fusion-bench 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- fusion_bench/__init__.py +20 -0
- fusion_bench/__main__.py +4 -0
- fusion_bench/compat/__init__.py +0 -0
- fusion_bench/compat/method/__init__.py +109 -0
- fusion_bench/compat/method/base_algorithm.py +58 -0
- fusion_bench/compat/modelpool/AutoModelForSeq2SeqLM.py +34 -0
- fusion_bench/compat/modelpool/__init__.py +116 -0
- fusion_bench/compat/modelpool/base_pool.py +328 -0
- fusion_bench/compat/modelpool/huggingface_clip_vision.py +178 -0
- fusion_bench/compat/taskpool/__init__.py +95 -0
- fusion_bench/compat/taskpool/base_pool.py +111 -0
- fusion_bench/compat/taskpool/clip_image_classification.py +210 -0
- fusion_bench/compat/taskpool/flan_t5_glue_text_generation.py +175 -0
- fusion_bench/constants/__init__.py +2 -0
- fusion_bench/constants/paths.py +18 -0
- fusion_bench/dataset/__init__.py +29 -0
- fusion_bench/dataset/arc_agi/__init__.py +6 -0
- fusion_bench/dataset/arc_agi/arc.py +308 -0
- fusion_bench/dataset/arc_agi/arc_agi.py +365 -0
- fusion_bench/dataset/arc_agi/augmenters.py +1036 -0
- fusion_bench/dataset/arc_agi/messagers.py +1355 -0
- fusion_bench/dataset/arc_agi/np_cache.py +168 -0
- fusion_bench/dataset/arc_agi/preprocess.py +298 -0
- fusion_bench/dataset/arc_agi/representers.py +1019 -0
- fusion_bench/dataset/clip_dataset.py +71 -0
- fusion_bench/dataset/fer2013.py +12 -0
- fusion_bench/dataset/gpt2_glue.py +300 -0
- fusion_bench/dataset/gsm8k.py +60 -0
- fusion_bench/dataset/image_dataset.py +55 -0
- fusion_bench/dataset/imdb.py +11 -0
- fusion_bench/dataset/llama/__init__.py +1 -0
- fusion_bench/dataset/llama/alpaca.py +232 -0
- fusion_bench/dataset/llama/collate.py +120 -0
- fusion_bench/dataset/llama/metamathqa.py +50 -0
- fusion_bench/dataset/llama/openai.py +160 -0
- fusion_bench/dataset/llama/preference_700k.py +70 -0
- fusion_bench/dataset/llama/sharegpt.py +141 -0
- fusion_bench/dataset/llama/squad.py +125 -0
- fusion_bench/dataset/llama/stanford_shp.py +90 -0
- fusion_bench/dataset/llama/ultrachat.py +58 -0
- fusion_bench/dataset/llama/utils/__init__.py +0 -0
- fusion_bench/dataset/llama/wikitext.py +89 -0
- fusion_bench/dataset/nyuv2.py +119 -0
- fusion_bench/method/__init__.py +177 -0
- fusion_bench/method/ada_svd/__init__.py +2 -0
- fusion_bench/method/ada_svd/clip_vision.py +319 -0
- fusion_bench/method/adamerging/__init__.py +6 -0
- fusion_bench/method/adamerging/clip_layer_wise_adamerging.py +46 -0
- fusion_bench/method/adamerging/clip_task_wise_adamerging.py +187 -0
- fusion_bench/method/adamerging/entropy_loss.py +25 -0
- fusion_bench/method/adamerging/flan_t5_layer_wise_adamerging.py +332 -0
- fusion_bench/method/adamerging/gpt2_layer_wise_adamerging.py +351 -0
- fusion_bench/method/adamerging/layer_wise_adamerging.py +252 -0
- fusion_bench/method/adamerging/llama_adamerging.py +335 -0
- fusion_bench/method/adamerging/min_norm_solvers.py +227 -0
- fusion_bench/method/adamerging/task_wise_adamerging.py +174 -0
- fusion_bench/method/adamerging/utils.py +15 -0
- fusion_bench/method/analysis/__init__.py +2 -0
- fusion_bench/method/analysis/task_vector_cos_similarity.py +172 -0
- fusion_bench/method/analysis/task_vector_violin_plot.py +205 -0
- fusion_bench/method/base_algorithm.py +44 -0
- fusion_bench/method/classification/__init__.py +3 -0
- fusion_bench/method/classification/clip_finetune.py +444 -0
- fusion_bench/method/classification/continual_clip_finetune.py +297 -0
- fusion_bench/method/concrete_subspace/__init__.py +6 -0
- fusion_bench/method/concrete_subspace/clip_concrete_adamerging.py +595 -0
- fusion_bench/method/concrete_subspace/clip_concrete_task_arithmetic.py +263 -0
- fusion_bench/method/dare/__init__.py +4 -0
- fusion_bench/method/dare/simple_average.py +31 -0
- fusion_bench/method/dare/task_arithmetic.py +82 -0
- fusion_bench/method/dare/ties_merging.py +100 -0
- fusion_bench/method/dare/utils.py +87 -0
- fusion_bench/method/dawe/__init__.py +2 -0
- fusion_bench/method/dawe/dawe_for_clip.py +274 -0
- fusion_bench/method/dawe/warppers/__init__.py +13 -0
- fusion_bench/method/dawe/warppers/dawe_model.py +256 -0
- fusion_bench/method/depth_upscaling/__init__.py +3 -0
- fusion_bench/method/depth_upscaling/depth_upscaling.py +89 -0
- fusion_bench/method/depth_upscaling/depth_upscaling_for_llama.py +57 -0
- fusion_bench/method/dummy.py +35 -0
- fusion_bench/method/ensemble.py +98 -0
- fusion_bench/method/fisher_merging/__init__.py +4 -0
- fusion_bench/method/fisher_merging/clip_fisher_merging.py +191 -0
- fusion_bench/method/fisher_merging/fisher_merging.py +484 -0
- fusion_bench/method/fisher_merging/gpt2_fisher_merging.py +193 -0
- fusion_bench/method/linear/__init__.py +6 -0
- fusion_bench/method/linear/expo.py +118 -0
- fusion_bench/method/linear/linear_interpolation.py +60 -0
- fusion_bench/method/linear/llama_expo.py +229 -0
- fusion_bench/method/linear/simple_average_for_llama.py +54 -0
- fusion_bench/method/linear/task_arithmetic_for_llama.py +57 -0
- fusion_bench/method/lm_finetune/__init__.py +3 -0
- fusion_bench/method/lm_finetune/bradley_terry_rm.py +432 -0
- fusion_bench/method/lm_finetune/causal_lm_pretrain.py +7 -0
- fusion_bench/method/lm_finetune/fullfinetune_sft.py +375 -0
- fusion_bench/method/lm_finetune/peftfinetune_sft.py +370 -0
- fusion_bench/method/mixture_of_experts/__init__.py +7 -0
- fusion_bench/method/mixture_of_experts/mixtral_merging.py +112 -0
- fusion_bench/method/mixture_of_experts/mixtral_upcycling.py +329 -0
- fusion_bench/method/model_recombination.py +121 -0
- fusion_bench/method/opcm/__init__.py +4 -0
- fusion_bench/method/opcm/opcm.py +277 -0
- fusion_bench/method/opcm/task_arithmetic.py +115 -0
- fusion_bench/method/opcm/ties_merging.py +156 -0
- fusion_bench/method/opcm/utils.py +73 -0
- fusion_bench/method/opcm/weight_average.py +120 -0
- fusion_bench/method/pruning/__init__.py +5 -0
- fusion_bench/method/pruning/llama_magnitude_prune.py +202 -0
- fusion_bench/method/pruning/llama_random_prune.py +143 -0
- fusion_bench/method/pruning/llama_wanda_prune.py +359 -0
- fusion_bench/method/pruning/magnitude_diff_pruning.py +180 -0
- fusion_bench/method/pruning/prune_utils.py +165 -0
- fusion_bench/method/pruning/wanda_utils/__init__.py +7 -0
- fusion_bench/method/pruning/wanda_utils/ablate.py +188 -0
- fusion_bench/method/pruning/wanda_utils/data.py +135 -0
- fusion_bench/method/pruning/wanda_utils/eval.py +245 -0
- fusion_bench/method/pruning/wanda_utils/layerwrapper.py +61 -0
- fusion_bench/method/pruning/wanda_utils/prune.py +581 -0
- fusion_bench/method/pruning/wanda_utils/prune_opt.py +539 -0
- fusion_bench/method/pruning/wanda_utils/sparsegpt.py +165 -0
- fusion_bench/method/pwe_moe/__init__.py +5 -0
- fusion_bench/method/pwe_moe/clip_pwe_moe.py +315 -0
- fusion_bench/method/pwe_moe/module.py +316 -0
- fusion_bench/method/pwe_moe/phn/__init__.py +2 -0
- fusion_bench/method/pwe_moe/phn/solvers.py +195 -0
- fusion_bench/method/pwe_moe/utils.py +43 -0
- fusion_bench/method/rankone_moe/__init__.py +3 -0
- fusion_bench/method/rankone_moe/clip_rankone_moe.py +160 -0
- fusion_bench/method/rankone_moe/rankone_moe.py +249 -0
- fusion_bench/method/regmean/__init__.py +4 -0
- fusion_bench/method/regmean/clip_regmean.py +131 -0
- fusion_bench/method/regmean/gpt2_regmean.py +147 -0
- fusion_bench/method/regmean/regmean.py +375 -0
- fusion_bench/method/simple_average.py +112 -0
- fusion_bench/method/slerp/__init__.py +2 -0
- fusion_bench/method/slerp/slerp.py +101 -0
- fusion_bench/method/slerp/slerp_utils.py +107 -0
- fusion_bench/method/smile_upscaling/__init__.py +3 -0
- fusion_bench/method/smile_upscaling/singular_projection_merging.py +198 -0
- fusion_bench/method/smile_upscaling/smile_mistral_upscaling.py +331 -0
- fusion_bench/method/smile_upscaling/smile_upscaling.py +573 -0
- fusion_bench/method/sparse_we_moe/__init__.py +2 -0
- fusion_bench/method/sparse_we_moe/sparse_clip_we_moe.py +248 -0
- fusion_bench/method/sparse_we_moe/sparse_we_moe.py +301 -0
- fusion_bench/method/sparselo/__init__.py +2 -0
- fusion_bench/method/sparselo/sparselo.py +955 -0
- fusion_bench/method/surgery/__init__.py +1 -0
- fusion_bench/method/surgery/clip_layer_wise_adamerging_surgery.py +157 -0
- fusion_bench/method/tall_mask/__init__.py +0 -0
- fusion_bench/method/tall_mask/utils.py +234 -0
- fusion_bench/method/task_arithmetic/__init__.py +2 -0
- fusion_bench/method/task_arithmetic/task_arithmetic.py +151 -0
- fusion_bench/method/task_singular_vector/TSVC.py +16 -0
- fusion_bench/method/task_singular_vector/TSVM.py +63 -0
- fusion_bench/method/task_singular_vector/__init__.py +9 -0
- fusion_bench/method/task_singular_vector/utils/TSVC_utils.py +50 -0
- fusion_bench/method/task_singular_vector/utils/TSVM_utils.py +640 -0
- fusion_bench/method/task_singular_vector/utils/__init__.py +7 -0
- fusion_bench/method/ties_merging/__init__.py +2 -0
- fusion_bench/method/ties_merging/ties_merging.py +117 -0
- fusion_bench/method/ties_merging/ties_merging_utils.py +331 -0
- fusion_bench/method/trust_region/__init__.py +2 -0
- fusion_bench/method/trust_region/clip_task_arithmetic.py +205 -0
- fusion_bench/method/trust_region/utils.py +58 -0
- fusion_bench/method/we_moe/__init__.py +2 -0
- fusion_bench/method/we_moe/clip_we_moe.py +161 -0
- fusion_bench/method/we_moe/we_moe.py +247 -0
- fusion_bench/method/weighted_average/__init__.py +3 -0
- fusion_bench/method/weighted_average/llama.py +113 -0
- fusion_bench/method/weighted_average/weighted_average.py +102 -0
- fusion_bench/metrics/__init__.py +0 -0
- fusion_bench/metrics/continual_learning/backward_transfer.py +22 -0
- fusion_bench/metrics/nyuv2/__init__.py +11 -0
- fusion_bench/metrics/nyuv2/depth.py +45 -0
- fusion_bench/metrics/nyuv2/loss.py +31 -0
- fusion_bench/metrics/nyuv2/noise.py +16 -0
- fusion_bench/metrics/nyuv2/normal.py +48 -0
- fusion_bench/metrics/nyuv2/segmentation.py +43 -0
- fusion_bench/metrics/text_to_image_generation/__init__.py +9 -0
- fusion_bench/metrics/text_to_image_generation/aesthetic_scorer.py +123 -0
- fusion_bench/metrics/text_to_image_generation/compressibility.py +49 -0
- fusion_bench/metrics/text_to_image_generation/pickscore_scorer.py +95 -0
- fusion_bench/mixins/__init__.py +28 -0
- fusion_bench/mixins/clip_classification.py +252 -0
- fusion_bench/mixins/fabric_training.py +320 -0
- fusion_bench/mixins/lightning_fabric.py +174 -0
- fusion_bench/mixins/optim/__init__.py +0 -0
- fusion_bench/mixins/optim/adamw_with_warmup.py +42 -0
- fusion_bench/mixins/rich_live.py +21 -0
- fusion_bench/mixins/serialization.py +132 -0
- fusion_bench/mixins/simple_profiler.py +79 -0
- fusion_bench/modelpool/PeftModelForSeq2SeqLM.py +49 -0
- fusion_bench/modelpool/__init__.py +42 -0
- fusion_bench/modelpool/base_pool.py +268 -0
- fusion_bench/modelpool/causal_lm/__init__.py +2 -0
- fusion_bench/modelpool/causal_lm/causal_lm.py +139 -0
- fusion_bench/modelpool/clip_vision/__init__.py +1 -0
- fusion_bench/modelpool/clip_vision/modelpool.py +145 -0
- fusion_bench/modelpool/huggingface_automodel.py +20 -0
- fusion_bench/modelpool/huggingface_gpt2_classification.py +63 -0
- fusion_bench/modelpool/nyuv2_modelpool.py +40 -0
- fusion_bench/modelpool/seq2seq_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq2seq_lm/modelpool.py +65 -0
- fusion_bench/modelpool/seq_classification_lm/__init__.py +2 -0
- fusion_bench/modelpool/seq_classification_lm/reward_model.py +15 -0
- fusion_bench/modelpool/seq_classification_lm/seq_classification_lm.py +98 -0
- fusion_bench/models/__init__.py +3 -0
- fusion_bench/models/chat_templates/__init__.py +1 -0
- fusion_bench/models/chat_templates/llama_3_Instruct.py +1 -0
- fusion_bench/models/chat_templates/load_tokenizer.py +43 -0
- fusion_bench/models/hf_clip.py +199 -0
- fusion_bench/models/linearized/__init__.py +0 -0
- fusion_bench/models/linearized/linearized_model_utils.py +91 -0
- fusion_bench/models/linearized/vision_model.py +122 -0
- fusion_bench/models/llama/__init__.py +16 -0
- fusion_bench/models/llama/model_utils/__init__.py +0 -0
- fusion_bench/models/llama/model_utils/embedding.py +87 -0
- fusion_bench/models/llama/model_utils/liger_kernel.py +86 -0
- fusion_bench/models/llama/model_utils/misc.py +112 -0
- fusion_bench/models/llama/model_utils/mod.py +52 -0
- fusion_bench/models/llama/model_utils/visual.py +241 -0
- fusion_bench/models/llama/patcher.py +78 -0
- fusion_bench/models/llama/tokenizer_loader.py +153 -0
- fusion_bench/models/masks/__init__.py +2 -0
- fusion_bench/models/masks/mask_model.py +160 -0
- fusion_bench/models/modeling_losparse_llama/__init__.py +4 -0
- fusion_bench/models/modeling_losparse_llama/configuration_losparse_llama.py +205 -0
- fusion_bench/models/modeling_losparse_llama/losparse_linear.py +67 -0
- fusion_bench/models/modeling_losparse_llama/modeling_losparse_llama.py +1825 -0
- fusion_bench/models/modeling_losparse_llama/register.py +8 -0
- fusion_bench/models/modeling_losparse_llama/utils.py +60 -0
- fusion_bench/models/modeling_smile_mistral/__init__.py +48 -0
- fusion_bench/models/modeling_smile_mistral/configuration_smile_mistral.py +21 -0
- fusion_bench/models/modeling_smile_mistral/modeling_smile_mistral.py +1034 -0
- fusion_bench/models/modeling_smile_mistral/register.py +8 -0
- fusion_bench/models/nyuv2/__init__.py +0 -0
- fusion_bench/models/nyuv2/aspp.py +82 -0
- fusion_bench/models/nyuv2/lightning_module.py +176 -0
- fusion_bench/models/nyuv2/resnet.py +405 -0
- fusion_bench/models/nyuv2/resnet_dilated.py +99 -0
- fusion_bench/models/parameter_dict.py +75 -0
- fusion_bench/models/rankone_moe.py +410 -0
- fusion_bench/models/separate_io.py +105 -0
- fusion_bench/models/smile_moe/__init__.py +0 -0
- fusion_bench/models/smile_moe/linear.py +256 -0
- fusion_bench/models/sparse_we_moe.py +459 -0
- fusion_bench/models/surgery/__init__.py +1 -0
- fusion_bench/models/surgery/surgerymodelwrapper.py +158 -0
- fusion_bench/models/utils.py +80 -0
- fusion_bench/models/we_moe.py +247 -0
- fusion_bench/models/wrappers/__init__.py +0 -0
- fusion_bench/models/wrappers/ensemble.py +183 -0
- fusion_bench/models/wrappers/layer_wise_fusion.py +336 -0
- fusion_bench/models/wrappers/task_wise_fusion.py +249 -0
- fusion_bench/optim/__init__.py +2 -0
- fusion_bench/optim/exception.py +47 -0
- fusion_bench/optim/lr_scheduler/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/linear_warmup.py +222 -0
- fusion_bench/optim/lr_scheduler/utils/__init__.py +1 -0
- fusion_bench/optim/lr_scheduler/utils/visualization.py +119 -0
- fusion_bench/optim/mezo.py +118 -0
- fusion_bench/programs/__init__.py +20 -0
- fusion_bench/programs/base_program.py +9 -0
- fusion_bench/programs/fabric_fusion_program.py +299 -0
- fusion_bench/scripts/__init__.py +0 -0
- fusion_bench/scripts/cli.py +43 -0
- fusion_bench/scripts/clip/__init__.py +0 -0
- fusion_bench/scripts/clip/convert_checkpoint.py +39 -0
- fusion_bench/scripts/imgui.py +218 -0
- fusion_bench/scripts/nyuv2_mtl_train.py +137 -0
- fusion_bench/scripts/webui.py +405 -0
- fusion_bench/taskpool/__init__.py +39 -0
- fusion_bench/taskpool/base_pool.py +35 -0
- fusion_bench/taskpool/clip_vision/__init__.py +4 -0
- fusion_bench/taskpool/clip_vision/clip_rankone_moe_taskpool.py +112 -0
- fusion_bench/taskpool/clip_vision/clip_sparse_wemoe_taskpool.py +120 -0
- fusion_bench/taskpool/clip_vision/taskpool.py +392 -0
- fusion_bench/taskpool/dummy.py +58 -0
- fusion_bench/taskpool/gpt2_text_classification.py +149 -0
- fusion_bench/taskpool/llama/__init__.py +1 -0
- fusion_bench/taskpool/llama/reward_model.py +157 -0
- fusion_bench/taskpool/llama/test_generation.py +185 -0
- fusion_bench/taskpool/nyuv2_taskpool.py +65 -0
- fusion_bench/tasks/__init__.py +2 -0
- fusion_bench/tasks/base_task.py +18 -0
- fusion_bench/tasks/classification.py +75 -0
- fusion_bench/tasks/clip_classification/__init__.py +183 -0
- fusion_bench/tasks/clip_classification/cifar10.py +33 -0
- fusion_bench/tasks/clip_classification/cifar100.py +146 -0
- fusion_bench/tasks/clip_classification/clip_dataset.py +1 -0
- fusion_bench/tasks/clip_classification/cub_200_2011.py +208 -0
- fusion_bench/tasks/clip_classification/dtd.py +60 -0
- fusion_bench/tasks/clip_classification/emnist_letters.py +31 -0
- fusion_bench/tasks/clip_classification/emnist_mnist.py +5 -0
- fusion_bench/tasks/clip_classification/eurosat.py +18 -0
- fusion_bench/tasks/clip_classification/fashion_mnist.py +18 -0
- fusion_bench/tasks/clip_classification/fer2013.py +18 -0
- fusion_bench/tasks/clip_classification/flower102.py +106 -0
- fusion_bench/tasks/clip_classification/food101.py +105 -0
- fusion_bench/tasks/clip_classification/gtsrb.py +51 -0
- fusion_bench/tasks/clip_classification/imagenet.py +2103 -0
- fusion_bench/tasks/clip_classification/kmnist.py +17 -0
- fusion_bench/tasks/clip_classification/mnist.py +5 -0
- fusion_bench/tasks/clip_classification/mongo_leaf_disease.py +19 -0
- fusion_bench/tasks/clip_classification/oxford_iiit_pet.py +41 -0
- fusion_bench/tasks/clip_classification/pcam.py +5 -0
- fusion_bench/tasks/clip_classification/rendered_sst2.py +3 -0
- fusion_bench/tasks/clip_classification/resisc45.py +68 -0
- fusion_bench/tasks/clip_classification/stanford_cars.py +209 -0
- fusion_bench/tasks/clip_classification/stl10.py +17 -0
- fusion_bench/tasks/clip_classification/sun397.py +404 -0
- fusion_bench/tasks/clip_classification/svhn.py +5 -0
- fusion_bench/tasks/clip_classification/tiny_imagenet.py +208 -0
- fusion_bench/tasks/flan_t5_text_generation/__init__.py +0 -0
- fusion_bench/tasks/flan_t5_text_generation/datasets_preprocess.py +71 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_evaluation.py +132 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_load_dataset.py +64 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_preprocessors.py +379 -0
- fusion_bench/tasks/flan_t5_text_generation/glue_prompt_templates.py +52 -0
- fusion_bench/utils/__init__.py +14 -0
- fusion_bench/utils/auto.py +31 -0
- fusion_bench/utils/cache_utils.py +58 -0
- fusion_bench/utils/data.py +165 -0
- fusion_bench/utils/devices.py +231 -0
- fusion_bench/utils/dict.py +43 -0
- fusion_bench/utils/dtype.py +146 -0
- fusion_bench/utils/expr.py +90 -0
- fusion_bench/utils/fabric.py +17 -0
- fusion_bench/utils/functools.py +37 -0
- fusion_bench/utils/hydra_utils.py +28 -0
- fusion_bench/utils/instantiate.py +450 -0
- fusion_bench/utils/json.py +93 -0
- fusion_bench/utils/lazy_imports.py +74 -0
- fusion_bench/utils/misc.py +18 -0
- fusion_bench/utils/packages.py +84 -0
- fusion_bench/utils/parameters.py +323 -0
- fusion_bench/utils/path.py +22 -0
- fusion_bench/utils/plot/__init__.py +0 -0
- fusion_bench/utils/plot/color_data.py +1726 -0
- fusion_bench/utils/plot/token.py +52 -0
- fusion_bench/utils/plot/token_notebook.py +127 -0
- fusion_bench/utils/pylogger.py +55 -0
- fusion_bench/utils/rich_utils.py +201 -0
- fusion_bench/utils/set.py +8 -0
- fusion_bench/utils/state_dict_arithmetic.py +297 -0
- fusion_bench/utils/strenum/__init__.py +326 -0
- fusion_bench/utils/strenum/_name_mangler.py +127 -0
- fusion_bench/utils/strenum/_version.py +556 -0
- fusion_bench/utils/tensorboard.py +51 -0
- fusion_bench/utils/timer.py +49 -0
- fusion_bench/utils/type.py +34 -0
- fusion_bench-0.2.9.dist-info/LICENSE +21 -0
- fusion_bench-0.2.9.dist-info/METADATA +258 -0
- fusion_bench-0.2.9.dist-info/RECORD +727 -0
- fusion_bench-0.2.9.dist-info/WHEEL +5 -0
- fusion_bench-0.2.9.dist-info/entry_points.txt +3 -0
- fusion_bench-0.2.9.dist-info/top_level.txt +1 -0
- fusion_bench_config/README.md +12 -0
- fusion_bench_config/clip-vit-base-patch32_robustness_corrupted.yaml +23 -0
- fusion_bench_config/dataset/image_classification/README.md +6 -0
- fusion_bench_config/dataset/image_classification/test/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/test/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/test/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/emnist_letters.yaml +5 -0
- fusion_bench_config/dataset/image_classification/test/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/test/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/test/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/test/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/test/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/TALL14.yaml +20 -0
- fusion_bench_config/dataset/image_classification/train/TALL20.yaml +28 -0
- fusion_bench_config/dataset/image_classification/train/cifar10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cifar100.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/cub-200-2011.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/dtd.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_letters.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/emnist_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/eurosat.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fashion_mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/fer2013.yaml +3 -0
- fusion_bench_config/dataset/image_classification/train/food101.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/gtsrb.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/kmnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mango-leaf-disease.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/mnist.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford-iiit-pet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/oxford_flowers102.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/pcam.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/rendered-sst2.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/resisc45.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stanford-cars.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/stl10.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/sun397.yaml +4 -0
- fusion_bench_config/dataset/image_classification/train/svhn.yaml +6 -0
- fusion_bench_config/dataset/image_classification/train/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/image_classification/train/tiny-imagenet.yaml +4 -0
- fusion_bench_config/dataset/image_classification/val/dtd.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/eurosat.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/gtsrb.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/mnist.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/resisc45.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/stanford-cars.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/sun397.yaml +10 -0
- fusion_bench_config/dataset/image_classification/val/svhn.yaml +12 -0
- fusion_bench_config/dataset/image_classification/val/the_eight_tasks.yaml +9 -0
- fusion_bench_config/dataset/llm_sft/alpaca_cleaned.yaml +6 -0
- fusion_bench_config/dataset/llm_sft/ultrachat_200k.yaml +3 -0
- fusion_bench_config/dataset/question_answering/search_qa.yaml +6 -0
- fusion_bench_config/dataset/question_answering/test/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/train/MetaMathQA.yaml +4 -0
- fusion_bench_config/dataset/question_answering/train/search_qa.yaml +7 -0
- fusion_bench_config/dataset/question_answering/val/search_qa.yaml +7 -0
- fusion_bench_config/dataset/summarization/test/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/train/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/val/xsum.yaml +4 -0
- fusion_bench_config/dataset/summarization/xsum.yaml +3 -0
- fusion_bench_config/dataset/text_generation/test/gsm-hard.yaml +4 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/test/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/dataset/text_generation/train/CodeAlpaca-20k.yaml +4 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k.yaml +5 -0
- fusion_bench_config/dataset/text_generation/train/gsm8k_question_label.yaml +3 -0
- fusion_bench_config/fabric/auto.yaml +16 -0
- fusion_bench_config/fabric/llama_ddp.yaml +18 -0
- fusion_bench_config/fabric/llama_fsdp.yaml +16 -0
- fusion_bench_config/fabric/llama_peft_fsdp.yaml +16 -0
- fusion_bench_config/fabric/loggers/csv_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/tensorboard_logger.yaml +11 -0
- fusion_bench_config/fabric/loggers/wandb_logger.yaml +2 -0
- fusion_bench_config/fabric/strategy/deepspeed.yaml +10 -0
- fusion_bench_config/fabric/strategy/llama_fsdp.yaml +8 -0
- fusion_bench_config/fabric/strategy/llama_peft_fsdp.yaml +9 -0
- fusion_bench_config/fabric_model_fusion.yaml +20 -0
- fusion_bench_config/hydra/default.yaml +8 -0
- fusion_bench_config/hydra/help/fusion_bench_help.yaml +47 -0
- fusion_bench_config/hydra/job_logging/rich_logging.yaml +20 -0
- fusion_bench_config/llama_full_finetune.yaml +19 -0
- fusion_bench_config/llama_magnitude_pruning.yaml +16 -0
- fusion_bench_config/llama_model_fusion.yaml +17 -0
- fusion_bench_config/method/ada_svd/clip_vision.yaml +9 -0
- fusion_bench_config/method/adamerging/clip.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_flan_t5.yaml +23 -0
- fusion_bench_config/method/adamerging/layer_wise_gpt2.yaml +23 -0
- fusion_bench_config/method/adamerging/llama_sft.yaml +33 -0
- fusion_bench_config/method/adamerging.yaml +23 -0
- fusion_bench_config/method/analysis/task_vector_cos_similarity.yaml +6 -0
- fusion_bench_config/method/analysis/task_vector_violin_plot.yaml +6 -0
- fusion_bench_config/method/classification/clip_continual_finetune.yaml +28 -0
- fusion_bench_config/method/classification/clip_finetune.yaml +26 -0
- fusion_bench_config/method/clip_finetune.yaml +26 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_layer_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_arithmetic.yaml +25 -0
- fusion_bench_config/method/concrete_subspace/clip_concrete_task_wise_adamerging.yaml +27 -0
- fusion_bench_config/method/dare/simple_average.yaml +5 -0
- fusion_bench_config/method/dare/task_arithmetic.yaml +6 -0
- fusion_bench_config/method/dare/ties_merging.yaml +15 -0
- fusion_bench_config/method/dawe/dawe_for_clip.yaml +32 -0
- fusion_bench_config/method/depth_upscaling.yaml +5 -0
- fusion_bench_config/method/dummy.yaml +1 -0
- fusion_bench_config/method/ensemble/max_model_predictor.yaml +1 -0
- fusion_bench_config/method/ensemble/simple_ensemble.yaml +2 -0
- fusion_bench_config/method/ensemble/weighted_ensemble.yaml +6 -0
- fusion_bench_config/method/fisher_merging/clip_fisher_merging.yaml +13 -0
- fusion_bench_config/method/fisher_merging/fisher_merging.yaml +9 -0
- fusion_bench_config/method/fisher_merging/gpt2_fisher_merging.yaml +12 -0
- fusion_bench_config/method/linear/expo.yaml +8 -0
- fusion_bench_config/method/linear/linear_interpolation.yaml +3 -0
- fusion_bench_config/method/linear/llama_expo.yaml +19 -0
- fusion_bench_config/method/linear/llama_expo_with_dare.yaml +19 -0
- fusion_bench_config/method/linear/simple_average_for_llama.yaml +5 -0
- fusion_bench_config/method/linear/task_arithmetic_for_llama.yaml +4 -0
- fusion_bench_config/method/linear/weighted_average.yaml +6 -0
- fusion_bench_config/method/linear/weighted_average_for_llama.yaml +12 -0
- fusion_bench_config/method/lm_finetune/bradley_terry_rm.yaml +47 -0
- fusion_bench_config/method/lm_finetune/fullfinetune_sft.yaml +47 -0
- fusion_bench_config/method/lm_finetune/peftfinetune_sft.yaml +63 -0
- fusion_bench_config/method/mixtral_moe_merging.yaml +4 -0
- fusion_bench_config/method/mixtral_moe_upscaling.yaml +7 -0
- fusion_bench_config/method/model_recombination.yaml +4 -0
- fusion_bench_config/method/opcm/opcm.yaml +12 -0
- fusion_bench_config/method/opcm/task_arithmetic.yaml +12 -0
- fusion_bench_config/method/opcm/ties_merging.yaml +18 -0
- fusion_bench_config/method/opcm/weight_average.yaml +10 -0
- fusion_bench_config/method/pruning/llama_magnitude_pruning.yaml +14 -0
- fusion_bench_config/method/pruning/llama_random_pruning.yaml +9 -0
- fusion_bench_config/method/pruning/llama_wanda_pruning.yaml +16 -0
- fusion_bench_config/method/pruning/magnitude_diff_pruning.yaml +5 -0
- fusion_bench_config/method/pwe_moe_ls_for_clip.yaml +22 -0
- fusion_bench_config/method/rankone_moe/rankone_moe.yaml +26 -0
- fusion_bench_config/method/regmean/clip_regmean.yaml +11 -0
- fusion_bench_config/method/regmean/gpt2_regmean.yaml +12 -0
- fusion_bench_config/method/regmean/regmean.yaml +4 -0
- fusion_bench_config/method/simple_average.yaml +1 -0
- fusion_bench_config/method/slerp/slerp.yaml +6 -0
- fusion_bench_config/method/smile_upscaling/singular_projection_merging.yaml +8 -0
- fusion_bench_config/method/smile_upscaling/smile_mistral_upscaling.yaml +10 -0
- fusion_bench_config/method/smile_upscaling/smile_upscaling.yaml +14 -0
- fusion_bench_config/method/sparselo_pruning/llama_iterative_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_pcp_sparselo.yaml +20 -0
- fusion_bench_config/method/sparselo_pruning/llama_sparselo.yaml +19 -0
- fusion_bench_config/method/surgery/adamerging_surgery.yaml +27 -0
- fusion_bench_config/method/task_arithmetic.yaml +2 -0
- fusion_bench_config/method/task_singular_vector/TaskSingularVectorMerging.yaml +2 -0
- fusion_bench_config/method/ties_merging.yaml +8 -0
- fusion_bench_config/method/trust_region/clip_task_arithmetic.yaml +7 -0
- fusion_bench_config/method/wemoe/sparse_weight_ensembling_moe.yaml +39 -0
- fusion_bench_config/method/wemoe/weight_ensembling_moe.yaml +20 -0
- fusion_bench_config/model/clip-vit/README.md +38 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch16_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eight_tasks.yaml +11 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-base-patch32_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL14.yaml +22 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_TALL20.yaml +29 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_cifar100.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_dtd.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eight_tasks.yaml +10 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_emnist_letters.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_eurosat.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fashion_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_fer2013.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_food101.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_gtsrb.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_kmnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_mnist.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford-iiit-pet.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_oxford_flowers102.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_pcam.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_rendered-sst2.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_resisc45.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stanford-cars.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_stl10.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_sun397.yaml +1 -0
- fusion_bench_config/model/clip-vit/clip-vit-large-patch14_svhn.yaml +1 -0
- fusion_bench_config/model/clip-vit/download_TALL20_models.sh +6 -0
- fusion_bench_config/model/clip-vit/generate_vit_model_config.sh +23 -0
- fusion_bench_config/model/flan-t5/flan-t5-base.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-base_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large.yaml +3 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-cola_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-mrpc_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qnli_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-qqp_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-rte_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-sst2_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/flan-t5-large_glue-stsb_lora-16.yaml +4 -0
- fusion_bench_config/model/flan-t5/generate_flan-t5.sh +38 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/_template.yaml +12 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_lora.yaml +53 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual.yaml +19 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch16_individual_lora.yaml +14 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_control_task.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TA8_model_only.yaml +3 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL14_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_TALL20_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp1.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_generalization_exp2.yaml +24 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_individual.yaml +13 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_mtl.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_clean.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_robustness_corrupted.yaml +29 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned.yaml +5 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_single_task_projection.yaml +15 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_svhn_and_mnist.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-base-patch32_two_tasks_control_task.yaml +18 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8.yaml +8 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TA8_model_only.yaml +6 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL14_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20.yaml +11 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_TALL20_model_only.yaml +9 -0
- fusion_bench_config/modelpool/CLIPVisionModelPool/clip-vit-large-patch14_individual.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_alpaca_cleaned.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_codealpaca.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_for_causallm.yaml +20 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_metamathqa.yaml +19 -0
- fusion_bench_config/modelpool/CausalLMPool/llama_ultrachat.yaml +18 -0
- fusion_bench_config/modelpool/CausalLMPool/simle_mixtral_exp_v4.yaml +21 -0
- fusion_bench_config/modelpool/CausalLMPool/single_llama_model.yaml +17 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/_template.yaml +8 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue.yaml +13 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16.yaml +41 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_glue_lora16_tta.yaml +68 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-base_individual.yaml +7 -0
- fusion_bench_config/modelpool/Seq2SeqLMPool/flan-t5-large_glue_lora16.yaml +45 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/llama_preference700k.yaml +23 -0
- fusion_bench_config/modelpool/SeqenceClassificationModelPool/single_reward_model.yaml +14 -0
- fusion_bench_config/modelpool/automodelpool.yaml +12 -0
- fusion_bench_config/modelpool/gpt-2_glue.yaml +64 -0
- fusion_bench_config/modelpool/mixtral_moe_merging.yaml +14 -0
- fusion_bench_config/modelpool/mixtral_moe_upscaling.yaml +6 -0
- fusion_bench_config/modelpool/nyuv2_modelpool.yaml +26 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v1.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v2.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v3.yaml +9 -0
- fusion_bench_config/modelpool/smile_mistral_exp_v4.yaml +13 -0
- fusion_bench_config/nyuv2_config.yaml +17 -0
- fusion_bench_config/nyuv2_mtl_train.yaml +32 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/_template.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8.yaml +11 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_B16.yaml +31 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_L14.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_val.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TA8_with_control_task.yaml +12 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL14.yaml +19 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-classification_TALL20.yaml +26 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_cifar100.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_dtd.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_emnist_letters.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_eurosat.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fashion_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_fer2013.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_food101.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_gtsrb.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_kmnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_mnist.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford-iiit-pet.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_oxford_flowers102_val.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_pcam.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_rendered-sst2.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_resisc45.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stanford-cars.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_stl10.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_sun397.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip-vit-single-task_svhn.yaml +3 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_rankone_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/CLIPVisionModelTaskPool/clip_sparse_wemoe_clip-vit-classification_TA8.yaml +18 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_clean.yaml +24 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_robustness_corrupted.yaml +27 -0
- fusion_bench_config/taskpool/clip-vit-base-patch32_svhn_and_mnist.yaml +22 -0
- fusion_bench_config/taskpool/dummy.yaml +2 -0
- fusion_bench_config/taskpool/flan-t5_glue_text_generation.yaml +44 -0
- fusion_bench_config/taskpool/gpt-2_glue.yaml +39 -0
- fusion_bench_config/taskpool/nyuv2_taskpool.yaml +9 -0
- fusion_bench_config/taskpool/reward_model_evaluation.yaml +18 -0
|
@@ -0,0 +1,2103 @@
|
|
|
1
|
+
"""
|
|
2
|
+
A full dictionary of ImageNet classes and their corresponding ImageNet IDs can be found at https://image-net.org/data/words.txt and https://huggingface.co/datasets/zh-plus/tiny-imagenet/raw/main/classes.py
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
imagenet_ids = [
|
|
6
|
+
"n01440764",
|
|
7
|
+
"n01443537",
|
|
8
|
+
"n01484850",
|
|
9
|
+
"n01491361",
|
|
10
|
+
"n01494475",
|
|
11
|
+
"n01496331",
|
|
12
|
+
"n01498041",
|
|
13
|
+
"n01514668",
|
|
14
|
+
"n01514859",
|
|
15
|
+
"n01518878",
|
|
16
|
+
"n01530575",
|
|
17
|
+
"n01531178",
|
|
18
|
+
"n01532829",
|
|
19
|
+
"n01534433",
|
|
20
|
+
"n01537544",
|
|
21
|
+
"n01558993",
|
|
22
|
+
"n01560419",
|
|
23
|
+
"n01580077",
|
|
24
|
+
"n01582220",
|
|
25
|
+
"n01592084",
|
|
26
|
+
"n01601694",
|
|
27
|
+
"n01608432",
|
|
28
|
+
"n01614925",
|
|
29
|
+
"n01616318",
|
|
30
|
+
"n01622779",
|
|
31
|
+
"n01629819",
|
|
32
|
+
"n01630670",
|
|
33
|
+
"n01631663",
|
|
34
|
+
"n01632458",
|
|
35
|
+
"n01632777",
|
|
36
|
+
"n01641577",
|
|
37
|
+
"n01644373",
|
|
38
|
+
"n01644900",
|
|
39
|
+
"n01664065",
|
|
40
|
+
"n01665541",
|
|
41
|
+
"n01667114",
|
|
42
|
+
"n01667778",
|
|
43
|
+
"n01669191",
|
|
44
|
+
"n01675722",
|
|
45
|
+
"n01677366",
|
|
46
|
+
"n01682714",
|
|
47
|
+
"n01685808",
|
|
48
|
+
"n01687978",
|
|
49
|
+
"n01688243",
|
|
50
|
+
"n01689811",
|
|
51
|
+
"n01692333",
|
|
52
|
+
"n01693334",
|
|
53
|
+
"n01694178",
|
|
54
|
+
"n01695060",
|
|
55
|
+
"n01697457",
|
|
56
|
+
"n01698640",
|
|
57
|
+
"n01704323",
|
|
58
|
+
"n01728572",
|
|
59
|
+
"n01728920",
|
|
60
|
+
"n01729322",
|
|
61
|
+
"n01729977",
|
|
62
|
+
"n01734418",
|
|
63
|
+
"n01735189",
|
|
64
|
+
"n01737021",
|
|
65
|
+
"n01739381",
|
|
66
|
+
"n01740131",
|
|
67
|
+
"n01742172",
|
|
68
|
+
"n01744401",
|
|
69
|
+
"n01748264",
|
|
70
|
+
"n01749939",
|
|
71
|
+
"n01751748",
|
|
72
|
+
"n01753488",
|
|
73
|
+
"n01755581",
|
|
74
|
+
"n01756291",
|
|
75
|
+
"n01768244",
|
|
76
|
+
"n01770081",
|
|
77
|
+
"n01770393",
|
|
78
|
+
"n01773157",
|
|
79
|
+
"n01773549",
|
|
80
|
+
"n01773797",
|
|
81
|
+
"n01774384",
|
|
82
|
+
"n01774750",
|
|
83
|
+
"n01775062",
|
|
84
|
+
"n01776313",
|
|
85
|
+
"n01784675",
|
|
86
|
+
"n01795545",
|
|
87
|
+
"n01796340",
|
|
88
|
+
"n01797886",
|
|
89
|
+
"n01798484",
|
|
90
|
+
"n01806143",
|
|
91
|
+
"n01806567",
|
|
92
|
+
"n01807496",
|
|
93
|
+
"n01817953",
|
|
94
|
+
"n01818515",
|
|
95
|
+
"n01819313",
|
|
96
|
+
"n01820546",
|
|
97
|
+
"n01824575",
|
|
98
|
+
"n01828970",
|
|
99
|
+
"n01829413",
|
|
100
|
+
"n01833805",
|
|
101
|
+
"n01843065",
|
|
102
|
+
"n01843383",
|
|
103
|
+
"n01847000",
|
|
104
|
+
"n01855032",
|
|
105
|
+
"n01855672",
|
|
106
|
+
"n01860187",
|
|
107
|
+
"n01871265",
|
|
108
|
+
"n01872401",
|
|
109
|
+
"n01873310",
|
|
110
|
+
"n01877812",
|
|
111
|
+
"n01882714",
|
|
112
|
+
"n01883070",
|
|
113
|
+
"n01910747",
|
|
114
|
+
"n01914609",
|
|
115
|
+
"n01917289",
|
|
116
|
+
"n01924916",
|
|
117
|
+
"n01930112",
|
|
118
|
+
"n01943899",
|
|
119
|
+
"n01944390",
|
|
120
|
+
"n01945685",
|
|
121
|
+
"n01950731",
|
|
122
|
+
"n01955084",
|
|
123
|
+
"n01968897",
|
|
124
|
+
"n01978287",
|
|
125
|
+
"n01978455",
|
|
126
|
+
"n01980166",
|
|
127
|
+
"n01981276",
|
|
128
|
+
"n01983481",
|
|
129
|
+
"n01984695",
|
|
130
|
+
"n01985128",
|
|
131
|
+
"n01986214",
|
|
132
|
+
"n01990800",
|
|
133
|
+
"n02002556",
|
|
134
|
+
"n02002724",
|
|
135
|
+
"n02006656",
|
|
136
|
+
"n02007558",
|
|
137
|
+
"n02009229",
|
|
138
|
+
"n02009912",
|
|
139
|
+
"n02011460",
|
|
140
|
+
"n02012849",
|
|
141
|
+
"n02013706",
|
|
142
|
+
"n02017213",
|
|
143
|
+
"n02018207",
|
|
144
|
+
"n02018795",
|
|
145
|
+
"n02025239",
|
|
146
|
+
"n02027492",
|
|
147
|
+
"n02028035",
|
|
148
|
+
"n02033041",
|
|
149
|
+
"n02037110",
|
|
150
|
+
"n02051845",
|
|
151
|
+
"n02056570",
|
|
152
|
+
"n02058221",
|
|
153
|
+
"n02066245",
|
|
154
|
+
"n02071294",
|
|
155
|
+
"n02074367",
|
|
156
|
+
"n02077923",
|
|
157
|
+
"n02085620",
|
|
158
|
+
"n02085782",
|
|
159
|
+
"n02085936",
|
|
160
|
+
"n02086079",
|
|
161
|
+
"n02086240",
|
|
162
|
+
"n02086646",
|
|
163
|
+
"n02086910",
|
|
164
|
+
"n02087046",
|
|
165
|
+
"n02087394",
|
|
166
|
+
"n02088094",
|
|
167
|
+
"n02088238",
|
|
168
|
+
"n02088364",
|
|
169
|
+
"n02088466",
|
|
170
|
+
"n02088632",
|
|
171
|
+
"n02089078",
|
|
172
|
+
"n02089867",
|
|
173
|
+
"n02089973",
|
|
174
|
+
"n02090379",
|
|
175
|
+
"n02090622",
|
|
176
|
+
"n02090721",
|
|
177
|
+
"n02091032",
|
|
178
|
+
"n02091134",
|
|
179
|
+
"n02091244",
|
|
180
|
+
"n02091467",
|
|
181
|
+
"n02091635",
|
|
182
|
+
"n02091831",
|
|
183
|
+
"n02092002",
|
|
184
|
+
"n02092339",
|
|
185
|
+
"n02093256",
|
|
186
|
+
"n02093428",
|
|
187
|
+
"n02093647",
|
|
188
|
+
"n02093754",
|
|
189
|
+
"n02093859",
|
|
190
|
+
"n02093991",
|
|
191
|
+
"n02094114",
|
|
192
|
+
"n02094258",
|
|
193
|
+
"n02094433",
|
|
194
|
+
"n02095314",
|
|
195
|
+
"n02095570",
|
|
196
|
+
"n02095889",
|
|
197
|
+
"n02096051",
|
|
198
|
+
"n02096177",
|
|
199
|
+
"n02096294",
|
|
200
|
+
"n02096437",
|
|
201
|
+
"n02096585",
|
|
202
|
+
"n02097047",
|
|
203
|
+
"n02097130",
|
|
204
|
+
"n02097209",
|
|
205
|
+
"n02097298",
|
|
206
|
+
"n02097474",
|
|
207
|
+
"n02097658",
|
|
208
|
+
"n02098105",
|
|
209
|
+
"n02098286",
|
|
210
|
+
"n02098413",
|
|
211
|
+
"n02099267",
|
|
212
|
+
"n02099429",
|
|
213
|
+
"n02099601",
|
|
214
|
+
"n02099712",
|
|
215
|
+
"n02099849",
|
|
216
|
+
"n02100236",
|
|
217
|
+
"n02100583",
|
|
218
|
+
"n02100735",
|
|
219
|
+
"n02100877",
|
|
220
|
+
"n02101006",
|
|
221
|
+
"n02101388",
|
|
222
|
+
"n02101556",
|
|
223
|
+
"n02102040",
|
|
224
|
+
"n02102177",
|
|
225
|
+
"n02102318",
|
|
226
|
+
"n02102480",
|
|
227
|
+
"n02102973",
|
|
228
|
+
"n02104029",
|
|
229
|
+
"n02104365",
|
|
230
|
+
"n02105056",
|
|
231
|
+
"n02105162",
|
|
232
|
+
"n02105251",
|
|
233
|
+
"n02105412",
|
|
234
|
+
"n02105505",
|
|
235
|
+
"n02105641",
|
|
236
|
+
"n02105855",
|
|
237
|
+
"n02106030",
|
|
238
|
+
"n02106166",
|
|
239
|
+
"n02106382",
|
|
240
|
+
"n02106550",
|
|
241
|
+
"n02106662",
|
|
242
|
+
"n02107142",
|
|
243
|
+
"n02107312",
|
|
244
|
+
"n02107574",
|
|
245
|
+
"n02107683",
|
|
246
|
+
"n02107908",
|
|
247
|
+
"n02108000",
|
|
248
|
+
"n02108089",
|
|
249
|
+
"n02108422",
|
|
250
|
+
"n02108551",
|
|
251
|
+
"n02108915",
|
|
252
|
+
"n02109047",
|
|
253
|
+
"n02109525",
|
|
254
|
+
"n02109961",
|
|
255
|
+
"n02110063",
|
|
256
|
+
"n02110185",
|
|
257
|
+
"n02110341",
|
|
258
|
+
"n02110627",
|
|
259
|
+
"n02110806",
|
|
260
|
+
"n02110958",
|
|
261
|
+
"n02111129",
|
|
262
|
+
"n02111277",
|
|
263
|
+
"n02111500",
|
|
264
|
+
"n02111889",
|
|
265
|
+
"n02112018",
|
|
266
|
+
"n02112137",
|
|
267
|
+
"n02112350",
|
|
268
|
+
"n02112706",
|
|
269
|
+
"n02113023",
|
|
270
|
+
"n02113186",
|
|
271
|
+
"n02113624",
|
|
272
|
+
"n02113712",
|
|
273
|
+
"n02113799",
|
|
274
|
+
"n02113978",
|
|
275
|
+
"n02114367",
|
|
276
|
+
"n02114548",
|
|
277
|
+
"n02114712",
|
|
278
|
+
"n02114855",
|
|
279
|
+
"n02115641",
|
|
280
|
+
"n02115913",
|
|
281
|
+
"n02116738",
|
|
282
|
+
"n02117135",
|
|
283
|
+
"n02119022",
|
|
284
|
+
"n02119789",
|
|
285
|
+
"n02120079",
|
|
286
|
+
"n02120505",
|
|
287
|
+
"n02123045",
|
|
288
|
+
"n02123159",
|
|
289
|
+
"n02123394",
|
|
290
|
+
"n02123597",
|
|
291
|
+
"n02124075",
|
|
292
|
+
"n02125311",
|
|
293
|
+
"n02127052",
|
|
294
|
+
"n02128385",
|
|
295
|
+
"n02128757",
|
|
296
|
+
"n02128925",
|
|
297
|
+
"n02129165",
|
|
298
|
+
"n02129604",
|
|
299
|
+
"n02130308",
|
|
300
|
+
"n02132136",
|
|
301
|
+
"n02133161",
|
|
302
|
+
"n02134084",
|
|
303
|
+
"n02134418",
|
|
304
|
+
"n02137549",
|
|
305
|
+
"n02138441",
|
|
306
|
+
"n02165105",
|
|
307
|
+
"n02165456",
|
|
308
|
+
"n02167151",
|
|
309
|
+
"n02168699",
|
|
310
|
+
"n02169497",
|
|
311
|
+
"n02172182",
|
|
312
|
+
"n02174001",
|
|
313
|
+
"n02177972",
|
|
314
|
+
"n02190166",
|
|
315
|
+
"n02206856",
|
|
316
|
+
"n02219486",
|
|
317
|
+
"n02226429",
|
|
318
|
+
"n02229544",
|
|
319
|
+
"n02231487",
|
|
320
|
+
"n02233338",
|
|
321
|
+
"n02236044",
|
|
322
|
+
"n02256656",
|
|
323
|
+
"n02259212",
|
|
324
|
+
"n02264363",
|
|
325
|
+
"n02268443",
|
|
326
|
+
"n02268853",
|
|
327
|
+
"n02276258",
|
|
328
|
+
"n02277742",
|
|
329
|
+
"n02279972",
|
|
330
|
+
"n02280649",
|
|
331
|
+
"n02281406",
|
|
332
|
+
"n02281787",
|
|
333
|
+
"n02317335",
|
|
334
|
+
"n02319095",
|
|
335
|
+
"n02321529",
|
|
336
|
+
"n02325366",
|
|
337
|
+
"n02326432",
|
|
338
|
+
"n02328150",
|
|
339
|
+
"n02342885",
|
|
340
|
+
"n02346627",
|
|
341
|
+
"n02356798",
|
|
342
|
+
"n02361337",
|
|
343
|
+
"n02363005",
|
|
344
|
+
"n02364673",
|
|
345
|
+
"n02389026",
|
|
346
|
+
"n02391049",
|
|
347
|
+
"n02395406",
|
|
348
|
+
"n02396427",
|
|
349
|
+
"n02397096",
|
|
350
|
+
"n02398521",
|
|
351
|
+
"n02403003",
|
|
352
|
+
"n02408429",
|
|
353
|
+
"n02410509",
|
|
354
|
+
"n02412080",
|
|
355
|
+
"n02415577",
|
|
356
|
+
"n02417914",
|
|
357
|
+
"n02422106",
|
|
358
|
+
"n02422699",
|
|
359
|
+
"n02423022",
|
|
360
|
+
"n02437312",
|
|
361
|
+
"n02437616",
|
|
362
|
+
"n02441942",
|
|
363
|
+
"n02442845",
|
|
364
|
+
"n02443114",
|
|
365
|
+
"n02443484",
|
|
366
|
+
"n02444819",
|
|
367
|
+
"n02445715",
|
|
368
|
+
"n02447366",
|
|
369
|
+
"n02454379",
|
|
370
|
+
"n02457408",
|
|
371
|
+
"n02480495",
|
|
372
|
+
"n02480855",
|
|
373
|
+
"n02481823",
|
|
374
|
+
"n02483362",
|
|
375
|
+
"n02483708",
|
|
376
|
+
"n02484975",
|
|
377
|
+
"n02486261",
|
|
378
|
+
"n02486410",
|
|
379
|
+
"n02487347",
|
|
380
|
+
"n02488291",
|
|
381
|
+
"n02488702",
|
|
382
|
+
"n02489166",
|
|
383
|
+
"n02490219",
|
|
384
|
+
"n02492035",
|
|
385
|
+
"n02492660",
|
|
386
|
+
"n02493509",
|
|
387
|
+
"n02493793",
|
|
388
|
+
"n02494079",
|
|
389
|
+
"n02497673",
|
|
390
|
+
"n02500267",
|
|
391
|
+
"n02504013",
|
|
392
|
+
"n02504458",
|
|
393
|
+
"n02509815",
|
|
394
|
+
"n02510455",
|
|
395
|
+
"n02514041",
|
|
396
|
+
"n02526121",
|
|
397
|
+
"n02536864",
|
|
398
|
+
"n02606052",
|
|
399
|
+
"n02607072",
|
|
400
|
+
"n02640242",
|
|
401
|
+
"n02641379",
|
|
402
|
+
"n02643566",
|
|
403
|
+
"n02655020",
|
|
404
|
+
"n02666196",
|
|
405
|
+
"n02667093",
|
|
406
|
+
"n02669723",
|
|
407
|
+
"n02672831",
|
|
408
|
+
"n02676566",
|
|
409
|
+
"n02687172",
|
|
410
|
+
"n02690373",
|
|
411
|
+
"n02692877",
|
|
412
|
+
"n02699494",
|
|
413
|
+
"n02701002",
|
|
414
|
+
"n02704792",
|
|
415
|
+
"n02708093",
|
|
416
|
+
"n02727426",
|
|
417
|
+
"n02730930",
|
|
418
|
+
"n02747177",
|
|
419
|
+
"n02749479",
|
|
420
|
+
"n02769748",
|
|
421
|
+
"n02776631",
|
|
422
|
+
"n02777292",
|
|
423
|
+
"n02782093",
|
|
424
|
+
"n02783161",
|
|
425
|
+
"n02786058",
|
|
426
|
+
"n02787622",
|
|
427
|
+
"n02788148",
|
|
428
|
+
"n02790996",
|
|
429
|
+
"n02791124",
|
|
430
|
+
"n02791270",
|
|
431
|
+
"n02793495",
|
|
432
|
+
"n02794156",
|
|
433
|
+
"n02795169",
|
|
434
|
+
"n02797295",
|
|
435
|
+
"n02799071",
|
|
436
|
+
"n02802426",
|
|
437
|
+
"n02804414",
|
|
438
|
+
"n02804610",
|
|
439
|
+
"n02807133",
|
|
440
|
+
"n02808304",
|
|
441
|
+
"n02808440",
|
|
442
|
+
"n02814533",
|
|
443
|
+
"n02814860",
|
|
444
|
+
"n02815834",
|
|
445
|
+
"n02817516",
|
|
446
|
+
"n02823428",
|
|
447
|
+
"n02823750",
|
|
448
|
+
"n02825657",
|
|
449
|
+
"n02834397",
|
|
450
|
+
"n02835271",
|
|
451
|
+
"n02837789",
|
|
452
|
+
"n02840245",
|
|
453
|
+
"n02841315",
|
|
454
|
+
"n02843684",
|
|
455
|
+
"n02859443",
|
|
456
|
+
"n02860847",
|
|
457
|
+
"n02865351",
|
|
458
|
+
"n02869837",
|
|
459
|
+
"n02870880",
|
|
460
|
+
"n02871525",
|
|
461
|
+
"n02877765",
|
|
462
|
+
"n02879718",
|
|
463
|
+
"n02883205",
|
|
464
|
+
"n02892201",
|
|
465
|
+
"n02892767",
|
|
466
|
+
"n02894605",
|
|
467
|
+
"n02895154",
|
|
468
|
+
"n02906734",
|
|
469
|
+
"n02909870",
|
|
470
|
+
"n02910353",
|
|
471
|
+
"n02916936",
|
|
472
|
+
"n02917067",
|
|
473
|
+
"n02927161",
|
|
474
|
+
"n02930766",
|
|
475
|
+
"n02939185",
|
|
476
|
+
"n02948072",
|
|
477
|
+
"n02950826",
|
|
478
|
+
"n02951358",
|
|
479
|
+
"n02951585",
|
|
480
|
+
"n02963159",
|
|
481
|
+
"n02965783",
|
|
482
|
+
"n02966193",
|
|
483
|
+
"n02966687",
|
|
484
|
+
"n02971356",
|
|
485
|
+
"n02974003",
|
|
486
|
+
"n02977058",
|
|
487
|
+
"n02978881",
|
|
488
|
+
"n02979186",
|
|
489
|
+
"n02980441",
|
|
490
|
+
"n02981792",
|
|
491
|
+
"n02988304",
|
|
492
|
+
"n02992211",
|
|
493
|
+
"n02992529",
|
|
494
|
+
"n02999410",
|
|
495
|
+
"n03000134",
|
|
496
|
+
"n03000247",
|
|
497
|
+
"n03000684",
|
|
498
|
+
"n03014705",
|
|
499
|
+
"n03016953",
|
|
500
|
+
"n03017168",
|
|
501
|
+
"n03018349",
|
|
502
|
+
"n03026506",
|
|
503
|
+
"n03028079",
|
|
504
|
+
"n03032252",
|
|
505
|
+
"n03041632",
|
|
506
|
+
"n03042490",
|
|
507
|
+
"n03045698",
|
|
508
|
+
"n03047690",
|
|
509
|
+
"n03062245",
|
|
510
|
+
"n03063599",
|
|
511
|
+
"n03063689",
|
|
512
|
+
"n03065424",
|
|
513
|
+
"n03075370",
|
|
514
|
+
"n03085013",
|
|
515
|
+
"n03089624",
|
|
516
|
+
"n03095699",
|
|
517
|
+
"n03100240",
|
|
518
|
+
"n03109150",
|
|
519
|
+
"n03110669",
|
|
520
|
+
"n03124043",
|
|
521
|
+
"n03124170",
|
|
522
|
+
"n03125729",
|
|
523
|
+
"n03126707",
|
|
524
|
+
"n03127747",
|
|
525
|
+
"n03127925",
|
|
526
|
+
"n03131574",
|
|
527
|
+
"n03133878",
|
|
528
|
+
"n03134739",
|
|
529
|
+
"n03141823",
|
|
530
|
+
"n03146219",
|
|
531
|
+
"n03160309",
|
|
532
|
+
"n03179701",
|
|
533
|
+
"n03180011",
|
|
534
|
+
"n03187595",
|
|
535
|
+
"n03188531",
|
|
536
|
+
"n03196217",
|
|
537
|
+
"n03197337",
|
|
538
|
+
"n03201208",
|
|
539
|
+
"n03207743",
|
|
540
|
+
"n03207941",
|
|
541
|
+
"n03208938",
|
|
542
|
+
"n03216828",
|
|
543
|
+
"n03218198",
|
|
544
|
+
"n03220513",
|
|
545
|
+
"n03223299",
|
|
546
|
+
"n03240683",
|
|
547
|
+
"n03249569",
|
|
548
|
+
"n03250847",
|
|
549
|
+
"n03255030",
|
|
550
|
+
"n03259280",
|
|
551
|
+
"n03271574",
|
|
552
|
+
"n03272010",
|
|
553
|
+
"n03272562",
|
|
554
|
+
"n03290653",
|
|
555
|
+
"n03291819",
|
|
556
|
+
"n03297495",
|
|
557
|
+
"n03314780",
|
|
558
|
+
"n03325584",
|
|
559
|
+
"n03337140",
|
|
560
|
+
"n03344393",
|
|
561
|
+
"n03345487",
|
|
562
|
+
"n03347037",
|
|
563
|
+
"n03355925",
|
|
564
|
+
"n03372029",
|
|
565
|
+
"n03376595",
|
|
566
|
+
"n03379051",
|
|
567
|
+
"n03384352",
|
|
568
|
+
"n03388043",
|
|
569
|
+
"n03388183",
|
|
570
|
+
"n03388549",
|
|
571
|
+
"n03393912",
|
|
572
|
+
"n03394916",
|
|
573
|
+
"n03400231",
|
|
574
|
+
"n03404251",
|
|
575
|
+
"n03417042",
|
|
576
|
+
"n03424325",
|
|
577
|
+
"n03425413",
|
|
578
|
+
"n03443371",
|
|
579
|
+
"n03444034",
|
|
580
|
+
"n03445777",
|
|
581
|
+
"n03445924",
|
|
582
|
+
"n03447447",
|
|
583
|
+
"n03447721",
|
|
584
|
+
"n03450230",
|
|
585
|
+
"n03452741",
|
|
586
|
+
"n03457902",
|
|
587
|
+
"n03459775",
|
|
588
|
+
"n03461385",
|
|
589
|
+
"n03467068",
|
|
590
|
+
"n03476684",
|
|
591
|
+
"n03476991",
|
|
592
|
+
"n03478589",
|
|
593
|
+
"n03481172",
|
|
594
|
+
"n03482405",
|
|
595
|
+
"n03483316",
|
|
596
|
+
"n03485407",
|
|
597
|
+
"n03485794",
|
|
598
|
+
"n03492542",
|
|
599
|
+
"n03494278",
|
|
600
|
+
"n03495258",
|
|
601
|
+
"n03496892",
|
|
602
|
+
"n03498962",
|
|
603
|
+
"n03527444",
|
|
604
|
+
"n03529860",
|
|
605
|
+
"n03530642",
|
|
606
|
+
"n03532672",
|
|
607
|
+
"n03534580",
|
|
608
|
+
"n03535780",
|
|
609
|
+
"n03538406",
|
|
610
|
+
"n03544143",
|
|
611
|
+
"n03584254",
|
|
612
|
+
"n03584829",
|
|
613
|
+
"n03590841",
|
|
614
|
+
"n03594734",
|
|
615
|
+
"n03594945",
|
|
616
|
+
"n03595614",
|
|
617
|
+
"n03598930",
|
|
618
|
+
"n03599486",
|
|
619
|
+
"n03602883",
|
|
620
|
+
"n03617480",
|
|
621
|
+
"n03623198",
|
|
622
|
+
"n03627232",
|
|
623
|
+
"n03630383",
|
|
624
|
+
"n03633091",
|
|
625
|
+
"n03637318",
|
|
626
|
+
"n03642806",
|
|
627
|
+
"n03649909",
|
|
628
|
+
"n03657121",
|
|
629
|
+
"n03658185",
|
|
630
|
+
"n03661043",
|
|
631
|
+
"n03662601",
|
|
632
|
+
"n03666591",
|
|
633
|
+
"n03670208",
|
|
634
|
+
"n03673027",
|
|
635
|
+
"n03676483",
|
|
636
|
+
"n03680355",
|
|
637
|
+
"n03690938",
|
|
638
|
+
"n03691459",
|
|
639
|
+
"n03692522",
|
|
640
|
+
"n03697007",
|
|
641
|
+
"n03706229",
|
|
642
|
+
"n03709823",
|
|
643
|
+
"n03710193",
|
|
644
|
+
"n03710637",
|
|
645
|
+
"n03710721",
|
|
646
|
+
"n03717622",
|
|
647
|
+
"n03720891",
|
|
648
|
+
"n03721384",
|
|
649
|
+
"n03724870",
|
|
650
|
+
"n03729826",
|
|
651
|
+
"n03733131",
|
|
652
|
+
"n03733281",
|
|
653
|
+
"n03733805",
|
|
654
|
+
"n03742115",
|
|
655
|
+
"n03743016",
|
|
656
|
+
"n03759954",
|
|
657
|
+
"n03761084",
|
|
658
|
+
"n03763968",
|
|
659
|
+
"n03764736",
|
|
660
|
+
"n03769881",
|
|
661
|
+
"n03770439",
|
|
662
|
+
"n03770679",
|
|
663
|
+
"n03773504",
|
|
664
|
+
"n03775071",
|
|
665
|
+
"n03775546",
|
|
666
|
+
"n03776460",
|
|
667
|
+
"n03777568",
|
|
668
|
+
"n03777754",
|
|
669
|
+
"n03781244",
|
|
670
|
+
"n03782006",
|
|
671
|
+
"n03785016",
|
|
672
|
+
"n03786901",
|
|
673
|
+
"n03787032",
|
|
674
|
+
"n03788195",
|
|
675
|
+
"n03788365",
|
|
676
|
+
"n03791053",
|
|
677
|
+
"n03792782",
|
|
678
|
+
"n03792972",
|
|
679
|
+
"n03793489",
|
|
680
|
+
"n03794056",
|
|
681
|
+
"n03796401",
|
|
682
|
+
"n03803284",
|
|
683
|
+
"n03804744",
|
|
684
|
+
"n03814639",
|
|
685
|
+
"n03814906",
|
|
686
|
+
"n03825788",
|
|
687
|
+
"n03832673",
|
|
688
|
+
"n03837869",
|
|
689
|
+
"n03838899",
|
|
690
|
+
"n03840681",
|
|
691
|
+
"n03841143",
|
|
692
|
+
"n03843555",
|
|
693
|
+
"n03854065",
|
|
694
|
+
"n03857828",
|
|
695
|
+
"n03866082",
|
|
696
|
+
"n03868242",
|
|
697
|
+
"n03868863",
|
|
698
|
+
"n03871628",
|
|
699
|
+
"n03873416",
|
|
700
|
+
"n03874293",
|
|
701
|
+
"n03874599",
|
|
702
|
+
"n03876231",
|
|
703
|
+
"n03877472",
|
|
704
|
+
"n03877845",
|
|
705
|
+
"n03884397",
|
|
706
|
+
"n03887697",
|
|
707
|
+
"n03888257",
|
|
708
|
+
"n03888605",
|
|
709
|
+
"n03891251",
|
|
710
|
+
"n03891332",
|
|
711
|
+
"n03895866",
|
|
712
|
+
"n03899768",
|
|
713
|
+
"n03902125",
|
|
714
|
+
"n03903868",
|
|
715
|
+
"n03908618",
|
|
716
|
+
"n03908714",
|
|
717
|
+
"n03916031",
|
|
718
|
+
"n03920288",
|
|
719
|
+
"n03924679",
|
|
720
|
+
"n03929660",
|
|
721
|
+
"n03929855",
|
|
722
|
+
"n03930313",
|
|
723
|
+
"n03930630",
|
|
724
|
+
"n03933933",
|
|
725
|
+
"n03935335",
|
|
726
|
+
"n03937543",
|
|
727
|
+
"n03938244",
|
|
728
|
+
"n03942813",
|
|
729
|
+
"n03944341",
|
|
730
|
+
"n03947888",
|
|
731
|
+
"n03950228",
|
|
732
|
+
"n03954731",
|
|
733
|
+
"n03956157",
|
|
734
|
+
"n03958227",
|
|
735
|
+
"n03961711",
|
|
736
|
+
"n03967562",
|
|
737
|
+
"n03970156",
|
|
738
|
+
"n03976467",
|
|
739
|
+
"n03976657",
|
|
740
|
+
"n03977966",
|
|
741
|
+
"n03980874",
|
|
742
|
+
"n03982430",
|
|
743
|
+
"n03983396",
|
|
744
|
+
"n03991062",
|
|
745
|
+
"n03992509",
|
|
746
|
+
"n03995372",
|
|
747
|
+
"n03998194",
|
|
748
|
+
"n04004767",
|
|
749
|
+
"n04005630",
|
|
750
|
+
"n04008634",
|
|
751
|
+
"n04009552",
|
|
752
|
+
"n04019541",
|
|
753
|
+
"n04023962",
|
|
754
|
+
"n04026417",
|
|
755
|
+
"n04033901",
|
|
756
|
+
"n04033995",
|
|
757
|
+
"n04037443",
|
|
758
|
+
"n04039381",
|
|
759
|
+
"n04040759",
|
|
760
|
+
"n04041544",
|
|
761
|
+
"n04044716",
|
|
762
|
+
"n04049303",
|
|
763
|
+
"n04065272",
|
|
764
|
+
"n04067472",
|
|
765
|
+
"n04069434",
|
|
766
|
+
"n04070727",
|
|
767
|
+
"n04074963",
|
|
768
|
+
"n04081281",
|
|
769
|
+
"n04086273",
|
|
770
|
+
"n04090263",
|
|
771
|
+
"n04099969",
|
|
772
|
+
"n04111531",
|
|
773
|
+
"n04116512",
|
|
774
|
+
"n04118538",
|
|
775
|
+
"n04118776",
|
|
776
|
+
"n04120489",
|
|
777
|
+
"n04125021",
|
|
778
|
+
"n04127249",
|
|
779
|
+
"n04131690",
|
|
780
|
+
"n04133789",
|
|
781
|
+
"n04136333",
|
|
782
|
+
"n04141076",
|
|
783
|
+
"n04141327",
|
|
784
|
+
"n04141975",
|
|
785
|
+
"n04146614",
|
|
786
|
+
"n04147183",
|
|
787
|
+
"n04149813",
|
|
788
|
+
"n04152593",
|
|
789
|
+
"n04153751",
|
|
790
|
+
"n04154565",
|
|
791
|
+
"n04162706",
|
|
792
|
+
"n04179913",
|
|
793
|
+
"n04192698",
|
|
794
|
+
"n04200800",
|
|
795
|
+
"n04201297",
|
|
796
|
+
"n04204238",
|
|
797
|
+
"n04204347",
|
|
798
|
+
"n04208210",
|
|
799
|
+
"n04209133",
|
|
800
|
+
"n04209239",
|
|
801
|
+
"n04228054",
|
|
802
|
+
"n04229816",
|
|
803
|
+
"n04235860",
|
|
804
|
+
"n04238763",
|
|
805
|
+
"n04239074",
|
|
806
|
+
"n04243546",
|
|
807
|
+
"n04251144",
|
|
808
|
+
"n04252077",
|
|
809
|
+
"n04252225",
|
|
810
|
+
"n04254120",
|
|
811
|
+
"n04254680",
|
|
812
|
+
"n04254777",
|
|
813
|
+
"n04258138",
|
|
814
|
+
"n04259630",
|
|
815
|
+
"n04263257",
|
|
816
|
+
"n04264628",
|
|
817
|
+
"n04265275",
|
|
818
|
+
"n04266014",
|
|
819
|
+
"n04270147",
|
|
820
|
+
"n04273569",
|
|
821
|
+
"n04275548",
|
|
822
|
+
"n04277352",
|
|
823
|
+
"n04285008",
|
|
824
|
+
"n04286575",
|
|
825
|
+
"n04296562",
|
|
826
|
+
"n04310018",
|
|
827
|
+
"n04311004",
|
|
828
|
+
"n04311174",
|
|
829
|
+
"n04317175",
|
|
830
|
+
"n04325704",
|
|
831
|
+
"n04326547",
|
|
832
|
+
"n04328186",
|
|
833
|
+
"n04330267",
|
|
834
|
+
"n04332243",
|
|
835
|
+
"n04335435",
|
|
836
|
+
"n04336792",
|
|
837
|
+
"n04344873",
|
|
838
|
+
"n04346328",
|
|
839
|
+
"n04347754",
|
|
840
|
+
"n04350905",
|
|
841
|
+
"n04355338",
|
|
842
|
+
"n04355933",
|
|
843
|
+
"n04356056",
|
|
844
|
+
"n04357314",
|
|
845
|
+
"n04366367",
|
|
846
|
+
"n04367480",
|
|
847
|
+
"n04370456",
|
|
848
|
+
"n04371430",
|
|
849
|
+
"n04371774",
|
|
850
|
+
"n04372370",
|
|
851
|
+
"n04376876",
|
|
852
|
+
"n04380533",
|
|
853
|
+
"n04389033",
|
|
854
|
+
"n04392985",
|
|
855
|
+
"n04398044",
|
|
856
|
+
"n04399382",
|
|
857
|
+
"n04404412",
|
|
858
|
+
"n04409515",
|
|
859
|
+
"n04417672",
|
|
860
|
+
"n04418357",
|
|
861
|
+
"n04423845",
|
|
862
|
+
"n04428191",
|
|
863
|
+
"n04429376",
|
|
864
|
+
"n04435653",
|
|
865
|
+
"n04442312",
|
|
866
|
+
"n04443257",
|
|
867
|
+
"n04447861",
|
|
868
|
+
"n04456115",
|
|
869
|
+
"n04458633",
|
|
870
|
+
"n04461696",
|
|
871
|
+
"n04462240",
|
|
872
|
+
"n04465501",
|
|
873
|
+
"n04467665",
|
|
874
|
+
"n04476259",
|
|
875
|
+
"n04479046",
|
|
876
|
+
"n04482393",
|
|
877
|
+
"n04483307",
|
|
878
|
+
"n04485082",
|
|
879
|
+
"n04486054",
|
|
880
|
+
"n04487081",
|
|
881
|
+
"n04487394",
|
|
882
|
+
"n04493381",
|
|
883
|
+
"n04501370",
|
|
884
|
+
"n04505470",
|
|
885
|
+
"n04507155",
|
|
886
|
+
"n04509417",
|
|
887
|
+
"n04515003",
|
|
888
|
+
"n04517823",
|
|
889
|
+
"n04522168",
|
|
890
|
+
"n04523525",
|
|
891
|
+
"n04525038",
|
|
892
|
+
"n04525305",
|
|
893
|
+
"n04532106",
|
|
894
|
+
"n04532670",
|
|
895
|
+
"n04536866",
|
|
896
|
+
"n04540053",
|
|
897
|
+
"n04542943",
|
|
898
|
+
"n04548280",
|
|
899
|
+
"n04548362",
|
|
900
|
+
"n04550184",
|
|
901
|
+
"n04552348",
|
|
902
|
+
"n04553703",
|
|
903
|
+
"n04554684",
|
|
904
|
+
"n04557648",
|
|
905
|
+
"n04560804",
|
|
906
|
+
"n04562935",
|
|
907
|
+
"n04579145",
|
|
908
|
+
"n04579432",
|
|
909
|
+
"n04584207",
|
|
910
|
+
"n04589890",
|
|
911
|
+
"n04590129",
|
|
912
|
+
"n04591157",
|
|
913
|
+
"n04591713",
|
|
914
|
+
"n04592741",
|
|
915
|
+
"n04596742",
|
|
916
|
+
"n04597913",
|
|
917
|
+
"n04599235",
|
|
918
|
+
"n04604644",
|
|
919
|
+
"n04606251",
|
|
920
|
+
"n04612504",
|
|
921
|
+
"n04613696",
|
|
922
|
+
"n06359193",
|
|
923
|
+
"n06596364",
|
|
924
|
+
"n06785654",
|
|
925
|
+
"n06794110",
|
|
926
|
+
"n06874185",
|
|
927
|
+
"n07248320",
|
|
928
|
+
"n07565083",
|
|
929
|
+
"n07579787",
|
|
930
|
+
"n07583066",
|
|
931
|
+
"n07584110",
|
|
932
|
+
"n07590611",
|
|
933
|
+
"n07613480",
|
|
934
|
+
"n07614500",
|
|
935
|
+
"n07615774",
|
|
936
|
+
"n07684084",
|
|
937
|
+
"n07693725",
|
|
938
|
+
"n07695742",
|
|
939
|
+
"n07697313",
|
|
940
|
+
"n07697537",
|
|
941
|
+
"n07711569",
|
|
942
|
+
"n07714571",
|
|
943
|
+
"n07714990",
|
|
944
|
+
"n07715103",
|
|
945
|
+
"n07716358",
|
|
946
|
+
"n07716906",
|
|
947
|
+
"n07717410",
|
|
948
|
+
"n07717556",
|
|
949
|
+
"n07718472",
|
|
950
|
+
"n07718747",
|
|
951
|
+
"n07720875",
|
|
952
|
+
"n07730033",
|
|
953
|
+
"n07734744",
|
|
954
|
+
"n07742313",
|
|
955
|
+
"n07745940",
|
|
956
|
+
"n07747607",
|
|
957
|
+
"n07749582",
|
|
958
|
+
"n07753113",
|
|
959
|
+
"n07753275",
|
|
960
|
+
"n07753592",
|
|
961
|
+
"n07754684",
|
|
962
|
+
"n07760859",
|
|
963
|
+
"n07768694",
|
|
964
|
+
"n07802026",
|
|
965
|
+
"n07831146",
|
|
966
|
+
"n07836838",
|
|
967
|
+
"n07860988",
|
|
968
|
+
"n07871810",
|
|
969
|
+
"n07873807",
|
|
970
|
+
"n07875152",
|
|
971
|
+
"n07880968",
|
|
972
|
+
"n07892512",
|
|
973
|
+
"n07920052",
|
|
974
|
+
"n07930864",
|
|
975
|
+
"n07932039",
|
|
976
|
+
"n09193705",
|
|
977
|
+
"n09229709",
|
|
978
|
+
"n09246464",
|
|
979
|
+
"n09256479",
|
|
980
|
+
"n09288635",
|
|
981
|
+
"n09332890",
|
|
982
|
+
"n09399592",
|
|
983
|
+
"n09421951",
|
|
984
|
+
"n09428293",
|
|
985
|
+
"n09468604",
|
|
986
|
+
"n09472597",
|
|
987
|
+
"n09835506",
|
|
988
|
+
"n10148035",
|
|
989
|
+
"n10565667",
|
|
990
|
+
"n11879895",
|
|
991
|
+
"n11939491",
|
|
992
|
+
"n12057211",
|
|
993
|
+
"n12144580",
|
|
994
|
+
"n12267677",
|
|
995
|
+
"n12620546",
|
|
996
|
+
"n12768682",
|
|
997
|
+
"n12985857",
|
|
998
|
+
"n12998815",
|
|
999
|
+
"n13037406",
|
|
1000
|
+
"n13040303",
|
|
1001
|
+
"n13044778",
|
|
1002
|
+
"n13052670",
|
|
1003
|
+
"n13054560",
|
|
1004
|
+
"n13133613",
|
|
1005
|
+
"n15075141",
|
|
1006
|
+
]
|
|
1007
|
+
|
|
1008
|
+
classnames = [
|
|
1009
|
+
"tench",
|
|
1010
|
+
"goldfish",
|
|
1011
|
+
"great white shark",
|
|
1012
|
+
"tiger shark",
|
|
1013
|
+
"hammerhead shark",
|
|
1014
|
+
"electric ray",
|
|
1015
|
+
"stingray",
|
|
1016
|
+
"rooster",
|
|
1017
|
+
"hen",
|
|
1018
|
+
"ostrich",
|
|
1019
|
+
"brambling",
|
|
1020
|
+
"goldfinch",
|
|
1021
|
+
"house finch",
|
|
1022
|
+
"junco",
|
|
1023
|
+
"indigo bunting",
|
|
1024
|
+
"American robin",
|
|
1025
|
+
"bulbul",
|
|
1026
|
+
"jay",
|
|
1027
|
+
"magpie",
|
|
1028
|
+
"chickadee",
|
|
1029
|
+
"American dipper",
|
|
1030
|
+
"kite (bird of prey)",
|
|
1031
|
+
"bald eagle",
|
|
1032
|
+
"vulture",
|
|
1033
|
+
"great grey owl",
|
|
1034
|
+
"fire salamander",
|
|
1035
|
+
"smooth newt",
|
|
1036
|
+
"newt",
|
|
1037
|
+
"spotted salamander",
|
|
1038
|
+
"axolotl",
|
|
1039
|
+
"American bullfrog",
|
|
1040
|
+
"tree frog",
|
|
1041
|
+
"tailed frog",
|
|
1042
|
+
"loggerhead sea turtle",
|
|
1043
|
+
"leatherback sea turtle",
|
|
1044
|
+
"mud turtle",
|
|
1045
|
+
"terrapin",
|
|
1046
|
+
"box turtle",
|
|
1047
|
+
"banded gecko",
|
|
1048
|
+
"green iguana",
|
|
1049
|
+
"Carolina anole",
|
|
1050
|
+
"desert grassland whiptail lizard",
|
|
1051
|
+
"agama",
|
|
1052
|
+
"frilled-necked lizard",
|
|
1053
|
+
"alligator lizard",
|
|
1054
|
+
"Gila monster",
|
|
1055
|
+
"European green lizard",
|
|
1056
|
+
"chameleon",
|
|
1057
|
+
"Komodo dragon",
|
|
1058
|
+
"Nile crocodile",
|
|
1059
|
+
"American alligator",
|
|
1060
|
+
"triceratops",
|
|
1061
|
+
"worm snake",
|
|
1062
|
+
"ring-necked snake",
|
|
1063
|
+
"eastern hog-nosed snake",
|
|
1064
|
+
"smooth green snake",
|
|
1065
|
+
"kingsnake",
|
|
1066
|
+
"garter snake",
|
|
1067
|
+
"water snake",
|
|
1068
|
+
"vine snake",
|
|
1069
|
+
"night snake",
|
|
1070
|
+
"boa constrictor",
|
|
1071
|
+
"African rock python",
|
|
1072
|
+
"Indian cobra",
|
|
1073
|
+
"green mamba",
|
|
1074
|
+
"sea snake",
|
|
1075
|
+
"Saharan horned viper",
|
|
1076
|
+
"eastern diamondback rattlesnake",
|
|
1077
|
+
"sidewinder rattlesnake",
|
|
1078
|
+
"trilobite",
|
|
1079
|
+
"harvestman",
|
|
1080
|
+
"scorpion",
|
|
1081
|
+
"yellow garden spider",
|
|
1082
|
+
"barn spider",
|
|
1083
|
+
"European garden spider",
|
|
1084
|
+
"southern black widow",
|
|
1085
|
+
"tarantula",
|
|
1086
|
+
"wolf spider",
|
|
1087
|
+
"tick",
|
|
1088
|
+
"centipede",
|
|
1089
|
+
"black grouse",
|
|
1090
|
+
"ptarmigan",
|
|
1091
|
+
"ruffed grouse",
|
|
1092
|
+
"prairie grouse",
|
|
1093
|
+
"peafowl",
|
|
1094
|
+
"quail",
|
|
1095
|
+
"partridge",
|
|
1096
|
+
"african grey parrot",
|
|
1097
|
+
"macaw",
|
|
1098
|
+
"sulphur-crested cockatoo",
|
|
1099
|
+
"lorikeet",
|
|
1100
|
+
"coucal",
|
|
1101
|
+
"bee eater",
|
|
1102
|
+
"hornbill",
|
|
1103
|
+
"hummingbird",
|
|
1104
|
+
"jacamar",
|
|
1105
|
+
"toucan",
|
|
1106
|
+
"duck",
|
|
1107
|
+
"red-breasted merganser",
|
|
1108
|
+
"goose",
|
|
1109
|
+
"black swan",
|
|
1110
|
+
"tusker",
|
|
1111
|
+
"echidna",
|
|
1112
|
+
"platypus",
|
|
1113
|
+
"wallaby",
|
|
1114
|
+
"koala",
|
|
1115
|
+
"wombat",
|
|
1116
|
+
"jellyfish",
|
|
1117
|
+
"sea anemone",
|
|
1118
|
+
"brain coral",
|
|
1119
|
+
"flatworm",
|
|
1120
|
+
"nematode",
|
|
1121
|
+
"conch",
|
|
1122
|
+
"snail",
|
|
1123
|
+
"slug",
|
|
1124
|
+
"sea slug",
|
|
1125
|
+
"chiton",
|
|
1126
|
+
"chambered nautilus",
|
|
1127
|
+
"Dungeness crab",
|
|
1128
|
+
"rock crab",
|
|
1129
|
+
"fiddler crab",
|
|
1130
|
+
"red king crab",
|
|
1131
|
+
"American lobster",
|
|
1132
|
+
"spiny lobster",
|
|
1133
|
+
"crayfish",
|
|
1134
|
+
"hermit crab",
|
|
1135
|
+
"isopod",
|
|
1136
|
+
"white stork",
|
|
1137
|
+
"black stork",
|
|
1138
|
+
"spoonbill",
|
|
1139
|
+
"flamingo",
|
|
1140
|
+
"little blue heron",
|
|
1141
|
+
"great egret",
|
|
1142
|
+
"bittern bird",
|
|
1143
|
+
"crane bird",
|
|
1144
|
+
"limpkin",
|
|
1145
|
+
"common gallinule",
|
|
1146
|
+
"American coot",
|
|
1147
|
+
"bustard",
|
|
1148
|
+
"ruddy turnstone",
|
|
1149
|
+
"dunlin",
|
|
1150
|
+
"common redshank",
|
|
1151
|
+
"dowitcher",
|
|
1152
|
+
"oystercatcher",
|
|
1153
|
+
"pelican",
|
|
1154
|
+
"king penguin",
|
|
1155
|
+
"albatross",
|
|
1156
|
+
"grey whale",
|
|
1157
|
+
"killer whale",
|
|
1158
|
+
"dugong",
|
|
1159
|
+
"sea lion",
|
|
1160
|
+
"Chihuahua",
|
|
1161
|
+
"Japanese Chin",
|
|
1162
|
+
"Maltese",
|
|
1163
|
+
"Pekingese",
|
|
1164
|
+
"Shih Tzu",
|
|
1165
|
+
"King Charles Spaniel",
|
|
1166
|
+
"Papillon",
|
|
1167
|
+
"toy terrier",
|
|
1168
|
+
"Rhodesian Ridgeback",
|
|
1169
|
+
"Afghan Hound",
|
|
1170
|
+
"Basset Hound",
|
|
1171
|
+
"Beagle",
|
|
1172
|
+
"Bloodhound",
|
|
1173
|
+
"Bluetick Coonhound",
|
|
1174
|
+
"Black and Tan Coonhound",
|
|
1175
|
+
"Treeing Walker Coonhound",
|
|
1176
|
+
"English foxhound",
|
|
1177
|
+
"Redbone Coonhound",
|
|
1178
|
+
"borzoi",
|
|
1179
|
+
"Irish Wolfhound",
|
|
1180
|
+
"Italian Greyhound",
|
|
1181
|
+
"Whippet",
|
|
1182
|
+
"Ibizan Hound",
|
|
1183
|
+
"Norwegian Elkhound",
|
|
1184
|
+
"Otterhound",
|
|
1185
|
+
"Saluki",
|
|
1186
|
+
"Scottish Deerhound",
|
|
1187
|
+
"Weimaraner",
|
|
1188
|
+
"Staffordshire Bull Terrier",
|
|
1189
|
+
"American Staffordshire Terrier",
|
|
1190
|
+
"Bedlington Terrier",
|
|
1191
|
+
"Border Terrier",
|
|
1192
|
+
"Kerry Blue Terrier",
|
|
1193
|
+
"Irish Terrier",
|
|
1194
|
+
"Norfolk Terrier",
|
|
1195
|
+
"Norwich Terrier",
|
|
1196
|
+
"Yorkshire Terrier",
|
|
1197
|
+
"Wire Fox Terrier",
|
|
1198
|
+
"Lakeland Terrier",
|
|
1199
|
+
"Sealyham Terrier",
|
|
1200
|
+
"Airedale Terrier",
|
|
1201
|
+
"Cairn Terrier",
|
|
1202
|
+
"Australian Terrier",
|
|
1203
|
+
"Dandie Dinmont Terrier",
|
|
1204
|
+
"Boston Terrier",
|
|
1205
|
+
"Miniature Schnauzer",
|
|
1206
|
+
"Giant Schnauzer",
|
|
1207
|
+
"Standard Schnauzer",
|
|
1208
|
+
"Scottish Terrier",
|
|
1209
|
+
"Tibetan Terrier",
|
|
1210
|
+
"Australian Silky Terrier",
|
|
1211
|
+
"Soft-coated Wheaten Terrier",
|
|
1212
|
+
"West Highland White Terrier",
|
|
1213
|
+
"Lhasa Apso",
|
|
1214
|
+
"Flat-Coated Retriever",
|
|
1215
|
+
"Curly-coated Retriever",
|
|
1216
|
+
"Golden Retriever",
|
|
1217
|
+
"Labrador Retriever",
|
|
1218
|
+
"Chesapeake Bay Retriever",
|
|
1219
|
+
"German Shorthaired Pointer",
|
|
1220
|
+
"Vizsla",
|
|
1221
|
+
"English Setter",
|
|
1222
|
+
"Irish Setter",
|
|
1223
|
+
"Gordon Setter",
|
|
1224
|
+
"Brittany dog",
|
|
1225
|
+
"Clumber Spaniel",
|
|
1226
|
+
"English Springer Spaniel",
|
|
1227
|
+
"Welsh Springer Spaniel",
|
|
1228
|
+
"Cocker Spaniel",
|
|
1229
|
+
"Sussex Spaniel",
|
|
1230
|
+
"Irish Water Spaniel",
|
|
1231
|
+
"Kuvasz",
|
|
1232
|
+
"Schipperke",
|
|
1233
|
+
"Groenendael dog",
|
|
1234
|
+
"Malinois",
|
|
1235
|
+
"Briard",
|
|
1236
|
+
"Australian Kelpie",
|
|
1237
|
+
"Komondor",
|
|
1238
|
+
"Old English Sheepdog",
|
|
1239
|
+
"Shetland Sheepdog",
|
|
1240
|
+
"collie",
|
|
1241
|
+
"Border Collie",
|
|
1242
|
+
"Bouvier des Flandres dog",
|
|
1243
|
+
"Rottweiler",
|
|
1244
|
+
"German Shepherd Dog",
|
|
1245
|
+
"Dobermann",
|
|
1246
|
+
"Miniature Pinscher",
|
|
1247
|
+
"Greater Swiss Mountain Dog",
|
|
1248
|
+
"Bernese Mountain Dog",
|
|
1249
|
+
"Appenzeller Sennenhund",
|
|
1250
|
+
"Entlebucher Sennenhund",
|
|
1251
|
+
"Boxer",
|
|
1252
|
+
"Bullmastiff",
|
|
1253
|
+
"Tibetan Mastiff",
|
|
1254
|
+
"French Bulldog",
|
|
1255
|
+
"Great Dane",
|
|
1256
|
+
"St. Bernard",
|
|
1257
|
+
"husky",
|
|
1258
|
+
"Alaskan Malamute",
|
|
1259
|
+
"Siberian Husky",
|
|
1260
|
+
"Dalmatian",
|
|
1261
|
+
"Affenpinscher",
|
|
1262
|
+
"Basenji",
|
|
1263
|
+
"pug",
|
|
1264
|
+
"Leonberger",
|
|
1265
|
+
"Newfoundland dog",
|
|
1266
|
+
"Great Pyrenees dog",
|
|
1267
|
+
"Samoyed",
|
|
1268
|
+
"Pomeranian",
|
|
1269
|
+
"Chow Chow",
|
|
1270
|
+
"Keeshond",
|
|
1271
|
+
"brussels griffon",
|
|
1272
|
+
"Pembroke Welsh Corgi",
|
|
1273
|
+
"Cardigan Welsh Corgi",
|
|
1274
|
+
"Toy Poodle",
|
|
1275
|
+
"Miniature Poodle",
|
|
1276
|
+
"Standard Poodle",
|
|
1277
|
+
"Mexican hairless dog (xoloitzcuintli)",
|
|
1278
|
+
"grey wolf",
|
|
1279
|
+
"Alaskan tundra wolf",
|
|
1280
|
+
"red wolf or maned wolf",
|
|
1281
|
+
"coyote",
|
|
1282
|
+
"dingo",
|
|
1283
|
+
"dhole",
|
|
1284
|
+
"African wild dog",
|
|
1285
|
+
"hyena",
|
|
1286
|
+
"red fox",
|
|
1287
|
+
"kit fox",
|
|
1288
|
+
"Arctic fox",
|
|
1289
|
+
"grey fox",
|
|
1290
|
+
"tabby cat",
|
|
1291
|
+
"tiger cat",
|
|
1292
|
+
"Persian cat",
|
|
1293
|
+
"Siamese cat",
|
|
1294
|
+
"Egyptian Mau",
|
|
1295
|
+
"cougar",
|
|
1296
|
+
"lynx",
|
|
1297
|
+
"leopard",
|
|
1298
|
+
"snow leopard",
|
|
1299
|
+
"jaguar",
|
|
1300
|
+
"lion",
|
|
1301
|
+
"tiger",
|
|
1302
|
+
"cheetah",
|
|
1303
|
+
"brown bear",
|
|
1304
|
+
"American black bear",
|
|
1305
|
+
"polar bear",
|
|
1306
|
+
"sloth bear",
|
|
1307
|
+
"mongoose",
|
|
1308
|
+
"meerkat",
|
|
1309
|
+
"tiger beetle",
|
|
1310
|
+
"ladybug",
|
|
1311
|
+
"ground beetle",
|
|
1312
|
+
"longhorn beetle",
|
|
1313
|
+
"leaf beetle",
|
|
1314
|
+
"dung beetle",
|
|
1315
|
+
"rhinoceros beetle",
|
|
1316
|
+
"weevil",
|
|
1317
|
+
"fly",
|
|
1318
|
+
"bee",
|
|
1319
|
+
"ant",
|
|
1320
|
+
"grasshopper",
|
|
1321
|
+
"cricket insect",
|
|
1322
|
+
"stick insect",
|
|
1323
|
+
"cockroach",
|
|
1324
|
+
"praying mantis",
|
|
1325
|
+
"cicada",
|
|
1326
|
+
"leafhopper",
|
|
1327
|
+
"lacewing",
|
|
1328
|
+
"dragonfly",
|
|
1329
|
+
"damselfly",
|
|
1330
|
+
"red admiral butterfly",
|
|
1331
|
+
"ringlet butterfly",
|
|
1332
|
+
"monarch butterfly",
|
|
1333
|
+
"small white butterfly",
|
|
1334
|
+
"sulphur butterfly",
|
|
1335
|
+
"gossamer-winged butterfly",
|
|
1336
|
+
"starfish",
|
|
1337
|
+
"sea urchin",
|
|
1338
|
+
"sea cucumber",
|
|
1339
|
+
"cottontail rabbit",
|
|
1340
|
+
"hare",
|
|
1341
|
+
"Angora rabbit",
|
|
1342
|
+
"hamster",
|
|
1343
|
+
"porcupine",
|
|
1344
|
+
"fox squirrel",
|
|
1345
|
+
"marmot",
|
|
1346
|
+
"beaver",
|
|
1347
|
+
"guinea pig",
|
|
1348
|
+
"common sorrel horse",
|
|
1349
|
+
"zebra",
|
|
1350
|
+
"pig",
|
|
1351
|
+
"wild boar",
|
|
1352
|
+
"warthog",
|
|
1353
|
+
"hippopotamus",
|
|
1354
|
+
"ox",
|
|
1355
|
+
"water buffalo",
|
|
1356
|
+
"bison",
|
|
1357
|
+
"ram (adult male sheep)",
|
|
1358
|
+
"bighorn sheep",
|
|
1359
|
+
"Alpine ibex",
|
|
1360
|
+
"hartebeest",
|
|
1361
|
+
"impala (antelope)",
|
|
1362
|
+
"gazelle",
|
|
1363
|
+
"arabian camel",
|
|
1364
|
+
"llama",
|
|
1365
|
+
"weasel",
|
|
1366
|
+
"mink",
|
|
1367
|
+
"European polecat",
|
|
1368
|
+
"black-footed ferret",
|
|
1369
|
+
"otter",
|
|
1370
|
+
"skunk",
|
|
1371
|
+
"badger",
|
|
1372
|
+
"armadillo",
|
|
1373
|
+
"three-toed sloth",
|
|
1374
|
+
"orangutan",
|
|
1375
|
+
"gorilla",
|
|
1376
|
+
"chimpanzee",
|
|
1377
|
+
"gibbon",
|
|
1378
|
+
"siamang",
|
|
1379
|
+
"guenon",
|
|
1380
|
+
"patas monkey",
|
|
1381
|
+
"baboon",
|
|
1382
|
+
"macaque",
|
|
1383
|
+
"langur",
|
|
1384
|
+
"black-and-white colobus",
|
|
1385
|
+
"proboscis monkey",
|
|
1386
|
+
"marmoset",
|
|
1387
|
+
"white-headed capuchin",
|
|
1388
|
+
"howler monkey",
|
|
1389
|
+
"titi monkey",
|
|
1390
|
+
"Geoffroy's spider monkey",
|
|
1391
|
+
"common squirrel monkey",
|
|
1392
|
+
"ring-tailed lemur",
|
|
1393
|
+
"indri",
|
|
1394
|
+
"Asian elephant",
|
|
1395
|
+
"African bush elephant",
|
|
1396
|
+
"red panda",
|
|
1397
|
+
"giant panda",
|
|
1398
|
+
"snoek fish",
|
|
1399
|
+
"eel",
|
|
1400
|
+
"silver salmon",
|
|
1401
|
+
"rock beauty fish",
|
|
1402
|
+
"clownfish",
|
|
1403
|
+
"sturgeon",
|
|
1404
|
+
"gar fish",
|
|
1405
|
+
"lionfish",
|
|
1406
|
+
"pufferfish",
|
|
1407
|
+
"abacus",
|
|
1408
|
+
"abaya",
|
|
1409
|
+
"academic gown",
|
|
1410
|
+
"accordion",
|
|
1411
|
+
"acoustic guitar",
|
|
1412
|
+
"aircraft carrier",
|
|
1413
|
+
"airliner",
|
|
1414
|
+
"airship",
|
|
1415
|
+
"altar",
|
|
1416
|
+
"ambulance",
|
|
1417
|
+
"amphibious vehicle",
|
|
1418
|
+
"analog clock",
|
|
1419
|
+
"apiary",
|
|
1420
|
+
"apron",
|
|
1421
|
+
"trash can",
|
|
1422
|
+
"assault rifle",
|
|
1423
|
+
"backpack",
|
|
1424
|
+
"bakery",
|
|
1425
|
+
"balance beam",
|
|
1426
|
+
"balloon",
|
|
1427
|
+
"ballpoint pen",
|
|
1428
|
+
"Band-Aid",
|
|
1429
|
+
"banjo",
|
|
1430
|
+
"baluster / handrail",
|
|
1431
|
+
"barbell",
|
|
1432
|
+
"barber chair",
|
|
1433
|
+
"barbershop",
|
|
1434
|
+
"barn",
|
|
1435
|
+
"barometer",
|
|
1436
|
+
"barrel",
|
|
1437
|
+
"wheelbarrow",
|
|
1438
|
+
"baseball",
|
|
1439
|
+
"basketball",
|
|
1440
|
+
"bassinet",
|
|
1441
|
+
"bassoon",
|
|
1442
|
+
"swimming cap",
|
|
1443
|
+
"bath towel",
|
|
1444
|
+
"bathtub",
|
|
1445
|
+
"station wagon",
|
|
1446
|
+
"lighthouse",
|
|
1447
|
+
"beaker",
|
|
1448
|
+
"military hat (bearskin or shako)",
|
|
1449
|
+
"beer bottle",
|
|
1450
|
+
"beer glass",
|
|
1451
|
+
"bell tower",
|
|
1452
|
+
"baby bib",
|
|
1453
|
+
"tandem bicycle",
|
|
1454
|
+
"bikini",
|
|
1455
|
+
"ring binder",
|
|
1456
|
+
"binoculars",
|
|
1457
|
+
"birdhouse",
|
|
1458
|
+
"boathouse",
|
|
1459
|
+
"bobsleigh",
|
|
1460
|
+
"bolo tie",
|
|
1461
|
+
"poke bonnet",
|
|
1462
|
+
"bookcase",
|
|
1463
|
+
"bookstore",
|
|
1464
|
+
"bottle cap",
|
|
1465
|
+
"hunting bow",
|
|
1466
|
+
"bow tie",
|
|
1467
|
+
"brass memorial plaque",
|
|
1468
|
+
"bra",
|
|
1469
|
+
"breakwater",
|
|
1470
|
+
"breastplate",
|
|
1471
|
+
"broom",
|
|
1472
|
+
"bucket",
|
|
1473
|
+
"buckle",
|
|
1474
|
+
"bulletproof vest",
|
|
1475
|
+
"high-speed train",
|
|
1476
|
+
"butcher shop",
|
|
1477
|
+
"taxicab",
|
|
1478
|
+
"cauldron",
|
|
1479
|
+
"candle",
|
|
1480
|
+
"cannon",
|
|
1481
|
+
"canoe",
|
|
1482
|
+
"can opener",
|
|
1483
|
+
"cardigan",
|
|
1484
|
+
"car mirror",
|
|
1485
|
+
"carousel",
|
|
1486
|
+
"tool kit",
|
|
1487
|
+
"cardboard box / carton",
|
|
1488
|
+
"car wheel",
|
|
1489
|
+
"automated teller machine",
|
|
1490
|
+
"cassette",
|
|
1491
|
+
"cassette player",
|
|
1492
|
+
"castle",
|
|
1493
|
+
"catamaran",
|
|
1494
|
+
"CD player",
|
|
1495
|
+
"cello",
|
|
1496
|
+
"mobile phone",
|
|
1497
|
+
"chain",
|
|
1498
|
+
"chain-link fence",
|
|
1499
|
+
"chain mail",
|
|
1500
|
+
"chainsaw",
|
|
1501
|
+
"storage chest",
|
|
1502
|
+
"chiffonier",
|
|
1503
|
+
"bell or wind chime",
|
|
1504
|
+
"china cabinet",
|
|
1505
|
+
"Christmas stocking",
|
|
1506
|
+
"church",
|
|
1507
|
+
"movie theater",
|
|
1508
|
+
"cleaver",
|
|
1509
|
+
"cliff dwelling",
|
|
1510
|
+
"cloak",
|
|
1511
|
+
"clogs",
|
|
1512
|
+
"cocktail shaker",
|
|
1513
|
+
"coffee mug",
|
|
1514
|
+
"coffeemaker",
|
|
1515
|
+
"spiral or coil",
|
|
1516
|
+
"combination lock",
|
|
1517
|
+
"computer keyboard",
|
|
1518
|
+
"candy store",
|
|
1519
|
+
"container ship",
|
|
1520
|
+
"convertible",
|
|
1521
|
+
"corkscrew",
|
|
1522
|
+
"cornet",
|
|
1523
|
+
"cowboy boot",
|
|
1524
|
+
"cowboy hat",
|
|
1525
|
+
"cradle",
|
|
1526
|
+
"construction crane",
|
|
1527
|
+
"crash helmet",
|
|
1528
|
+
"crate",
|
|
1529
|
+
"infant bed",
|
|
1530
|
+
"Crock Pot",
|
|
1531
|
+
"croquet ball",
|
|
1532
|
+
"crutch",
|
|
1533
|
+
"cuirass",
|
|
1534
|
+
"dam",
|
|
1535
|
+
"desk",
|
|
1536
|
+
"desktop computer",
|
|
1537
|
+
"rotary dial telephone",
|
|
1538
|
+
"diaper",
|
|
1539
|
+
"digital clock",
|
|
1540
|
+
"digital watch",
|
|
1541
|
+
"dining table",
|
|
1542
|
+
"dishcloth",
|
|
1543
|
+
"dishwasher",
|
|
1544
|
+
"disc brake",
|
|
1545
|
+
"dock",
|
|
1546
|
+
"dog sled",
|
|
1547
|
+
"dome",
|
|
1548
|
+
"doormat",
|
|
1549
|
+
"drilling rig",
|
|
1550
|
+
"drum",
|
|
1551
|
+
"drumstick",
|
|
1552
|
+
"dumbbell",
|
|
1553
|
+
"Dutch oven",
|
|
1554
|
+
"electric fan",
|
|
1555
|
+
"electric guitar",
|
|
1556
|
+
"electric locomotive",
|
|
1557
|
+
"entertainment center",
|
|
1558
|
+
"envelope",
|
|
1559
|
+
"espresso machine",
|
|
1560
|
+
"face powder",
|
|
1561
|
+
"feather boa",
|
|
1562
|
+
"filing cabinet",
|
|
1563
|
+
"fireboat",
|
|
1564
|
+
"fire truck",
|
|
1565
|
+
"fire screen",
|
|
1566
|
+
"flagpole",
|
|
1567
|
+
"flute",
|
|
1568
|
+
"folding chair",
|
|
1569
|
+
"football helmet",
|
|
1570
|
+
"forklift",
|
|
1571
|
+
"fountain",
|
|
1572
|
+
"fountain pen",
|
|
1573
|
+
"four-poster bed",
|
|
1574
|
+
"freight car",
|
|
1575
|
+
"French horn",
|
|
1576
|
+
"frying pan",
|
|
1577
|
+
"fur coat",
|
|
1578
|
+
"garbage truck",
|
|
1579
|
+
"gas mask or respirator",
|
|
1580
|
+
"gas pump",
|
|
1581
|
+
"goblet",
|
|
1582
|
+
"go-kart",
|
|
1583
|
+
"golf ball",
|
|
1584
|
+
"golf cart",
|
|
1585
|
+
"gondola",
|
|
1586
|
+
"gong",
|
|
1587
|
+
"gown",
|
|
1588
|
+
"grand piano",
|
|
1589
|
+
"greenhouse",
|
|
1590
|
+
"radiator grille",
|
|
1591
|
+
"grocery store",
|
|
1592
|
+
"guillotine",
|
|
1593
|
+
"hair clip",
|
|
1594
|
+
"hair spray",
|
|
1595
|
+
"half-track",
|
|
1596
|
+
"hammer",
|
|
1597
|
+
"hamper",
|
|
1598
|
+
"hair dryer",
|
|
1599
|
+
"hand-held computer",
|
|
1600
|
+
"handkerchief",
|
|
1601
|
+
"hard disk drive",
|
|
1602
|
+
"harmonica",
|
|
1603
|
+
"harp",
|
|
1604
|
+
"combine harvester",
|
|
1605
|
+
"hatchet",
|
|
1606
|
+
"holster",
|
|
1607
|
+
"home theater",
|
|
1608
|
+
"honeycomb",
|
|
1609
|
+
"hook",
|
|
1610
|
+
"hoop skirt",
|
|
1611
|
+
"gymnastic horizontal bar",
|
|
1612
|
+
"horse-drawn vehicle",
|
|
1613
|
+
"hourglass",
|
|
1614
|
+
"iPod",
|
|
1615
|
+
"clothes iron",
|
|
1616
|
+
"carved pumpkin",
|
|
1617
|
+
"jeans",
|
|
1618
|
+
"jeep",
|
|
1619
|
+
"T-shirt",
|
|
1620
|
+
"jigsaw puzzle",
|
|
1621
|
+
"rickshaw",
|
|
1622
|
+
"joystick",
|
|
1623
|
+
"kimono",
|
|
1624
|
+
"knee pad",
|
|
1625
|
+
"knot",
|
|
1626
|
+
"lab coat",
|
|
1627
|
+
"ladle",
|
|
1628
|
+
"lampshade",
|
|
1629
|
+
"laptop computer",
|
|
1630
|
+
"lawn mower",
|
|
1631
|
+
"lens cap",
|
|
1632
|
+
"letter opener",
|
|
1633
|
+
"library",
|
|
1634
|
+
"lifeboat",
|
|
1635
|
+
"lighter",
|
|
1636
|
+
"limousine",
|
|
1637
|
+
"ocean liner",
|
|
1638
|
+
"lipstick",
|
|
1639
|
+
"slip-on shoe",
|
|
1640
|
+
"lotion",
|
|
1641
|
+
"music speaker",
|
|
1642
|
+
"loupe magnifying glass",
|
|
1643
|
+
"sawmill",
|
|
1644
|
+
"magnetic compass",
|
|
1645
|
+
"messenger bag",
|
|
1646
|
+
"mailbox",
|
|
1647
|
+
"tights",
|
|
1648
|
+
"one-piece bathing suit",
|
|
1649
|
+
"manhole cover",
|
|
1650
|
+
"maraca",
|
|
1651
|
+
"marimba",
|
|
1652
|
+
"mask",
|
|
1653
|
+
"matchstick",
|
|
1654
|
+
"maypole",
|
|
1655
|
+
"maze",
|
|
1656
|
+
"measuring cup",
|
|
1657
|
+
"medicine cabinet",
|
|
1658
|
+
"megalith",
|
|
1659
|
+
"microphone",
|
|
1660
|
+
"microwave oven",
|
|
1661
|
+
"military uniform",
|
|
1662
|
+
"milk can",
|
|
1663
|
+
"minibus",
|
|
1664
|
+
"miniskirt",
|
|
1665
|
+
"minivan",
|
|
1666
|
+
"missile",
|
|
1667
|
+
"mitten",
|
|
1668
|
+
"mixing bowl",
|
|
1669
|
+
"mobile home",
|
|
1670
|
+
"ford model t",
|
|
1671
|
+
"modem",
|
|
1672
|
+
"monastery",
|
|
1673
|
+
"monitor",
|
|
1674
|
+
"moped",
|
|
1675
|
+
"mortar and pestle",
|
|
1676
|
+
"graduation cap",
|
|
1677
|
+
"mosque",
|
|
1678
|
+
"mosquito net",
|
|
1679
|
+
"vespa",
|
|
1680
|
+
"mountain bike",
|
|
1681
|
+
"tent",
|
|
1682
|
+
"computer mouse",
|
|
1683
|
+
"mousetrap",
|
|
1684
|
+
"moving van",
|
|
1685
|
+
"muzzle",
|
|
1686
|
+
"metal nail",
|
|
1687
|
+
"neck brace",
|
|
1688
|
+
"necklace",
|
|
1689
|
+
"baby pacifier",
|
|
1690
|
+
"notebook computer",
|
|
1691
|
+
"obelisk",
|
|
1692
|
+
"oboe",
|
|
1693
|
+
"ocarina",
|
|
1694
|
+
"odometer",
|
|
1695
|
+
"oil filter",
|
|
1696
|
+
"pipe organ",
|
|
1697
|
+
"oscilloscope",
|
|
1698
|
+
"overskirt",
|
|
1699
|
+
"bullock cart",
|
|
1700
|
+
"oxygen mask",
|
|
1701
|
+
"product packet / packaging",
|
|
1702
|
+
"paddle",
|
|
1703
|
+
"paddle wheel",
|
|
1704
|
+
"padlock",
|
|
1705
|
+
"paintbrush",
|
|
1706
|
+
"pajamas",
|
|
1707
|
+
"palace",
|
|
1708
|
+
"pan flute",
|
|
1709
|
+
"paper towel",
|
|
1710
|
+
"parachute",
|
|
1711
|
+
"parallel bars",
|
|
1712
|
+
"park bench",
|
|
1713
|
+
"parking meter",
|
|
1714
|
+
"railroad car",
|
|
1715
|
+
"patio",
|
|
1716
|
+
"payphone",
|
|
1717
|
+
"pedestal",
|
|
1718
|
+
"pencil case",
|
|
1719
|
+
"pencil sharpener",
|
|
1720
|
+
"perfume",
|
|
1721
|
+
"Petri dish",
|
|
1722
|
+
"photocopier",
|
|
1723
|
+
"plectrum",
|
|
1724
|
+
"Pickelhaube",
|
|
1725
|
+
"picket fence",
|
|
1726
|
+
"pickup truck",
|
|
1727
|
+
"pier",
|
|
1728
|
+
"piggy bank",
|
|
1729
|
+
"pill bottle",
|
|
1730
|
+
"pillow",
|
|
1731
|
+
"ping-pong ball",
|
|
1732
|
+
"pinwheel",
|
|
1733
|
+
"pirate ship",
|
|
1734
|
+
"drink pitcher",
|
|
1735
|
+
"block plane",
|
|
1736
|
+
"planetarium",
|
|
1737
|
+
"plastic bag",
|
|
1738
|
+
"plate rack",
|
|
1739
|
+
"farm plow",
|
|
1740
|
+
"plunger",
|
|
1741
|
+
"Polaroid camera",
|
|
1742
|
+
"pole",
|
|
1743
|
+
"police van",
|
|
1744
|
+
"poncho",
|
|
1745
|
+
"pool table",
|
|
1746
|
+
"soda bottle",
|
|
1747
|
+
"plant pot",
|
|
1748
|
+
"potter's wheel",
|
|
1749
|
+
"power drill",
|
|
1750
|
+
"prayer rug",
|
|
1751
|
+
"printer",
|
|
1752
|
+
"prison",
|
|
1753
|
+
"missile",
|
|
1754
|
+
"projector",
|
|
1755
|
+
"hockey puck",
|
|
1756
|
+
"punching bag",
|
|
1757
|
+
"purse",
|
|
1758
|
+
"quill",
|
|
1759
|
+
"quilt",
|
|
1760
|
+
"race car",
|
|
1761
|
+
"racket",
|
|
1762
|
+
"radiator",
|
|
1763
|
+
"radio",
|
|
1764
|
+
"radio telescope",
|
|
1765
|
+
"rain barrel",
|
|
1766
|
+
"recreational vehicle",
|
|
1767
|
+
"fishing casting reel",
|
|
1768
|
+
"reflex camera",
|
|
1769
|
+
"refrigerator",
|
|
1770
|
+
"remote control",
|
|
1771
|
+
"restaurant",
|
|
1772
|
+
"revolver",
|
|
1773
|
+
"rifle",
|
|
1774
|
+
"rocking chair",
|
|
1775
|
+
"rotisserie",
|
|
1776
|
+
"eraser",
|
|
1777
|
+
"rugby ball",
|
|
1778
|
+
"ruler measuring stick",
|
|
1779
|
+
"sneaker",
|
|
1780
|
+
"safe",
|
|
1781
|
+
"safety pin",
|
|
1782
|
+
"salt shaker",
|
|
1783
|
+
"sandal",
|
|
1784
|
+
"sarong",
|
|
1785
|
+
"saxophone",
|
|
1786
|
+
"scabbard",
|
|
1787
|
+
"weighing scale",
|
|
1788
|
+
"school bus",
|
|
1789
|
+
"schooner",
|
|
1790
|
+
"scoreboard",
|
|
1791
|
+
"CRT monitor",
|
|
1792
|
+
"screw",
|
|
1793
|
+
"screwdriver",
|
|
1794
|
+
"seat belt",
|
|
1795
|
+
"sewing machine",
|
|
1796
|
+
"shield",
|
|
1797
|
+
"shoe store",
|
|
1798
|
+
"shoji screen / room divider",
|
|
1799
|
+
"shopping basket",
|
|
1800
|
+
"shopping cart",
|
|
1801
|
+
"shovel",
|
|
1802
|
+
"shower cap",
|
|
1803
|
+
"shower curtain",
|
|
1804
|
+
"ski",
|
|
1805
|
+
"balaclava ski mask",
|
|
1806
|
+
"sleeping bag",
|
|
1807
|
+
"slide rule",
|
|
1808
|
+
"sliding door",
|
|
1809
|
+
"slot machine",
|
|
1810
|
+
"snorkel",
|
|
1811
|
+
"snowmobile",
|
|
1812
|
+
"snowplow",
|
|
1813
|
+
"soap dispenser",
|
|
1814
|
+
"soccer ball",
|
|
1815
|
+
"sock",
|
|
1816
|
+
"solar thermal collector",
|
|
1817
|
+
"sombrero",
|
|
1818
|
+
"soup bowl",
|
|
1819
|
+
"keyboard space bar",
|
|
1820
|
+
"space heater",
|
|
1821
|
+
"space shuttle",
|
|
1822
|
+
"spatula",
|
|
1823
|
+
"motorboat",
|
|
1824
|
+
"spider web",
|
|
1825
|
+
"spindle",
|
|
1826
|
+
"sports car",
|
|
1827
|
+
"spotlight",
|
|
1828
|
+
"stage",
|
|
1829
|
+
"steam locomotive",
|
|
1830
|
+
"through arch bridge",
|
|
1831
|
+
"steel drum",
|
|
1832
|
+
"stethoscope",
|
|
1833
|
+
"scarf",
|
|
1834
|
+
"stone wall",
|
|
1835
|
+
"stopwatch",
|
|
1836
|
+
"stove",
|
|
1837
|
+
"strainer",
|
|
1838
|
+
"tram",
|
|
1839
|
+
"stretcher",
|
|
1840
|
+
"couch",
|
|
1841
|
+
"stupa",
|
|
1842
|
+
"submarine",
|
|
1843
|
+
"suit",
|
|
1844
|
+
"sundial",
|
|
1845
|
+
"sunglasses",
|
|
1846
|
+
"sunglasses",
|
|
1847
|
+
"sunscreen",
|
|
1848
|
+
"suspension bridge",
|
|
1849
|
+
"mop",
|
|
1850
|
+
"sweatshirt",
|
|
1851
|
+
"swim trunks / shorts",
|
|
1852
|
+
"swing",
|
|
1853
|
+
"electrical switch",
|
|
1854
|
+
"syringe",
|
|
1855
|
+
"table lamp",
|
|
1856
|
+
"tank",
|
|
1857
|
+
"tape player",
|
|
1858
|
+
"teapot",
|
|
1859
|
+
"teddy bear",
|
|
1860
|
+
"television",
|
|
1861
|
+
"tennis ball",
|
|
1862
|
+
"thatched roof",
|
|
1863
|
+
"front curtain",
|
|
1864
|
+
"thimble",
|
|
1865
|
+
"threshing machine",
|
|
1866
|
+
"throne",
|
|
1867
|
+
"tile roof",
|
|
1868
|
+
"toaster",
|
|
1869
|
+
"tobacco shop",
|
|
1870
|
+
"toilet seat",
|
|
1871
|
+
"torch",
|
|
1872
|
+
"totem pole",
|
|
1873
|
+
"tow truck",
|
|
1874
|
+
"toy store",
|
|
1875
|
+
"tractor",
|
|
1876
|
+
"semi-trailer truck",
|
|
1877
|
+
"tray",
|
|
1878
|
+
"trench coat",
|
|
1879
|
+
"tricycle",
|
|
1880
|
+
"trimaran",
|
|
1881
|
+
"tripod",
|
|
1882
|
+
"triumphal arch",
|
|
1883
|
+
"trolleybus",
|
|
1884
|
+
"trombone",
|
|
1885
|
+
"hot tub",
|
|
1886
|
+
"turnstile",
|
|
1887
|
+
"typewriter keyboard",
|
|
1888
|
+
"umbrella",
|
|
1889
|
+
"unicycle",
|
|
1890
|
+
"upright piano",
|
|
1891
|
+
"vacuum cleaner",
|
|
1892
|
+
"vase",
|
|
1893
|
+
"vaulted or arched ceiling",
|
|
1894
|
+
"velvet fabric",
|
|
1895
|
+
"vending machine",
|
|
1896
|
+
"vestment",
|
|
1897
|
+
"viaduct",
|
|
1898
|
+
"violin",
|
|
1899
|
+
"volleyball",
|
|
1900
|
+
"waffle iron",
|
|
1901
|
+
"wall clock",
|
|
1902
|
+
"wallet",
|
|
1903
|
+
"wardrobe",
|
|
1904
|
+
"military aircraft",
|
|
1905
|
+
"sink",
|
|
1906
|
+
"washing machine",
|
|
1907
|
+
"water bottle",
|
|
1908
|
+
"water jug",
|
|
1909
|
+
"water tower",
|
|
1910
|
+
"whiskey jug",
|
|
1911
|
+
"whistle",
|
|
1912
|
+
"hair wig",
|
|
1913
|
+
"window screen",
|
|
1914
|
+
"window shade",
|
|
1915
|
+
"Windsor tie",
|
|
1916
|
+
"wine bottle",
|
|
1917
|
+
"airplane wing",
|
|
1918
|
+
"wok",
|
|
1919
|
+
"wooden spoon",
|
|
1920
|
+
"wool",
|
|
1921
|
+
"split-rail fence",
|
|
1922
|
+
"shipwreck",
|
|
1923
|
+
"sailboat",
|
|
1924
|
+
"yurt",
|
|
1925
|
+
"website",
|
|
1926
|
+
"comic book",
|
|
1927
|
+
"crossword",
|
|
1928
|
+
"traffic or street sign",
|
|
1929
|
+
"traffic light",
|
|
1930
|
+
"dust jacket",
|
|
1931
|
+
"menu",
|
|
1932
|
+
"plate",
|
|
1933
|
+
"guacamole",
|
|
1934
|
+
"consomme",
|
|
1935
|
+
"hot pot",
|
|
1936
|
+
"trifle",
|
|
1937
|
+
"ice cream",
|
|
1938
|
+
"popsicle",
|
|
1939
|
+
"baguette",
|
|
1940
|
+
"bagel",
|
|
1941
|
+
"pretzel",
|
|
1942
|
+
"cheeseburger",
|
|
1943
|
+
"hot dog",
|
|
1944
|
+
"mashed potatoes",
|
|
1945
|
+
"cabbage",
|
|
1946
|
+
"broccoli",
|
|
1947
|
+
"cauliflower",
|
|
1948
|
+
"zucchini",
|
|
1949
|
+
"spaghetti squash",
|
|
1950
|
+
"acorn squash",
|
|
1951
|
+
"butternut squash",
|
|
1952
|
+
"cucumber",
|
|
1953
|
+
"artichoke",
|
|
1954
|
+
"bell pepper",
|
|
1955
|
+
"cardoon",
|
|
1956
|
+
"mushroom",
|
|
1957
|
+
"Granny Smith apple",
|
|
1958
|
+
"strawberry",
|
|
1959
|
+
"orange",
|
|
1960
|
+
"lemon",
|
|
1961
|
+
"fig",
|
|
1962
|
+
"pineapple",
|
|
1963
|
+
"banana",
|
|
1964
|
+
"jackfruit",
|
|
1965
|
+
"cherimoya (custard apple)",
|
|
1966
|
+
"pomegranate",
|
|
1967
|
+
"hay",
|
|
1968
|
+
"carbonara",
|
|
1969
|
+
"chocolate syrup",
|
|
1970
|
+
"dough",
|
|
1971
|
+
"meatloaf",
|
|
1972
|
+
"pizza",
|
|
1973
|
+
"pot pie",
|
|
1974
|
+
"burrito",
|
|
1975
|
+
"red wine",
|
|
1976
|
+
"espresso",
|
|
1977
|
+
"tea cup",
|
|
1978
|
+
"eggnog",
|
|
1979
|
+
"mountain",
|
|
1980
|
+
"bubble",
|
|
1981
|
+
"cliff",
|
|
1982
|
+
"coral reef",
|
|
1983
|
+
"geyser",
|
|
1984
|
+
"lakeshore",
|
|
1985
|
+
"promontory",
|
|
1986
|
+
"sandbar",
|
|
1987
|
+
"beach",
|
|
1988
|
+
"valley",
|
|
1989
|
+
"volcano",
|
|
1990
|
+
"baseball player",
|
|
1991
|
+
"bridegroom",
|
|
1992
|
+
"scuba diver",
|
|
1993
|
+
"rapeseed",
|
|
1994
|
+
"daisy",
|
|
1995
|
+
"yellow lady's slipper",
|
|
1996
|
+
"corn",
|
|
1997
|
+
"acorn",
|
|
1998
|
+
"rose hip",
|
|
1999
|
+
"horse chestnut seed",
|
|
2000
|
+
"coral fungus",
|
|
2001
|
+
"agaric",
|
|
2002
|
+
"gyromitra",
|
|
2003
|
+
"stinkhorn mushroom",
|
|
2004
|
+
"earth star fungus",
|
|
2005
|
+
"hen of the woods mushroom",
|
|
2006
|
+
"bolete",
|
|
2007
|
+
"corn cob",
|
|
2008
|
+
"toilet paper",
|
|
2009
|
+
]
|
|
2010
|
+
|
|
2011
|
+
imagenet_templates = [
|
|
2012
|
+
"a bad photo of a {}.",
|
|
2013
|
+
"a photo of many {}.",
|
|
2014
|
+
"a sculpture of a {}.",
|
|
2015
|
+
"a photo of the hard to see {}.",
|
|
2016
|
+
"a low resolution photo of the {}.",
|
|
2017
|
+
"a rendering of a {}.",
|
|
2018
|
+
"graffiti of a {}.",
|
|
2019
|
+
"a bad photo of the {}.",
|
|
2020
|
+
"a cropped photo of the {}.",
|
|
2021
|
+
"a tattoo of a {}.",
|
|
2022
|
+
"the embroidered {}.",
|
|
2023
|
+
"a photo of a hard to see {}.",
|
|
2024
|
+
"a bright photo of a {}.",
|
|
2025
|
+
"a photo of a clean {}.",
|
|
2026
|
+
"a photo of a dirty {}.",
|
|
2027
|
+
"a dark photo of the {}.",
|
|
2028
|
+
"a drawing of a {}.",
|
|
2029
|
+
"a photo of my {}.",
|
|
2030
|
+
"the plastic {}.",
|
|
2031
|
+
"a photo of the cool {}.",
|
|
2032
|
+
"a close-up photo of a {}.",
|
|
2033
|
+
"a black and white photo of the {}.",
|
|
2034
|
+
"a painting of the {}.",
|
|
2035
|
+
"a painting of a {}.",
|
|
2036
|
+
"a pixelated photo of the {}.",
|
|
2037
|
+
"a sculpture of the {}.",
|
|
2038
|
+
"a bright photo of the {}.",
|
|
2039
|
+
"a cropped photo of a {}.",
|
|
2040
|
+
"a plastic {}.",
|
|
2041
|
+
"a photo of the dirty {}.",
|
|
2042
|
+
"a jpeg corrupted photo of a {}.",
|
|
2043
|
+
"a blurry photo of the {}.",
|
|
2044
|
+
"a photo of the {}.",
|
|
2045
|
+
"a good photo of the {}.",
|
|
2046
|
+
"a rendering of the {}.",
|
|
2047
|
+
"a {} in a video game.",
|
|
2048
|
+
"a photo of one {}.",
|
|
2049
|
+
"a doodle of a {}.",
|
|
2050
|
+
"a close-up photo of the {}.",
|
|
2051
|
+
"a photo of a {}.",
|
|
2052
|
+
"the origami {}.",
|
|
2053
|
+
"the {} in a video game.",
|
|
2054
|
+
"a sketch of a {}.",
|
|
2055
|
+
"a doodle of the {}.",
|
|
2056
|
+
"a origami {}.",
|
|
2057
|
+
"a low resolution photo of a {}.",
|
|
2058
|
+
"the toy {}.",
|
|
2059
|
+
"a rendition of the {}.",
|
|
2060
|
+
"a photo of the clean {}.",
|
|
2061
|
+
"a photo of a large {}.",
|
|
2062
|
+
"a rendition of a {}.",
|
|
2063
|
+
"a photo of a nice {}.",
|
|
2064
|
+
"a photo of a weird {}.",
|
|
2065
|
+
"a blurry photo of a {}.",
|
|
2066
|
+
"a cartoon {}.",
|
|
2067
|
+
"art of a {}.",
|
|
2068
|
+
"a sketch of the {}.",
|
|
2069
|
+
"a embroidered {}.",
|
|
2070
|
+
"a pixelated photo of a {}.",
|
|
2071
|
+
"itap of the {}.",
|
|
2072
|
+
"a jpeg corrupted photo of the {}.",
|
|
2073
|
+
"a good photo of a {}.",
|
|
2074
|
+
"a plushie {}.",
|
|
2075
|
+
"a photo of the nice {}.",
|
|
2076
|
+
"a photo of the small {}.",
|
|
2077
|
+
"a photo of the weird {}.",
|
|
2078
|
+
"the cartoon {}.",
|
|
2079
|
+
"art of the {}.",
|
|
2080
|
+
"a drawing of the {}.",
|
|
2081
|
+
"a photo of the large {}.",
|
|
2082
|
+
"a black and white photo of a {}.",
|
|
2083
|
+
"the plushie {}.",
|
|
2084
|
+
"a dark photo of a {}.",
|
|
2085
|
+
"itap of a {}.",
|
|
2086
|
+
"graffiti of the {}.",
|
|
2087
|
+
"a toy {}.",
|
|
2088
|
+
"itap of my {}.",
|
|
2089
|
+
"a photo of a cool {}.",
|
|
2090
|
+
"a photo of a small {}.",
|
|
2091
|
+
"a tattoo of the {}.",
|
|
2092
|
+
]
|
|
2093
|
+
|
|
2094
|
+
assert len(imagenet_ids) == len(
|
|
2095
|
+
classnames
|
|
2096
|
+
), "number of ids and classnames should be the same"
|
|
2097
|
+
templates = [lambda c: prompt.format(c) for prompt in imagenet_templates]
|
|
2098
|
+
ids_to_classnames = dict(zip(imagenet_ids, classnames))
|
|
2099
|
+
|
|
2100
|
+
if __name__ == "__main__":
|
|
2101
|
+
print(f"number of ids: {len(imagenet_ids)}")
|
|
2102
|
+
print(f"number of classnames: {len(classnames)}")
|
|
2103
|
+
print(f"number of templates: {len(templates)}")
|