diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from ...models.lora import adjust_lora_scale_text_encoder
|
|
37
37
|
from ...schedulers import KarrasDiffusionSchedulers
|
38
38
|
from ...utils import (
|
39
39
|
USE_PEFT_BACKEND,
|
40
|
+
deprecate,
|
40
41
|
logging,
|
41
42
|
replace_example_docstring,
|
42
43
|
scale_lora_layers,
|
@@ -132,9 +133,13 @@ EXAMPLE_DOC_STRING = """
|
|
132
133
|
|
133
134
|
|
134
135
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
135
|
-
def retrieve_latents(
|
136
|
-
|
136
|
+
def retrieve_latents(
|
137
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
138
|
+
):
|
139
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
137
140
|
return encoder_output.latent_dist.sample(generator)
|
141
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
142
|
+
return encoder_output.latent_dist.mode()
|
138
143
|
elif hasattr(encoder_output, "latents"):
|
139
144
|
return encoder_output.latents
|
140
145
|
else:
|
@@ -192,8 +197,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
192
197
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
193
198
|
watermarker will be used.
|
194
199
|
"""
|
200
|
+
|
195
201
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
196
202
|
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
|
203
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
197
204
|
|
198
205
|
def __init__(
|
199
206
|
self,
|
@@ -542,6 +549,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
542
549
|
controlnet_conditioning_scale=1.0,
|
543
550
|
control_guidance_start=0.0,
|
544
551
|
control_guidance_end=1.0,
|
552
|
+
callback_on_step_end_tensor_inputs=None,
|
545
553
|
):
|
546
554
|
if strength < 0 or strength > 1:
|
547
555
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
@@ -552,14 +560,20 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
552
560
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
553
561
|
f" {type(num_inference_steps)}."
|
554
562
|
)
|
555
|
-
|
556
|
-
|
557
|
-
):
|
563
|
+
|
564
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
558
565
|
raise ValueError(
|
559
566
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
560
567
|
f" {type(callback_steps)}."
|
561
568
|
)
|
562
569
|
|
570
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
571
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
572
|
+
):
|
573
|
+
raise ValueError(
|
574
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
575
|
+
)
|
576
|
+
|
563
577
|
if prompt is not None and prompt_embeds is not None:
|
564
578
|
raise ValueError(
|
565
579
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -950,6 +964,29 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
950
964
|
"""Disables the FreeU mechanism if enabled."""
|
951
965
|
self.unet.disable_freeu()
|
952
966
|
|
967
|
+
@property
|
968
|
+
def guidance_scale(self):
|
969
|
+
return self._guidance_scale
|
970
|
+
|
971
|
+
@property
|
972
|
+
def clip_skip(self):
|
973
|
+
return self._clip_skip
|
974
|
+
|
975
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
976
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
977
|
+
# corresponds to doing no classifier free guidance.
|
978
|
+
@property
|
979
|
+
def do_classifier_free_guidance(self):
|
980
|
+
return self._guidance_scale > 1
|
981
|
+
|
982
|
+
@property
|
983
|
+
def cross_attention_kwargs(self):
|
984
|
+
return self._cross_attention_kwargs
|
985
|
+
|
986
|
+
@property
|
987
|
+
def num_timesteps(self):
|
988
|
+
return self._num_timesteps
|
989
|
+
|
953
990
|
@torch.no_grad()
|
954
991
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
955
992
|
def __call__(
|
@@ -975,8 +1012,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
975
1012
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
976
1013
|
output_type: Optional[str] = "pil",
|
977
1014
|
return_dict: bool = True,
|
978
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
979
|
-
callback_steps: int = 1,
|
980
1015
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
981
1016
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
982
1017
|
guess_mode: bool = False,
|
@@ -991,6 +1026,9 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
991
1026
|
aesthetic_score: float = 6.0,
|
992
1027
|
negative_aesthetic_score: float = 2.5,
|
993
1028
|
clip_skip: Optional[int] = None,
|
1029
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1030
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1031
|
+
**kwargs,
|
994
1032
|
):
|
995
1033
|
r"""
|
996
1034
|
Function invoked when calling the pipeline for generation.
|
@@ -1076,12 +1114,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1076
1114
|
return_dict (`bool`, *optional*, defaults to `True`):
|
1077
1115
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1078
1116
|
plain tuple.
|
1079
|
-
callback (`Callable`, *optional*):
|
1080
|
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
1081
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1082
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
1083
|
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1084
|
-
called at every step.
|
1085
1117
|
cross_attention_kwargs (`dict`, *optional*):
|
1086
1118
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1087
1119
|
`self.processor` in
|
@@ -1137,6 +1169,15 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1137
1169
|
clip_skip (`int`, *optional*):
|
1138
1170
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1139
1171
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1172
|
+
callback_on_step_end (`Callable`, *optional*):
|
1173
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1174
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1175
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1176
|
+
`callback_on_step_end_tensor_inputs`.
|
1177
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1178
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1179
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1180
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
1140
1181
|
|
1141
1182
|
Examples:
|
1142
1183
|
|
@@ -1145,6 +1186,23 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1145
1186
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1146
1187
|
containing the output images.
|
1147
1188
|
"""
|
1189
|
+
|
1190
|
+
callback = kwargs.pop("callback", None)
|
1191
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
1192
|
+
|
1193
|
+
if callback is not None:
|
1194
|
+
deprecate(
|
1195
|
+
"callback",
|
1196
|
+
"1.0.0",
|
1197
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1198
|
+
)
|
1199
|
+
if callback_steps is not None:
|
1200
|
+
deprecate(
|
1201
|
+
"callback_steps",
|
1202
|
+
"1.0.0",
|
1203
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1204
|
+
)
|
1205
|
+
|
1148
1206
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1149
1207
|
|
1150
1208
|
# align format for control guidance
|
@@ -1154,9 +1212,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1154
1212
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1155
1213
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1156
1214
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1157
|
-
control_guidance_start, control_guidance_end =
|
1158
|
-
|
1159
|
-
|
1215
|
+
control_guidance_start, control_guidance_end = (
|
1216
|
+
mult * [control_guidance_start],
|
1217
|
+
mult * [control_guidance_end],
|
1218
|
+
)
|
1160
1219
|
|
1161
1220
|
# 1. Check inputs. Raise error if not correct
|
1162
1221
|
self.check_inputs(
|
@@ -1175,8 +1234,13 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1175
1234
|
controlnet_conditioning_scale,
|
1176
1235
|
control_guidance_start,
|
1177
1236
|
control_guidance_end,
|
1237
|
+
callback_on_step_end_tensor_inputs,
|
1178
1238
|
)
|
1179
1239
|
|
1240
|
+
self._guidance_scale = guidance_scale
|
1241
|
+
self._clip_skip = clip_skip
|
1242
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1243
|
+
|
1180
1244
|
# 2. Define call parameters
|
1181
1245
|
if prompt is not None and isinstance(prompt, str):
|
1182
1246
|
batch_size = 1
|
@@ -1186,10 +1250,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1186
1250
|
batch_size = prompt_embeds.shape[0]
|
1187
1251
|
|
1188
1252
|
device = self._execution_device
|
1189
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1190
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1191
|
-
# corresponds to doing no classifier free guidance.
|
1192
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1193
1253
|
|
1194
1254
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1195
1255
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
@@ -1203,7 +1263,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1203
1263
|
|
1204
1264
|
# 3. Encode input prompt
|
1205
1265
|
text_encoder_lora_scale = (
|
1206
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1266
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1207
1267
|
)
|
1208
1268
|
(
|
1209
1269
|
prompt_embeds,
|
@@ -1215,7 +1275,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1215
1275
|
prompt_2,
|
1216
1276
|
device,
|
1217
1277
|
num_images_per_prompt,
|
1218
|
-
do_classifier_free_guidance,
|
1278
|
+
self.do_classifier_free_guidance,
|
1219
1279
|
negative_prompt,
|
1220
1280
|
negative_prompt_2,
|
1221
1281
|
prompt_embeds=prompt_embeds,
|
@@ -1223,7 +1283,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1223
1283
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
1224
1284
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1225
1285
|
lora_scale=text_encoder_lora_scale,
|
1226
|
-
clip_skip=clip_skip,
|
1286
|
+
clip_skip=self.clip_skip,
|
1227
1287
|
)
|
1228
1288
|
|
1229
1289
|
# 4. Prepare image and controlnet_conditioning_image
|
@@ -1238,7 +1298,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1238
1298
|
num_images_per_prompt=num_images_per_prompt,
|
1239
1299
|
device=device,
|
1240
1300
|
dtype=controlnet.dtype,
|
1241
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1301
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1242
1302
|
guess_mode=guess_mode,
|
1243
1303
|
)
|
1244
1304
|
height, width = control_image.shape[-2:]
|
@@ -1254,7 +1314,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1254
1314
|
num_images_per_prompt=num_images_per_prompt,
|
1255
1315
|
device=device,
|
1256
1316
|
dtype=controlnet.dtype,
|
1257
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1317
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1258
1318
|
guess_mode=guess_mode,
|
1259
1319
|
)
|
1260
1320
|
|
@@ -1269,6 +1329,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1269
1329
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1270
1330
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1271
1331
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1332
|
+
self._num_timesteps = len(timesteps)
|
1272
1333
|
|
1273
1334
|
# 6. Prepare latent variables
|
1274
1335
|
latents = self.prepare_latents(
|
@@ -1326,7 +1387,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1326
1387
|
)
|
1327
1388
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1328
1389
|
|
1329
|
-
if do_classifier_free_guidance:
|
1390
|
+
if self.do_classifier_free_guidance:
|
1330
1391
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1331
1392
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1332
1393
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
@@ -1341,13 +1402,13 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1341
1402
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1342
1403
|
for i, t in enumerate(timesteps):
|
1343
1404
|
# expand the latents if we are doing classifier free guidance
|
1344
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1405
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1345
1406
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1346
1407
|
|
1347
1408
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1348
1409
|
|
1349
1410
|
# controlnet(s) inference
|
1350
|
-
if guess_mode and do_classifier_free_guidance:
|
1411
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1351
1412
|
# Infer ControlNet only for the conditional batch.
|
1352
1413
|
control_model_input = latents
|
1353
1414
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1380,7 +1441,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1380
1441
|
return_dict=False,
|
1381
1442
|
)
|
1382
1443
|
|
1383
|
-
if guess_mode and do_classifier_free_guidance:
|
1444
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1384
1445
|
# Infered ControlNet only for the conditional batch.
|
1385
1446
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1386
1447
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1392,7 +1453,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1392
1453
|
latent_model_input,
|
1393
1454
|
t,
|
1394
1455
|
encoder_hidden_states=prompt_embeds,
|
1395
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1456
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1396
1457
|
down_block_additional_residuals=down_block_res_samples,
|
1397
1458
|
mid_block_additional_residual=mid_block_res_sample,
|
1398
1459
|
added_cond_kwargs=added_cond_kwargs,
|
@@ -1400,13 +1461,23 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1400
1461
|
)[0]
|
1401
1462
|
|
1402
1463
|
# perform guidance
|
1403
|
-
if do_classifier_free_guidance:
|
1464
|
+
if self.do_classifier_free_guidance:
|
1404
1465
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1405
1466
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1406
1467
|
|
1407
1468
|
# compute the previous noisy sample x_t -> x_t-1
|
1408
1469
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1409
1470
|
|
1471
|
+
if callback_on_step_end is not None:
|
1472
|
+
callback_kwargs = {}
|
1473
|
+
for k in callback_on_step_end_tensor_inputs:
|
1474
|
+
callback_kwargs[k] = locals()[k]
|
1475
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1476
|
+
|
1477
|
+
latents = callback_outputs.pop("latents", latents)
|
1478
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1479
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1480
|
+
|
1410
1481
|
# call the callback, if provided
|
1411
1482
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1412
1483
|
progress_bar.update()
|
@@ -39,6 +39,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
|
|
39
39
|
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
|
40
40
|
[`IPNDMScheduler`].
|
41
41
|
"""
|
42
|
+
|
42
43
|
model_cpu_offload_seq = "unet"
|
43
44
|
|
44
45
|
def __init__(self, unet, scheduler):
|
@@ -35,6 +35,7 @@ class DDIMPipeline(DiffusionPipeline):
|
|
35
35
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
36
36
|
[`DDPMScheduler`], or [`DDIMScheduler`].
|
37
37
|
"""
|
38
|
+
|
38
39
|
model_cpu_offload_seq = "unet"
|
39
40
|
|
40
41
|
def __init__(self, unet, scheduler):
|
@@ -35,6 +35,7 @@ class DDPMPipeline(DiffusionPipeline):
|
|
35
35
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
36
36
|
[`DDPMScheduler`], or [`DDIMScheduler`].
|
37
37
|
"""
|
38
|
+
|
38
39
|
model_cpu_offload_seq = "unet"
|
39
40
|
|
40
41
|
def __init__(self, unet, scheduler):
|
@@ -98,7 +98,19 @@ class IFPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
98
98
|
watermarker: Optional[IFWatermarker]
|
99
99
|
|
100
100
|
bad_punct_regex = re.compile(
|
101
|
-
r"["
|
101
|
+
r"["
|
102
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
103
|
+
+ r"\)"
|
104
|
+
+ r"\("
|
105
|
+
+ r"\]"
|
106
|
+
+ r"\["
|
107
|
+
+ r"\}"
|
108
|
+
+ r"\{"
|
109
|
+
+ r"\|"
|
110
|
+
+ "\\"
|
111
|
+
+ r"\/"
|
112
|
+
+ r"\*"
|
113
|
+
+ r"]{1,}"
|
102
114
|
) # noqa
|
103
115
|
|
104
116
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -122,7 +122,19 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
122
122
|
watermarker: Optional[IFWatermarker]
|
123
123
|
|
124
124
|
bad_punct_regex = re.compile(
|
125
|
-
r"["
|
125
|
+
r"["
|
126
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
127
|
+
+ r"\)"
|
128
|
+
+ r"\("
|
129
|
+
+ r"\]"
|
130
|
+
+ r"\["
|
131
|
+
+ r"\}"
|
132
|
+
+ r"\{"
|
133
|
+
+ r"\|"
|
134
|
+
+ "\\"
|
135
|
+
+ r"\/"
|
136
|
+
+ r"\*"
|
137
|
+
+ r"]{1,}"
|
126
138
|
) # noqa
|
127
139
|
|
128
140
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -126,7 +126,19 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
126
126
|
watermarker: Optional[IFWatermarker]
|
127
127
|
|
128
128
|
bad_punct_regex = re.compile(
|
129
|
-
r"["
|
129
|
+
r"["
|
130
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
131
|
+
+ r"\)"
|
132
|
+
+ r"\("
|
133
|
+
+ r"\]"
|
134
|
+
+ r"\["
|
135
|
+
+ r"\}"
|
136
|
+
+ r"\{"
|
137
|
+
+ r"\|"
|
138
|
+
+ "\\"
|
139
|
+
+ r"\/"
|
140
|
+
+ r"\*"
|
141
|
+
+ r"]{1,}"
|
130
142
|
) # noqa
|
131
143
|
|
132
144
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor"]
|
@@ -125,7 +125,19 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
125
125
|
watermarker: Optional[IFWatermarker]
|
126
126
|
|
127
127
|
bad_punct_regex = re.compile(
|
128
|
-
r"["
|
128
|
+
r"["
|
129
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
130
|
+
+ r"\)"
|
131
|
+
+ r"\("
|
132
|
+
+ r"\]"
|
133
|
+
+ r"\["
|
134
|
+
+ r"\}"
|
135
|
+
+ r"\{"
|
136
|
+
+ r"\|"
|
137
|
+
+ "\\"
|
138
|
+
+ r"\/"
|
139
|
+
+ r"\*"
|
140
|
+
+ r"]{1,}"
|
129
141
|
) # noqa
|
130
142
|
|
131
143
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -128,7 +128,19 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
128
128
|
watermarker: Optional[IFWatermarker]
|
129
129
|
|
130
130
|
bad_punct_regex = re.compile(
|
131
|
-
r"["
|
131
|
+
r"["
|
132
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
133
|
+
+ r"\)"
|
134
|
+
+ r"\("
|
135
|
+
+ r"\]"
|
136
|
+
+ r"\["
|
137
|
+
+ r"\}"
|
138
|
+
+ r"\{"
|
139
|
+
+ r"\|"
|
140
|
+
+ "\\"
|
141
|
+
+ r"\/"
|
142
|
+
+ r"\*"
|
143
|
+
+ r"]{1,}"
|
132
144
|
) # noqa
|
133
145
|
|
134
146
|
model_cpu_offload_seq = "text_encoder->unet"
|
@@ -84,7 +84,19 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
84
84
|
watermarker: Optional[IFWatermarker]
|
85
85
|
|
86
86
|
bad_punct_regex = re.compile(
|
87
|
-
r"["
|
87
|
+
r"["
|
88
|
+
+ "#®•©™&@·º½¾¿¡§~"
|
89
|
+
+ r"\)"
|
90
|
+
+ r"\("
|
91
|
+
+ r"\]"
|
92
|
+
+ r"\["
|
93
|
+
+ r"\}"
|
94
|
+
+ r"\{"
|
95
|
+
+ r"\|"
|
96
|
+
+ "\\"
|
97
|
+
+ r"\/"
|
98
|
+
+ r"\*"
|
99
|
+
+ r"]{1,}"
|
88
100
|
) # noqa
|
89
101
|
|
90
102
|
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
|
@@ -181,7 +181,7 @@ class KandinskyV22Pipeline(DiffusionPipeline):
|
|
181
181
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
182
182
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
183
183
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
184
|
-
`._callback_tensor_inputs` attribute of your
|
184
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
185
185
|
|
186
186
|
Examples:
|
187
187
|
|
@@ -283,7 +283,7 @@ class KandinskyV22CombinedPipeline(DiffusionPipeline):
|
|
283
283
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
284
284
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
285
285
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
286
|
-
`._callback_tensor_inputs` attribute of your
|
286
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
287
287
|
|
288
288
|
Examples:
|
289
289
|
|
@@ -759,7 +759,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
759
759
|
prior_callback_on_step_end_tensor_inputs (`List`, *optional*):
|
760
760
|
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the
|
761
761
|
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in
|
762
|
-
the `._callback_tensor_inputs` attribute of your
|
762
|
+
the `._callback_tensor_inputs` attribute of your pipeline class.
|
763
763
|
callback_on_step_end (`Callable`, *optional*):
|
764
764
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
765
765
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
@@ -768,7 +768,7 @@ class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline):
|
|
768
768
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
769
769
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
770
770
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
771
|
-
`._callback_tensor_inputs` attribute of your
|
771
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
772
772
|
|
773
773
|
|
774
774
|
Examples:
|
@@ -255,7 +255,7 @@ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
|
|
255
255
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
256
256
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
257
257
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
258
|
-
`._callback_tensor_inputs` attribute of your
|
258
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
259
259
|
|
260
260
|
Examples:
|
261
261
|
|
@@ -362,7 +362,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
362
362
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
363
363
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
364
364
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
365
|
-
`._callback_tensor_inputs` attribute of your
|
365
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
366
366
|
|
367
367
|
Examples:
|
368
368
|
|
@@ -423,7 +423,7 @@ class KandinskyV22PriorPipeline(DiffusionPipeline):
|
|
423
423
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
424
424
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
425
425
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
426
|
-
`._callback_tensor_inputs` attribute of your
|
426
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
427
427
|
|
428
428
|
Examples:
|
429
429
|
|
@@ -0,0 +1,49 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_torch_available,
|
9
|
+
is_transformers_available,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
_dummy_objects = {}
|
14
|
+
_import_structure = {}
|
15
|
+
|
16
|
+
try:
|
17
|
+
if not (is_transformers_available() and is_torch_available()):
|
18
|
+
raise OptionalDependencyNotAvailable()
|
19
|
+
except OptionalDependencyNotAvailable:
|
20
|
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
21
|
+
|
22
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
23
|
+
else:
|
24
|
+
_import_structure["kandinsky3_pipeline"] = ["Kandinsky3Pipeline"]
|
25
|
+
_import_structure["kandinsky3img2img_pipeline"] = ["Kandinsky3Img2ImgPipeline"]
|
26
|
+
|
27
|
+
|
28
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
29
|
+
try:
|
30
|
+
if not (is_transformers_available() and is_torch_available()):
|
31
|
+
raise OptionalDependencyNotAvailable()
|
32
|
+
|
33
|
+
except OptionalDependencyNotAvailable:
|
34
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
35
|
+
else:
|
36
|
+
from .kandinsky3_pipeline import Kandinsky3Pipeline
|
37
|
+
from .kandinsky3img2img_pipeline import Kandinsky3Img2ImgPipeline
|
38
|
+
else:
|
39
|
+
import sys
|
40
|
+
|
41
|
+
sys.modules[__name__] = _LazyModule(
|
42
|
+
__name__,
|
43
|
+
globals()["__file__"],
|
44
|
+
_import_structure,
|
45
|
+
module_spec=__spec__,
|
46
|
+
)
|
47
|
+
|
48
|
+
for name, value in _dummy_objects.items():
|
49
|
+
setattr(sys.modules[__name__], name, value)
|