diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (177) hide show
  1. diffusers/__init__.py +16 -2
  2. diffusers/configuration_utils.py +1 -0
  3. diffusers/dependency_versions_check.py +1 -14
  4. diffusers/dependency_versions_table.py +5 -4
  5. diffusers/image_processor.py +186 -14
  6. diffusers/loaders/__init__.py +82 -0
  7. diffusers/loaders/ip_adapter.py +157 -0
  8. diffusers/loaders/lora.py +1415 -0
  9. diffusers/loaders/lora_conversion_utils.py +284 -0
  10. diffusers/loaders/single_file.py +631 -0
  11. diffusers/loaders/textual_inversion.py +459 -0
  12. diffusers/loaders/unet.py +735 -0
  13. diffusers/loaders/utils.py +59 -0
  14. diffusers/models/__init__.py +12 -1
  15. diffusers/models/attention.py +165 -14
  16. diffusers/models/attention_flax.py +9 -1
  17. diffusers/models/attention_processor.py +286 -1
  18. diffusers/models/autoencoder_asym_kl.py +14 -9
  19. diffusers/models/autoencoder_kl.py +3 -18
  20. diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
  21. diffusers/models/autoencoder_tiny.py +20 -24
  22. diffusers/models/consistency_decoder_vae.py +37 -30
  23. diffusers/models/controlnet.py +59 -39
  24. diffusers/models/controlnet_flax.py +19 -18
  25. diffusers/models/embeddings_flax.py +2 -0
  26. diffusers/models/lora.py +131 -1
  27. diffusers/models/modeling_flax_utils.py +2 -1
  28. diffusers/models/modeling_outputs.py +17 -0
  29. diffusers/models/modeling_utils.py +27 -19
  30. diffusers/models/normalization.py +2 -2
  31. diffusers/models/resnet.py +390 -59
  32. diffusers/models/transformer_2d.py +20 -3
  33. diffusers/models/transformer_temporal.py +183 -1
  34. diffusers/models/unet_2d_blocks_flax.py +5 -0
  35. diffusers/models/unet_2d_condition.py +9 -0
  36. diffusers/models/unet_2d_condition_flax.py +13 -13
  37. diffusers/models/unet_3d_blocks.py +957 -173
  38. diffusers/models/unet_3d_condition.py +16 -8
  39. diffusers/models/unet_kandi3.py +589 -0
  40. diffusers/models/unet_motion_model.py +48 -33
  41. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  42. diffusers/models/vae.py +63 -13
  43. diffusers/models/vae_flax.py +7 -0
  44. diffusers/models/vq_model.py +3 -1
  45. diffusers/optimization.py +16 -9
  46. diffusers/pipelines/__init__.py +65 -12
  47. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
  48. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
  49. diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
  50. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  51. diffusers/pipelines/auto_pipeline.py +6 -0
  52. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  53. diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
  54. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
  55. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
  56. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
  57. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
  58. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
  59. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  60. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  61. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  62. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  63. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  64. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  65. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  66. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  67. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  68. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  69. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  70. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  71. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  72. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  73. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  74. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  75. diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
  76. diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
  77. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
  78. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
  79. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  80. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  81. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  82. diffusers/pipelines/pipeline_flax_utils.py +4 -2
  83. diffusers/pipelines/pipeline_utils.py +33 -13
  84. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
  85. diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
  86. diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
  87. diffusers/pipelines/stable_diffusion/__init__.py +64 -21
  88. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
  89. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
  90. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  91. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  92. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  93. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
  94. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
  95. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
  96. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  97. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
  98. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
  107. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
  108. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
  109. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
  110. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
  111. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
  112. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
  114. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
  115. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
  116. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
  117. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
  118. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  119. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
  120. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  121. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
  122. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  123. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
  124. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
  125. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
  126. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
  127. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
  128. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
  129. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
  130. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
  131. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  132. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  133. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  134. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  135. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
  136. diffusers/schedulers/__init__.py +2 -4
  137. diffusers/schedulers/deprecated/__init__.py +50 -0
  138. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  139. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  140. diffusers/schedulers/scheduling_ddim.py +1 -3
  141. diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
  142. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  143. diffusers/schedulers/scheduling_ddpm.py +1 -3
  144. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
  145. diffusers/schedulers/scheduling_deis_multistep.py +15 -5
  146. diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
  147. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
  148. diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
  149. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
  150. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
  151. diffusers/schedulers/scheduling_euler_discrete.py +40 -13
  152. diffusers/schedulers/scheduling_heun_discrete.py +15 -5
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
  155. diffusers/schedulers/scheduling_lcm.py +123 -29
  156. diffusers/schedulers/scheduling_lms_discrete.py +1 -3
  157. diffusers/schedulers/scheduling_pndm.py +1 -3
  158. diffusers/schedulers/scheduling_repaint.py +1 -3
  159. diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
  160. diffusers/utils/__init__.py +1 -0
  161. diffusers/utils/constants.py +11 -6
  162. diffusers/utils/dummy_pt_objects.py +45 -0
  163. diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
  164. diffusers/utils/dynamic_modules_utils.py +4 -4
  165. diffusers/utils/export_utils.py +8 -3
  166. diffusers/utils/logging.py +10 -10
  167. diffusers/utils/outputs.py +5 -5
  168. diffusers/utils/peft_utils.py +88 -44
  169. diffusers/utils/torch_utils.py +2 -2
  170. diffusers/utils/versions.py +117 -0
  171. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
  172. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
  173. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
  174. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
  175. diffusers/loaders.py +0 -3336
  176. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
  177. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -20,12 +20,23 @@ import numpy as np
20
20
  import PIL.Image
21
21
  import torch
22
22
  import torch.nn.functional as F
23
- from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
24
30
 
25
31
  from diffusers.utils.import_utils import is_invisible_watermark_available
26
32
 
27
33
  from ...image_processor import PipelineImageInput, VaeImageProcessor
28
- from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
34
+ from ...loaders import (
35
+ FromSingleFileMixin,
36
+ IPAdapterMixin,
37
+ StableDiffusionXLLoraLoaderMixin,
38
+ TextualInversionLoaderMixin,
39
+ )
29
40
  from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
30
41
  from ...models.attention_processor import (
31
42
  AttnProcessor2_0,
@@ -35,7 +46,14 @@ from ...models.attention_processor import (
35
46
  )
36
47
  from ...models.lora import adjust_lora_scale_text_encoder
37
48
  from ...schedulers import KarrasDiffusionSchedulers
38
- from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers
49
+ from ...utils import (
50
+ USE_PEFT_BACKEND,
51
+ deprecate,
52
+ logging,
53
+ replace_example_docstring,
54
+ scale_lora_layers,
55
+ unscale_lora_layers,
56
+ )
39
57
  from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
40
58
  from ..pipeline_utils import DiffusionPipeline
41
59
  from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -97,7 +115,11 @@ EXAMPLE_DOC_STRING = """
97
115
 
98
116
 
99
117
  class StableDiffusionXLControlNetPipeline(
100
- DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin
118
+ DiffusionPipeline,
119
+ TextualInversionLoaderMixin,
120
+ StableDiffusionXLLoraLoaderMixin,
121
+ IPAdapterMixin,
122
+ FromSingleFileMixin,
101
123
  ):
102
124
  r"""
103
125
  Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
@@ -139,9 +161,18 @@ class StableDiffusionXLControlNetPipeline(
139
161
  watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
140
162
  watermarker is used.
141
163
  """
164
+
142
165
  # leave controlnet out on purpose because it iterates with unet
143
166
  model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
144
- _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
167
+ _optional_components = [
168
+ "tokenizer",
169
+ "tokenizer_2",
170
+ "text_encoder",
171
+ "text_encoder_2",
172
+ "feature_extractor",
173
+ "image_encoder",
174
+ ]
175
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
145
176
 
146
177
  def __init__(
147
178
  self,
@@ -155,6 +186,8 @@ class StableDiffusionXLControlNetPipeline(
155
186
  scheduler: KarrasDiffusionSchedulers,
156
187
  force_zeros_for_empty_prompt: bool = True,
157
188
  add_watermarker: Optional[bool] = None,
189
+ feature_extractor: CLIPImageProcessor = None,
190
+ image_encoder: CLIPVisionModelWithProjection = None,
158
191
  ):
159
192
  super().__init__()
160
193
 
@@ -170,6 +203,8 @@ class StableDiffusionXLControlNetPipeline(
170
203
  unet=unet,
171
204
  controlnet=controlnet,
172
205
  scheduler=scheduler,
206
+ feature_extractor=feature_extractor,
207
+ image_encoder=image_encoder,
173
208
  )
174
209
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
175
210
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
@@ -453,6 +488,20 @@ class StableDiffusionXLControlNetPipeline(
453
488
 
454
489
  return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
455
490
 
491
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
492
+ def encode_image(self, image, device, num_images_per_prompt):
493
+ dtype = next(self.image_encoder.parameters()).dtype
494
+
495
+ if not isinstance(image, torch.Tensor):
496
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
497
+
498
+ image = image.to(device=device, dtype=dtype)
499
+ image_embeds = self.image_encoder(image).image_embeds
500
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
501
+
502
+ uncond_image_embeds = torch.zeros_like(image_embeds)
503
+ return image_embeds, uncond_image_embeds
504
+
456
505
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
457
506
  def prepare_extra_step_kwargs(self, generator, eta):
458
507
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
@@ -486,15 +535,21 @@ class StableDiffusionXLControlNetPipeline(
486
535
  controlnet_conditioning_scale=1.0,
487
536
  control_guidance_start=0.0,
488
537
  control_guidance_end=1.0,
538
+ callback_on_step_end_tensor_inputs=None,
489
539
  ):
490
- if (callback_steps is None) or (
491
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
492
- ):
540
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
493
541
  raise ValueError(
494
542
  f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
495
543
  f" {type(callback_steps)}."
496
544
  )
497
545
 
546
+ if callback_on_step_end_tensor_inputs is not None and not all(
547
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
548
+ ):
549
+ raise ValueError(
550
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
551
+ )
552
+
498
553
  if prompt is not None and prompt_embeds is not None:
499
554
  raise ValueError(
500
555
  f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
@@ -791,6 +846,58 @@ class StableDiffusionXLControlNetPipeline(
791
846
  """Disables the FreeU mechanism if enabled."""
792
847
  self.unet.disable_freeu()
793
848
 
849
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
850
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
851
+ """
852
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
853
+
854
+ Args:
855
+ timesteps (`torch.Tensor`):
856
+ generate embedding vectors at these timesteps
857
+ embedding_dim (`int`, *optional*, defaults to 512):
858
+ dimension of the embeddings to generate
859
+ dtype:
860
+ data type of the generated embeddings
861
+
862
+ Returns:
863
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
864
+ """
865
+ assert len(w.shape) == 1
866
+ w = w * 1000.0
867
+
868
+ half_dim = embedding_dim // 2
869
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
870
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
871
+ emb = w.to(dtype)[:, None] * emb[None, :]
872
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
873
+ if embedding_dim % 2 == 1: # zero pad
874
+ emb = torch.nn.functional.pad(emb, (0, 1))
875
+ assert emb.shape == (w.shape[0], embedding_dim)
876
+ return emb
877
+
878
+ @property
879
+ def guidance_scale(self):
880
+ return self._guidance_scale
881
+
882
+ @property
883
+ def clip_skip(self):
884
+ return self._clip_skip
885
+
886
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
887
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
888
+ # corresponds to doing no classifier free guidance.
889
+ @property
890
+ def do_classifier_free_guidance(self):
891
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
892
+
893
+ @property
894
+ def cross_attention_kwargs(self):
895
+ return self._cross_attention_kwargs
896
+
897
+ @property
898
+ def num_timesteps(self):
899
+ return self._num_timesteps
900
+
794
901
  @torch.no_grad()
795
902
  @replace_example_docstring(EXAMPLE_DOC_STRING)
796
903
  def __call__(
@@ -812,10 +919,9 @@ class StableDiffusionXLControlNetPipeline(
812
919
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
813
920
  pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
814
921
  negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
922
+ ip_adapter_image: Optional[PipelineImageInput] = None,
815
923
  output_type: Optional[str] = "pil",
816
924
  return_dict: bool = True,
817
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
818
- callback_steps: int = 1,
819
925
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
820
926
  controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
821
927
  guess_mode: bool = False,
@@ -828,6 +934,9 @@ class StableDiffusionXLControlNetPipeline(
828
934
  negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
829
935
  negative_target_size: Optional[Tuple[int, int]] = None,
830
936
  clip_skip: Optional[int] = None,
937
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
938
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
939
+ **kwargs,
831
940
  ):
832
941
  r"""
833
942
  The call function to the pipeline for generation.
@@ -891,17 +1000,12 @@ class StableDiffusionXLControlNetPipeline(
891
1000
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
892
1001
  weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
893
1002
  argument.
1003
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
894
1004
  output_type (`str`, *optional*, defaults to `"pil"`):
895
1005
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
896
1006
  return_dict (`bool`, *optional*, defaults to `True`):
897
1007
  Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
898
1008
  plain tuple.
899
- callback (`Callable`, *optional*):
900
- A function that calls every `callback_steps` steps during inference. The function is called with the
901
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
902
- callback_steps (`int`, *optional*, defaults to 1):
903
- The frequency at which the `callback` function is called. If not specified, the callback is called at
904
- every step.
905
1009
  cross_attention_kwargs (`dict`, *optional*):
906
1010
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
907
1011
  [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
@@ -948,6 +1052,15 @@ class StableDiffusionXLControlNetPipeline(
948
1052
  clip_skip (`int`, *optional*):
949
1053
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
950
1054
  the output of the pre-final layer will be used for computing the prompt embeddings.
1055
+ callback_on_step_end (`Callable`, *optional*):
1056
+ A function that calls at the end of each denoising steps during the inference. The function is called
1057
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1058
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1059
+ `callback_on_step_end_tensor_inputs`.
1060
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1061
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1062
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1063
+ `._callback_tensor_inputs` attribute of your pipeine class.
951
1064
 
952
1065
  Examples:
953
1066
 
@@ -956,6 +1069,23 @@ class StableDiffusionXLControlNetPipeline(
956
1069
  If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
957
1070
  otherwise a `tuple` is returned containing the output images.
958
1071
  """
1072
+
1073
+ callback = kwargs.pop("callback", None)
1074
+ callback_steps = kwargs.pop("callback_steps", None)
1075
+
1076
+ if callback is not None:
1077
+ deprecate(
1078
+ "callback",
1079
+ "1.0.0",
1080
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1081
+ )
1082
+ if callback_steps is not None:
1083
+ deprecate(
1084
+ "callback_steps",
1085
+ "1.0.0",
1086
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1087
+ )
1088
+
959
1089
  controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
960
1090
 
961
1091
  # align format for control guidance
@@ -965,9 +1095,10 @@ class StableDiffusionXLControlNetPipeline(
965
1095
  control_guidance_end = len(control_guidance_start) * [control_guidance_end]
966
1096
  elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
967
1097
  mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
968
- control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
969
- control_guidance_end
970
- ]
1098
+ control_guidance_start, control_guidance_end = (
1099
+ mult * [control_guidance_start],
1100
+ mult * [control_guidance_end],
1101
+ )
971
1102
 
972
1103
  # 1. Check inputs. Raise error if not correct
973
1104
  self.check_inputs(
@@ -984,8 +1115,13 @@ class StableDiffusionXLControlNetPipeline(
984
1115
  controlnet_conditioning_scale,
985
1116
  control_guidance_start,
986
1117
  control_guidance_end,
1118
+ callback_on_step_end_tensor_inputs,
987
1119
  )
988
1120
 
1121
+ self._guidance_scale = guidance_scale
1122
+ self._clip_skip = clip_skip
1123
+ self._cross_attention_kwargs = cross_attention_kwargs
1124
+
989
1125
  # 2. Define call parameters
990
1126
  if prompt is not None and isinstance(prompt, str):
991
1127
  batch_size = 1
@@ -995,10 +1131,6 @@ class StableDiffusionXLControlNetPipeline(
995
1131
  batch_size = prompt_embeds.shape[0]
996
1132
 
997
1133
  device = self._execution_device
998
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
999
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1000
- # corresponds to doing no classifier free guidance.
1001
- do_classifier_free_guidance = guidance_scale > 1.0
1002
1134
 
1003
1135
  if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1004
1136
  controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
@@ -1010,9 +1142,9 @@ class StableDiffusionXLControlNetPipeline(
1010
1142
  )
1011
1143
  guess_mode = guess_mode or global_pool_conditions
1012
1144
 
1013
- # 3. Encode input prompt
1145
+ # 3.1 Encode input prompt
1014
1146
  text_encoder_lora_scale = (
1015
- cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
1147
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1016
1148
  )
1017
1149
  (
1018
1150
  prompt_embeds,
@@ -1024,7 +1156,7 @@ class StableDiffusionXLControlNetPipeline(
1024
1156
  prompt_2,
1025
1157
  device,
1026
1158
  num_images_per_prompt,
1027
- do_classifier_free_guidance,
1159
+ self.do_classifier_free_guidance,
1028
1160
  negative_prompt,
1029
1161
  negative_prompt_2,
1030
1162
  prompt_embeds=prompt_embeds,
@@ -1032,9 +1164,15 @@ class StableDiffusionXLControlNetPipeline(
1032
1164
  pooled_prompt_embeds=pooled_prompt_embeds,
1033
1165
  negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1034
1166
  lora_scale=text_encoder_lora_scale,
1035
- clip_skip=clip_skip,
1167
+ clip_skip=self.clip_skip,
1036
1168
  )
1037
1169
 
1170
+ # 3.2 Encode ip_adapter_image
1171
+ if ip_adapter_image is not None:
1172
+ image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
1173
+ if self.do_classifier_free_guidance:
1174
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
1175
+
1038
1176
  # 4. Prepare image
1039
1177
  if isinstance(controlnet, ControlNetModel):
1040
1178
  image = self.prepare_image(
@@ -1045,7 +1183,7 @@ class StableDiffusionXLControlNetPipeline(
1045
1183
  num_images_per_prompt=num_images_per_prompt,
1046
1184
  device=device,
1047
1185
  dtype=controlnet.dtype,
1048
- do_classifier_free_guidance=do_classifier_free_guidance,
1186
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1049
1187
  guess_mode=guess_mode,
1050
1188
  )
1051
1189
  height, width = image.shape[-2:]
@@ -1061,7 +1199,7 @@ class StableDiffusionXLControlNetPipeline(
1061
1199
  num_images_per_prompt=num_images_per_prompt,
1062
1200
  device=device,
1063
1201
  dtype=controlnet.dtype,
1064
- do_classifier_free_guidance=do_classifier_free_guidance,
1202
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1065
1203
  guess_mode=guess_mode,
1066
1204
  )
1067
1205
 
@@ -1075,6 +1213,7 @@ class StableDiffusionXLControlNetPipeline(
1075
1213
  # 5. Prepare timesteps
1076
1214
  self.scheduler.set_timesteps(num_inference_steps, device=device)
1077
1215
  timesteps = self.scheduler.timesteps
1216
+ self._num_timesteps = len(timesteps)
1078
1217
 
1079
1218
  # 6. Prepare latent variables
1080
1219
  num_channels_latents = self.unet.config.in_channels
@@ -1089,6 +1228,14 @@ class StableDiffusionXLControlNetPipeline(
1089
1228
  latents,
1090
1229
  )
1091
1230
 
1231
+ # 6.5 Optionally get Guidance Scale Embedding
1232
+ timestep_cond = None
1233
+ if self.unet.config.time_cond_proj_dim is not None:
1234
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1235
+ timestep_cond = self.get_guidance_scale_embedding(
1236
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1237
+ ).to(device=device, dtype=latents.dtype)
1238
+
1092
1239
  # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1093
1240
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1094
1241
 
@@ -1133,7 +1280,7 @@ class StableDiffusionXLControlNetPipeline(
1133
1280
  else:
1134
1281
  negative_add_time_ids = add_time_ids
1135
1282
 
1136
- if do_classifier_free_guidance:
1283
+ if self.do_classifier_free_guidance:
1137
1284
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1138
1285
  add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1139
1286
  add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
@@ -1154,13 +1301,13 @@ class StableDiffusionXLControlNetPipeline(
1154
1301
  if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1155
1302
  torch._inductor.cudagraph_mark_step_begin()
1156
1303
  # expand the latents if we are doing classifier free guidance
1157
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
1304
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1158
1305
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1159
1306
 
1160
1307
  added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1161
1308
 
1162
1309
  # controlnet(s) inference
1163
- if guess_mode and do_classifier_free_guidance:
1310
+ if guess_mode and self.do_classifier_free_guidance:
1164
1311
  # Infer ControlNet only for the conditional batch.
1165
1312
  control_model_input = latents
1166
1313
  control_model_input = self.scheduler.scale_model_input(control_model_input, t)
@@ -1193,19 +1340,23 @@ class StableDiffusionXLControlNetPipeline(
1193
1340
  return_dict=False,
1194
1341
  )
1195
1342
 
1196
- if guess_mode and do_classifier_free_guidance:
1343
+ if guess_mode and self.do_classifier_free_guidance:
1197
1344
  # Infered ControlNet only for the conditional batch.
1198
1345
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1199
1346
  # add 0 to the unconditional batch to keep it unchanged.
1200
1347
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1201
1348
  mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1202
1349
 
1350
+ if ip_adapter_image is not None:
1351
+ added_cond_kwargs["image_embeds"] = image_embeds
1352
+
1203
1353
  # predict the noise residual
1204
1354
  noise_pred = self.unet(
1205
1355
  latent_model_input,
1206
1356
  t,
1207
1357
  encoder_hidden_states=prompt_embeds,
1208
- cross_attention_kwargs=cross_attention_kwargs,
1358
+ timestep_cond=timestep_cond,
1359
+ cross_attention_kwargs=self.cross_attention_kwargs,
1209
1360
  down_block_additional_residuals=down_block_res_samples,
1210
1361
  mid_block_additional_residual=mid_block_res_sample,
1211
1362
  added_cond_kwargs=added_cond_kwargs,
@@ -1213,13 +1364,23 @@ class StableDiffusionXLControlNetPipeline(
1213
1364
  )[0]
1214
1365
 
1215
1366
  # perform guidance
1216
- if do_classifier_free_guidance:
1367
+ if self.do_classifier_free_guidance:
1217
1368
  noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1218
1369
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1219
1370
 
1220
1371
  # compute the previous noisy sample x_t -> x_t-1
1221
1372
  latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1222
1373
 
1374
+ if callback_on_step_end is not None:
1375
+ callback_kwargs = {}
1376
+ for k in callback_on_step_end_tensor_inputs:
1377
+ callback_kwargs[k] = locals()[k]
1378
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1379
+
1380
+ latents = callback_outputs.pop("latents", latents)
1381
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1382
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1383
+
1223
1384
  # call the callback, if provided
1224
1385
  if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1225
1386
  progress_bar.update()