
|
68
|
+
cached_path = hf_hub_download(model_id, model_filename)
|
|
69
|
+
except EntryNotFoundError:
|
|
70
|
+
cached_path = os.path.join(model_id, model_filename)
|
|
71
|
+
state_dict = torch.load(cached_path, map_location=torch.device("cpu"))
|
|
72
|
+
self.mlp.load_state_dict(state_dict)
|
|
73
|
+
self.dtype = dtype
|
|
74
|
+
self.eval()
|
|
75
|
+
|
|
76
|
+
@torch.no_grad()
|
|
77
|
+
def __call__(self, images: Tensor) -> Tensor:
|
|
78
|
+
"""
|
|
79
|
+
Process the given images and return their aesthetic scores.
|
|
80
|
+
|
|
81
|
+
This method processes the images using the CLIP model, normalizes the embeddings,
|
|
82
|
+
and then passes them through a MLP to get the aesthetic scores.
|
|
83
|
+
|
|
84
|
+
Args:
|
|
85
|
+
images (torch.Tensor): A batch of images to process.
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
Tensor: The aesthetic scores of the images. Return shape is (batch_size,).
|
|
89
|
+
"""
|
|
90
|
+
device = next(self.parameters()).device
|
|
91
|
+
inputs = self.processor(images=images, return_tensors="pt")
|
|
92
|
+
inputs = {
|
|
93
|
+
k: cast(Tensor, v).to(self.dtype).to(device) for k, v in inputs.items()
|
|
94
|
+
}
|
|
95
|
+
embed = self.clip.get_image_features(**inputs)
|
|
96
|
+
# normalize embedding
|
|
97
|
+
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
|
|
98
|
+
return self.mlp(embed).squeeze(1)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def aesthetic_scorer(
|
|
102
|
+
dtype: torch.dtype = torch.float32,
|
|
103
|
+
hub_model_id: str = "trl-lib/ddpo-aesthetic-predictor",
|
|
104
|
+
model_filename: str = "aesthetic-model.pth",
|
|
105
|
+
):
|
|
106
|
+
scorer = AestheticScorer(
|
|
107
|
+
dtype=dtype,
|
|
108
|
+
model_id=hub_model_id,
|
|
109
|
+
model_filename=model_filename,
|
|
110
|
+
)
|
|
111
|
+
if is_npu_available():
|
|
112
|
+
scorer = scorer.npu()
|
|
113
|
+
elif is_xpu_available():
|
|
114
|
+
scorer = scorer.xpu()
|
|
115
|
+
else:
|
|
116
|
+
scorer = scorer.cuda()
|
|
117
|
+
|
|
118
|
+
def _fn(images: Tensor, prompts, metadata):
|
|
119
|
+
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
|
|
120
|
+
scores: Tensor = scorer(images)
|
|
121
|
+
return scores, {}
|
|
122
|
+
|
|
123
|
+
return _fn
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
"""
|
|
2
|
+
In this script, two reward functions are defined:
|
|
3
|
+
|
|
4
|
+
- compressibility, in which the file size of the image after JPEG compression is minimized
|
|
5
|
+
- incompressibility, in which the same measure is maximized.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import io
|
|
9
|
+
from typing import List
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
import torch
|
|
13
|
+
from PIL import Image
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def jpeg_incompressibility_scorer():
|
|
17
|
+
"""
|
|
18
|
+
Function to calculate the incompressibility score of an image.
|
|
19
|
+
The score is calculated based on the size of the image after JPEG compression.
|
|
20
|
+
The larger the size, the higher the incompressibility score.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def _fn(images: torch.Tensor, prompts, metadata):
|
|
24
|
+
if isinstance(images, torch.Tensor):
|
|
25
|
+
images = (images * 255).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
|
|
26
|
+
images = images.permute(0, 2, 3, 1) # NCHW -> NHWC
|
|
27
|
+
images: List[Image.Image] = [Image.fromarray(image) for image in images]
|
|
28
|
+
buffers = [io.BytesIO() for _ in images]
|
|
29
|
+
for image, buffer in zip(images, buffers):
|
|
30
|
+
image.save(buffer, format="JPEG", quality=95)
|
|
31
|
+
sizes = [buffer.tell() / 1000 for buffer in buffers]
|
|
32
|
+
return torch.asarray(sizes), {}
|
|
33
|
+
|
|
34
|
+
return _fn
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def jpeg_compressibility_scorer():
|
|
38
|
+
"""
|
|
39
|
+
Function to calculate the compressibility score of an image.
|
|
40
|
+
The score is calculated based on the size of the image after JPEG compression.
|
|
41
|
+
The smaller the size, the higher the compressibility score.
|
|
42
|
+
"""
|
|
43
|
+
jpeg_fn = jpeg_incompressibility_scorer()
|
|
44
|
+
|
|
45
|
+
def _fn(images: torch.Tensor, prompts, metadata):
|
|
46
|
+
reward, metadata = jpeg_fn(images, prompts, metadata)
|
|
47
|
+
return -reward, metadata
|
|
48
|
+
|
|
49
|
+
return _fn
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from typing import List, cast
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from transformers import AutoModel, CLIPModel, CLIPProcessor
|
|
6
|
+
from trl.import_utils import is_npu_available, is_xpu_available
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class PickScoreScorer(torch.nn.Module):
|
|
10
|
+
"""
|
|
11
|
+
References:
|
|
12
|
+
- Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation.
|
|
13
|
+
http://arxiv.org/abs/2305.01569
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
def __init__(
|
|
17
|
+
self,
|
|
18
|
+
*,
|
|
19
|
+
dtype: torch.dtype,
|
|
20
|
+
model_id: str = "yuvalkirstain/PickScore_v1",
|
|
21
|
+
processor_name_or_path: str = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
|
22
|
+
):
|
|
23
|
+
super().__init__()
|
|
24
|
+
self.dtype = dtype
|
|
25
|
+
|
|
26
|
+
self.processor = CLIPProcessor.from_pretrained(processor_name_or_path)
|
|
27
|
+
self.model = (
|
|
28
|
+
cast(CLIPModel, AutoModel.from_pretrained(model_id))
|
|
29
|
+
.eval()
|
|
30
|
+
.to(dtype=self.dtype)
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
@torch.no_grad()
|
|
34
|
+
def __call__(self, images: torch.Tensor, prompts: List[str]):
|
|
35
|
+
"""
|
|
36
|
+
Scores the given images based on their relevance to the given prompts.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
images (torch.Tensor): The images to score.
|
|
40
|
+
prompts (List[str]): The prompts to score the images against.
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
scores (torch.Tensor): The scores of the images.
|
|
44
|
+
"""
|
|
45
|
+
device = next(self.parameters()).device
|
|
46
|
+
inputs = self.processor(images=images, return_tensors="pt")
|
|
47
|
+
inputs = {k: v.to(self.dtype).to(device) for k, v in inputs.items()}
|
|
48
|
+
text_inputs = self.processor(
|
|
49
|
+
text=prompts,
|
|
50
|
+
padding=True,
|
|
51
|
+
truncation=True,
|
|
52
|
+
max_length=77,
|
|
53
|
+
return_tensors="pt",
|
|
54
|
+
).to(device)
|
|
55
|
+
image_embeds = self.model.get_image_features(**inputs)
|
|
56
|
+
image_embeds = image_embeds / torch.norm(image_embeds, dim=-1, keepdim=True)
|
|
57
|
+
text_embeds = self.model.get_text_features(**text_inputs)
|
|
58
|
+
text_embeds = text_embeds / torch.norm(text_embeds, dim=-1, keepdim=True)
|
|
59
|
+
logits_per_image = image_embeds @ text_embeds.T
|
|
60
|
+
scores = torch.diagonal(logits_per_image)
|
|
61
|
+
|
|
62
|
+
return scores
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def pickscore_scorer(
|
|
66
|
+
dtype: torch.dtype = torch.float32,
|
|
67
|
+
hub_model_id: str = "yuvalkirstain/PickScore_v1",
|
|
68
|
+
):
|
|
69
|
+
"""
|
|
70
|
+
Creates a scoring function that scores images based on their relevance to a set of prompts.
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
dtype (torch.dtype, optional): The data type to use for the computations. Defaults to torch.float32.
|
|
74
|
+
hub_model_id (str, optional): The id of the pretrained model to use. Defaults to "yuvalkirstain/PickScore_v1".
|
|
75
|
+
|
|
76
|
+
Returns:
|
|
77
|
+
_fn (function): The scoring function.
|
|
78
|
+
"""
|
|
79
|
+
scorer = PickScoreScorer(
|
|
80
|
+
dtype=dtype,
|
|
81
|
+
model_id=hub_model_id,
|
|
82
|
+
)
|
|
83
|
+
if is_npu_available():
|
|
84
|
+
scorer = scorer.npu()
|
|
85
|
+
elif is_xpu_available():
|
|
86
|
+
scorer = scorer.xpu()
|
|
87
|
+
else:
|
|
88
|
+
scorer = scorer.cuda()
|
|
89
|
+
|
|
90
|
+
def _fn(images: torch.Tensor, prompts, metadata):
|
|
91
|
+
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
|
|
92
|
+
scores: torch.Tensor = scorer(images, prompts)
|
|
93
|
+
return scores, {}
|
|
94
|
+
|
|
95
|
+
return _fn
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# flake8: noqa F401
|
|
2
|
+
import sys
|
|
3
|
+
|
|
4
|
+
from typing_extensions import TYPE_CHECKING
|
|
5
|
+
|
|
6
|
+
from fusion_bench.utils.lazy_imports import LazyImporter
|
|
7
|
+
|
|
8
|
+
_import_structure = {
|
|
9
|
+
"lightning_fabric": ["LightningFabricMixin"],
|
|
10
|
+
"serialization": ["YAMLSerializationMixin", "BaseYAMLSerializableModel"],
|
|
11
|
+
"simple_profiler": ["SimpleProfilerMixin"],
|
|
12
|
+
"clip_classification": ["CLIPClassificationMixin"],
|
|
13
|
+
"fabric_training": ["FabricTrainingMixin"],
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from .clip_classification import CLIPClassificationMixin
|
|
18
|
+
from .fabric_training import FabricTrainingMixin
|
|
19
|
+
from .lightning_fabric import LightningFabricMixin
|
|
20
|
+
from .serialization import BaseYAMLSerializableModel, YAMLSerializationMixin
|
|
21
|
+
from .simple_profiler import SimpleProfilerMixin
|
|
22
|
+
|
|
23
|
+
else:
|
|
24
|
+
sys.modules[__name__] = LazyImporter(
|
|
25
|
+
__name__,
|
|
26
|
+
globals()["__file__"],
|
|
27
|
+
_import_structure,
|
|
28
|
+
)
|