diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -51,7 +51,7 @@ EXAMPLE_DOC_STRING = """
|
|
51
51
|
>>> import torch
|
52
52
|
>>> import scipy
|
53
53
|
|
54
|
-
>>> repo_id = "
|
54
|
+
>>> repo_id = "ucsd-reach/musicldm"
|
55
55
|
>>> pipe = MusicLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
56
56
|
>>> pipe = pipe.to("cuda")
|
57
57
|
|
@@ -35,9 +35,13 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
35
35
|
|
36
36
|
|
37
37
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
38
|
-
def retrieve_latents(
|
39
|
-
|
38
|
+
def retrieve_latents(
|
39
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
40
|
+
):
|
41
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
40
42
|
return encoder_output.latent_dist.sample(generator)
|
43
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
44
|
+
return encoder_output.latent_dist.mode()
|
41
45
|
elif hasattr(encoder_output, "latents"):
|
42
46
|
return encoder_output.latents
|
43
47
|
else:
|
@@ -177,6 +181,7 @@ class PaintByExamplePipeline(DiffusionPipeline):
|
|
177
181
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
178
182
|
|
179
183
|
"""
|
184
|
+
|
180
185
|
# TODO: feature_extractor is required to encode initial images (if they are in PIL format),
|
181
186
|
# we should give a descriptive message if the pipeline doesn't have one.
|
182
187
|
|
@@ -112,6 +112,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
112
112
|
- **config_name** ([`str`]) -- The configuration filename that stores the class and module names of all the
|
113
113
|
diffusion pipeline's components.
|
114
114
|
"""
|
115
|
+
|
115
116
|
config_name = "model_index.json"
|
116
117
|
|
117
118
|
def register_modules(self, **kwargs):
|
@@ -537,12 +538,13 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
537
538
|
model = pipeline_class(**init_kwargs, dtype=dtype)
|
538
539
|
return model, params
|
539
540
|
|
540
|
-
@
|
541
|
-
def _get_signature_keys(obj):
|
541
|
+
@classmethod
|
542
|
+
def _get_signature_keys(cls, obj):
|
542
543
|
parameters = inspect.signature(obj.__init__).parameters
|
543
544
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
544
545
|
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
|
545
546
|
expected_modules = set(required_parameters.keys()) - {"self"}
|
547
|
+
|
546
548
|
return expected_modules, optional_parameters
|
547
549
|
|
548
550
|
@property
|
@@ -49,6 +49,7 @@ from ..utils import (
|
|
49
49
|
get_class_from_dynamic_module,
|
50
50
|
is_accelerate_available,
|
51
51
|
is_accelerate_version,
|
52
|
+
is_peft_available,
|
52
53
|
is_torch_version,
|
53
54
|
is_transformers_available,
|
54
55
|
logging,
|
@@ -258,7 +259,7 @@ def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token,
|
|
258
259
|
comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
|
259
260
|
comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]
|
260
261
|
|
261
|
-
if set(
|
262
|
+
if set(model_filenames).issubset(set(comp_model_filenames)):
|
262
263
|
warnings.warn(
|
263
264
|
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
|
264
265
|
FutureWarning,
|
@@ -270,6 +271,20 @@ def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token,
|
|
270
271
|
)
|
271
272
|
|
272
273
|
|
274
|
+
def _unwrap_model(model):
|
275
|
+
"""Unwraps a model."""
|
276
|
+
if is_compiled_module(model):
|
277
|
+
model = model._orig_mod
|
278
|
+
|
279
|
+
if is_peft_available():
|
280
|
+
from peft import PeftModel
|
281
|
+
|
282
|
+
if isinstance(model, PeftModel):
|
283
|
+
model = model.base_model.model
|
284
|
+
|
285
|
+
return model
|
286
|
+
|
287
|
+
|
273
288
|
def maybe_raise_or_warn(
|
274
289
|
library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
|
275
290
|
):
|
@@ -287,9 +302,8 @@ def maybe_raise_or_warn(
|
|
287
302
|
# Dynamo wraps the original model in a private class.
|
288
303
|
# I didn't find a public API to get the original class.
|
289
304
|
sub_model = passed_class_obj[name]
|
290
|
-
|
291
|
-
|
292
|
-
model_cls = sub_model._orig_mod.__class__
|
305
|
+
unwrapped_sub_model = _unwrap_model(sub_model)
|
306
|
+
model_cls = unwrapped_sub_model.__class__
|
293
307
|
|
294
308
|
if not issubclass(model_cls, expected_class_obj):
|
295
309
|
raise ValueError(
|
@@ -528,6 +542,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
528
542
|
- **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
|
529
543
|
pipeline to function (should be overridden by subclasses).
|
530
544
|
"""
|
545
|
+
|
531
546
|
config_name = "model_index.json"
|
532
547
|
model_cpu_offload_seq = None
|
533
548
|
_optional_components = []
|
@@ -542,14 +557,11 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
542
557
|
|
543
558
|
for name, module in kwargs.items():
|
544
559
|
# retrieve library
|
545
|
-
if module is None:
|
560
|
+
if module is None or isinstance(module, (tuple, list)) and module[0] is None:
|
546
561
|
register_dict = {name: (None, None)}
|
547
562
|
else:
|
548
563
|
# register the config from the original module, not the dynamo compiled one
|
549
|
-
|
550
|
-
not_compiled_module = module._orig_mod
|
551
|
-
else:
|
552
|
-
not_compiled_module = module
|
564
|
+
not_compiled_module = _unwrap_model(module)
|
553
565
|
|
554
566
|
library = not_compiled_module.__module__.split(".")[0]
|
555
567
|
|
@@ -652,7 +664,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
652
664
|
# Dynamo wraps the original model in a private class.
|
653
665
|
# I didn't find a public API to get the original class.
|
654
666
|
if is_compiled_module(sub_model):
|
655
|
-
sub_model = sub_model
|
667
|
+
sub_model = _unwrap_model(sub_model)
|
656
668
|
model_cls = sub_model.__class__
|
657
669
|
|
658
670
|
save_method_name = None
|
@@ -1676,7 +1688,8 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
1676
1688
|
if module_candidate is None or not isinstance(module_candidate, str):
|
1677
1689
|
continue
|
1678
1690
|
|
1679
|
-
|
1691
|
+
# We compute candidate file path on the Hub. Do not use `os.path.join`.
|
1692
|
+
candidate_file = f"{component}/{module_candidate}.py"
|
1680
1693
|
|
1681
1694
|
if candidate_file in filenames:
|
1682
1695
|
custom_components[component] = module_candidate
|
@@ -1894,12 +1907,19 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
|
1894
1907
|
" above."
|
1895
1908
|
) from model_info_call_error
|
1896
1909
|
|
1897
|
-
@
|
1898
|
-
def _get_signature_keys(obj):
|
1910
|
+
@classmethod
|
1911
|
+
def _get_signature_keys(cls, obj):
|
1899
1912
|
parameters = inspect.signature(obj.__init__).parameters
|
1900
1913
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
1901
1914
|
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
|
1902
1915
|
expected_modules = set(required_parameters.keys()) - {"self"}
|
1916
|
+
|
1917
|
+
optional_names = list(optional_parameters)
|
1918
|
+
for name in optional_names:
|
1919
|
+
if name in cls._optional_components:
|
1920
|
+
expected_modules.add(name)
|
1921
|
+
optional_parameters.remove(name)
|
1922
|
+
|
1903
1923
|
return expected_modules, optional_parameters
|
1904
1924
|
|
1905
1925
|
@property
|
@@ -19,6 +19,7 @@ import urllib.parse as ul
|
|
19
19
|
from typing import Callable, List, Optional, Tuple, Union
|
20
20
|
|
21
21
|
import torch
|
22
|
+
import torch.nn.functional as F
|
22
23
|
from transformers import T5EncoderModel, T5Tokenizer
|
23
24
|
|
24
25
|
from ...image_processor import VaeImageProcessor
|
@@ -26,6 +27,7 @@ from ...models import AutoencoderKL, Transformer2DModel
|
|
26
27
|
from ...schedulers import DPMSolverMultistepScheduler
|
27
28
|
from ...utils import (
|
28
29
|
BACKENDS_MAPPING,
|
30
|
+
deprecate,
|
29
31
|
is_bs4_available,
|
30
32
|
is_ftfy_available,
|
31
33
|
logging,
|
@@ -43,7 +45,6 @@ if is_bs4_available():
|
|
43
45
|
if is_ftfy_available():
|
44
46
|
import ftfy
|
45
47
|
|
46
|
-
|
47
48
|
EXAMPLE_DOC_STRING = """
|
48
49
|
Examples:
|
49
50
|
```py
|
@@ -60,6 +61,78 @@ EXAMPLE_DOC_STRING = """
|
|
60
61
|
```
|
61
62
|
"""
|
62
63
|
|
64
|
+
ASPECT_RATIO_1024_BIN = {
|
65
|
+
"0.25": [512.0, 2048.0],
|
66
|
+
"0.28": [512.0, 1856.0],
|
67
|
+
"0.32": [576.0, 1792.0],
|
68
|
+
"0.33": [576.0, 1728.0],
|
69
|
+
"0.35": [576.0, 1664.0],
|
70
|
+
"0.4": [640.0, 1600.0],
|
71
|
+
"0.42": [640.0, 1536.0],
|
72
|
+
"0.48": [704.0, 1472.0],
|
73
|
+
"0.5": [704.0, 1408.0],
|
74
|
+
"0.52": [704.0, 1344.0],
|
75
|
+
"0.57": [768.0, 1344.0],
|
76
|
+
"0.6": [768.0, 1280.0],
|
77
|
+
"0.68": [832.0, 1216.0],
|
78
|
+
"0.72": [832.0, 1152.0],
|
79
|
+
"0.78": [896.0, 1152.0],
|
80
|
+
"0.82": [896.0, 1088.0],
|
81
|
+
"0.88": [960.0, 1088.0],
|
82
|
+
"0.94": [960.0, 1024.0],
|
83
|
+
"1.0": [1024.0, 1024.0],
|
84
|
+
"1.07": [1024.0, 960.0],
|
85
|
+
"1.13": [1088.0, 960.0],
|
86
|
+
"1.21": [1088.0, 896.0],
|
87
|
+
"1.29": [1152.0, 896.0],
|
88
|
+
"1.38": [1152.0, 832.0],
|
89
|
+
"1.46": [1216.0, 832.0],
|
90
|
+
"1.67": [1280.0, 768.0],
|
91
|
+
"1.75": [1344.0, 768.0],
|
92
|
+
"2.0": [1408.0, 704.0],
|
93
|
+
"2.09": [1472.0, 704.0],
|
94
|
+
"2.4": [1536.0, 640.0],
|
95
|
+
"2.5": [1600.0, 640.0],
|
96
|
+
"3.0": [1728.0, 576.0],
|
97
|
+
"4.0": [2048.0, 512.0],
|
98
|
+
}
|
99
|
+
|
100
|
+
ASPECT_RATIO_512_BIN = {
|
101
|
+
"0.25": [256.0, 1024.0],
|
102
|
+
"0.28": [256.0, 928.0],
|
103
|
+
"0.32": [288.0, 896.0],
|
104
|
+
"0.33": [288.0, 864.0],
|
105
|
+
"0.35": [288.0, 832.0],
|
106
|
+
"0.4": [320.0, 800.0],
|
107
|
+
"0.42": [320.0, 768.0],
|
108
|
+
"0.48": [352.0, 736.0],
|
109
|
+
"0.5": [352.0, 704.0],
|
110
|
+
"0.52": [352.0, 672.0],
|
111
|
+
"0.57": [384.0, 672.0],
|
112
|
+
"0.6": [384.0, 640.0],
|
113
|
+
"0.68": [416.0, 608.0],
|
114
|
+
"0.72": [416.0, 576.0],
|
115
|
+
"0.78": [448.0, 576.0],
|
116
|
+
"0.82": [448.0, 544.0],
|
117
|
+
"0.88": [480.0, 544.0],
|
118
|
+
"0.94": [480.0, 512.0],
|
119
|
+
"1.0": [512.0, 512.0],
|
120
|
+
"1.07": [512.0, 480.0],
|
121
|
+
"1.13": [544.0, 480.0],
|
122
|
+
"1.21": [544.0, 448.0],
|
123
|
+
"1.29": [576.0, 448.0],
|
124
|
+
"1.38": [576.0, 416.0],
|
125
|
+
"1.46": [608.0, 416.0],
|
126
|
+
"1.67": [640.0, 384.0],
|
127
|
+
"1.75": [672.0, 384.0],
|
128
|
+
"2.0": [704.0, 352.0],
|
129
|
+
"2.09": [736.0, 352.0],
|
130
|
+
"2.4": [768.0, 320.0],
|
131
|
+
"2.5": [800.0, 320.0],
|
132
|
+
"3.0": [864.0, 288.0],
|
133
|
+
"4.0": [1024.0, 256.0],
|
134
|
+
}
|
135
|
+
|
63
136
|
|
64
137
|
class PixArtAlphaPipeline(DiffusionPipeline):
|
65
138
|
r"""
|
@@ -83,8 +156,21 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
83
156
|
scheduler ([`SchedulerMixin`]):
|
84
157
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
85
158
|
"""
|
159
|
+
|
86
160
|
bad_punct_regex = re.compile(
|
87
|
-
r"["
|
161
|
+
r"["
|
162
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
163
|
+
+ r"\)"
|
164
|
+
+ r"\("
|
165
|
+
+ r"\]"
|
166
|
+
+ r"\["
|
167
|
+
+ r"\}"
|
168
|
+
+ r"\{"
|
169
|
+
+ r"\|"
|
170
|
+
+ "\\"
|
171
|
+
+ r"\/"
|
172
|
+
+ r"\*"
|
173
|
+
+ r"]{1,}"
|
88
174
|
) # noqa
|
89
175
|
|
90
176
|
_optional_components = ["tokenizer", "text_encoder"]
|
@@ -126,8 +212,10 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
126
212
|
device: Optional[torch.device] = None,
|
127
213
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
128
214
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
215
|
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
216
|
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
129
217
|
clean_caption: bool = False,
|
130
|
-
|
218
|
+
**kwargs,
|
131
219
|
):
|
132
220
|
r"""
|
133
221
|
Encodes the prompt into text encoder hidden states.
|
@@ -153,10 +241,11 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
153
241
|
string.
|
154
242
|
clean_caption (bool, defaults to `False`):
|
155
243
|
If `True`, the function will preprocess and clean the provided caption before encoding.
|
156
|
-
mask_feature: (bool, defaults to `True`):
|
157
|
-
If `True`, the function will mask the text embeddings.
|
158
244
|
"""
|
159
|
-
|
245
|
+
|
246
|
+
if "mask_feature" in kwargs:
|
247
|
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
248
|
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
160
249
|
|
161
250
|
if device is None:
|
162
251
|
device = self._execution_device
|
@@ -193,13 +282,11 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
193
282
|
f" {max_length} tokens: {removed_text}"
|
194
283
|
)
|
195
284
|
|
196
|
-
|
197
|
-
|
285
|
+
prompt_attention_mask = text_inputs.attention_mask
|
286
|
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
198
287
|
|
199
|
-
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=
|
288
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
200
289
|
prompt_embeds = prompt_embeds[0]
|
201
|
-
else:
|
202
|
-
prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
|
203
290
|
|
204
291
|
if self.text_encoder is not None:
|
205
292
|
dtype = self.text_encoder.dtype
|
@@ -214,8 +301,8 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
214
301
|
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
215
302
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
216
303
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
217
|
-
|
218
|
-
|
304
|
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
305
|
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
219
306
|
|
220
307
|
# get unconditional embeddings for classifier free guidance
|
221
308
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
@@ -231,11 +318,11 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
231
318
|
add_special_tokens=True,
|
232
319
|
return_tensors="pt",
|
233
320
|
)
|
234
|
-
|
321
|
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
322
|
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
235
323
|
|
236
324
|
negative_prompt_embeds = self.text_encoder(
|
237
|
-
uncond_input.input_ids.to(device),
|
238
|
-
attention_mask=attention_mask,
|
325
|
+
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
|
239
326
|
)
|
240
327
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
241
328
|
|
@@ -248,23 +335,13 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
248
335
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
249
336
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
250
337
|
|
251
|
-
|
252
|
-
|
253
|
-
# to avoid doing two forward passes
|
338
|
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
339
|
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
254
340
|
else:
|
255
341
|
negative_prompt_embeds = None
|
342
|
+
negative_prompt_attention_mask = None
|
256
343
|
|
257
|
-
|
258
|
-
if mask_feature and not embeds_initially_provided:
|
259
|
-
prompt_embeds = prompt_embeds.unsqueeze(1)
|
260
|
-
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
|
261
|
-
masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
|
262
|
-
masked_negative_prompt_embeds = (
|
263
|
-
negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
|
264
|
-
)
|
265
|
-
return masked_prompt_embeds, masked_negative_prompt_embeds
|
266
|
-
|
267
|
-
return prompt_embeds, negative_prompt_embeds
|
344
|
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
268
345
|
|
269
346
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
270
347
|
def prepare_extra_step_kwargs(self, generator, eta):
|
@@ -293,6 +370,8 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
293
370
|
callback_steps,
|
294
371
|
prompt_embeds=None,
|
295
372
|
negative_prompt_embeds=None,
|
373
|
+
prompt_attention_mask=None,
|
374
|
+
negative_prompt_attention_mask=None,
|
296
375
|
):
|
297
376
|
if height % 8 != 0 or width % 8 != 0:
|
298
377
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
@@ -329,6 +408,12 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
329
408
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
330
409
|
)
|
331
410
|
|
411
|
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
412
|
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
413
|
+
|
414
|
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
415
|
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
416
|
+
|
332
417
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
333
418
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
334
419
|
raise ValueError(
|
@@ -336,6 +421,12 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
336
421
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
337
422
|
f" {negative_prompt_embeds.shape}."
|
338
423
|
)
|
424
|
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
425
|
+
raise ValueError(
|
426
|
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
427
|
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
428
|
+
f" {negative_prompt_attention_mask.shape}."
|
429
|
+
)
|
339
430
|
|
340
431
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
341
432
|
def _text_preprocessing(self, text, clean_caption=False):
|
@@ -495,6 +586,38 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
495
586
|
latents = latents * self.scheduler.init_noise_sigma
|
496
587
|
return latents
|
497
588
|
|
589
|
+
@staticmethod
|
590
|
+
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
591
|
+
"""Returns binned height and width."""
|
592
|
+
ar = float(height / width)
|
593
|
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
594
|
+
default_hw = ratios[closest_ratio]
|
595
|
+
return int(default_hw[0]), int(default_hw[1])
|
596
|
+
|
597
|
+
@staticmethod
|
598
|
+
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
599
|
+
orig_height, orig_width = samples.shape[2], samples.shape[3]
|
600
|
+
|
601
|
+
# Check if resizing is needed
|
602
|
+
if orig_height != new_height or orig_width != new_width:
|
603
|
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
604
|
+
resized_width = int(orig_width * ratio)
|
605
|
+
resized_height = int(orig_height * ratio)
|
606
|
+
|
607
|
+
# Resize
|
608
|
+
samples = F.interpolate(
|
609
|
+
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
|
610
|
+
)
|
611
|
+
|
612
|
+
# Center Crop
|
613
|
+
start_x = (resized_width - new_width) // 2
|
614
|
+
end_x = start_x + new_width
|
615
|
+
start_y = (resized_height - new_height) // 2
|
616
|
+
end_y = start_y + new_height
|
617
|
+
samples = samples[:, :, start_y:end_y, start_x:end_x]
|
618
|
+
|
619
|
+
return samples
|
620
|
+
|
498
621
|
@torch.no_grad()
|
499
622
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
500
623
|
def __call__(
|
@@ -511,13 +634,16 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
511
634
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
512
635
|
latents: Optional[torch.FloatTensor] = None,
|
513
636
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
637
|
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
514
638
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
639
|
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
515
640
|
output_type: Optional[str] = "pil",
|
516
641
|
return_dict: bool = True,
|
517
642
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
518
643
|
callback_steps: int = 1,
|
519
644
|
clean_caption: bool = True,
|
520
|
-
|
645
|
+
use_resolution_binning: bool = True,
|
646
|
+
**kwargs,
|
521
647
|
) -> Union[ImagePipelineOutput, Tuple]:
|
522
648
|
"""
|
523
649
|
Function invoked when calling the pipeline for generation.
|
@@ -536,7 +662,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
536
662
|
timesteps (`List[int]`, *optional*):
|
537
663
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
538
664
|
timesteps are used. Must be in descending order.
|
539
|
-
guidance_scale (`float`, *optional*, defaults to
|
665
|
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
540
666
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
541
667
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
542
668
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
@@ -561,9 +687,12 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
561
687
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
562
688
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
563
689
|
provided, text embeddings will be generated from `prompt` input argument.
|
690
|
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
564
691
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
565
692
|
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
566
693
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
694
|
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
695
|
+
Pre-generated attention mask for negative text embeddings.
|
567
696
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
568
697
|
The output format of the generate image. Choose between
|
569
698
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -579,7 +708,10 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
579
708
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
580
709
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
581
710
|
prompt.
|
582
|
-
|
711
|
+
use_resolution_binning (`bool` defaults to `True`):
|
712
|
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
713
|
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
714
|
+
the requested resolution. Useful for generating non-square images.
|
583
715
|
|
584
716
|
Examples:
|
585
717
|
|
@@ -588,11 +720,29 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
588
720
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
589
721
|
returned where the first element is a list with the generated images
|
590
722
|
"""
|
723
|
+
if "mask_feature" in kwargs:
|
724
|
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
725
|
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
591
726
|
# 1. Check inputs. Raise error if not correct
|
592
727
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
593
728
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
729
|
+
if use_resolution_binning:
|
730
|
+
aspect_ratio_bin = (
|
731
|
+
ASPECT_RATIO_1024_BIN if self.transformer.config.sample_size == 128 else ASPECT_RATIO_512_BIN
|
732
|
+
)
|
733
|
+
orig_height, orig_width = height, width
|
734
|
+
height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
735
|
+
|
594
736
|
self.check_inputs(
|
595
|
-
prompt,
|
737
|
+
prompt,
|
738
|
+
height,
|
739
|
+
width,
|
740
|
+
negative_prompt,
|
741
|
+
callback_steps,
|
742
|
+
prompt_embeds,
|
743
|
+
negative_prompt_embeds,
|
744
|
+
prompt_attention_mask,
|
745
|
+
negative_prompt_attention_mask,
|
596
746
|
)
|
597
747
|
|
598
748
|
# 2. Default height and width to transformer
|
@@ -611,7 +761,12 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
611
761
|
do_classifier_free_guidance = guidance_scale > 1.0
|
612
762
|
|
613
763
|
# 3. Encode input prompt
|
614
|
-
|
764
|
+
(
|
765
|
+
prompt_embeds,
|
766
|
+
prompt_attention_mask,
|
767
|
+
negative_prompt_embeds,
|
768
|
+
negative_prompt_attention_mask,
|
769
|
+
) = self.encode_prompt(
|
615
770
|
prompt,
|
616
771
|
do_classifier_free_guidance,
|
617
772
|
negative_prompt=negative_prompt,
|
@@ -619,11 +774,13 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
619
774
|
device=device,
|
620
775
|
prompt_embeds=prompt_embeds,
|
621
776
|
negative_prompt_embeds=negative_prompt_embeds,
|
777
|
+
prompt_attention_mask=prompt_attention_mask,
|
778
|
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
622
779
|
clean_caption=clean_caption,
|
623
|
-
mask_feature=mask_feature,
|
624
780
|
)
|
625
781
|
if do_classifier_free_guidance:
|
626
782
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
783
|
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
627
784
|
|
628
785
|
# 4. Prepare timesteps
|
629
786
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
@@ -681,6 +838,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
681
838
|
noise_pred = self.transformer(
|
682
839
|
latent_model_input,
|
683
840
|
encoder_hidden_states=prompt_embeds,
|
841
|
+
encoder_attention_mask=prompt_attention_mask,
|
684
842
|
timestep=current_timestep,
|
685
843
|
added_cond_kwargs=added_cond_kwargs,
|
686
844
|
return_dict=False,
|
@@ -709,6 +867,8 @@ class PixArtAlphaPipeline(DiffusionPipeline):
|
|
709
867
|
|
710
868
|
if not output_type == "latent":
|
711
869
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
870
|
+
if use_resolution_binning:
|
871
|
+
image = self.resize_and_crop_tensor(image, orig_width, orig_height)
|
712
872
|
else:
|
713
873
|
image = latents
|
714
874
|
|