diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,459 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from typing import Dict, List, Optional, Union
|
15
|
+
|
16
|
+
import safetensors
|
17
|
+
import torch
|
18
|
+
from torch import nn
|
19
|
+
|
20
|
+
from ..utils import (
|
21
|
+
DIFFUSERS_CACHE,
|
22
|
+
HF_HUB_OFFLINE,
|
23
|
+
_get_model_file,
|
24
|
+
is_accelerate_available,
|
25
|
+
is_transformers_available,
|
26
|
+
logging,
|
27
|
+
)
|
28
|
+
|
29
|
+
|
30
|
+
if is_transformers_available():
|
31
|
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
32
|
+
|
33
|
+
if is_accelerate_available():
|
34
|
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
35
|
+
|
36
|
+
logger = logging.get_logger(__name__)
|
37
|
+
|
38
|
+
TEXT_INVERSION_NAME = "learned_embeds.bin"
|
39
|
+
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
|
40
|
+
|
41
|
+
|
42
|
+
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
|
43
|
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
44
|
+
force_download = kwargs.pop("force_download", False)
|
45
|
+
resume_download = kwargs.pop("resume_download", False)
|
46
|
+
proxies = kwargs.pop("proxies", None)
|
47
|
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
48
|
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
49
|
+
revision = kwargs.pop("revision", None)
|
50
|
+
subfolder = kwargs.pop("subfolder", None)
|
51
|
+
weight_name = kwargs.pop("weight_name", None)
|
52
|
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
53
|
+
|
54
|
+
allow_pickle = False
|
55
|
+
if use_safetensors is None:
|
56
|
+
use_safetensors = True
|
57
|
+
allow_pickle = True
|
58
|
+
|
59
|
+
user_agent = {
|
60
|
+
"file_type": "text_inversion",
|
61
|
+
"framework": "pytorch",
|
62
|
+
}
|
63
|
+
state_dicts = []
|
64
|
+
for pretrained_model_name_or_path in pretrained_model_name_or_paths:
|
65
|
+
if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
|
66
|
+
# 3.1. Load textual inversion file
|
67
|
+
model_file = None
|
68
|
+
|
69
|
+
# Let's first try to load .safetensors weights
|
70
|
+
if (use_safetensors and weight_name is None) or (
|
71
|
+
weight_name is not None and weight_name.endswith(".safetensors")
|
72
|
+
):
|
73
|
+
try:
|
74
|
+
model_file = _get_model_file(
|
75
|
+
pretrained_model_name_or_path,
|
76
|
+
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
|
77
|
+
cache_dir=cache_dir,
|
78
|
+
force_download=force_download,
|
79
|
+
resume_download=resume_download,
|
80
|
+
proxies=proxies,
|
81
|
+
local_files_only=local_files_only,
|
82
|
+
use_auth_token=use_auth_token,
|
83
|
+
revision=revision,
|
84
|
+
subfolder=subfolder,
|
85
|
+
user_agent=user_agent,
|
86
|
+
)
|
87
|
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
88
|
+
except Exception as e:
|
89
|
+
if not allow_pickle:
|
90
|
+
raise e
|
91
|
+
|
92
|
+
model_file = None
|
93
|
+
|
94
|
+
if model_file is None:
|
95
|
+
model_file = _get_model_file(
|
96
|
+
pretrained_model_name_or_path,
|
97
|
+
weights_name=weight_name or TEXT_INVERSION_NAME,
|
98
|
+
cache_dir=cache_dir,
|
99
|
+
force_download=force_download,
|
100
|
+
resume_download=resume_download,
|
101
|
+
proxies=proxies,
|
102
|
+
local_files_only=local_files_only,
|
103
|
+
use_auth_token=use_auth_token,
|
104
|
+
revision=revision,
|
105
|
+
subfolder=subfolder,
|
106
|
+
user_agent=user_agent,
|
107
|
+
)
|
108
|
+
state_dict = torch.load(model_file, map_location="cpu")
|
109
|
+
else:
|
110
|
+
state_dict = pretrained_model_name_or_path
|
111
|
+
|
112
|
+
state_dicts.append(state_dict)
|
113
|
+
|
114
|
+
return state_dicts
|
115
|
+
|
116
|
+
|
117
|
+
class TextualInversionLoaderMixin:
|
118
|
+
r"""
|
119
|
+
Load Textual Inversion tokens and embeddings to the tokenizer and text encoder.
|
120
|
+
"""
|
121
|
+
|
122
|
+
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
|
123
|
+
r"""
|
124
|
+
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
|
125
|
+
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
|
126
|
+
inversion token or if the textual inversion token is a single vector, the input prompt is returned.
|
127
|
+
|
128
|
+
Parameters:
|
129
|
+
prompt (`str` or list of `str`):
|
130
|
+
The prompt or prompts to guide the image generation.
|
131
|
+
tokenizer (`PreTrainedTokenizer`):
|
132
|
+
The tokenizer responsible for encoding the prompt into input tokens.
|
133
|
+
|
134
|
+
Returns:
|
135
|
+
`str` or list of `str`: The converted prompt
|
136
|
+
"""
|
137
|
+
if not isinstance(prompt, List):
|
138
|
+
prompts = [prompt]
|
139
|
+
else:
|
140
|
+
prompts = prompt
|
141
|
+
|
142
|
+
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
|
143
|
+
|
144
|
+
if not isinstance(prompt, List):
|
145
|
+
return prompts[0]
|
146
|
+
|
147
|
+
return prompts
|
148
|
+
|
149
|
+
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
|
150
|
+
r"""
|
151
|
+
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
|
152
|
+
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
|
153
|
+
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
|
154
|
+
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
|
155
|
+
|
156
|
+
Parameters:
|
157
|
+
prompt (`str`):
|
158
|
+
The prompt to guide the image generation.
|
159
|
+
tokenizer (`PreTrainedTokenizer`):
|
160
|
+
The tokenizer responsible for encoding the prompt into input tokens.
|
161
|
+
|
162
|
+
Returns:
|
163
|
+
`str`: The converted prompt
|
164
|
+
"""
|
165
|
+
tokens = tokenizer.tokenize(prompt)
|
166
|
+
unique_tokens = set(tokens)
|
167
|
+
for token in unique_tokens:
|
168
|
+
if token in tokenizer.added_tokens_encoder:
|
169
|
+
replacement = token
|
170
|
+
i = 1
|
171
|
+
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
|
172
|
+
replacement += f" {token}_{i}"
|
173
|
+
i += 1
|
174
|
+
|
175
|
+
prompt = prompt.replace(token, replacement)
|
176
|
+
|
177
|
+
return prompt
|
178
|
+
|
179
|
+
def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
|
180
|
+
if tokenizer is None:
|
181
|
+
raise ValueError(
|
182
|
+
f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
|
183
|
+
f" `{self.load_textual_inversion.__name__}`"
|
184
|
+
)
|
185
|
+
|
186
|
+
if text_encoder is None:
|
187
|
+
raise ValueError(
|
188
|
+
f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
|
189
|
+
f" `{self.load_textual_inversion.__name__}`"
|
190
|
+
)
|
191
|
+
|
192
|
+
if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens):
|
193
|
+
raise ValueError(
|
194
|
+
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
|
195
|
+
f"Make sure both lists have the same length."
|
196
|
+
)
|
197
|
+
|
198
|
+
valid_tokens = [t for t in tokens if t is not None]
|
199
|
+
if len(set(valid_tokens)) < len(valid_tokens):
|
200
|
+
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
|
201
|
+
|
202
|
+
@staticmethod
|
203
|
+
def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
|
204
|
+
all_tokens = []
|
205
|
+
all_embeddings = []
|
206
|
+
for state_dict, token in zip(state_dicts, tokens):
|
207
|
+
if isinstance(state_dict, torch.Tensor):
|
208
|
+
if token is None:
|
209
|
+
raise ValueError(
|
210
|
+
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
|
211
|
+
)
|
212
|
+
loaded_token = token
|
213
|
+
embedding = state_dict
|
214
|
+
elif len(state_dict) == 1:
|
215
|
+
# diffusers
|
216
|
+
loaded_token, embedding = next(iter(state_dict.items()))
|
217
|
+
elif "string_to_param" in state_dict:
|
218
|
+
# A1111
|
219
|
+
loaded_token = state_dict["name"]
|
220
|
+
embedding = state_dict["string_to_param"]["*"]
|
221
|
+
else:
|
222
|
+
raise ValueError(
|
223
|
+
f"Loaded state dictonary is incorrect: {state_dict}. \n\n"
|
224
|
+
"Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
|
225
|
+
" input key."
|
226
|
+
)
|
227
|
+
|
228
|
+
if token is not None and loaded_token != token:
|
229
|
+
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
|
230
|
+
else:
|
231
|
+
token = loaded_token
|
232
|
+
|
233
|
+
if token in tokenizer.get_vocab():
|
234
|
+
raise ValueError(
|
235
|
+
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
|
236
|
+
)
|
237
|
+
|
238
|
+
all_tokens.append(token)
|
239
|
+
all_embeddings.append(embedding)
|
240
|
+
|
241
|
+
return all_tokens, all_embeddings
|
242
|
+
|
243
|
+
@staticmethod
|
244
|
+
def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
|
245
|
+
all_tokens = []
|
246
|
+
all_embeddings = []
|
247
|
+
|
248
|
+
for embedding, token in zip(embeddings, tokens):
|
249
|
+
if f"{token}_1" in tokenizer.get_vocab():
|
250
|
+
multi_vector_tokens = [token]
|
251
|
+
i = 1
|
252
|
+
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
|
253
|
+
multi_vector_tokens.append(f"{token}_{i}")
|
254
|
+
i += 1
|
255
|
+
|
256
|
+
raise ValueError(
|
257
|
+
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
|
258
|
+
)
|
259
|
+
|
260
|
+
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
|
261
|
+
if is_multi_vector:
|
262
|
+
all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
|
263
|
+
all_embeddings += [e for e in embedding] # noqa: C416
|
264
|
+
else:
|
265
|
+
all_tokens += [token]
|
266
|
+
all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
|
267
|
+
|
268
|
+
return all_tokens, all_embeddings
|
269
|
+
|
270
|
+
def load_textual_inversion(
|
271
|
+
self,
|
272
|
+
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
|
273
|
+
token: Optional[Union[str, List[str]]] = None,
|
274
|
+
tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
|
275
|
+
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
|
276
|
+
**kwargs,
|
277
|
+
):
|
278
|
+
r"""
|
279
|
+
Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
|
280
|
+
Automatic1111 formats are supported).
|
281
|
+
|
282
|
+
Parameters:
|
283
|
+
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
|
284
|
+
Can be either one of the following or a list of them:
|
285
|
+
|
286
|
+
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
|
287
|
+
pretrained model hosted on the Hub.
|
288
|
+
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
|
289
|
+
inversion weights.
|
290
|
+
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
|
291
|
+
- A [torch state
|
292
|
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
293
|
+
|
294
|
+
token (`str` or `List[str]`, *optional*):
|
295
|
+
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
|
296
|
+
list, then `token` must also be a list of equal length.
|
297
|
+
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
|
298
|
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
299
|
+
If not specified, function will take self.tokenizer.
|
300
|
+
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
|
301
|
+
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
|
302
|
+
weight_name (`str`, *optional*):
|
303
|
+
Name of a custom weight file. This should be used when:
|
304
|
+
|
305
|
+
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
|
306
|
+
name such as `text_inv.bin`.
|
307
|
+
- The saved textual inversion file is in the Automatic1111 format.
|
308
|
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
309
|
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
310
|
+
is not used.
|
311
|
+
force_download (`bool`, *optional*, defaults to `False`):
|
312
|
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
313
|
+
cached versions if they exist.
|
314
|
+
resume_download (`bool`, *optional*, defaults to `False`):
|
315
|
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
316
|
+
incompletely downloaded files are deleted.
|
317
|
+
proxies (`Dict[str, str]`, *optional*):
|
318
|
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
319
|
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
320
|
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
321
|
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
322
|
+
won't be downloaded from the Hub.
|
323
|
+
use_auth_token (`str` or *bool*, *optional*):
|
324
|
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
325
|
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
326
|
+
revision (`str`, *optional*, defaults to `"main"`):
|
327
|
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
328
|
+
allowed by Git.
|
329
|
+
subfolder (`str`, *optional*, defaults to `""`):
|
330
|
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
331
|
+
mirror (`str`, *optional*):
|
332
|
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
333
|
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
334
|
+
information.
|
335
|
+
|
336
|
+
Example:
|
337
|
+
|
338
|
+
To load a Textual Inversion embedding vector in 🤗 Diffusers format:
|
339
|
+
|
340
|
+
```py
|
341
|
+
from diffusers import StableDiffusionPipeline
|
342
|
+
import torch
|
343
|
+
|
344
|
+
model_id = "runwayml/stable-diffusion-v1-5"
|
345
|
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
346
|
+
|
347
|
+
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
|
348
|
+
|
349
|
+
prompt = "A <cat-toy> backpack"
|
350
|
+
|
351
|
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
352
|
+
image.save("cat-backpack.png")
|
353
|
+
```
|
354
|
+
|
355
|
+
To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first
|
356
|
+
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
|
357
|
+
locally:
|
358
|
+
|
359
|
+
```py
|
360
|
+
from diffusers import StableDiffusionPipeline
|
361
|
+
import torch
|
362
|
+
|
363
|
+
model_id = "runwayml/stable-diffusion-v1-5"
|
364
|
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
365
|
+
|
366
|
+
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
|
367
|
+
|
368
|
+
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
|
369
|
+
|
370
|
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
371
|
+
image.save("character.png")
|
372
|
+
```
|
373
|
+
|
374
|
+
"""
|
375
|
+
# 1. Set correct tokenizer and text encoder
|
376
|
+
tokenizer = tokenizer or getattr(self, "tokenizer", None)
|
377
|
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
378
|
+
|
379
|
+
# 2. Normalize inputs
|
380
|
+
pretrained_model_name_or_paths = (
|
381
|
+
[pretrained_model_name_or_path]
|
382
|
+
if not isinstance(pretrained_model_name_or_path, list)
|
383
|
+
else pretrained_model_name_or_path
|
384
|
+
)
|
385
|
+
tokens = [token] if not isinstance(token, list) else token
|
386
|
+
if tokens[0] is None:
|
387
|
+
tokens = tokens * len(pretrained_model_name_or_paths)
|
388
|
+
|
389
|
+
# 3. Check inputs
|
390
|
+
self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
|
391
|
+
|
392
|
+
# 4. Load state dicts of textual embeddings
|
393
|
+
state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
|
394
|
+
|
395
|
+
# 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens
|
396
|
+
if len(tokens) > 1 and len(state_dicts) == 1:
|
397
|
+
if isinstance(state_dicts[0], torch.Tensor):
|
398
|
+
state_dicts = list(state_dicts[0])
|
399
|
+
if len(tokens) != len(state_dicts):
|
400
|
+
raise ValueError(
|
401
|
+
f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} "
|
402
|
+
f"Make sure both have the same length."
|
403
|
+
)
|
404
|
+
|
405
|
+
# 4. Retrieve tokens and embeddings
|
406
|
+
tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
|
407
|
+
|
408
|
+
# 5. Extend tokens and embeddings for multi vector
|
409
|
+
tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
|
410
|
+
|
411
|
+
# 6. Make sure all embeddings have the correct size
|
412
|
+
expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
|
413
|
+
if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
|
414
|
+
raise ValueError(
|
415
|
+
"Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
|
416
|
+
"to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
|
417
|
+
)
|
418
|
+
|
419
|
+
# 7. Now we can be sure that loading the embedding matrix works
|
420
|
+
# < Unsafe code:
|
421
|
+
|
422
|
+
# 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
|
423
|
+
is_model_cpu_offload = False
|
424
|
+
is_sequential_cpu_offload = False
|
425
|
+
for _, component in self.components.items():
|
426
|
+
if isinstance(component, nn.Module):
|
427
|
+
if hasattr(component, "_hf_hook"):
|
428
|
+
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
429
|
+
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
430
|
+
logger.info(
|
431
|
+
"Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
|
432
|
+
)
|
433
|
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
434
|
+
|
435
|
+
# 7.2 save expected device and dtype
|
436
|
+
device = text_encoder.device
|
437
|
+
dtype = text_encoder.dtype
|
438
|
+
|
439
|
+
# 7.3 Increase token embedding matrix
|
440
|
+
text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
|
441
|
+
input_embeddings = text_encoder.get_input_embeddings().weight
|
442
|
+
|
443
|
+
# 7.4 Load token and embedding
|
444
|
+
for token, embedding in zip(tokens, embeddings):
|
445
|
+
# add tokens and get ids
|
446
|
+
tokenizer.add_tokens(token)
|
447
|
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
448
|
+
input_embeddings.data[token_id] = embedding
|
449
|
+
logger.info(f"Loaded textual inversion embedding for {token}.")
|
450
|
+
|
451
|
+
input_embeddings.to(dtype=dtype, device=device)
|
452
|
+
|
453
|
+
# 7.5 Offload the model again
|
454
|
+
if is_model_cpu_offload:
|
455
|
+
self.enable_model_cpu_offload()
|
456
|
+
elif is_sequential_cpu_offload:
|
457
|
+
self.enable_sequential_cpu_offload()
|
458
|
+
|
459
|
+
# / Unsafe Code >
|