diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,59 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
|
20
|
+
class AttnProcsLayers(torch.nn.Module):
|
21
|
+
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
22
|
+
super().__init__()
|
23
|
+
self.layers = torch.nn.ModuleList(state_dict.values())
|
24
|
+
self.mapping = dict(enumerate(state_dict.keys()))
|
25
|
+
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
26
|
+
|
27
|
+
# .processor for unet, .self_attn for text encoder
|
28
|
+
self.split_keys = [".processor", ".self_attn"]
|
29
|
+
|
30
|
+
# we add a hook to state_dict() and load_state_dict() so that the
|
31
|
+
# naming fits with `unet.attn_processors`
|
32
|
+
def map_to(module, state_dict, *args, **kwargs):
|
33
|
+
new_state_dict = {}
|
34
|
+
for key, value in state_dict.items():
|
35
|
+
num = int(key.split(".")[1]) # 0 is always "layers"
|
36
|
+
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
37
|
+
new_state_dict[new_key] = value
|
38
|
+
|
39
|
+
return new_state_dict
|
40
|
+
|
41
|
+
def remap_key(key, state_dict):
|
42
|
+
for k in self.split_keys:
|
43
|
+
if k in key:
|
44
|
+
return key.split(k)[0] + k
|
45
|
+
|
46
|
+
raise ValueError(
|
47
|
+
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
|
48
|
+
)
|
49
|
+
|
50
|
+
def map_from(module, state_dict, *args, **kwargs):
|
51
|
+
all_keys = list(state_dict.keys())
|
52
|
+
for key in all_keys:
|
53
|
+
replace_key = remap_key(key, state_dict)
|
54
|
+
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
55
|
+
state_dict[new_key] = state_dict[key]
|
56
|
+
del state_dict[key]
|
57
|
+
|
58
|
+
self._register_state_dict_hook(map_to)
|
59
|
+
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
diffusers/models/__init__.py
CHANGED
@@ -14,7 +14,12 @@
|
|
14
14
|
|
15
15
|
from typing import TYPE_CHECKING
|
16
16
|
|
17
|
-
from ..utils import
|
17
|
+
from ..utils import (
|
18
|
+
DIFFUSERS_SLOW_IMPORT,
|
19
|
+
_LazyModule,
|
20
|
+
is_flax_available,
|
21
|
+
is_torch_available,
|
22
|
+
)
|
18
23
|
|
19
24
|
|
20
25
|
_import_structure = {}
|
@@ -23,6 +28,7 @@ if is_torch_available():
|
|
23
28
|
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
|
24
29
|
_import_structure["autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
25
30
|
_import_structure["autoencoder_kl"] = ["AutoencoderKL"]
|
31
|
+
_import_structure["autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
|
26
32
|
_import_structure["autoencoder_tiny"] = ["AutoencoderTiny"]
|
27
33
|
_import_structure["consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
28
34
|
_import_structure["controlnet"] = ["ControlNetModel"]
|
@@ -36,7 +42,9 @@ if is_torch_available():
|
|
36
42
|
_import_structure["unet_2d"] = ["UNet2DModel"]
|
37
43
|
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
|
38
44
|
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
|
45
|
+
_import_structure["unet_kandi3"] = ["Kandinsky3UNet"]
|
39
46
|
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
47
|
+
_import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
|
40
48
|
_import_structure["vq_model"] = ["VQModel"]
|
41
49
|
|
42
50
|
if is_flax_available():
|
@@ -50,6 +58,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
50
58
|
from .adapter import MultiAdapter, T2IAdapter
|
51
59
|
from .autoencoder_asym_kl import AsymmetricAutoencoderKL
|
52
60
|
from .autoencoder_kl import AutoencoderKL
|
61
|
+
from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
|
53
62
|
from .autoencoder_tiny import AutoencoderTiny
|
54
63
|
from .consistency_decoder_vae import ConsistencyDecoderVAE
|
55
64
|
from .controlnet import ControlNetModel
|
@@ -63,7 +72,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
63
72
|
from .unet_2d import UNet2DModel
|
64
73
|
from .unet_2d_condition import UNet2DConditionModel
|
65
74
|
from .unet_3d_condition import UNet3DConditionModel
|
75
|
+
from .unet_kandi3 import Kandinsky3UNet
|
66
76
|
from .unet_motion_model import MotionAdapter, UNetMotionModel
|
77
|
+
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
|
67
78
|
from .vq_model import VQModel
|
68
79
|
|
69
80
|
if is_flax_available():
|
diffusers/models/attention.py
CHANGED
@@ -25,6 +25,31 @@ from .lora import LoRACompatibleLinear
|
|
25
25
|
from .normalization import AdaLayerNorm, AdaLayerNormZero
|
26
26
|
|
27
27
|
|
28
|
+
def _chunked_feed_forward(
|
29
|
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
30
|
+
):
|
31
|
+
# "feed_forward_chunk_size" can be used to save memory
|
32
|
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
33
|
+
raise ValueError(
|
34
|
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
35
|
+
)
|
36
|
+
|
37
|
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
38
|
+
if lora_scale is None:
|
39
|
+
ff_output = torch.cat(
|
40
|
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
41
|
+
dim=chunk_dim,
|
42
|
+
)
|
43
|
+
else:
|
44
|
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
45
|
+
ff_output = torch.cat(
|
46
|
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
47
|
+
dim=chunk_dim,
|
48
|
+
)
|
49
|
+
|
50
|
+
return ff_output
|
51
|
+
|
52
|
+
|
28
53
|
@maybe_allow_in_graph
|
29
54
|
class GatedSelfAttentionDense(nn.Module):
|
30
55
|
r"""
|
@@ -194,7 +219,12 @@ class BasicTransformerBlock(nn.Module):
|
|
194
219
|
if not self.use_ada_layer_norm_single:
|
195
220
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
196
221
|
|
197
|
-
self.ff = FeedForward(
|
222
|
+
self.ff = FeedForward(
|
223
|
+
dim,
|
224
|
+
dropout=dropout,
|
225
|
+
activation_fn=activation_fn,
|
226
|
+
final_dropout=final_dropout,
|
227
|
+
)
|
198
228
|
|
199
229
|
# 4. Fuser
|
200
230
|
if attention_type == "gated" or attention_type == "gated-text-image":
|
@@ -208,7 +238,7 @@ class BasicTransformerBlock(nn.Module):
|
|
208
238
|
self._chunk_size = None
|
209
239
|
self._chunk_dim = 0
|
210
240
|
|
211
|
-
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
241
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
212
242
|
# Sets chunk feed-forward
|
213
243
|
self._chunk_size = chunk_size
|
214
244
|
self._chunk_dim = dim
|
@@ -311,18 +341,8 @@ class BasicTransformerBlock(nn.Module):
|
|
311
341
|
|
312
342
|
if self._chunk_size is not None:
|
313
343
|
# "feed_forward_chunk_size" can be used to save memory
|
314
|
-
|
315
|
-
|
316
|
-
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
317
|
-
)
|
318
|
-
|
319
|
-
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
320
|
-
ff_output = torch.cat(
|
321
|
-
[
|
322
|
-
self.ff(hid_slice, scale=lora_scale)
|
323
|
-
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
324
|
-
],
|
325
|
-
dim=self._chunk_dim,
|
344
|
+
ff_output = _chunked_feed_forward(
|
345
|
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
326
346
|
)
|
327
347
|
else:
|
328
348
|
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
@@ -339,6 +359,137 @@ class BasicTransformerBlock(nn.Module):
|
|
339
359
|
return hidden_states
|
340
360
|
|
341
361
|
|
362
|
+
@maybe_allow_in_graph
|
363
|
+
class TemporalBasicTransformerBlock(nn.Module):
|
364
|
+
r"""
|
365
|
+
A basic Transformer block for video like data.
|
366
|
+
|
367
|
+
Parameters:
|
368
|
+
dim (`int`): The number of channels in the input and output.
|
369
|
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
370
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
371
|
+
attention_head_dim (`int`): The number of channels in each head.
|
372
|
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
373
|
+
"""
|
374
|
+
|
375
|
+
def __init__(
|
376
|
+
self,
|
377
|
+
dim: int,
|
378
|
+
time_mix_inner_dim: int,
|
379
|
+
num_attention_heads: int,
|
380
|
+
attention_head_dim: int,
|
381
|
+
cross_attention_dim: Optional[int] = None,
|
382
|
+
):
|
383
|
+
super().__init__()
|
384
|
+
self.is_res = dim == time_mix_inner_dim
|
385
|
+
|
386
|
+
self.norm_in = nn.LayerNorm(dim)
|
387
|
+
|
388
|
+
# Define 3 blocks. Each block has its own normalization layer.
|
389
|
+
# 1. Self-Attn
|
390
|
+
self.norm_in = nn.LayerNorm(dim)
|
391
|
+
self.ff_in = FeedForward(
|
392
|
+
dim,
|
393
|
+
dim_out=time_mix_inner_dim,
|
394
|
+
activation_fn="geglu",
|
395
|
+
)
|
396
|
+
|
397
|
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
398
|
+
self.attn1 = Attention(
|
399
|
+
query_dim=time_mix_inner_dim,
|
400
|
+
heads=num_attention_heads,
|
401
|
+
dim_head=attention_head_dim,
|
402
|
+
cross_attention_dim=None,
|
403
|
+
)
|
404
|
+
|
405
|
+
# 2. Cross-Attn
|
406
|
+
if cross_attention_dim is not None:
|
407
|
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
408
|
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
409
|
+
# the second cross attention block.
|
410
|
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
411
|
+
self.attn2 = Attention(
|
412
|
+
query_dim=time_mix_inner_dim,
|
413
|
+
cross_attention_dim=cross_attention_dim,
|
414
|
+
heads=num_attention_heads,
|
415
|
+
dim_head=attention_head_dim,
|
416
|
+
) # is self-attn if encoder_hidden_states is none
|
417
|
+
else:
|
418
|
+
self.norm2 = None
|
419
|
+
self.attn2 = None
|
420
|
+
|
421
|
+
# 3. Feed-forward
|
422
|
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
423
|
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
424
|
+
|
425
|
+
# let chunk size default to None
|
426
|
+
self._chunk_size = None
|
427
|
+
self._chunk_dim = None
|
428
|
+
|
429
|
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
430
|
+
# Sets chunk feed-forward
|
431
|
+
self._chunk_size = chunk_size
|
432
|
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
433
|
+
self._chunk_dim = 1
|
434
|
+
|
435
|
+
def forward(
|
436
|
+
self,
|
437
|
+
hidden_states: torch.FloatTensor,
|
438
|
+
num_frames: int,
|
439
|
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
440
|
+
) -> torch.FloatTensor:
|
441
|
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
442
|
+
# 0. Self-Attention
|
443
|
+
batch_size = hidden_states.shape[0]
|
444
|
+
|
445
|
+
batch_frames, seq_length, channels = hidden_states.shape
|
446
|
+
batch_size = batch_frames // num_frames
|
447
|
+
|
448
|
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
449
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
450
|
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
451
|
+
|
452
|
+
residual = hidden_states
|
453
|
+
hidden_states = self.norm_in(hidden_states)
|
454
|
+
|
455
|
+
if self._chunk_size is not None:
|
456
|
+
hidden_states = _chunked_feed_forward(self.ff, hidden_states, self._chunk_dim, self._chunk_size)
|
457
|
+
else:
|
458
|
+
hidden_states = self.ff_in(hidden_states)
|
459
|
+
|
460
|
+
if self.is_res:
|
461
|
+
hidden_states = hidden_states + residual
|
462
|
+
|
463
|
+
norm_hidden_states = self.norm1(hidden_states)
|
464
|
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
465
|
+
hidden_states = attn_output + hidden_states
|
466
|
+
|
467
|
+
# 3. Cross-Attention
|
468
|
+
if self.attn2 is not None:
|
469
|
+
norm_hidden_states = self.norm2(hidden_states)
|
470
|
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
471
|
+
hidden_states = attn_output + hidden_states
|
472
|
+
|
473
|
+
# 4. Feed-forward
|
474
|
+
norm_hidden_states = self.norm3(hidden_states)
|
475
|
+
|
476
|
+
if self._chunk_size is not None:
|
477
|
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
478
|
+
else:
|
479
|
+
ff_output = self.ff(norm_hidden_states)
|
480
|
+
|
481
|
+
if self.is_res:
|
482
|
+
hidden_states = ff_output + hidden_states
|
483
|
+
else:
|
484
|
+
hidden_states = ff_output
|
485
|
+
|
486
|
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
487
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
488
|
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
489
|
+
|
490
|
+
return hidden_states
|
491
|
+
|
492
|
+
|
342
493
|
class FeedForward(nn.Module):
|
343
494
|
r"""
|
344
495
|
A feed-forward layer.
|
@@ -110,7 +110,10 @@ def jax_memory_efficient_attention(
|
|
110
110
|
)
|
111
111
|
|
112
112
|
_, res = jax.lax.scan(
|
113
|
-
f=chunk_scanner,
|
113
|
+
f=chunk_scanner,
|
114
|
+
init=0,
|
115
|
+
xs=None,
|
116
|
+
length=math.ceil(num_q / query_chunk_size), # start counter # stop counter
|
114
117
|
)
|
115
118
|
|
116
119
|
return jnp.concatenate(res, axis=-3) # fuse the chunked result back
|
@@ -138,6 +141,7 @@ class FlaxAttention(nn.Module):
|
|
138
141
|
Parameters `dtype`
|
139
142
|
|
140
143
|
"""
|
144
|
+
|
141
145
|
query_dim: int
|
142
146
|
heads: int = 8
|
143
147
|
dim_head: int = 64
|
@@ -262,6 +266,7 @@ class FlaxBasicTransformerBlock(nn.Module):
|
|
262
266
|
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
|
263
267
|
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
|
264
268
|
"""
|
269
|
+
|
265
270
|
dim: int
|
266
271
|
n_heads: int
|
267
272
|
d_head: int
|
@@ -347,6 +352,7 @@ class FlaxTransformer2DModel(nn.Module):
|
|
347
352
|
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
|
348
353
|
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
|
349
354
|
"""
|
355
|
+
|
350
356
|
in_channels: int
|
351
357
|
n_heads: int
|
352
358
|
d_head: int
|
@@ -442,6 +448,7 @@ class FlaxFeedForward(nn.Module):
|
|
442
448
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
443
449
|
Parameters `dtype`
|
444
450
|
"""
|
451
|
+
|
445
452
|
dim: int
|
446
453
|
dropout: float = 0.0
|
447
454
|
dtype: jnp.dtype = jnp.float32
|
@@ -471,6 +478,7 @@ class FlaxGEGLU(nn.Module):
|
|
471
478
|
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
472
479
|
Parameters `dtype`
|
473
480
|
"""
|
481
|
+
|
474
482
|
dim: int
|
475
483
|
dropout: float = 0.0
|
476
484
|
dtype: jnp.dtype = jnp.float32
|
@@ -16,7 +16,7 @@ from typing import Callable, Optional, Union
|
|
16
16
|
|
17
17
|
import torch
|
18
18
|
import torch.nn.functional as F
|
19
|
-
from torch import nn
|
19
|
+
from torch import einsum, nn
|
20
20
|
|
21
21
|
from ..utils import USE_PEFT_BACKEND, deprecate, logging
|
22
22
|
from ..utils.import_utils import is_xformers_available
|
@@ -1975,6 +1975,288 @@ class LoRAAttnAddedKVProcessor(nn.Module):
|
|
1975
1975
|
return attn.processor(attn, hidden_states, *args, **kwargs)
|
1976
1976
|
|
1977
1977
|
|
1978
|
+
class IPAdapterAttnProcessor(nn.Module):
|
1979
|
+
r"""
|
1980
|
+
Attention processor for IP-Adapater.
|
1981
|
+
|
1982
|
+
Args:
|
1983
|
+
hidden_size (`int`):
|
1984
|
+
The hidden size of the attention layer.
|
1985
|
+
cross_attention_dim (`int`):
|
1986
|
+
The number of channels in the `encoder_hidden_states`.
|
1987
|
+
num_tokens (`int`, defaults to 4):
|
1988
|
+
The context length of the image features.
|
1989
|
+
scale (`float`, defaults to 1.0):
|
1990
|
+
the weight scale of image prompt.
|
1991
|
+
"""
|
1992
|
+
|
1993
|
+
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=4, scale=1.0):
|
1994
|
+
super().__init__()
|
1995
|
+
|
1996
|
+
self.hidden_size = hidden_size
|
1997
|
+
self.cross_attention_dim = cross_attention_dim
|
1998
|
+
self.num_tokens = num_tokens
|
1999
|
+
self.scale = scale
|
2000
|
+
|
2001
|
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
2002
|
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
2003
|
+
|
2004
|
+
def __call__(
|
2005
|
+
self,
|
2006
|
+
attn,
|
2007
|
+
hidden_states,
|
2008
|
+
encoder_hidden_states=None,
|
2009
|
+
attention_mask=None,
|
2010
|
+
temb=None,
|
2011
|
+
scale=1.0,
|
2012
|
+
):
|
2013
|
+
if scale != 1.0:
|
2014
|
+
logger.warning("`scale` of IPAttnProcessor should be set with `set_ip_adapter_scale`.")
|
2015
|
+
residual = hidden_states
|
2016
|
+
|
2017
|
+
if attn.spatial_norm is not None:
|
2018
|
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
2019
|
+
|
2020
|
+
input_ndim = hidden_states.ndim
|
2021
|
+
|
2022
|
+
if input_ndim == 4:
|
2023
|
+
batch_size, channel, height, width = hidden_states.shape
|
2024
|
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
2025
|
+
|
2026
|
+
batch_size, sequence_length, _ = (
|
2027
|
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
2028
|
+
)
|
2029
|
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
2030
|
+
|
2031
|
+
if attn.group_norm is not None:
|
2032
|
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
2033
|
+
|
2034
|
+
query = attn.to_q(hidden_states)
|
2035
|
+
|
2036
|
+
if encoder_hidden_states is None:
|
2037
|
+
encoder_hidden_states = hidden_states
|
2038
|
+
elif attn.norm_cross:
|
2039
|
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
2040
|
+
|
2041
|
+
# split hidden states
|
2042
|
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
2043
|
+
encoder_hidden_states, ip_hidden_states = (
|
2044
|
+
encoder_hidden_states[:, :end_pos, :],
|
2045
|
+
encoder_hidden_states[:, end_pos:, :],
|
2046
|
+
)
|
2047
|
+
|
2048
|
+
key = attn.to_k(encoder_hidden_states)
|
2049
|
+
value = attn.to_v(encoder_hidden_states)
|
2050
|
+
|
2051
|
+
query = attn.head_to_batch_dim(query)
|
2052
|
+
key = attn.head_to_batch_dim(key)
|
2053
|
+
value = attn.head_to_batch_dim(value)
|
2054
|
+
|
2055
|
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
2056
|
+
hidden_states = torch.bmm(attention_probs, value)
|
2057
|
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
2058
|
+
|
2059
|
+
# for ip-adapter
|
2060
|
+
ip_key = self.to_k_ip(ip_hidden_states)
|
2061
|
+
ip_value = self.to_v_ip(ip_hidden_states)
|
2062
|
+
|
2063
|
+
ip_key = attn.head_to_batch_dim(ip_key)
|
2064
|
+
ip_value = attn.head_to_batch_dim(ip_value)
|
2065
|
+
|
2066
|
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
2067
|
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
2068
|
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
2069
|
+
|
2070
|
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
2071
|
+
|
2072
|
+
# linear proj
|
2073
|
+
hidden_states = attn.to_out[0](hidden_states)
|
2074
|
+
# dropout
|
2075
|
+
hidden_states = attn.to_out[1](hidden_states)
|
2076
|
+
|
2077
|
+
if input_ndim == 4:
|
2078
|
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
2079
|
+
|
2080
|
+
if attn.residual_connection:
|
2081
|
+
hidden_states = hidden_states + residual
|
2082
|
+
|
2083
|
+
hidden_states = hidden_states / attn.rescale_output_factor
|
2084
|
+
|
2085
|
+
return hidden_states
|
2086
|
+
|
2087
|
+
|
2088
|
+
class IPAdapterAttnProcessor2_0(torch.nn.Module):
|
2089
|
+
r"""
|
2090
|
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
2091
|
+
|
2092
|
+
Args:
|
2093
|
+
hidden_size (`int`):
|
2094
|
+
The hidden size of the attention layer.
|
2095
|
+
cross_attention_dim (`int`):
|
2096
|
+
The number of channels in the `encoder_hidden_states`.
|
2097
|
+
num_tokens (`int`, defaults to 4):
|
2098
|
+
The context length of the image features.
|
2099
|
+
scale (`float`, defaults to 1.0):
|
2100
|
+
the weight scale of image prompt.
|
2101
|
+
"""
|
2102
|
+
|
2103
|
+
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=4, scale=1.0):
|
2104
|
+
super().__init__()
|
2105
|
+
|
2106
|
+
if not hasattr(F, "scaled_dot_product_attention"):
|
2107
|
+
raise ImportError(
|
2108
|
+
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
2109
|
+
)
|
2110
|
+
|
2111
|
+
self.hidden_size = hidden_size
|
2112
|
+
self.cross_attention_dim = cross_attention_dim
|
2113
|
+
self.num_tokens = num_tokens
|
2114
|
+
self.scale = scale
|
2115
|
+
|
2116
|
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
2117
|
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
2118
|
+
|
2119
|
+
def __call__(
|
2120
|
+
self,
|
2121
|
+
attn,
|
2122
|
+
hidden_states,
|
2123
|
+
encoder_hidden_states=None,
|
2124
|
+
attention_mask=None,
|
2125
|
+
temb=None,
|
2126
|
+
scale=1.0,
|
2127
|
+
):
|
2128
|
+
if scale != 1.0:
|
2129
|
+
logger.warning("`scale` of IPAttnProcessor should be set by `set_ip_adapter_scale`.")
|
2130
|
+
residual = hidden_states
|
2131
|
+
|
2132
|
+
if attn.spatial_norm is not None:
|
2133
|
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
2134
|
+
|
2135
|
+
input_ndim = hidden_states.ndim
|
2136
|
+
|
2137
|
+
if input_ndim == 4:
|
2138
|
+
batch_size, channel, height, width = hidden_states.shape
|
2139
|
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
2140
|
+
|
2141
|
+
batch_size, sequence_length, _ = (
|
2142
|
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
2143
|
+
)
|
2144
|
+
|
2145
|
+
if attention_mask is not None:
|
2146
|
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
2147
|
+
# scaled_dot_product_attention expects attention_mask shape to be
|
2148
|
+
# (batch, heads, source_length, target_length)
|
2149
|
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
2150
|
+
|
2151
|
+
if attn.group_norm is not None:
|
2152
|
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
2153
|
+
|
2154
|
+
query = attn.to_q(hidden_states)
|
2155
|
+
|
2156
|
+
if encoder_hidden_states is None:
|
2157
|
+
encoder_hidden_states = hidden_states
|
2158
|
+
elif attn.norm_cross:
|
2159
|
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
2160
|
+
|
2161
|
+
# split hidden states
|
2162
|
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
2163
|
+
encoder_hidden_states, ip_hidden_states = (
|
2164
|
+
encoder_hidden_states[:, :end_pos, :],
|
2165
|
+
encoder_hidden_states[:, end_pos:, :],
|
2166
|
+
)
|
2167
|
+
|
2168
|
+
key = attn.to_k(encoder_hidden_states)
|
2169
|
+
value = attn.to_v(encoder_hidden_states)
|
2170
|
+
|
2171
|
+
inner_dim = key.shape[-1]
|
2172
|
+
head_dim = inner_dim // attn.heads
|
2173
|
+
|
2174
|
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
2175
|
+
|
2176
|
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
2177
|
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
2178
|
+
|
2179
|
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
2180
|
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
2181
|
+
hidden_states = F.scaled_dot_product_attention(
|
2182
|
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
2183
|
+
)
|
2184
|
+
|
2185
|
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
2186
|
+
hidden_states = hidden_states.to(query.dtype)
|
2187
|
+
|
2188
|
+
# for ip-adapter
|
2189
|
+
ip_key = self.to_k_ip(ip_hidden_states)
|
2190
|
+
ip_value = self.to_v_ip(ip_hidden_states)
|
2191
|
+
|
2192
|
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
2193
|
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
2194
|
+
|
2195
|
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
2196
|
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
2197
|
+
ip_hidden_states = F.scaled_dot_product_attention(
|
2198
|
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
2199
|
+
)
|
2200
|
+
|
2201
|
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
2202
|
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
2203
|
+
|
2204
|
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
2205
|
+
|
2206
|
+
# linear proj
|
2207
|
+
hidden_states = attn.to_out[0](hidden_states)
|
2208
|
+
# dropout
|
2209
|
+
hidden_states = attn.to_out[1](hidden_states)
|
2210
|
+
|
2211
|
+
if input_ndim == 4:
|
2212
|
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
2213
|
+
|
2214
|
+
if attn.residual_connection:
|
2215
|
+
hidden_states = hidden_states + residual
|
2216
|
+
|
2217
|
+
hidden_states = hidden_states / attn.rescale_output_factor
|
2218
|
+
|
2219
|
+
return hidden_states
|
2220
|
+
|
2221
|
+
|
2222
|
+
# TODO(Yiyi): This class should not exist, we can replace it with a normal attention processor I believe
|
2223
|
+
# this way torch.compile and co. will work as well
|
2224
|
+
class Kandi3AttnProcessor:
|
2225
|
+
r"""
|
2226
|
+
Default kandinsky3 proccesor for performing attention-related computations.
|
2227
|
+
"""
|
2228
|
+
|
2229
|
+
@staticmethod
|
2230
|
+
def _reshape(hid_states, h):
|
2231
|
+
b, n, f = hid_states.shape
|
2232
|
+
d = f // h
|
2233
|
+
return hid_states.unsqueeze(-1).reshape(b, n, h, d).permute(0, 2, 1, 3)
|
2234
|
+
|
2235
|
+
def __call__(
|
2236
|
+
self,
|
2237
|
+
attn,
|
2238
|
+
x,
|
2239
|
+
context,
|
2240
|
+
context_mask=None,
|
2241
|
+
):
|
2242
|
+
query = self._reshape(attn.to_q(x), h=attn.num_heads)
|
2243
|
+
key = self._reshape(attn.to_k(context), h=attn.num_heads)
|
2244
|
+
value = self._reshape(attn.to_v(context), h=attn.num_heads)
|
2245
|
+
|
2246
|
+
attention_matrix = einsum("b h i d, b h j d -> b h i j", query, key)
|
2247
|
+
|
2248
|
+
if context_mask is not None:
|
2249
|
+
max_neg_value = -torch.finfo(attention_matrix.dtype).max
|
2250
|
+
context_mask = context_mask.unsqueeze(1).unsqueeze(1)
|
2251
|
+
attention_matrix = attention_matrix.masked_fill(~(context_mask != 0), max_neg_value)
|
2252
|
+
attention_matrix = (attention_matrix * attn.scale).softmax(dim=-1)
|
2253
|
+
|
2254
|
+
out = einsum("b h i j, b h j d -> b h i d", attention_matrix, value)
|
2255
|
+
out = out.permute(0, 2, 1, 3).reshape(out.shape[0], out.shape[2], -1)
|
2256
|
+
out = attn.to_out[0](out)
|
2257
|
+
return out
|
2258
|
+
|
2259
|
+
|
1978
2260
|
LORA_ATTENTION_PROCESSORS = (
|
1979
2261
|
LoRAAttnProcessor,
|
1980
2262
|
LoRAAttnProcessor2_0,
|
@@ -1998,6 +2280,9 @@ CROSS_ATTENTION_PROCESSORS = (
|
|
1998
2280
|
LoRAAttnProcessor,
|
1999
2281
|
LoRAAttnProcessor2_0,
|
2000
2282
|
LoRAXFormersAttnProcessor,
|
2283
|
+
IPAdapterAttnProcessor,
|
2284
|
+
IPAdapterAttnProcessor2_0,
|
2285
|
+
Kandi3AttnProcessor,
|
2001
2286
|
)
|
2002
2287
|
|
2003
2288
|
AttentionProcessor = Union[
|