diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -118,6 +118,51 @@ def _preprocess_adapter_image(image, height, width):
|
|
118
118
|
return image
|
119
119
|
|
120
120
|
|
121
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
122
|
+
def retrieve_timesteps(
|
123
|
+
scheduler,
|
124
|
+
num_inference_steps: Optional[int] = None,
|
125
|
+
device: Optional[Union[str, torch.device]] = None,
|
126
|
+
timesteps: Optional[List[int]] = None,
|
127
|
+
**kwargs,
|
128
|
+
):
|
129
|
+
"""
|
130
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
131
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
132
|
+
|
133
|
+
Args:
|
134
|
+
scheduler (`SchedulerMixin`):
|
135
|
+
The scheduler to get timesteps from.
|
136
|
+
num_inference_steps (`int`):
|
137
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
138
|
+
`timesteps` must be `None`.
|
139
|
+
device (`str` or `torch.device`, *optional*):
|
140
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
141
|
+
timesteps (`List[int]`, *optional*):
|
142
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
143
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
144
|
+
must be `None`.
|
145
|
+
|
146
|
+
Returns:
|
147
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
148
|
+
second element is the number of inference steps.
|
149
|
+
"""
|
150
|
+
if timesteps is not None:
|
151
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
152
|
+
if not accepts_timesteps:
|
153
|
+
raise ValueError(
|
154
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
155
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
156
|
+
)
|
157
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
158
|
+
timesteps = scheduler.timesteps
|
159
|
+
num_inference_steps = len(timesteps)
|
160
|
+
else:
|
161
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
162
|
+
timesteps = scheduler.timesteps
|
163
|
+
return timesteps, num_inference_steps
|
164
|
+
|
165
|
+
|
121
166
|
class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
122
167
|
r"""
|
123
168
|
Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
|
@@ -152,6 +197,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
152
197
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
153
198
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
154
199
|
"""
|
200
|
+
|
155
201
|
model_cpu_offload_seq = "text_encoder->adapter->unet->vae"
|
156
202
|
_optional_components = ["safety_checker", "feature_extractor"]
|
157
203
|
|
@@ -610,6 +656,46 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
610
656
|
"""Disables the FreeU mechanism if enabled."""
|
611
657
|
self.unet.disable_freeu()
|
612
658
|
|
659
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
660
|
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
661
|
+
"""
|
662
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
663
|
+
|
664
|
+
Args:
|
665
|
+
timesteps (`torch.Tensor`):
|
666
|
+
generate embedding vectors at these timesteps
|
667
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
668
|
+
dimension of the embeddings to generate
|
669
|
+
dtype:
|
670
|
+
data type of the generated embeddings
|
671
|
+
|
672
|
+
Returns:
|
673
|
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
674
|
+
"""
|
675
|
+
assert len(w.shape) == 1
|
676
|
+
w = w * 1000.0
|
677
|
+
|
678
|
+
half_dim = embedding_dim // 2
|
679
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
680
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
681
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
682
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
683
|
+
if embedding_dim % 2 == 1: # zero pad
|
684
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
685
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
686
|
+
return emb
|
687
|
+
|
688
|
+
@property
|
689
|
+
def guidance_scale(self):
|
690
|
+
return self._guidance_scale
|
691
|
+
|
692
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
693
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
694
|
+
# corresponds to doing no classifier free guidance.
|
695
|
+
@property
|
696
|
+
def do_classifier_free_guidance(self):
|
697
|
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
698
|
+
|
613
699
|
@torch.no_grad()
|
614
700
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
615
701
|
def __call__(
|
@@ -619,6 +705,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
619
705
|
height: Optional[int] = None,
|
620
706
|
width: Optional[int] = None,
|
621
707
|
num_inference_steps: int = 50,
|
708
|
+
timesteps: List[int] = None,
|
622
709
|
guidance_scale: float = 7.5,
|
623
710
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
624
711
|
num_images_per_prompt: Optional[int] = 1,
|
@@ -653,6 +740,10 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
653
740
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
654
741
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
655
742
|
expense of slower inference.
|
743
|
+
timesteps (`List[int]`, *optional*):
|
744
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
745
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
746
|
+
passed will be used. Must be in descending order.
|
656
747
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
657
748
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
658
749
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
@@ -723,6 +814,8 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
723
814
|
prompt, height, width, callback_steps, image, negative_prompt, prompt_embeds, negative_prompt_embeds
|
724
815
|
)
|
725
816
|
|
817
|
+
self._guidance_scale = guidance_scale
|
818
|
+
|
726
819
|
if isinstance(self.adapter, MultiAdapter):
|
727
820
|
adapter_input = []
|
728
821
|
|
@@ -742,17 +835,12 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
742
835
|
else:
|
743
836
|
batch_size = prompt_embeds.shape[0]
|
744
837
|
|
745
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
746
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
747
|
-
# corresponds to doing no classifier free guidance.
|
748
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
749
|
-
|
750
838
|
# 3. Encode input prompt
|
751
839
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
752
840
|
prompt,
|
753
841
|
device,
|
754
842
|
num_images_per_prompt,
|
755
|
-
do_classifier_free_guidance,
|
843
|
+
self.do_classifier_free_guidance,
|
756
844
|
negative_prompt,
|
757
845
|
prompt_embeds=prompt_embeds,
|
758
846
|
negative_prompt_embeds=negative_prompt_embeds,
|
@@ -761,12 +849,11 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
761
849
|
# For classifier free guidance, we need to do two forward passes.
|
762
850
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
763
851
|
# to avoid doing two forward passes
|
764
|
-
if do_classifier_free_guidance:
|
852
|
+
if self.do_classifier_free_guidance:
|
765
853
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
766
854
|
|
767
855
|
# 4. Prepare timesteps
|
768
|
-
self.scheduler
|
769
|
-
timesteps = self.scheduler.timesteps
|
856
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
770
857
|
|
771
858
|
# 5. Prepare latent variables
|
772
859
|
num_channels_latents = self.unet.config.in_channels
|
@@ -784,6 +871,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
784
871
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
785
872
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
786
873
|
|
874
|
+
# 6.5 Optionally get Guidance Scale Embedding
|
875
|
+
timestep_cond = None
|
876
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
877
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
878
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
879
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
880
|
+
).to(device=device, dtype=latents.dtype)
|
881
|
+
|
787
882
|
# 7. Denoising loop
|
788
883
|
if isinstance(self.adapter, MultiAdapter):
|
789
884
|
adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
|
@@ -796,7 +891,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
796
891
|
if num_images_per_prompt > 1:
|
797
892
|
for k, v in enumerate(adapter_state):
|
798
893
|
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
799
|
-
if do_classifier_free_guidance:
|
894
|
+
if self.do_classifier_free_guidance:
|
800
895
|
for k, v in enumerate(adapter_state):
|
801
896
|
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
802
897
|
|
@@ -804,7 +899,7 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
804
899
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
805
900
|
for i, t in enumerate(timesteps):
|
806
901
|
# expand the latents if we are doing classifier free guidance
|
807
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
902
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
808
903
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
809
904
|
|
810
905
|
# predict the noise residual
|
@@ -812,13 +907,14 @@ class StableDiffusionAdapterPipeline(DiffusionPipeline):
|
|
812
907
|
latent_model_input,
|
813
908
|
t,
|
814
909
|
encoder_hidden_states=prompt_embeds,
|
910
|
+
timestep_cond=timestep_cond,
|
815
911
|
cross_attention_kwargs=cross_attention_kwargs,
|
816
912
|
down_intrablock_additional_residuals=[state.clone() for state in adapter_state],
|
817
913
|
return_dict=False,
|
818
914
|
)[0]
|
819
915
|
|
820
916
|
# perform guidance
|
821
|
-
if do_classifier_free_guidance:
|
917
|
+
if self.do_classifier_free_guidance:
|
822
918
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
823
919
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
824
920
|
|
@@ -123,6 +123,51 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
123
123
|
return noise_cfg
|
124
124
|
|
125
125
|
|
126
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
127
|
+
def retrieve_timesteps(
|
128
|
+
scheduler,
|
129
|
+
num_inference_steps: Optional[int] = None,
|
130
|
+
device: Optional[Union[str, torch.device]] = None,
|
131
|
+
timesteps: Optional[List[int]] = None,
|
132
|
+
**kwargs,
|
133
|
+
):
|
134
|
+
"""
|
135
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
136
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
137
|
+
|
138
|
+
Args:
|
139
|
+
scheduler (`SchedulerMixin`):
|
140
|
+
The scheduler to get timesteps from.
|
141
|
+
num_inference_steps (`int`):
|
142
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
143
|
+
`timesteps` must be `None`.
|
144
|
+
device (`str` or `torch.device`, *optional*):
|
145
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
146
|
+
timesteps (`List[int]`, *optional*):
|
147
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
148
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
149
|
+
must be `None`.
|
150
|
+
|
151
|
+
Returns:
|
152
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
153
|
+
second element is the number of inference steps.
|
154
|
+
"""
|
155
|
+
if timesteps is not None:
|
156
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
157
|
+
if not accepts_timesteps:
|
158
|
+
raise ValueError(
|
159
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
160
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
161
|
+
)
|
162
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
163
|
+
timesteps = scheduler.timesteps
|
164
|
+
num_inference_steps = len(timesteps)
|
165
|
+
else:
|
166
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
167
|
+
timesteps = scheduler.timesteps
|
168
|
+
return timesteps, num_inference_steps
|
169
|
+
|
170
|
+
|
126
171
|
class StableDiffusionXLAdapterPipeline(
|
127
172
|
DiffusionPipeline, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
128
173
|
):
|
@@ -159,6 +204,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
159
204
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
160
205
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
161
206
|
"""
|
207
|
+
|
162
208
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
163
209
|
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
164
210
|
|
@@ -670,6 +716,46 @@ class StableDiffusionXLAdapterPipeline(
|
|
670
716
|
"""Disables the FreeU mechanism if enabled."""
|
671
717
|
self.unet.disable_freeu()
|
672
718
|
|
719
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
720
|
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
721
|
+
"""
|
722
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
723
|
+
|
724
|
+
Args:
|
725
|
+
timesteps (`torch.Tensor`):
|
726
|
+
generate embedding vectors at these timesteps
|
727
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
728
|
+
dimension of the embeddings to generate
|
729
|
+
dtype:
|
730
|
+
data type of the generated embeddings
|
731
|
+
|
732
|
+
Returns:
|
733
|
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
734
|
+
"""
|
735
|
+
assert len(w.shape) == 1
|
736
|
+
w = w * 1000.0
|
737
|
+
|
738
|
+
half_dim = embedding_dim // 2
|
739
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
740
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
741
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
742
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
743
|
+
if embedding_dim % 2 == 1: # zero pad
|
744
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
745
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
746
|
+
return emb
|
747
|
+
|
748
|
+
@property
|
749
|
+
def guidance_scale(self):
|
750
|
+
return self._guidance_scale
|
751
|
+
|
752
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
753
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
754
|
+
# corresponds to doing no classifier free guidance.
|
755
|
+
@property
|
756
|
+
def do_classifier_free_guidance(self):
|
757
|
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
758
|
+
|
673
759
|
@torch.no_grad()
|
674
760
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
675
761
|
def __call__(
|
@@ -680,6 +766,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
680
766
|
height: Optional[int] = None,
|
681
767
|
width: Optional[int] = None,
|
682
768
|
num_inference_steps: int = 50,
|
769
|
+
timesteps: List[int] = None,
|
683
770
|
denoising_end: Optional[float] = None,
|
684
771
|
guidance_scale: float = 5.0,
|
685
772
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
@@ -733,6 +820,10 @@ class StableDiffusionXLAdapterPipeline(
|
|
733
820
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
734
821
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
735
822
|
expense of slower inference.
|
823
|
+
timesteps (`List[int]`, *optional*):
|
824
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
825
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
826
|
+
passed will be used. Must be in descending order.
|
736
827
|
denoising_end (`float`, *optional*):
|
737
828
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
738
829
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
@@ -882,6 +973,8 @@ class StableDiffusionXLAdapterPipeline(
|
|
882
973
|
negative_pooled_prompt_embeds,
|
883
974
|
)
|
884
975
|
|
976
|
+
self._guidance_scale = guidance_scale
|
977
|
+
|
885
978
|
# 2. Define call parameters
|
886
979
|
if prompt is not None and isinstance(prompt, str):
|
887
980
|
batch_size = 1
|
@@ -892,11 +985,6 @@ class StableDiffusionXLAdapterPipeline(
|
|
892
985
|
|
893
986
|
device = self._execution_device
|
894
987
|
|
895
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
896
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
897
|
-
# corresponds to doing no classifier free guidance.
|
898
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
899
|
-
|
900
988
|
# 3. Encode input prompt
|
901
989
|
(
|
902
990
|
prompt_embeds,
|
@@ -908,7 +996,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
908
996
|
prompt_2=prompt_2,
|
909
997
|
device=device,
|
910
998
|
num_images_per_prompt=num_images_per_prompt,
|
911
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
999
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
912
1000
|
negative_prompt=negative_prompt,
|
913
1001
|
negative_prompt_2=negative_prompt_2,
|
914
1002
|
prompt_embeds=prompt_embeds,
|
@@ -919,9 +1007,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
919
1007
|
)
|
920
1008
|
|
921
1009
|
# 4. Prepare timesteps
|
922
|
-
self.scheduler
|
923
|
-
|
924
|
-
timesteps = self.scheduler.timesteps
|
1010
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
925
1011
|
|
926
1012
|
# 5. Prepare latent variables
|
927
1013
|
num_channels_latents = self.unet.config.in_channels
|
@@ -939,6 +1025,14 @@ class StableDiffusionXLAdapterPipeline(
|
|
939
1025
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
940
1026
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
941
1027
|
|
1028
|
+
# 6.5 Optionally get Guidance Scale Embedding
|
1029
|
+
timestep_cond = None
|
1030
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
1031
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1032
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
1033
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1034
|
+
).to(device=device, dtype=latents.dtype)
|
1035
|
+
|
942
1036
|
# 7. Prepare added time ids & embeddings & adapter features
|
943
1037
|
if isinstance(self.adapter, MultiAdapter):
|
944
1038
|
adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
|
@@ -951,7 +1045,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
951
1045
|
if num_images_per_prompt > 1:
|
952
1046
|
for k, v in enumerate(adapter_state):
|
953
1047
|
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
954
|
-
if do_classifier_free_guidance:
|
1048
|
+
if self.do_classifier_free_guidance:
|
955
1049
|
for k, v in enumerate(adapter_state):
|
956
1050
|
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
957
1051
|
|
@@ -979,7 +1073,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
979
1073
|
else:
|
980
1074
|
negative_add_time_ids = add_time_ids
|
981
1075
|
|
982
|
-
if do_classifier_free_guidance:
|
1076
|
+
if self.do_classifier_free_guidance:
|
983
1077
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
984
1078
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
985
1079
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
@@ -1005,7 +1099,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
1005
1099
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1006
1100
|
for i, t in enumerate(timesteps):
|
1007
1101
|
# expand the latents if we are doing classifier free guidance
|
1008
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1102
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1009
1103
|
|
1010
1104
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1011
1105
|
|
@@ -1021,6 +1115,7 @@ class StableDiffusionXLAdapterPipeline(
|
|
1021
1115
|
latent_model_input,
|
1022
1116
|
t,
|
1023
1117
|
encoder_hidden_states=prompt_embeds,
|
1118
|
+
timestep_cond=timestep_cond,
|
1024
1119
|
cross_attention_kwargs=cross_attention_kwargs,
|
1025
1120
|
added_cond_kwargs=added_cond_kwargs,
|
1026
1121
|
return_dict=False,
|
@@ -1028,11 +1123,11 @@ class StableDiffusionXLAdapterPipeline(
|
|
1028
1123
|
)[0]
|
1029
1124
|
|
1030
1125
|
# perform guidance
|
1031
|
-
if do_classifier_free_guidance:
|
1126
|
+
if self.do_classifier_free_guidance:
|
1032
1127
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1033
1128
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1034
1129
|
|
1035
|
-
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1130
|
+
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
1036
1131
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1037
1132
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1038
1133
|
|
@@ -25,6 +25,7 @@ else:
|
|
25
25
|
_import_structure["pipeline_text_to_video_synth"] = ["TextToVideoSDPipeline"]
|
26
26
|
_import_structure["pipeline_text_to_video_synth_img2img"] = ["VideoToVideoSDPipeline"]
|
27
27
|
_import_structure["pipeline_text_to_video_zero"] = ["TextToVideoZeroPipeline"]
|
28
|
+
_import_structure["pipeline_text_to_video_zero_sdxl"] = ["TextToVideoZeroSDXLPipeline"]
|
28
29
|
|
29
30
|
|
30
31
|
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
@@ -38,6 +39,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
38
39
|
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
|
39
40
|
from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline
|
40
41
|
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
|
42
|
+
from .pipeline_text_to_video_zero_sdxl import TextToVideoZeroSDXLPipeline
|
41
43
|
|
42
44
|
else:
|
43
45
|
import sys
|
@@ -96,6 +96,7 @@ class TextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lora
|
|
96
96
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
97
97
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
98
98
|
"""
|
99
|
+
|
99
100
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
100
101
|
|
101
102
|
def __init__(
|
@@ -79,6 +79,20 @@ EXAMPLE_DOC_STRING = """
|
|
79
79
|
"""
|
80
80
|
|
81
81
|
|
82
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
83
|
+
def retrieve_latents(
|
84
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
85
|
+
):
|
86
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
87
|
+
return encoder_output.latent_dist.sample(generator)
|
88
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
89
|
+
return encoder_output.latent_dist.mode()
|
90
|
+
elif hasattr(encoder_output, "latents"):
|
91
|
+
return encoder_output.latents
|
92
|
+
else:
|
93
|
+
raise AttributeError("Could not access latents of provided encoder_output")
|
94
|
+
|
95
|
+
|
82
96
|
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
|
83
97
|
# This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
84
98
|
# reshape to ncfhw
|
@@ -158,6 +172,7 @@ class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
158
172
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
159
173
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
160
174
|
"""
|
175
|
+
|
161
176
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
162
177
|
|
163
178
|
def __init__(
|
@@ -546,14 +561,14 @@ class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
|
|
546
561
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
547
562
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
548
563
|
)
|
549
|
-
|
550
564
|
elif isinstance(generator, list):
|
551
565
|
init_latents = [
|
552
|
-
self.vae.encode(video[i : i + 1])
|
566
|
+
retrieve_latents(self.vae.encode(video[i : i + 1]), generator=generator[i])
|
567
|
+
for i in range(batch_size)
|
553
568
|
]
|
554
569
|
init_latents = torch.cat(init_latents, dim=0)
|
555
570
|
else:
|
556
|
-
init_latents = self.vae.encode(video)
|
571
|
+
init_latents = retrieve_latents(self.vae.encode(video), generator=generator)
|
557
572
|
|
558
573
|
init_latents = self.vae.config.scaling_factor * init_latents
|
559
574
|
|
@@ -13,6 +13,7 @@ from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
13
13
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline, StableDiffusionSafetyChecker
|
14
14
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
15
15
|
from diffusers.utils import BaseOutput
|
16
|
+
from diffusers.utils.torch_utils import randn_tensor
|
16
17
|
|
17
18
|
|
18
19
|
def rearrange_0(tensor, f):
|
@@ -135,7 +136,7 @@ class CrossFrameAttnProcessor2_0:
|
|
135
136
|
|
136
137
|
# Cross Frame Attention
|
137
138
|
if not is_cross_attention:
|
138
|
-
video_length = key.size()[0] // self.batch_size
|
139
|
+
video_length = max(1, key.size()[0] // self.batch_size)
|
139
140
|
first_frame_index = [0] * video_length
|
140
141
|
|
141
142
|
# rearrange keys to have batch and frames in the 1st and 2nd dims respectively
|
@@ -183,6 +184,7 @@ class TextToVideoPipelineOutput(BaseOutput):
|
|
183
184
|
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
|
184
185
|
`None` if safety checking could not be performed.
|
185
186
|
"""
|
187
|
+
|
186
188
|
images: Union[List[PIL.Image.Image], np.ndarray]
|
187
189
|
nsfw_content_detected: Optional[List[bool]]
|
188
190
|
|
@@ -338,7 +340,7 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
338
340
|
x_t1:
|
339
341
|
Forward process applied to x_t0 from time t0 to t1.
|
340
342
|
"""
|
341
|
-
eps =
|
343
|
+
eps = randn_tensor(x_t0.size(), generator=generator, dtype=x_t0.dtype, device=x_t0.device)
|
342
344
|
alpha_vec = torch.prod(self.scheduler.alphas[t0:t1])
|
343
345
|
x_t1 = torch.sqrt(alpha_vec) * x_t0 + torch.sqrt(1 - alpha_vec) * eps
|
344
346
|
return x_t1
|