diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -21,10 +21,10 @@ import numpy as np
|
|
21
21
|
import PIL.Image
|
22
22
|
import torch
|
23
23
|
import torch.nn.functional as F
|
24
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
24
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
25
25
|
|
26
26
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
27
|
-
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
28
28
|
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
29
29
|
from ...models.lora import adjust_lora_scale_text_encoder
|
30
30
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -104,9 +104,13 @@ EXAMPLE_DOC_STRING = """
|
|
104
104
|
|
105
105
|
|
106
106
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
107
|
-
def retrieve_latents(
|
108
|
-
|
107
|
+
def retrieve_latents(
|
108
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
109
|
+
):
|
110
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
109
111
|
return encoder_output.latent_dist.sample(generator)
|
112
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
113
|
+
return encoder_output.latent_dist.mode()
|
110
114
|
elif hasattr(encoder_output, "latents"):
|
111
115
|
return encoder_output.latents
|
112
116
|
else:
|
@@ -237,7 +241,7 @@ def prepare_mask_and_masked_image(image, mask, height, width, return_image=False
|
|
237
241
|
|
238
242
|
|
239
243
|
class StableDiffusionControlNetInpaintPipeline(
|
240
|
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
244
|
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
241
245
|
):
|
242
246
|
r"""
|
243
247
|
Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
|
@@ -247,6 +251,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
247
251
|
|
248
252
|
The pipeline also inherits the following loading methods:
|
249
253
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
254
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
250
255
|
|
251
256
|
<Tip>
|
252
257
|
|
@@ -282,9 +287,11 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
282
287
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
283
288
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
284
289
|
"""
|
290
|
+
|
285
291
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
286
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
292
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
287
293
|
_exclude_from_cpu_offload = ["safety_checker"]
|
294
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
288
295
|
|
289
296
|
def __init__(
|
290
297
|
self,
|
@@ -296,6 +303,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
296
303
|
scheduler: KarrasDiffusionSchedulers,
|
297
304
|
safety_checker: StableDiffusionSafetyChecker,
|
298
305
|
feature_extractor: CLIPImageProcessor,
|
306
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
299
307
|
requires_safety_checker: bool = True,
|
300
308
|
):
|
301
309
|
super().__init__()
|
@@ -328,6 +336,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
328
336
|
scheduler=scheduler,
|
329
337
|
safety_checker=safety_checker,
|
330
338
|
feature_extractor=feature_extractor,
|
339
|
+
image_encoder=image_encoder,
|
331
340
|
)
|
332
341
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
333
342
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
@@ -587,6 +596,20 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
587
596
|
|
588
597
|
return prompt_embeds, negative_prompt_embeds
|
589
598
|
|
599
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
600
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
601
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
602
|
+
|
603
|
+
if not isinstance(image, torch.Tensor):
|
604
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
605
|
+
|
606
|
+
image = image.to(device=device, dtype=dtype)
|
607
|
+
image_embeds = self.image_encoder(image).image_embeds
|
608
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
609
|
+
|
610
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
611
|
+
return image_embeds, uncond_image_embeds
|
612
|
+
|
590
613
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
591
614
|
def run_safety_checker(self, image, device, dtype):
|
592
615
|
if self.safety_checker is None:
|
@@ -655,18 +678,24 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
655
678
|
controlnet_conditioning_scale=1.0,
|
656
679
|
control_guidance_start=0.0,
|
657
680
|
control_guidance_end=1.0,
|
681
|
+
callback_on_step_end_tensor_inputs=None,
|
658
682
|
):
|
659
683
|
if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
|
660
684
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
661
685
|
|
662
|
-
if
|
663
|
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
664
|
-
):
|
686
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
665
687
|
raise ValueError(
|
666
688
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
667
689
|
f" {type(callback_steps)}."
|
668
690
|
)
|
669
691
|
|
692
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
693
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
694
|
+
):
|
695
|
+
raise ValueError(
|
696
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
697
|
+
)
|
698
|
+
|
670
699
|
if prompt is not None and prompt_embeds is not None:
|
671
700
|
raise ValueError(
|
672
701
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -998,6 +1027,29 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
998
1027
|
"""Disables the FreeU mechanism if enabled."""
|
999
1028
|
self.unet.disable_freeu()
|
1000
1029
|
|
1030
|
+
@property
|
1031
|
+
def guidance_scale(self):
|
1032
|
+
return self._guidance_scale
|
1033
|
+
|
1034
|
+
@property
|
1035
|
+
def clip_skip(self):
|
1036
|
+
return self._clip_skip
|
1037
|
+
|
1038
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1039
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1040
|
+
# corresponds to doing no classifier free guidance.
|
1041
|
+
@property
|
1042
|
+
def do_classifier_free_guidance(self):
|
1043
|
+
return self._guidance_scale > 1
|
1044
|
+
|
1045
|
+
@property
|
1046
|
+
def cross_attention_kwargs(self):
|
1047
|
+
return self._cross_attention_kwargs
|
1048
|
+
|
1049
|
+
@property
|
1050
|
+
def num_timesteps(self):
|
1051
|
+
return self._num_timesteps
|
1052
|
+
|
1001
1053
|
@torch.no_grad()
|
1002
1054
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1003
1055
|
def __call__(
|
@@ -1018,16 +1070,18 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1018
1070
|
latents: Optional[torch.FloatTensor] = None,
|
1019
1071
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1020
1072
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1073
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1021
1074
|
output_type: Optional[str] = "pil",
|
1022
1075
|
return_dict: bool = True,
|
1023
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1024
|
-
callback_steps: int = 1,
|
1025
1076
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1026
1077
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
|
1027
1078
|
guess_mode: bool = False,
|
1028
1079
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
1029
1080
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
1030
1081
|
clip_skip: Optional[int] = None,
|
1082
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1083
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1084
|
+
**kwargs,
|
1031
1085
|
):
|
1032
1086
|
r"""
|
1033
1087
|
The call function to the pipeline for generation.
|
@@ -1095,17 +1149,12 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1095
1149
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1096
1150
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1097
1151
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1152
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1098
1153
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1099
1154
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1100
1155
|
return_dict (`bool`, *optional*, defaults to `True`):
|
1101
1156
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1102
1157
|
plain tuple.
|
1103
|
-
callback (`Callable`, *optional*):
|
1104
|
-
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1105
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1106
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
1107
|
-
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1108
|
-
every step.
|
1109
1158
|
cross_attention_kwargs (`dict`, *optional*):
|
1110
1159
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1111
1160
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
@@ -1123,6 +1172,15 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1123
1172
|
clip_skip (`int`, *optional*):
|
1124
1173
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1125
1174
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1175
|
+
callback_on_step_end (`Callable`, *optional*):
|
1176
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1177
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1178
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1179
|
+
`callback_on_step_end_tensor_inputs`.
|
1180
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1181
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1182
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1183
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1126
1184
|
|
1127
1185
|
Examples:
|
1128
1186
|
|
@@ -1133,6 +1191,23 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1133
1191
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1134
1192
|
"not-safe-for-work" (nsfw) content.
|
1135
1193
|
"""
|
1194
|
+
|
1195
|
+
callback = kwargs.pop("callback", None)
|
1196
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
1197
|
+
|
1198
|
+
if callback is not None:
|
1199
|
+
deprecate(
|
1200
|
+
"callback",
|
1201
|
+
"1.0.0",
|
1202
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1203
|
+
)
|
1204
|
+
if callback_steps is not None:
|
1205
|
+
deprecate(
|
1206
|
+
"callback_steps",
|
1207
|
+
"1.0.0",
|
1208
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1209
|
+
)
|
1210
|
+
|
1136
1211
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1137
1212
|
|
1138
1213
|
# align format for control guidance
|
@@ -1142,9 +1217,10 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1142
1217
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1143
1218
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1144
1219
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1145
|
-
control_guidance_start, control_guidance_end =
|
1146
|
-
|
1147
|
-
|
1220
|
+
control_guidance_start, control_guidance_end = (
|
1221
|
+
mult * [control_guidance_start],
|
1222
|
+
mult * [control_guidance_end],
|
1223
|
+
)
|
1148
1224
|
|
1149
1225
|
# 1. Check inputs. Raise error if not correct
|
1150
1226
|
self.check_inputs(
|
@@ -1159,8 +1235,13 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1159
1235
|
controlnet_conditioning_scale,
|
1160
1236
|
control_guidance_start,
|
1161
1237
|
control_guidance_end,
|
1238
|
+
callback_on_step_end_tensor_inputs,
|
1162
1239
|
)
|
1163
1240
|
|
1241
|
+
self._guidance_scale = guidance_scale
|
1242
|
+
self._clip_skip = clip_skip
|
1243
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1244
|
+
|
1164
1245
|
# 2. Define call parameters
|
1165
1246
|
if prompt is not None and isinstance(prompt, str):
|
1166
1247
|
batch_size = 1
|
@@ -1170,10 +1251,6 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1170
1251
|
batch_size = prompt_embeds.shape[0]
|
1171
1252
|
|
1172
1253
|
device = self._execution_device
|
1173
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1174
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1175
|
-
# corresponds to doing no classifier free guidance.
|
1176
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1177
1254
|
|
1178
1255
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1179
1256
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
@@ -1187,25 +1264,30 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1187
1264
|
|
1188
1265
|
# 3. Encode input prompt
|
1189
1266
|
text_encoder_lora_scale = (
|
1190
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1267
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1191
1268
|
)
|
1192
1269
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1193
1270
|
prompt,
|
1194
1271
|
device,
|
1195
1272
|
num_images_per_prompt,
|
1196
|
-
do_classifier_free_guidance,
|
1273
|
+
self.do_classifier_free_guidance,
|
1197
1274
|
negative_prompt,
|
1198
1275
|
prompt_embeds=prompt_embeds,
|
1199
1276
|
negative_prompt_embeds=negative_prompt_embeds,
|
1200
1277
|
lora_scale=text_encoder_lora_scale,
|
1201
|
-
clip_skip=clip_skip,
|
1278
|
+
clip_skip=self.clip_skip,
|
1202
1279
|
)
|
1203
1280
|
# For classifier free guidance, we need to do two forward passes.
|
1204
1281
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
1205
1282
|
# to avoid doing two forward passes
|
1206
|
-
if do_classifier_free_guidance:
|
1283
|
+
if self.do_classifier_free_guidance:
|
1207
1284
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1208
1285
|
|
1286
|
+
if ip_adapter_image is not None:
|
1287
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1288
|
+
if self.do_classifier_free_guidance:
|
1289
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1290
|
+
|
1209
1291
|
# 4. Prepare image
|
1210
1292
|
if isinstance(controlnet, ControlNetModel):
|
1211
1293
|
control_image = self.prepare_control_image(
|
@@ -1216,7 +1298,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1216
1298
|
num_images_per_prompt=num_images_per_prompt,
|
1217
1299
|
device=device,
|
1218
1300
|
dtype=controlnet.dtype,
|
1219
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1301
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1220
1302
|
guess_mode=guess_mode,
|
1221
1303
|
)
|
1222
1304
|
elif isinstance(controlnet, MultiControlNetModel):
|
@@ -1231,7 +1313,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1231
1313
|
num_images_per_prompt=num_images_per_prompt,
|
1232
1314
|
device=device,
|
1233
1315
|
dtype=controlnet.dtype,
|
1234
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1316
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1235
1317
|
guess_mode=guess_mode,
|
1236
1318
|
)
|
1237
1319
|
|
@@ -1241,7 +1323,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1241
1323
|
else:
|
1242
1324
|
assert False
|
1243
1325
|
|
1244
|
-
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
1326
|
+
# 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
|
1245
1327
|
init_image = self.image_processor.preprocess(image, height=height, width=width)
|
1246
1328
|
init_image = init_image.to(dtype=torch.float32)
|
1247
1329
|
|
@@ -1259,6 +1341,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1259
1341
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1260
1342
|
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1261
1343
|
is_strength_max = strength == 1.0
|
1344
|
+
self._num_timesteps = len(timesteps)
|
1262
1345
|
|
1263
1346
|
# 6. Prepare latent variables
|
1264
1347
|
num_channels_latents = self.vae.config.latent_channels
|
@@ -1295,13 +1378,16 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1295
1378
|
prompt_embeds.dtype,
|
1296
1379
|
device,
|
1297
1380
|
generator,
|
1298
|
-
do_classifier_free_guidance,
|
1381
|
+
self.do_classifier_free_guidance,
|
1299
1382
|
)
|
1300
1383
|
|
1301
1384
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1302
1385
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1303
1386
|
|
1304
|
-
# 7.1
|
1387
|
+
# 7.1 Add image embeds for IP-Adapter
|
1388
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1389
|
+
|
1390
|
+
# 7.2 Create tensor stating which controlnets to keep
|
1305
1391
|
controlnet_keep = []
|
1306
1392
|
for i in range(len(timesteps)):
|
1307
1393
|
keeps = [
|
@@ -1315,11 +1401,11 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1315
1401
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1316
1402
|
for i, t in enumerate(timesteps):
|
1317
1403
|
# expand the latents if we are doing classifier free guidance
|
1318
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1404
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1319
1405
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1320
1406
|
|
1321
1407
|
# controlnet(s) inference
|
1322
|
-
if guess_mode and do_classifier_free_guidance:
|
1408
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1323
1409
|
# Infer ControlNet only for the conditional batch.
|
1324
1410
|
control_model_input = latents
|
1325
1411
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1346,7 +1432,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1346
1432
|
return_dict=False,
|
1347
1433
|
)
|
1348
1434
|
|
1349
|
-
if guess_mode and do_classifier_free_guidance:
|
1435
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1350
1436
|
# Infered ControlNet only for the conditional batch.
|
1351
1437
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1352
1438
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1361,14 +1447,15 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1361
1447
|
latent_model_input,
|
1362
1448
|
t,
|
1363
1449
|
encoder_hidden_states=prompt_embeds,
|
1364
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1450
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1365
1451
|
down_block_additional_residuals=down_block_res_samples,
|
1366
1452
|
mid_block_additional_residual=mid_block_res_sample,
|
1453
|
+
added_cond_kwargs=added_cond_kwargs,
|
1367
1454
|
return_dict=False,
|
1368
1455
|
)[0]
|
1369
1456
|
|
1370
1457
|
# perform guidance
|
1371
|
-
if do_classifier_free_guidance:
|
1458
|
+
if self.do_classifier_free_guidance:
|
1372
1459
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1373
1460
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1374
1461
|
|
@@ -1377,7 +1464,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1377
1464
|
|
1378
1465
|
if num_channels_unet == 4:
|
1379
1466
|
init_latents_proper = image_latents
|
1380
|
-
if do_classifier_free_guidance:
|
1467
|
+
if self.do_classifier_free_guidance:
|
1381
1468
|
init_mask, _ = mask.chunk(2)
|
1382
1469
|
else:
|
1383
1470
|
init_mask = mask
|
@@ -1390,6 +1477,16 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1390
1477
|
|
1391
1478
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1392
1479
|
|
1480
|
+
if callback_on_step_end is not None:
|
1481
|
+
callback_kwargs = {}
|
1482
|
+
for k in callback_on_step_end_tensor_inputs:
|
1483
|
+
callback_kwargs[k] = locals()[k]
|
1484
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1485
|
+
|
1486
|
+
latents = callback_outputs.pop("latents", latents)
|
1487
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1488
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1489
|
+
|
1393
1490
|
# call the callback, if provided
|
1394
1491
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1395
1492
|
progress_bar.update()
|