diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,735 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import os
|
15
|
+
from collections import defaultdict
|
16
|
+
from contextlib import nullcontext
|
17
|
+
from typing import Callable, Dict, List, Optional, Union
|
18
|
+
|
19
|
+
import safetensors
|
20
|
+
import torch
|
21
|
+
import torch.nn.functional as F
|
22
|
+
from torch import nn
|
23
|
+
|
24
|
+
from ..models.embeddings import ImageProjection
|
25
|
+
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
26
|
+
from ..utils import (
|
27
|
+
DIFFUSERS_CACHE,
|
28
|
+
HF_HUB_OFFLINE,
|
29
|
+
USE_PEFT_BACKEND,
|
30
|
+
_get_model_file,
|
31
|
+
delete_adapter_layers,
|
32
|
+
is_accelerate_available,
|
33
|
+
logging,
|
34
|
+
set_adapter_layers,
|
35
|
+
set_weights_and_activate_adapters,
|
36
|
+
)
|
37
|
+
from .utils import AttnProcsLayers
|
38
|
+
|
39
|
+
|
40
|
+
if is_accelerate_available():
|
41
|
+
from accelerate import init_empty_weights
|
42
|
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
43
|
+
|
44
|
+
logger = logging.get_logger(__name__)
|
45
|
+
|
46
|
+
|
47
|
+
TEXT_ENCODER_NAME = "text_encoder"
|
48
|
+
UNET_NAME = "unet"
|
49
|
+
|
50
|
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
51
|
+
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
52
|
+
|
53
|
+
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
|
54
|
+
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
|
55
|
+
|
56
|
+
|
57
|
+
class UNet2DConditionLoadersMixin:
|
58
|
+
"""
|
59
|
+
Load LoRA layers into a [`UNet2DCondtionModel`].
|
60
|
+
"""
|
61
|
+
|
62
|
+
text_encoder_name = TEXT_ENCODER_NAME
|
63
|
+
unet_name = UNET_NAME
|
64
|
+
|
65
|
+
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
66
|
+
r"""
|
67
|
+
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
|
68
|
+
defined in
|
69
|
+
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
|
70
|
+
and be a `torch.nn.Module` class.
|
71
|
+
|
72
|
+
Parameters:
|
73
|
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
74
|
+
Can be either:
|
75
|
+
|
76
|
+
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
77
|
+
the Hub.
|
78
|
+
- A path to a directory (for example `./my_model_directory`) containing the model weights saved
|
79
|
+
with [`ModelMixin.save_pretrained`].
|
80
|
+
- A [torch state
|
81
|
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
82
|
+
|
83
|
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
84
|
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
85
|
+
is not used.
|
86
|
+
force_download (`bool`, *optional*, defaults to `False`):
|
87
|
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
88
|
+
cached versions if they exist.
|
89
|
+
resume_download (`bool`, *optional*, defaults to `False`):
|
90
|
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
91
|
+
incompletely downloaded files are deleted.
|
92
|
+
proxies (`Dict[str, str]`, *optional*):
|
93
|
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
94
|
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
95
|
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
96
|
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
97
|
+
won't be downloaded from the Hub.
|
98
|
+
use_auth_token (`str` or *bool*, *optional*):
|
99
|
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
100
|
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
101
|
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
102
|
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
103
|
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
104
|
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
105
|
+
argument to `True` will raise an error.
|
106
|
+
revision (`str`, *optional*, defaults to `"main"`):
|
107
|
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
108
|
+
allowed by Git.
|
109
|
+
subfolder (`str`, *optional*, defaults to `""`):
|
110
|
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
111
|
+
mirror (`str`, *optional*):
|
112
|
+
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
|
113
|
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
114
|
+
information.
|
115
|
+
|
116
|
+
Example:
|
117
|
+
|
118
|
+
```py
|
119
|
+
from diffusers import AutoPipelineForText2Image
|
120
|
+
import torch
|
121
|
+
|
122
|
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
123
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
124
|
+
).to("cuda")
|
125
|
+
pipeline.unet.load_attn_procs(
|
126
|
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
127
|
+
)
|
128
|
+
```
|
129
|
+
"""
|
130
|
+
from ..models.attention_processor import CustomDiffusionAttnProcessor
|
131
|
+
from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
|
132
|
+
|
133
|
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
134
|
+
force_download = kwargs.pop("force_download", False)
|
135
|
+
resume_download = kwargs.pop("resume_download", False)
|
136
|
+
proxies = kwargs.pop("proxies", None)
|
137
|
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
138
|
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
139
|
+
revision = kwargs.pop("revision", None)
|
140
|
+
subfolder = kwargs.pop("subfolder", None)
|
141
|
+
weight_name = kwargs.pop("weight_name", None)
|
142
|
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
143
|
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
144
|
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
145
|
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
146
|
+
network_alphas = kwargs.pop("network_alphas", None)
|
147
|
+
|
148
|
+
_pipeline = kwargs.pop("_pipeline", None)
|
149
|
+
|
150
|
+
is_network_alphas_none = network_alphas is None
|
151
|
+
|
152
|
+
allow_pickle = False
|
153
|
+
|
154
|
+
if use_safetensors is None:
|
155
|
+
use_safetensors = True
|
156
|
+
allow_pickle = True
|
157
|
+
|
158
|
+
user_agent = {
|
159
|
+
"file_type": "attn_procs_weights",
|
160
|
+
"framework": "pytorch",
|
161
|
+
}
|
162
|
+
|
163
|
+
if low_cpu_mem_usage and not is_accelerate_available():
|
164
|
+
low_cpu_mem_usage = False
|
165
|
+
logger.warning(
|
166
|
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
167
|
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
168
|
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
169
|
+
" install accelerate\n```\n."
|
170
|
+
)
|
171
|
+
|
172
|
+
model_file = None
|
173
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
174
|
+
# Let's first try to load .safetensors weights
|
175
|
+
if (use_safetensors and weight_name is None) or (
|
176
|
+
weight_name is not None and weight_name.endswith(".safetensors")
|
177
|
+
):
|
178
|
+
try:
|
179
|
+
model_file = _get_model_file(
|
180
|
+
pretrained_model_name_or_path_or_dict,
|
181
|
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
182
|
+
cache_dir=cache_dir,
|
183
|
+
force_download=force_download,
|
184
|
+
resume_download=resume_download,
|
185
|
+
proxies=proxies,
|
186
|
+
local_files_only=local_files_only,
|
187
|
+
use_auth_token=use_auth_token,
|
188
|
+
revision=revision,
|
189
|
+
subfolder=subfolder,
|
190
|
+
user_agent=user_agent,
|
191
|
+
)
|
192
|
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
193
|
+
except IOError as e:
|
194
|
+
if not allow_pickle:
|
195
|
+
raise e
|
196
|
+
# try loading non-safetensors weights
|
197
|
+
pass
|
198
|
+
if model_file is None:
|
199
|
+
model_file = _get_model_file(
|
200
|
+
pretrained_model_name_or_path_or_dict,
|
201
|
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
202
|
+
cache_dir=cache_dir,
|
203
|
+
force_download=force_download,
|
204
|
+
resume_download=resume_download,
|
205
|
+
proxies=proxies,
|
206
|
+
local_files_only=local_files_only,
|
207
|
+
use_auth_token=use_auth_token,
|
208
|
+
revision=revision,
|
209
|
+
subfolder=subfolder,
|
210
|
+
user_agent=user_agent,
|
211
|
+
)
|
212
|
+
state_dict = torch.load(model_file, map_location="cpu")
|
213
|
+
else:
|
214
|
+
state_dict = pretrained_model_name_or_path_or_dict
|
215
|
+
|
216
|
+
# fill attn processors
|
217
|
+
lora_layers_list = []
|
218
|
+
|
219
|
+
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
|
220
|
+
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
|
221
|
+
|
222
|
+
if is_lora:
|
223
|
+
# correct keys
|
224
|
+
state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
|
225
|
+
|
226
|
+
if network_alphas is not None:
|
227
|
+
network_alphas_keys = list(network_alphas.keys())
|
228
|
+
used_network_alphas_keys = set()
|
229
|
+
|
230
|
+
lora_grouped_dict = defaultdict(dict)
|
231
|
+
mapped_network_alphas = {}
|
232
|
+
|
233
|
+
all_keys = list(state_dict.keys())
|
234
|
+
for key in all_keys:
|
235
|
+
value = state_dict.pop(key)
|
236
|
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
237
|
+
lora_grouped_dict[attn_processor_key][sub_key] = value
|
238
|
+
|
239
|
+
# Create another `mapped_network_alphas` dictionary so that we can properly map them.
|
240
|
+
if network_alphas is not None:
|
241
|
+
for k in network_alphas_keys:
|
242
|
+
if k.replace(".alpha", "") in key:
|
243
|
+
mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
|
244
|
+
used_network_alphas_keys.add(k)
|
245
|
+
|
246
|
+
if not is_network_alphas_none:
|
247
|
+
if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
|
248
|
+
raise ValueError(
|
249
|
+
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
|
250
|
+
)
|
251
|
+
|
252
|
+
if len(state_dict) > 0:
|
253
|
+
raise ValueError(
|
254
|
+
f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
|
255
|
+
)
|
256
|
+
|
257
|
+
for key, value_dict in lora_grouped_dict.items():
|
258
|
+
attn_processor = self
|
259
|
+
for sub_key in key.split("."):
|
260
|
+
attn_processor = getattr(attn_processor, sub_key)
|
261
|
+
|
262
|
+
# Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
|
263
|
+
# or add_{k,v,q,out_proj}_proj_lora layers.
|
264
|
+
rank = value_dict["lora.down.weight"].shape[0]
|
265
|
+
|
266
|
+
if isinstance(attn_processor, LoRACompatibleConv):
|
267
|
+
in_features = attn_processor.in_channels
|
268
|
+
out_features = attn_processor.out_channels
|
269
|
+
kernel_size = attn_processor.kernel_size
|
270
|
+
|
271
|
+
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
272
|
+
with ctx():
|
273
|
+
lora = LoRAConv2dLayer(
|
274
|
+
in_features=in_features,
|
275
|
+
out_features=out_features,
|
276
|
+
rank=rank,
|
277
|
+
kernel_size=kernel_size,
|
278
|
+
stride=attn_processor.stride,
|
279
|
+
padding=attn_processor.padding,
|
280
|
+
network_alpha=mapped_network_alphas.get(key),
|
281
|
+
)
|
282
|
+
elif isinstance(attn_processor, LoRACompatibleLinear):
|
283
|
+
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
|
284
|
+
with ctx():
|
285
|
+
lora = LoRALinearLayer(
|
286
|
+
attn_processor.in_features,
|
287
|
+
attn_processor.out_features,
|
288
|
+
rank,
|
289
|
+
mapped_network_alphas.get(key),
|
290
|
+
)
|
291
|
+
else:
|
292
|
+
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
|
293
|
+
|
294
|
+
value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
|
295
|
+
lora_layers_list.append((attn_processor, lora))
|
296
|
+
|
297
|
+
if low_cpu_mem_usage:
|
298
|
+
device = next(iter(value_dict.values())).device
|
299
|
+
dtype = next(iter(value_dict.values())).dtype
|
300
|
+
load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
|
301
|
+
else:
|
302
|
+
lora.load_state_dict(value_dict)
|
303
|
+
|
304
|
+
elif is_custom_diffusion:
|
305
|
+
attn_processors = {}
|
306
|
+
custom_diffusion_grouped_dict = defaultdict(dict)
|
307
|
+
for key, value in state_dict.items():
|
308
|
+
if len(value) == 0:
|
309
|
+
custom_diffusion_grouped_dict[key] = {}
|
310
|
+
else:
|
311
|
+
if "to_out" in key:
|
312
|
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
313
|
+
else:
|
314
|
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
315
|
+
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
|
316
|
+
|
317
|
+
for key, value_dict in custom_diffusion_grouped_dict.items():
|
318
|
+
if len(value_dict) == 0:
|
319
|
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
320
|
+
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
|
321
|
+
)
|
322
|
+
else:
|
323
|
+
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
|
324
|
+
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
|
325
|
+
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
|
326
|
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
327
|
+
train_kv=True,
|
328
|
+
train_q_out=train_q_out,
|
329
|
+
hidden_size=hidden_size,
|
330
|
+
cross_attention_dim=cross_attention_dim,
|
331
|
+
)
|
332
|
+
attn_processors[key].load_state_dict(value_dict)
|
333
|
+
elif USE_PEFT_BACKEND:
|
334
|
+
# In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
|
335
|
+
# on the Unet
|
336
|
+
pass
|
337
|
+
else:
|
338
|
+
raise ValueError(
|
339
|
+
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
|
340
|
+
)
|
341
|
+
|
342
|
+
# <Unsafe code
|
343
|
+
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
344
|
+
# Now we remove any existing hooks to
|
345
|
+
is_model_cpu_offload = False
|
346
|
+
is_sequential_cpu_offload = False
|
347
|
+
|
348
|
+
# For PEFT backend the Unet is already offloaded at this stage as it is handled inside `lora_lora_weights_into_unet`
|
349
|
+
if not USE_PEFT_BACKEND:
|
350
|
+
if _pipeline is not None:
|
351
|
+
for _, component in _pipeline.components.items():
|
352
|
+
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
353
|
+
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
354
|
+
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
355
|
+
|
356
|
+
logger.info(
|
357
|
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
358
|
+
)
|
359
|
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
360
|
+
|
361
|
+
# only custom diffusion needs to set attn processors
|
362
|
+
if is_custom_diffusion:
|
363
|
+
self.set_attn_processor(attn_processors)
|
364
|
+
|
365
|
+
# set lora layers
|
366
|
+
for target_module, lora_layer in lora_layers_list:
|
367
|
+
target_module.set_lora_layer(lora_layer)
|
368
|
+
|
369
|
+
self.to(dtype=self.dtype, device=self.device)
|
370
|
+
|
371
|
+
# Offload back.
|
372
|
+
if is_model_cpu_offload:
|
373
|
+
_pipeline.enable_model_cpu_offload()
|
374
|
+
elif is_sequential_cpu_offload:
|
375
|
+
_pipeline.enable_sequential_cpu_offload()
|
376
|
+
# Unsafe code />
|
377
|
+
|
378
|
+
def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
|
379
|
+
is_new_lora_format = all(
|
380
|
+
key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
|
381
|
+
)
|
382
|
+
if is_new_lora_format:
|
383
|
+
# Strip the `"unet"` prefix.
|
384
|
+
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
|
385
|
+
if is_text_encoder_present:
|
386
|
+
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
|
387
|
+
logger.warn(warn_message)
|
388
|
+
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
|
389
|
+
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
|
390
|
+
|
391
|
+
# change processor format to 'pure' LoRACompatibleLinear format
|
392
|
+
if any("processor" in k.split(".") for k in state_dict.keys()):
|
393
|
+
|
394
|
+
def format_to_lora_compatible(key):
|
395
|
+
if "processor" not in key.split("."):
|
396
|
+
return key
|
397
|
+
return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
|
398
|
+
|
399
|
+
state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
|
400
|
+
|
401
|
+
if network_alphas is not None:
|
402
|
+
network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
|
403
|
+
return state_dict, network_alphas
|
404
|
+
|
405
|
+
def save_attn_procs(
|
406
|
+
self,
|
407
|
+
save_directory: Union[str, os.PathLike],
|
408
|
+
is_main_process: bool = True,
|
409
|
+
weight_name: str = None,
|
410
|
+
save_function: Callable = None,
|
411
|
+
safe_serialization: bool = True,
|
412
|
+
**kwargs,
|
413
|
+
):
|
414
|
+
r"""
|
415
|
+
Save attention processor layers to a directory so that it can be reloaded with the
|
416
|
+
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
|
417
|
+
|
418
|
+
Arguments:
|
419
|
+
save_directory (`str` or `os.PathLike`):
|
420
|
+
Directory to save an attention processor to (will be created if it doesn't exist).
|
421
|
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
422
|
+
Whether the process calling this is the main process or not. Useful during distributed training and you
|
423
|
+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
424
|
+
process to avoid race conditions.
|
425
|
+
save_function (`Callable`):
|
426
|
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
427
|
+
replace `torch.save` with another method. Can be configured with the environment variable
|
428
|
+
`DIFFUSERS_SAVE_MODE`.
|
429
|
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
430
|
+
Whether to save the model using `safetensors` or with `pickle`.
|
431
|
+
|
432
|
+
Example:
|
433
|
+
|
434
|
+
```py
|
435
|
+
import torch
|
436
|
+
from diffusers import DiffusionPipeline
|
437
|
+
|
438
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
439
|
+
"CompVis/stable-diffusion-v1-4",
|
440
|
+
torch_dtype=torch.float16,
|
441
|
+
).to("cuda")
|
442
|
+
pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
443
|
+
pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
444
|
+
```
|
445
|
+
"""
|
446
|
+
from ..models.attention_processor import (
|
447
|
+
CustomDiffusionAttnProcessor,
|
448
|
+
CustomDiffusionAttnProcessor2_0,
|
449
|
+
CustomDiffusionXFormersAttnProcessor,
|
450
|
+
)
|
451
|
+
|
452
|
+
if os.path.isfile(save_directory):
|
453
|
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
454
|
+
return
|
455
|
+
|
456
|
+
if save_function is None:
|
457
|
+
if safe_serialization:
|
458
|
+
|
459
|
+
def save_function(weights, filename):
|
460
|
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
461
|
+
|
462
|
+
else:
|
463
|
+
save_function = torch.save
|
464
|
+
|
465
|
+
os.makedirs(save_directory, exist_ok=True)
|
466
|
+
|
467
|
+
is_custom_diffusion = any(
|
468
|
+
isinstance(
|
469
|
+
x,
|
470
|
+
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
|
471
|
+
)
|
472
|
+
for (_, x) in self.attn_processors.items()
|
473
|
+
)
|
474
|
+
if is_custom_diffusion:
|
475
|
+
model_to_save = AttnProcsLayers(
|
476
|
+
{
|
477
|
+
y: x
|
478
|
+
for (y, x) in self.attn_processors.items()
|
479
|
+
if isinstance(
|
480
|
+
x,
|
481
|
+
(
|
482
|
+
CustomDiffusionAttnProcessor,
|
483
|
+
CustomDiffusionAttnProcessor2_0,
|
484
|
+
CustomDiffusionXFormersAttnProcessor,
|
485
|
+
),
|
486
|
+
)
|
487
|
+
}
|
488
|
+
)
|
489
|
+
state_dict = model_to_save.state_dict()
|
490
|
+
for name, attn in self.attn_processors.items():
|
491
|
+
if len(attn.state_dict()) == 0:
|
492
|
+
state_dict[name] = {}
|
493
|
+
else:
|
494
|
+
model_to_save = AttnProcsLayers(self.attn_processors)
|
495
|
+
state_dict = model_to_save.state_dict()
|
496
|
+
|
497
|
+
if weight_name is None:
|
498
|
+
if safe_serialization:
|
499
|
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
|
500
|
+
else:
|
501
|
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
|
502
|
+
|
503
|
+
# Save the model
|
504
|
+
save_function(state_dict, os.path.join(save_directory, weight_name))
|
505
|
+
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
|
506
|
+
|
507
|
+
def fuse_lora(self, lora_scale=1.0, safe_fusing=False):
|
508
|
+
self.lora_scale = lora_scale
|
509
|
+
self._safe_fusing = safe_fusing
|
510
|
+
self.apply(self._fuse_lora_apply)
|
511
|
+
|
512
|
+
def _fuse_lora_apply(self, module):
|
513
|
+
if not USE_PEFT_BACKEND:
|
514
|
+
if hasattr(module, "_fuse_lora"):
|
515
|
+
module._fuse_lora(self.lora_scale, self._safe_fusing)
|
516
|
+
else:
|
517
|
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
518
|
+
|
519
|
+
if isinstance(module, BaseTunerLayer):
|
520
|
+
if self.lora_scale != 1.0:
|
521
|
+
module.scale_layer(self.lora_scale)
|
522
|
+
module.merge(safe_merge=self._safe_fusing)
|
523
|
+
|
524
|
+
def unfuse_lora(self):
|
525
|
+
self.apply(self._unfuse_lora_apply)
|
526
|
+
|
527
|
+
def _unfuse_lora_apply(self, module):
|
528
|
+
if not USE_PEFT_BACKEND:
|
529
|
+
if hasattr(module, "_unfuse_lora"):
|
530
|
+
module._unfuse_lora()
|
531
|
+
else:
|
532
|
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
533
|
+
|
534
|
+
if isinstance(module, BaseTunerLayer):
|
535
|
+
module.unmerge()
|
536
|
+
|
537
|
+
def set_adapters(
|
538
|
+
self,
|
539
|
+
adapter_names: Union[List[str], str],
|
540
|
+
weights: Optional[Union[List[float], float]] = None,
|
541
|
+
):
|
542
|
+
"""
|
543
|
+
Set the currently active adapters for use in the UNet.
|
544
|
+
|
545
|
+
Args:
|
546
|
+
adapter_names (`List[str]` or `str`):
|
547
|
+
The names of the adapters to use.
|
548
|
+
adapter_weights (`Union[List[float], float]`, *optional*):
|
549
|
+
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
550
|
+
adapters.
|
551
|
+
|
552
|
+
Example:
|
553
|
+
|
554
|
+
```py
|
555
|
+
from diffusers import AutoPipelineForText2Image
|
556
|
+
import torch
|
557
|
+
|
558
|
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
559
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
560
|
+
).to("cuda")
|
561
|
+
pipeline.load_lora_weights(
|
562
|
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
563
|
+
)
|
564
|
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
565
|
+
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
566
|
+
```
|
567
|
+
"""
|
568
|
+
if not USE_PEFT_BACKEND:
|
569
|
+
raise ValueError("PEFT backend is required for `set_adapters()`.")
|
570
|
+
|
571
|
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
572
|
+
|
573
|
+
if weights is None:
|
574
|
+
weights = [1.0] * len(adapter_names)
|
575
|
+
elif isinstance(weights, float):
|
576
|
+
weights = [weights] * len(adapter_names)
|
577
|
+
|
578
|
+
if len(adapter_names) != len(weights):
|
579
|
+
raise ValueError(
|
580
|
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
|
581
|
+
)
|
582
|
+
|
583
|
+
set_weights_and_activate_adapters(self, adapter_names, weights)
|
584
|
+
|
585
|
+
def disable_lora(self):
|
586
|
+
"""
|
587
|
+
Disable the UNet's active LoRA layers.
|
588
|
+
|
589
|
+
Example:
|
590
|
+
|
591
|
+
```py
|
592
|
+
from diffusers import AutoPipelineForText2Image
|
593
|
+
import torch
|
594
|
+
|
595
|
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
596
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
597
|
+
).to("cuda")
|
598
|
+
pipeline.load_lora_weights(
|
599
|
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
600
|
+
)
|
601
|
+
pipeline.disable_lora()
|
602
|
+
```
|
603
|
+
"""
|
604
|
+
if not USE_PEFT_BACKEND:
|
605
|
+
raise ValueError("PEFT backend is required for this method.")
|
606
|
+
set_adapter_layers(self, enabled=False)
|
607
|
+
|
608
|
+
def enable_lora(self):
|
609
|
+
"""
|
610
|
+
Enable the UNet's active LoRA layers.
|
611
|
+
|
612
|
+
Example:
|
613
|
+
|
614
|
+
```py
|
615
|
+
from diffusers import AutoPipelineForText2Image
|
616
|
+
import torch
|
617
|
+
|
618
|
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
619
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
620
|
+
).to("cuda")
|
621
|
+
pipeline.load_lora_weights(
|
622
|
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
623
|
+
)
|
624
|
+
pipeline.enable_lora()
|
625
|
+
```
|
626
|
+
"""
|
627
|
+
if not USE_PEFT_BACKEND:
|
628
|
+
raise ValueError("PEFT backend is required for this method.")
|
629
|
+
set_adapter_layers(self, enabled=True)
|
630
|
+
|
631
|
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
632
|
+
"""
|
633
|
+
Delete an adapter's LoRA layers from the UNet.
|
634
|
+
|
635
|
+
Args:
|
636
|
+
adapter_names (`Union[List[str], str]`):
|
637
|
+
The names (single string or list of strings) of the adapter to delete.
|
638
|
+
|
639
|
+
Example:
|
640
|
+
|
641
|
+
```py
|
642
|
+
from diffusers import AutoPipelineForText2Image
|
643
|
+
import torch
|
644
|
+
|
645
|
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
646
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
647
|
+
).to("cuda")
|
648
|
+
pipeline.load_lora_weights(
|
649
|
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
650
|
+
)
|
651
|
+
pipeline.delete_adapters("cinematic")
|
652
|
+
```
|
653
|
+
"""
|
654
|
+
if not USE_PEFT_BACKEND:
|
655
|
+
raise ValueError("PEFT backend is required for this method.")
|
656
|
+
|
657
|
+
if isinstance(adapter_names, str):
|
658
|
+
adapter_names = [adapter_names]
|
659
|
+
|
660
|
+
for adapter_name in adapter_names:
|
661
|
+
delete_adapter_layers(self, adapter_name)
|
662
|
+
|
663
|
+
# Pop also the corresponding adapter from the config
|
664
|
+
if hasattr(self, "peft_config"):
|
665
|
+
self.peft_config.pop(adapter_name, None)
|
666
|
+
|
667
|
+
def _load_ip_adapter_weights(self, state_dict):
|
668
|
+
from ..models.attention_processor import (
|
669
|
+
AttnProcessor,
|
670
|
+
AttnProcessor2_0,
|
671
|
+
IPAdapterAttnProcessor,
|
672
|
+
IPAdapterAttnProcessor2_0,
|
673
|
+
)
|
674
|
+
|
675
|
+
# set ip-adapter cross-attention processors & load state_dict
|
676
|
+
attn_procs = {}
|
677
|
+
key_id = 1
|
678
|
+
for name in self.attn_processors.keys():
|
679
|
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
680
|
+
if name.startswith("mid_block"):
|
681
|
+
hidden_size = self.config.block_out_channels[-1]
|
682
|
+
elif name.startswith("up_blocks"):
|
683
|
+
block_id = int(name[len("up_blocks.")])
|
684
|
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
685
|
+
elif name.startswith("down_blocks"):
|
686
|
+
block_id = int(name[len("down_blocks.")])
|
687
|
+
hidden_size = self.config.block_out_channels[block_id]
|
688
|
+
if cross_attention_dim is None or "motion_modules" in name:
|
689
|
+
attn_processor_class = (
|
690
|
+
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
|
691
|
+
)
|
692
|
+
attn_procs[name] = attn_processor_class()
|
693
|
+
else:
|
694
|
+
attn_processor_class = (
|
695
|
+
IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
|
696
|
+
)
|
697
|
+
attn_procs[name] = attn_processor_class(
|
698
|
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
|
699
|
+
).to(dtype=self.dtype, device=self.device)
|
700
|
+
|
701
|
+
value_dict = {}
|
702
|
+
for k, w in attn_procs[name].state_dict().items():
|
703
|
+
value_dict.update({f"{k}": state_dict["ip_adapter"][f"{key_id}.{k}"]})
|
704
|
+
|
705
|
+
attn_procs[name].load_state_dict(value_dict)
|
706
|
+
key_id += 2
|
707
|
+
|
708
|
+
self.set_attn_processor(attn_procs)
|
709
|
+
|
710
|
+
# create image projection layers.
|
711
|
+
clip_embeddings_dim = state_dict["image_proj"]["proj.weight"].shape[-1]
|
712
|
+
cross_attention_dim = state_dict["image_proj"]["proj.weight"].shape[0] // 4
|
713
|
+
|
714
|
+
image_projection = ImageProjection(
|
715
|
+
cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=4
|
716
|
+
)
|
717
|
+
image_projection.to(dtype=self.dtype, device=self.device)
|
718
|
+
|
719
|
+
# load image projection layer weights
|
720
|
+
image_proj_state_dict = {}
|
721
|
+
image_proj_state_dict.update(
|
722
|
+
{
|
723
|
+
"image_embeds.weight": state_dict["image_proj"]["proj.weight"],
|
724
|
+
"image_embeds.bias": state_dict["image_proj"]["proj.bias"],
|
725
|
+
"norm.weight": state_dict["image_proj"]["norm.weight"],
|
726
|
+
"norm.bias": state_dict["image_proj"]["norm.bias"],
|
727
|
+
}
|
728
|
+
)
|
729
|
+
|
730
|
+
image_projection.load_state_dict(image_proj_state_dict)
|
731
|
+
|
732
|
+
self.encoder_hid_proj = image_projection.to(device=self.device, dtype=self.dtype)
|
733
|
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
734
|
+
|
735
|
+
delete_adapter_layers
|