fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,315 @@
|
|
|
1
|
+
import itertools
|
|
2
|
+
import logging
|
|
3
|
+
from abc import abstractmethod
|
|
4
|
+
from copy import deepcopy
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import Dict, List, Tuple, cast
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
from omegaconf import DictConfig
|
|
12
|
+
from torch import Tensor, nn
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
from tqdm.auto import tqdm
|
|
15
|
+
from transformers import CLIPVisionModel
|
|
16
|
+
from transformers.models.clip.modeling_clip import CLIPEncoderLayer
|
|
17
|
+
from typing_extensions import override
|
|
18
|
+
|
|
19
|
+
from fusion_bench.method.base_algorithm import BaseAlgorithm
|
|
20
|
+
from fusion_bench.method.task_arithmetic import task_arithmetic_merge
|
|
21
|
+
from fusion_bench.mixins.clip_classification import CLIPClassificationMixin
|
|
22
|
+
from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
|
|
23
|
+
from fusion_bench.modelpool import CLIPVisionModelPool
|
|
24
|
+
from fusion_bench.utils import timeit_context
|
|
25
|
+
from fusion_bench.utils.data import InfiniteDataLoader
|
|
26
|
+
from fusion_bench.utils.parameters import print_parameters
|
|
27
|
+
|
|
28
|
+
from .module import ParetoWeightEnsemblingModule
|
|
29
|
+
from .utils import generate_simplex_grid
|
|
30
|
+
|
|
31
|
+
log = logging.getLogger(__name__)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class PWEMoEAlgorithmForCLIP(
|
|
35
|
+
BaseAlgorithm,
|
|
36
|
+
SimpleProfilerMixin,
|
|
37
|
+
CLIPClassificationMixin,
|
|
38
|
+
):
|
|
39
|
+
modelpool: CLIPVisionModelPool = None
|
|
40
|
+
_config_mapping = BaseAlgorithm._config_mapping | {
|
|
41
|
+
"upscale_mlp": "upscale_mlp",
|
|
42
|
+
"upscale_attn": "upscale_attn",
|
|
43
|
+
"init_lambda": "init_lambda",
|
|
44
|
+
"router_hidden_layers": "router_hidden_layers",
|
|
45
|
+
"lr": "lr",
|
|
46
|
+
"num_steps": "num_steps",
|
|
47
|
+
"save_interval": "save_interval",
|
|
48
|
+
"alpha": "alpha",
|
|
49
|
+
"checkpoint_path": "checkpoint_path",
|
|
50
|
+
"eval_grid": "eval_grid",
|
|
51
|
+
"eval_grid_n": "eval_grid_n",
|
|
52
|
+
"eval_grid_m": "eval_grid_m",
|
|
53
|
+
"_dataloader_kwargs": "dataloader_kwargs",
|
|
54
|
+
}
|
|
55
|
+
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
*,
|
|
59
|
+
upscale_mlp: bool,
|
|
60
|
+
upscale_attn: bool,
|
|
61
|
+
init_lambda: float,
|
|
62
|
+
router_hidden_layers: int,
|
|
63
|
+
lr: float,
|
|
64
|
+
num_steps: int,
|
|
65
|
+
save_interval: int,
|
|
66
|
+
alpha: float,
|
|
67
|
+
checkpoint_path: str,
|
|
68
|
+
eval_grid: bool,
|
|
69
|
+
eval_grid_n: int,
|
|
70
|
+
eval_grid_m: int,
|
|
71
|
+
dataloader_kwargs: DictConfig,
|
|
72
|
+
**kwargs,
|
|
73
|
+
):
|
|
74
|
+
super().__init__(**kwargs)
|
|
75
|
+
self.upscale_mlp = upscale_mlp
|
|
76
|
+
self.upscale_attn = upscale_attn
|
|
77
|
+
self.init_lambda = init_lambda
|
|
78
|
+
self.router_hidden_layers = router_hidden_layers
|
|
79
|
+
self.lr = lr
|
|
80
|
+
self.num_steps = num_steps
|
|
81
|
+
self.save_interval = save_interval
|
|
82
|
+
self.alpha = alpha
|
|
83
|
+
self.checkpoint_path = checkpoint_path
|
|
84
|
+
self.eval_grid = eval_grid
|
|
85
|
+
self.eval_grid_n = eval_grid_n
|
|
86
|
+
self.eval_grid_m = eval_grid_m
|
|
87
|
+
self._dataloader_kwargs = dataloader_kwargs
|
|
88
|
+
|
|
89
|
+
@override
|
|
90
|
+
def run(self, modelpool: CLIPVisionModelPool):
|
|
91
|
+
self.modelpool = modelpool
|
|
92
|
+
|
|
93
|
+
model = self.setup_model()
|
|
94
|
+
if self.checkpoint_path is not None:
|
|
95
|
+
model.load_state_dict(torch.load(self.checkpoint_path, map_location="cpu"))
|
|
96
|
+
else:
|
|
97
|
+
train_loaders = self.setup_train_loaders()
|
|
98
|
+
model = self.train(model, train_loaders)
|
|
99
|
+
|
|
100
|
+
if self.eval_grid:
|
|
101
|
+
return map(
|
|
102
|
+
lambda m, r: {
|
|
103
|
+
"model": ParetoWeightEnsemblingModule.set_preferenece_vector(
|
|
104
|
+
m,
|
|
105
|
+
torch.as_tensor(
|
|
106
|
+
r, device=self.fabric.device, dtype=torch.float32
|
|
107
|
+
),
|
|
108
|
+
),
|
|
109
|
+
"preference_vector": r,
|
|
110
|
+
},
|
|
111
|
+
itertools.cycle([model]),
|
|
112
|
+
generate_simplex_grid(self.eval_grid_n, self.eval_grid_m),
|
|
113
|
+
)
|
|
114
|
+
return model
|
|
115
|
+
|
|
116
|
+
def load_clip_models(self):
|
|
117
|
+
"""
|
|
118
|
+
Loads the pretrained CLIP model and the fine-tuned models for each dataset specified in the configuration.
|
|
119
|
+
"""
|
|
120
|
+
# load pretrained and fine-tuned model
|
|
121
|
+
with timeit_context():
|
|
122
|
+
log.info("load models")
|
|
123
|
+
pretrained_model: CLIPVisionModel = self.modelpool.load_model(
|
|
124
|
+
"_pretrained_"
|
|
125
|
+
)
|
|
126
|
+
finetuned_models = {
|
|
127
|
+
model_name: self.modelpool.load_model(model_name)
|
|
128
|
+
for model_name in self.modelpool.model_names
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
log.info("pretrained model statistics:")
|
|
132
|
+
print_parameters(pretrained_model)
|
|
133
|
+
return pretrained_model, finetuned_models
|
|
134
|
+
|
|
135
|
+
def setup_model(self):
|
|
136
|
+
pretrained_model, finetuned_models = self.load_clip_models()
|
|
137
|
+
self.setup_zero_shot_classification_head()
|
|
138
|
+
|
|
139
|
+
with timeit_context("Building PWEMoE model"):
|
|
140
|
+
model = deepcopy(pretrained_model)
|
|
141
|
+
|
|
142
|
+
# merge the remaining layers using task arithmetic
|
|
143
|
+
if self.init_lambda != 0:
|
|
144
|
+
task_arithmetic_merge(
|
|
145
|
+
model,
|
|
146
|
+
finetuned_models.values(),
|
|
147
|
+
scaling_factor=self.init_lambda,
|
|
148
|
+
inplace=True,
|
|
149
|
+
)
|
|
150
|
+
# fix all parameters
|
|
151
|
+
model.requires_grad_(False)
|
|
152
|
+
|
|
153
|
+
num_layers = len(model.vision_model.encoder.layers)
|
|
154
|
+
|
|
155
|
+
def get_layer(m, i):
|
|
156
|
+
return cast(CLIPEncoderLayer, m.vision_model.encoder.layers[i])
|
|
157
|
+
|
|
158
|
+
for layer_idx in tqdm(range(num_layers)):
|
|
159
|
+
if self.upscale_mlp:
|
|
160
|
+
# upscale the mlp layer
|
|
161
|
+
get_layer(model, layer_idx).mlp = ParetoWeightEnsemblingModule(
|
|
162
|
+
base_model=get_layer(pretrained_model, layer_idx).mlp,
|
|
163
|
+
expert_models=[
|
|
164
|
+
get_layer(m, layer_idx).mlp
|
|
165
|
+
for m in finetuned_models.values()
|
|
166
|
+
],
|
|
167
|
+
init_lambda=self.init_lambda,
|
|
168
|
+
fix_base_model_and_experts=True,
|
|
169
|
+
router_hidden_layers=self.router_hidden_layers,
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
if self.upscale_attn:
|
|
173
|
+
# upscale the Attention layer
|
|
174
|
+
get_layer(model, layer_idx).self_attn = (
|
|
175
|
+
ParetoWeightEnsemblingModule(
|
|
176
|
+
base_model=get_layer(pretrained_model, layer_idx).self_attn,
|
|
177
|
+
expert_models=[
|
|
178
|
+
get_layer(m, layer_idx).self_attn
|
|
179
|
+
for m in finetuned_models.values()
|
|
180
|
+
],
|
|
181
|
+
init_lambda=self.init_lambda,
|
|
182
|
+
fix_base_model_and_experts=True,
|
|
183
|
+
router_hidden_layers=self.router_hidden_layers,
|
|
184
|
+
)
|
|
185
|
+
)
|
|
186
|
+
|
|
187
|
+
print("model statistics after upscaling:")
|
|
188
|
+
print_parameters(model)
|
|
189
|
+
return model
|
|
190
|
+
|
|
191
|
+
def setup_train_loaders(self):
|
|
192
|
+
"""
|
|
193
|
+
Loads the datasets specified in the configuration.
|
|
194
|
+
"""
|
|
195
|
+
train_datasets = {
|
|
196
|
+
dataset_name: self.modelpool.load_train_dataset(
|
|
197
|
+
dataset_name, self.clip_processor
|
|
198
|
+
)
|
|
199
|
+
for dataset_name in self.modelpool.model_names
|
|
200
|
+
}
|
|
201
|
+
train_loaders = {
|
|
202
|
+
dataset_name: DataLoader(dataset, shuffle=True, **self._dataloader_kwargs)
|
|
203
|
+
for dataset_name, dataset in train_datasets.items()
|
|
204
|
+
}
|
|
205
|
+
train_loaders = {
|
|
206
|
+
dataset_name: self.fabric.setup_dataloaders(loader)
|
|
207
|
+
for dataset_name, loader in train_loaders.items()
|
|
208
|
+
}
|
|
209
|
+
return train_loaders
|
|
210
|
+
|
|
211
|
+
def train(self, model: nn.Module, train_loaders: Dict[str, DataLoader]):
|
|
212
|
+
config = self.config
|
|
213
|
+
|
|
214
|
+
# save the configuration
|
|
215
|
+
self.log_hyperparams(config, filename="method_config.yaml")
|
|
216
|
+
|
|
217
|
+
# setup the model
|
|
218
|
+
num_objectives = len(self.modelpool.model_names)
|
|
219
|
+
model = model
|
|
220
|
+
|
|
221
|
+
# setup data loaders
|
|
222
|
+
train_loaders = {
|
|
223
|
+
name: InfiniteDataLoader(loader) for name, loader in train_loaders.items()
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
# set up the optimizer and learning rate scheduler
|
|
227
|
+
optimizer = torch.optim.Adam(
|
|
228
|
+
filter(lambda p: p.requires_grad, model.parameters()),
|
|
229
|
+
lr=config.lr,
|
|
230
|
+
)
|
|
231
|
+
model, optimizer = self.fabric.setup(model, optimizer)
|
|
232
|
+
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
|
233
|
+
optimizer=optimizer, T_max=config.num_steps, eta_min=config.lr * 0.1
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
model.train()
|
|
237
|
+
device = self.fabric.device
|
|
238
|
+
for step_idx in tqdm(
|
|
239
|
+
range(1, 1 + config.num_steps), "training", dynamic_ncols=True
|
|
240
|
+
):
|
|
241
|
+
# sample a preference ray
|
|
242
|
+
ray = torch.from_numpy(
|
|
243
|
+
np.random.dirichlet((config.alpha,) * num_objectives, 1)
|
|
244
|
+
.astype(np.float32)
|
|
245
|
+
.flatten()
|
|
246
|
+
).to(device)
|
|
247
|
+
ParetoWeightEnsemblingModule.set_preferenece_vector(model, ray)
|
|
248
|
+
|
|
249
|
+
losses = []
|
|
250
|
+
for dataset_idx, dataset_name in enumerate(train_loaders):
|
|
251
|
+
batch = next(train_loaders[dataset_name])
|
|
252
|
+
images, labels = batch
|
|
253
|
+
|
|
254
|
+
logits = self.compute_logits(model, images, dataset_name)
|
|
255
|
+
_loss = F.cross_entropy(logits, labels)
|
|
256
|
+
losses.append(_loss)
|
|
257
|
+
|
|
258
|
+
loss = self.compute_loss(model, ray, losses)
|
|
259
|
+
|
|
260
|
+
optimizer.zero_grad()
|
|
261
|
+
self.fabric.backward(loss)
|
|
262
|
+
optimizer.step()
|
|
263
|
+
|
|
264
|
+
lr_scheduler.step()
|
|
265
|
+
|
|
266
|
+
self.fabric.log("train/loss", loss.item(), step=step_idx)
|
|
267
|
+
|
|
268
|
+
if step_idx % config.save_interval == 0:
|
|
269
|
+
(Path(self.log_dir) / "checkpoints").mkdir(exist_ok=True, parents=True)
|
|
270
|
+
save_path = (
|
|
271
|
+
Path(self.log_dir) / "checkpoints" / f"model_step={step_idx}.pt"
|
|
272
|
+
)
|
|
273
|
+
torch.save(model.state_dict(), save_path)
|
|
274
|
+
|
|
275
|
+
return model
|
|
276
|
+
|
|
277
|
+
@abstractmethod
|
|
278
|
+
def compute_loss(
|
|
279
|
+
self, model: nn.Module, ray: Tensor, losses: List[Tensor]
|
|
280
|
+
) -> Tensor:
|
|
281
|
+
"""
|
|
282
|
+
Computes the overall losses using the given preference ray.
|
|
283
|
+
|
|
284
|
+
Args:
|
|
285
|
+
model (nn.Module): The model being trained.
|
|
286
|
+
ray (Tensor): A tensor representing the preference ray, which contains the weights for each objective.
|
|
287
|
+
losses (List[Tensor]): A list of loss values for each objective.
|
|
288
|
+
"""
|
|
289
|
+
pass
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
class PWEMoELinearScalarizationForCLIP(PWEMoEAlgorithmForCLIP):
|
|
293
|
+
def compute_loss(self, model, ray, losses):
|
|
294
|
+
loss = 0
|
|
295
|
+
for r, l in zip(ray, losses):
|
|
296
|
+
loss += r * l
|
|
297
|
+
return loss
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
class PWEMoExactParetoOptimalForCLIP(PWEMoEAlgorithmForCLIP):
|
|
301
|
+
def compute_loss(self, model: nn.Module, ray: Tensor, losses: Tuple[Tensor]):
|
|
302
|
+
from phn.solvers import EPOSolver
|
|
303
|
+
|
|
304
|
+
if self.epo_solver is None:
|
|
305
|
+
num_objectives = len(self.finetuned_models)
|
|
306
|
+
self.epo_solver = EPOSolver(n_tasks=num_objectives, n_params=None)
|
|
307
|
+
epo_solver = self.epo_solver
|
|
308
|
+
|
|
309
|
+
losses = torch.stack(losses)
|
|
310
|
+
loss = epo_solver.get_weighted_loss(
|
|
311
|
+
losses,
|
|
312
|
+
ray,
|
|
313
|
+
tuple(filter(lambda p: p.requires_grad, model.parameters())),
|
|
314
|
+
)
|
|
315
|
+
return loss
|
|
@@ -0,0 +1,316 @@
|
|
|
1
|
+
R"""
|
|
2
|
+
this is adapted from
|
|
3
|
+
https://github.com/tanganke/weight-ensembling_MoE/blob/3cbd327cb28c499065f83387472a79829a2e5fee/src/module/dict_moe.py
|
|
4
|
+
but with some modifications
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
from copy import deepcopy
|
|
9
|
+
from typing import List, Optional, cast
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
import torch.func
|
|
13
|
+
from torch import Tensor, nn
|
|
14
|
+
from torch.nn import functional as F
|
|
15
|
+
|
|
16
|
+
log = logging.getLogger(__name__)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def join_list(list_of_list: List[List]):
|
|
20
|
+
ans = []
|
|
21
|
+
for item in list_of_list:
|
|
22
|
+
ans.extend(item)
|
|
23
|
+
return ans
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class PWEMoEGate(nn.Module):
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
hidden_size: int,
|
|
30
|
+
num_experts: int,
|
|
31
|
+
init_lambda: float,
|
|
32
|
+
num_hidden_layers: int = 2,
|
|
33
|
+
):
|
|
34
|
+
super().__init__()
|
|
35
|
+
assert num_hidden_layers <= 2
|
|
36
|
+
self.input_dim = hidden_size
|
|
37
|
+
self.num_experts = num_experts
|
|
38
|
+
self.num_hidden_layers = num_hidden_layers
|
|
39
|
+
|
|
40
|
+
if num_hidden_layers == 2:
|
|
41
|
+
self.fc1 = nn.Linear(hidden_size, hidden_size, bias=True)
|
|
42
|
+
nn.init.normal_(self.fc1.weight, std=0.01)
|
|
43
|
+
nn.init.zeros_(self.fc1.bias)
|
|
44
|
+
elif num_hidden_layers == 1:
|
|
45
|
+
self.fc1 = nn.Identity()
|
|
46
|
+
|
|
47
|
+
if num_hidden_layers >= 1:
|
|
48
|
+
self.fc2 = nn.Linear(hidden_size, num_experts, bias=True)
|
|
49
|
+
nn.init.normal_(self.fc2.weight, std=0.01)
|
|
50
|
+
nn.init.constant_(self.fc2.bias, init_lambda)
|
|
51
|
+
|
|
52
|
+
if num_hidden_layers == 0:
|
|
53
|
+
self.weight = nn.Parameter(
|
|
54
|
+
torch.ones(num_experts) * init_lambda, requires_grad=True
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
def forward(self, hidden_states: Tensor) -> Tensor:
|
|
58
|
+
if self.num_hidden_layers == 0:
|
|
59
|
+
return self.weight
|
|
60
|
+
|
|
61
|
+
if self.num_hidden_layers == 2:
|
|
62
|
+
hidden_states = F.relu(self.fc1(hidden_states))
|
|
63
|
+
gate_weights = self.fc2(hidden_states)
|
|
64
|
+
return gate_weights
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
class PWEMoE(nn.Module):
|
|
68
|
+
def __init__(
|
|
69
|
+
self,
|
|
70
|
+
hidden_size: int,
|
|
71
|
+
base_model: nn.Module,
|
|
72
|
+
expert_models: List[nn.Module],
|
|
73
|
+
init_lambda: float = 0.2,
|
|
74
|
+
fix_base_model_and_experts: bool = True,
|
|
75
|
+
batch_first: bool = False,
|
|
76
|
+
router_hidden_layers: int = 2,
|
|
77
|
+
):
|
|
78
|
+
super().__init__()
|
|
79
|
+
self.num_experts = len(expert_models)
|
|
80
|
+
self.input_dim = hidden_size
|
|
81
|
+
self.batch_first = batch_first
|
|
82
|
+
|
|
83
|
+
self.gate = PWEMoEGate(
|
|
84
|
+
hidden_size,
|
|
85
|
+
self.num_experts,
|
|
86
|
+
init_lambda=init_lambda,
|
|
87
|
+
num_hidden_layers=router_hidden_layers,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
self.base_model = deepcopy(base_model)
|
|
91
|
+
experts = [deepcopy(e) for e in expert_models]
|
|
92
|
+
base_sd = self.base_model.state_dict()
|
|
93
|
+
experts_params = []
|
|
94
|
+
experts_sd = [e.state_dict() for e in experts]
|
|
95
|
+
for name in base_sd.keys():
|
|
96
|
+
task_vectors = []
|
|
97
|
+
for e_sd in experts_sd:
|
|
98
|
+
with torch.no_grad():
|
|
99
|
+
_task_vector = e_sd[name] - base_sd[name]
|
|
100
|
+
task_vectors.append(_task_vector)
|
|
101
|
+
task_vectors = torch.stack(task_vectors)
|
|
102
|
+
experts_params.append(
|
|
103
|
+
nn.Parameter(task_vectors, requires_grad=not fix_base_model_and_experts)
|
|
104
|
+
)
|
|
105
|
+
self.expert_parms = nn.ParameterList(experts_params)
|
|
106
|
+
|
|
107
|
+
if fix_base_model_and_experts:
|
|
108
|
+
for p in self.base_model.parameters():
|
|
109
|
+
p.requires_grad_(False)
|
|
110
|
+
for p in self.expert_parms.parameters():
|
|
111
|
+
p.requires_grad_(False)
|
|
112
|
+
|
|
113
|
+
def forward(self, hidden_states: Tensor):
|
|
114
|
+
if not self.batch_first:
|
|
115
|
+
hidden_states = hidden_states.permute(1, 0, 2)
|
|
116
|
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
|
117
|
+
gate_weights: Tensor = self.gate(hidden_states)
|
|
118
|
+
if self.gate.num_hidden_layers == 0:
|
|
119
|
+
base_sd = self.base_model.state_dict(keep_vars=True)
|
|
120
|
+
sd = {}
|
|
121
|
+
for param_idx, (name, param) in enumerate(base_sd.items()):
|
|
122
|
+
expert_params: nn.Parameter = self.expert_parms[param_idx]
|
|
123
|
+
task_vector = expert_params * gate_weights.view(
|
|
124
|
+
[-1] + [1] * (expert_params.dim() - 1)
|
|
125
|
+
)
|
|
126
|
+
task_vector = task_vector.sum(dim=0)
|
|
127
|
+
sd[name] = param + task_vector
|
|
128
|
+
final_hidden_states = torch.func.functional_call(
|
|
129
|
+
self.base_model, sd, hidden_states
|
|
130
|
+
)
|
|
131
|
+
else:
|
|
132
|
+
gate_weights = gate_weights.mean(dim=1)
|
|
133
|
+
final_hidden_states = []
|
|
134
|
+
base_sd = self.base_model.state_dict(keep_vars=True)
|
|
135
|
+
for sample_idx in range(batch_size):
|
|
136
|
+
sd = {}
|
|
137
|
+
for param_idx, (name, param) in enumerate(base_sd.items()):
|
|
138
|
+
expert_params: nn.Parameter = self.expert_parms[param_idx]
|
|
139
|
+
task_vector = expert_params * gate_weights[sample_idx].view(
|
|
140
|
+
[-1] + [1] * (expert_params.dim() - 1)
|
|
141
|
+
)
|
|
142
|
+
task_vector = task_vector.sum(dim=0)
|
|
143
|
+
sd[name] = param + task_vector
|
|
144
|
+
_final_hidden_states = torch.func.functional_call(
|
|
145
|
+
self.base_model, sd, hidden_states[sample_idx : sample_idx + 1]
|
|
146
|
+
)
|
|
147
|
+
final_hidden_states.append(_final_hidden_states)
|
|
148
|
+
final_hidden_states = torch.cat(final_hidden_states, dim=0)
|
|
149
|
+
if not self.batch_first:
|
|
150
|
+
final_hidden_states = final_hidden_states.permute(1, 0, 2)
|
|
151
|
+
return final_hidden_states
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
class ParetoWeightEnsemblingModule(nn.Module):
|
|
155
|
+
def __init__(
|
|
156
|
+
self,
|
|
157
|
+
base_model: nn.Module,
|
|
158
|
+
expert_models: List[nn.Module],
|
|
159
|
+
init_lambda: float = 0.2,
|
|
160
|
+
fix_base_model_and_experts: bool = True,
|
|
161
|
+
router_hidden_layers: int = 1,
|
|
162
|
+
):
|
|
163
|
+
super().__init__()
|
|
164
|
+
self.num_experts = len(expert_models)
|
|
165
|
+
|
|
166
|
+
# initialize the router, which is a simple MLP,
|
|
167
|
+
# takes the preference vector as input and output the routing weights
|
|
168
|
+
if router_hidden_layers == 1:
|
|
169
|
+
self.gate = nn.Sequential(
|
|
170
|
+
nn.Linear(self.num_experts, self.num_experts, bias=True),
|
|
171
|
+
)
|
|
172
|
+
nn.init.normal_(self.gate[0].weight, std=0.01)
|
|
173
|
+
cast(nn.Parameter, self.gate[0].bias).data.fill_(init_lambda)
|
|
174
|
+
elif router_hidden_layers == 2:
|
|
175
|
+
self.gate = nn.Sequential(
|
|
176
|
+
nn.Linear(self.num_experts, 2 * self.num_experts, bias=True),
|
|
177
|
+
nn.ReLU(),
|
|
178
|
+
nn.Linear(2 * self.num_experts, self.num_experts, bias=True),
|
|
179
|
+
)
|
|
180
|
+
nn.init.normal_(self.gate[0].weight, std=0.01)
|
|
181
|
+
nn.init.zeros_(self.gate[0].bias)
|
|
182
|
+
nn.init.normal_(self.gate[2].weight, std=0.01)
|
|
183
|
+
cast(nn.Parameter, self.gate[2].bias).data.fill_(init_lambda)
|
|
184
|
+
else:
|
|
185
|
+
raise NotImplementedError()
|
|
186
|
+
|
|
187
|
+
self.base_model = deepcopy(base_model)
|
|
188
|
+
experts = [deepcopy(e) for e in expert_models]
|
|
189
|
+
# state dict of the pre-trained model
|
|
190
|
+
base_sd = self.base_model.state_dict()
|
|
191
|
+
# state dict of the expert model
|
|
192
|
+
expert_params = []
|
|
193
|
+
experts_sd = [e.state_dict(keep_vars=True) for e in experts]
|
|
194
|
+
# compute the task vector
|
|
195
|
+
for name in base_sd.keys():
|
|
196
|
+
task_vectors = []
|
|
197
|
+
for e_sd in experts_sd:
|
|
198
|
+
with torch.no_grad():
|
|
199
|
+
_task_vector = e_sd[name] - base_sd[name]
|
|
200
|
+
task_vectors.append(_task_vector)
|
|
201
|
+
task_vectors = torch.stack(task_vectors)
|
|
202
|
+
expert_params.append(
|
|
203
|
+
nn.Parameter(task_vectors, requires_grad=not fix_base_model_and_experts)
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
self.expert_params = nn.ParameterList(expert_params)
|
|
207
|
+
|
|
208
|
+
if fix_base_model_and_experts:
|
|
209
|
+
self.base_model.requires_grad_(False)
|
|
210
|
+
for p in self.expert_params.parameters():
|
|
211
|
+
p.requires_grad_(False)
|
|
212
|
+
|
|
213
|
+
self.preference_vector = None
|
|
214
|
+
self._merged_state_dict = None
|
|
215
|
+
|
|
216
|
+
def _set_preference_vector(self, perference_vector: Tensor):
|
|
217
|
+
"""
|
|
218
|
+
Sets the preference vector for the model and resets the merged state dictionary cache.
|
|
219
|
+
|
|
220
|
+
Args:
|
|
221
|
+
preference_vector (Tensor): The preference vector to be set. It should be a 1D tensor
|
|
222
|
+
with the same length as the number of experts.
|
|
223
|
+
|
|
224
|
+
Raises:
|
|
225
|
+
AssertionError: If the preference vector does not have the same length as the number of experts
|
|
226
|
+
or is not a 1D tensor.
|
|
227
|
+
|
|
228
|
+
Returns:
|
|
229
|
+
None
|
|
230
|
+
"""
|
|
231
|
+
if not isinstance(perference_vector, Tensor):
|
|
232
|
+
perference_vector = torch.as_tensor(perference_vector)
|
|
233
|
+
self.preference_vector = perference_vector
|
|
234
|
+
# reset the merged state dict cache
|
|
235
|
+
self._merged_state_dict = None
|
|
236
|
+
assert (
|
|
237
|
+
self.preference_vector.shape[0] == self.num_experts
|
|
238
|
+
and self.preference_vector.dim() == 1
|
|
239
|
+
), "preference vector should have the same length as the number of experts and be 1D tensor"
|
|
240
|
+
|
|
241
|
+
def _merge_state_dict(self):
|
|
242
|
+
assert self.preference_vector is not None, "preference vector is not set"
|
|
243
|
+
routing_weights = self.gate(self.preference_vector)
|
|
244
|
+
merged_state_dict = {}
|
|
245
|
+
for param_idx, (name, params) in enumerate(
|
|
246
|
+
self.base_model.state_dict(keep_vars=True).items()
|
|
247
|
+
):
|
|
248
|
+
expert_params: nn.Parameter = self.expert_params[param_idx]
|
|
249
|
+
task_vector = expert_params * routing_weights.view(
|
|
250
|
+
[-1] + [1] * (expert_params.dim() - 1)
|
|
251
|
+
)
|
|
252
|
+
task_vector = task_vector.sum(dim=0)
|
|
253
|
+
merged_state_dict[name] = params + task_vector
|
|
254
|
+
return merged_state_dict
|
|
255
|
+
|
|
256
|
+
def forward(self, *args, **kwargs):
|
|
257
|
+
assert (
|
|
258
|
+
self.preference_vector is not None
|
|
259
|
+
), "preference vector is not set, please call `set_preference_vector` before forward"
|
|
260
|
+
if self._merged_state_dict is None:
|
|
261
|
+
# cache the merged state dict
|
|
262
|
+
self._merged_state_dict = self._merge_state_dict()
|
|
263
|
+
return torch.func.functional_call(
|
|
264
|
+
self.base_model, self._merged_state_dict, args=args, kwargs=kwargs
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
def get_merged_model(self):
|
|
268
|
+
"""
|
|
269
|
+
merge the base model and the expert models according to the preference vector, return the merged model
|
|
270
|
+
"""
|
|
271
|
+
merged_state_dict = self._merge_state_dict()
|
|
272
|
+
model = deepcopy(self.base_model)
|
|
273
|
+
model.load_state_dict(merged_state_dict)
|
|
274
|
+
return model
|
|
275
|
+
|
|
276
|
+
@staticmethod
|
|
277
|
+
def set_preferenece_vector(model: nn.Module, preference_vector: Tensor):
|
|
278
|
+
"""
|
|
279
|
+
Sets the preference vector for a given model. If the model is an instance of
|
|
280
|
+
`ParetoWeightEnsemblingModule`, it directly sets the preference vector. Otherwise,
|
|
281
|
+
it recursively sets the preference vector for all child modules.
|
|
282
|
+
|
|
283
|
+
Args:
|
|
284
|
+
model (nn.Module): The model for which the preference vector is to be set.
|
|
285
|
+
preference_vector (Tensor): The preference vector to be set in the model.
|
|
286
|
+
|
|
287
|
+
Returns:
|
|
288
|
+
nn.Module: The model with the preference vector set.
|
|
289
|
+
"""
|
|
290
|
+
if isinstance(model, ParetoWeightEnsemblingModule):
|
|
291
|
+
model._set_preference_vector(preference_vector)
|
|
292
|
+
for name, module in model.named_children():
|
|
293
|
+
if isinstance(module, nn.Module):
|
|
294
|
+
ParetoWeightEnsemblingModule.set_preferenece_vector(
|
|
295
|
+
module, preference_vector
|
|
296
|
+
)
|
|
297
|
+
return model
|
|
298
|
+
|
|
299
|
+
@staticmethod
|
|
300
|
+
def merge_and_unload(model: nn.Module):
|
|
301
|
+
if isinstance(model, ParetoWeightEnsemblingModule):
|
|
302
|
+
return model.get_merged_model()
|
|
303
|
+
for name, module in model.named_children():
|
|
304
|
+
if isinstance(module, nn.Module):
|
|
305
|
+
setattr(
|
|
306
|
+
model, name, ParetoWeightEnsemblingModule.merge_and_unload(module)
|
|
307
|
+
)
|
|
308
|
+
return model
|
|
309
|
+
|
|
310
|
+
def __repr__(self):
|
|
311
|
+
return (
|
|
312
|
+
f"ParetoWeightEnsemblingModule(base_model=<{type(self.base_model)}>, "
|
|
313
|
+
f"num_expert_models={len(self.expert_params)}, "
|
|
314
|
+
f"fix_base_model_and_experts={self.fix_base_model_and_experts}, "
|
|
315
|
+
f"router_hidden_layers={self.router_hidden_layers})",
|
|
316
|
+
)
|